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1 | INTRODUCTION

Abstract

Fibrinogen and its insoluble degradation product fibrin are pivotal plasma proteins that
play important roles in blood coagulation, wound healing, and immune responses. This
review highlights research from the last 24 months connecting our progressing view of
fibrin(ogen)’s structure, and in particular its conformational flexibility and post-
translational modifications, to its (patho)physiologic roles, molecular interactions, me-
chanical properties, use as a biomaterial, and potential as a therapeutic target. Recent
work suggests that fibrinogen structure is highly dynamic, sampling multiple confor-
mations, which may explain its myriad physiologic functions and the presence of cryptic
binding sites. Investigations into fibrin clot structure elucidated the impact of post-
translational modifications, therapeutic interventions, and pathologic conditions on
fibrin network morphology, offering insights into thrombus formation and embolization.
Studies exploring the mechanical properties of fibrin reveal its response to blood flow
and platelet-driven contraction, offering implications for clot stability and embolization
risk. Moreover, advancements in tissue engineering leverage fibrin’s biocompatibility
and customizable properties for diverse applications, from wound healing to tissue
regeneration and biomaterial interactions. These findings underscore the structural
origins of fibrin(ogen)’s multifaceted roles and its potential as a target for therapeutic

interventions.
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developments in this topic to the extent necessary to understand

this progress.

Fibrin(ogen) is a paradigmatic blood plasma protein, whose insol-

uble form was first observed in a microscope in 1666 by Marcello

Malpighi. Numerous recent review articles have detailed the 2 | HISTORICAL INSIGHTS INTO

development of our understanding of fibrin(ogen)’s structure and

FIBRIN(OGEN) STRUCTURE

function [1-6] and its use in tissue engineering [7]. Thus, this re-

view will specifically focus on recent advances in our understand-

ing of the fibrin(ogen) structure and will only cover the historical

Historically, the nomenclature fibrin(ogen) refers to overlapping
structural similarities between soluble fibrinogen and its insoluble
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product fibrin. In function, however, fibrinogen and fibrin differ
greatly. Fibrinogen molecules are homodimers of trimers, consisting of
2 sets of Aa-chains, Bp-chains, and y-chains, with the most prevalent
splice variant, Fibgsg (~60% to 70% of circulating human adult
fibrinogen), having a mass of ~340 kDa [8]. The chains extend out-
ward from both sides of this central nodule, forming triple helical
coiled-coil structures, with the p-chains and y-chains terminating in
compact f-nodules and y-nodules, respectively, while the a-chain
terminates in a partially disordered aC-region [9] (Figure 1). The aC-
region is further subdivided into the mostly disordered aC-connector
(Ax221-391; human amino acid numbering using secreted protein
number, where the signal peptide is not included in numbering
scheme), and the aC-domain (Aa392-610) [10]. Because of these
diverse structural features, fibrin(ogen) interacts with various re-
ceptors and enzymes through numerous binding sites—some of which
are cryptic and become exposed during conformational changes—
playing crucial roles in immunity, thrombosis, cancer, pulmonary
fibrosis, and wound healing (Figure 1B) [11,12].

A fibrinogen splice variant (~1% of circulating human adult
fibrinogen), often referred to as Fibso, contains extensions of both
Aa-chains by 236 residues, which form a p/y-nodule homologous
structure commonly referred to as the ag or agC domain (Figure 2A)
[13,14]. A second splice variant (~7% of circulating human adult
fibrinogen), often referred to as y'-fibrinogen, contains an altered C-
terminus of the y-chain [15]. The chains are linked by 29 disulfide
bonds, including a disulfide bridge near their N-termini and 2 disulfide
rings, which flank both ends of each coiled coil [16]. In addition to
splice variants, potential fibrinogen posttranslational modifications
(PTMs) include removal of signal peptides and the final 15 amino acids
in the Fibs4o a-chain, a-chain proteolytic degradation (Fibzgs ~26% of
circulating fibrinogen; Fiby7,o ~4% of circulating fibrinogen) [8],
oxidation, nitration, O-glycosylations and N-glycosylations, phos-
phorylation, sulfation, and citrullination [17]. Importantly, fibrinogen
PTMs are known to impact the occurrence and course of bleeding and
thrombotic diseases [18,19].

Fibrinogen is typically converted into fibrin when thrombin
cleaves the first 16 residues in the Aa-chain (fibrinopeptide A or FpA)
and, in a slower reaction, the first 14 residues of the BB-chain (fibri-
nopeptide B or FpB) [20]. Fibrinopeptide removal reveals knob ‘A’ and
knob ‘B’ on the a-chain and p-chain, respectively, which bind to a
corresponding hole ‘@’ in the y-nodule, and hole ‘b’ in the p-nodule
during polymerization (Figures 1A, C, and 2A). Polymerization pro-
ceeds initially through A:a interactions, leading to the formation of
molecularly half-staggered protofibrils [21]. The protofibrils laterally
aggregate into thicker fibers, which is thought to be mediated, in part,
through the release of FpB and interactions between aC-regions [10]
(Figure 2B), although the role of aC-regions in mediating lateral ag-
gregation has been recently questioned [22]. Finally, fibers branch into
a 3D gel, the structure of which (fiber thickness, spacing between fi-
bers, etc) is determined by the local biochemical/biophysical/cellular
environment. The fibrin structure is reinforced through chemical
crosslinks mediated by factor (F)Xllla, which forms y-glutamyl-e-lysyl

bonds between lysine and glutamine residues at the C-terminus of

fibrin y-chains within protofibrils, and between residues in the aC-
regions, forming a-polymers that link separate protofibrils [23]. As
clotting progresses, the platelets pull on the fibrin network, leading to
clot contraction (also known as retraction), which shrinks the volume
of the clot, expels plasma and its constituent molecules, helps with

recanalization, and alters clot lysis [24,25].

3 | FIBRINOGEN STRUCTURE AND
FLEXIBILITY AND ITS PHYSIOLOGIC ROLES

While much is known about the structure of fibrinogen, recent ad-
vances reveal that fibrinogen displays more conformational flexibility
than previously anticipated, including significant bending in the coiled-
coil and E region (Figure 2A; coiled-coil bent [magnifying glass 1] and
central bent conformations [magnifying glass 2]) [26]. Although this
dynamism has been proposed [27-29], recent orthogonal observa-
tions by negative stain electron microscopy, hydrogen-deuterium ex-
change, and X-ray scattering demonstrated this behavior for
fibrinogen in solution. The confirmed flexibility allows fibrinogen to
adopt highly heterogeneous conformational states in solution. More
studies are needed to understand how this vast conformational
landscape of fibrinogen is further altered or modified in response to
metabolic changes, such as variations in blood viscosity and dielectric
permittivity in different physiologic circumstances.

One way in which fibrinogen’s structural flexibility and dynamics
can influence its function is through exposing or encrypting its mo-
lecular binding sites (Figure 1B). Recent work has further illuminated
the role of fibrinogen’s molecular interactions. Elimination of the opmp2
(Mac-1)-binding site in the fibrinogen y-chain protects against diet-
induced obesity [30]. Additionally, the removal of the apfs
integrin-binding site in mice, resulting in altered fibrin(ogen) cross-
linking, is associated with elevated acute liver injury [31].

However, in the physiologic role(s) of fibrinogen, and possibly
fibrin, flexibility seems to extend beyond the regulation of these
molecular interactions. For instance, alterations in fibrinogen dyna-
mism appear to result in different functional outcomes. When present,
the aE-chain sterically hampers the protofibril associations, enhancing
protofibril sliding and resulting in the formation of a less stiff fibrin
network in the absence of FXllla-mediated crosslinking [32]. More-
over, elevated levels of mannan and fucose moieties in fibrinogen have
been linked to increased mortality in patients with end-stage renal
disease undergoing peritoneal dialysis [33]. In fact, strong support for
the (patho)physiologic roles of fibrinogen dynamism also comes from
numerous point mutations. The spectrum of phenotypic severity in
thrombosis or hemorrhage caused by these single mutations, as seen
in patients with dysfibrinogenemia, is broad, and potentially, some
patients experience severe bleeding episodes, while others exhibit
thrombotic phenotypes, and some remain asymptomatic throughout
their lifespan [26,34]. On the opposite facet of this phenomenon,
engineering the extent of fibrinogen flexibility could potentially target
unique aspects of fibrin polymerization, blood coagulation, or platelet

function, offering a way to strike a delicate balance between
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preventing thrombosis and maintaining hemostasis. Indeed, recent
findings demonstrate that poorly polymerizing fibrinogen protects

against arterial and venous thrombosis while exhibiting similar

platelet aggregation to wild-type fibrinogen [35].

4 | FIBRIN NETWORK STRUCTURE

The structural flexibility of fibrinogen likely translates upon its con-
version to monomeric fibrin, enabling adaptation to various physio-
logic conditions and likely influencing fibrin structure and mechanical
properties [36]. Additionally, PTMs and subdomains can regulate fibrin
function, and characterizing correlations between specific fibrin
modifications and gel structures has been of significant interest. For
example, citrullination (the hydrolysis of the guanidine group of argi-
nine, resulting in citrulline) results in thinner and softer fibers that are
more closely packed together [37]. The presence of polyphosphate
and/or histones results in thicker fibers than fibrin alone in thrombin-
induced [38] and staphylocoagulase/prothrombin-induced clots [39].
On the contrary, oxidation of certain methionine residues in fibrin-
ogen did not dramatically impact fibrin polymerization or structures,
suggesting these PTM’s may serve an oxygen scavenging mechanism
[40]. Clots made of recombinant fibrinogen oE-splice variant (rFib420)
were typically composed of thinner fibers and more highly branched
junctions compared with clots made of the predominant splice variant
(rFib340), particularly at high fibrinogen concentrations [32]. Finally,
introducing 3 mutations (yD297N, yE323Q, and yK356Q), which alter
the A:a interaction by abrogating “catch-bond” behavior, resulted in
thinner fibers, fewer protofibrils per fiber, and denser networks
(especially when all 3 mutations are combined) [41].

Identifying changes in fibrin structures under pathologic condi-
tions has also received recent attention. Antithrombin deficiency was
reported to cause thinner fibers and decreased permeability [3].
Conditions characterized by hypercoagulability, such as increased
fibrinogen or FVIII concentrations, result in denser fibrin networks
with shorter fiber lengths [42]. Meanwhile, COVID-19 fibrin resulted
in shorter and thicker fibers, with more fiber junctions, and higher
fiber density, likely as a result of increased sialylation of COVID-19
fibrinogen [43,44]. Interestingly, the percentage of fibrinogen splice
variant Fib420 is elevated in patients with COVID-19, while the
percentage of y-fibrinogen is decreased when compared with healthy
plasma levels [45].

The effects of clot contraction on fibrin structures were also
assessed. An analysis of the composition of coronary artery thrombi in
human patients over time demonstrated that initial thrombi were
primarily platelet rich, containing minimal fibrin, while thrombi older
than 12 hours exhibited temporal layering, characterized by thick
fibrin fibers predominantly on the exterior [46]. In a murine model of

thrombi formation following aortic dissection, fibrin was identified as

the second most abundant component of the intramural thrombus,
surpassed only by red blood cells, with fibrin being more prevalent in
distal regions [47] due to contraction. Other studies demonstrated
that, in addition to platelets [2], megakaryocytes (platelet precursors)
[48], and zebrafish thrombocytes [49] can also contract fibrin fibers.

Further studies assessed the impact of therapeutic interventions
on network structures. A study analyzing fibrin structures after car-
diopulmonary bypass in neonates, comparing the addition of cry-
oprecipitate with fibrinogen concentrate demonstrated that the
addition of fibrinogen concentrate led to denser networks compared
with those treated with cryoprecipitate alone, with comparable fiber
alignment [50]. In another study comparing fibrin clot structure in
hemophilia patients receiving either rFVIII or emicizumab, it was
found that emicizumab-induced clots exhibited denser networks,
albeit composed of fibrin “patches” (sometimes referred to as sheets
[51]) rather than cylindrical fibers [52]. Moreover, research investi-
gating interventions for coronary artery disease concluded that
high-dose statin treatment correlated with a decrease in low-density
lipoprotein cholesterol and higher clot permeability [53].

One important observation stemming from numerous structural
studies has been a need for standardization across techniques that
assess fibrin structure [54-56]. Preliminary results to that end
demonstrate that super-resolution fluorescence microscopy, turbi-
dimetry, and scanning electron microscopy (Figure 2B-E) can provide
congruent results [54]. Further work in this area is important for
facilitating comparisons between different experimental studies.
Taken together, these results demonstrate that even though fibrin
structures have been studied for over a century, there is still an
important need for understanding how molecular conformations and
alterations in fibrinogen translate through the fibrin structural

hierarchy.

5 | FIBRIN(OGEN) STRUCTURE SND
IMMUNOLOGY

Apart from blood clot structure, monomeric fibrin(ogen) structures
themselves and their fragments, generated before and after fibrin
network formation, orchestrate immune responses, ranging from
inflammation, allergy, and immune cell activation to tissue wound
repair physiolo [57]. Fibrinogen dimer formation catalyzed by
transglutaminase-2 exhibits direct proinflammatory activity compared
with unmodified fibrinogen, enhancing the macrophage response
induced by lipopolysaccharide [58]. Similarly, fibrinogen, with 2 unique
genetic polymorphisms, demonstrates proinflammatory activity in the
central nervous system, leading to microglia activation in patients with
multiple sclerosis. It is proposed that microglia-expressed omf2
integrin receptor recognizes cryptic or conformationally hidden epi-

topes on deposited fibrinogen molecules in the central nervous

with homology modeling and molecular dynamics methods to fill in residues Aal1-26, Aa201-610, BB1-57, and y395-411. The aC-region
structure was generated using I-TASSER. (C) Full fibrinogen molecule, prepared as described in (B), with boxes around the regions that are

detailed in (A) and (B).
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system, correlating fibrinogen levels with multiple sclerosis severity
[59]. Interestingly, removal of the cryptic integrin amp. site (Figure 1B)
on fibrinogen improves renal damage in patients with sickle cell
anemia, who typically experience kidney damage driven by fibrinogen-
dependent coagulation activation and inflammation [60], highlighting
the apmpo/fibrinogen interaction as a potential target in prothrombotic
inflammatory diseases. Furthermore, the apmp,/fibrin interaction con-
tributes to neutrophil effector function in mucosal immuno-
surveillance [61].

Fibrin(ogen) structure not only influences immunity but is also
affected by immune cells and even by changes in cellular metabolism.
Activation of myeloid leukocytes, particularly neutrophils and mono-
cytes, accelerates fibrinogen-dependent coagulopathy during inflam-
mation through the oxidation of circulating fibrinogen [62]. In addition,
structural

methylglyoxal-mediated glycation and subsequent
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FIGURE 2 Fibrin(ogen) structure and polymerization. (A) Schematic of an individual protofibril and fibrin fiber. Magnifying glasses highlight
the locations of different conformational changes mentioned in the main text. Confocal microscopy images of clots made with plasma with (B)

0.23 and (C) 2.1 mg/mL of fibrinogen (scale bar 50 pm). Scanning electron microscopy images of clots made with plasma with (D) 1 and (E) 10
mg/mL of fibrinogen (scale bar 5 pm). Source: Panel (A) was modified from [14].

alterations in fibrinogen during glucose oxidation and lipid peroxida-
tion may induce immunogenicity, such as the generation of autoanti-
bodies against fibrinogen as observed in type 2 diabetes mellitus
[61,63]. Fragments generated by selective proteinase cleavages of
fibrinogen activate Toll-like receptors or amp, integrin signaling,
contributing to innate allergic and antifungal immunity [64], although
direct interaction of fibrinogen with toll-like receptors has been
recently questioned. Moreover, activated leukocytes prime fibrinogen
for proteolysis, further accelerating coagulopathy during inflammation
[62].

Another complicated area of intense immunology research lies in
the intertwined fibrin(ogen) and neutrophil extracellular traps (NETs)
structures, which include fibrin, DNA (negatively charged partner),
histones (positively charged partner), elastases, RBCs, and neutrophils.

NETs release peptidyl arginine deiminase that results in the
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TABLE

Parameter Method

Clot mechanics

Rheometry, biomechanic tensile tester, atomic force microscopy,

Experimental methods to quantify, visualize, and analyze fibrin(ogen).

Representative recent research
using these techniques

[32,42,68-71]

micromanipulator, Chandler loop, Brownian motion and light microscopy

Clot formation Turbidity, turbidimetry, Chandler loop

Clot structure

Confocal microscopy, scanning electron microscopy, Forster resonance energy

[54,72,73]
[53,54,68,70,72-75]

transfer, atomic force microscopy (AFM), transmission electron microscopy

(TEM), permeability
Clot contraction
tomography

Molecular structure

citrullination of fibrinogen [65]. Recent work showed that citrullinated
fibrinogen results in denser fibrin networks, thinner fibers, and
reduced porosity [3]; however, previous work showed that an increase
in fibrin network density due to NETs is mediated by FXI, so the ef-
fects of NETs on fibrinogen structure are likely complex [66].
Fibrin(ogen) in NETosis is not the focus of this review; however, given
the data discussed in other sections, we hypothesize that the simul-
taneous release of NETs constituents such as DNA and histones could
alter the fibrin(ogen) conformational landscape resulting in altered
in vivo fibrin formation, structures, and degradation. Limited work in
the past 2 years has been furthered our understanding of the rela-
tionship between NETs and fibrin structure, but the composite
makeup of NETs suggests further research is warranted to disentangle
these various effects.

In short, the emerging hypothesis suggests that fibrinogen and
soluble-monomeric fibrin exist in dynamic equilibrium among multiple
conformational states, with PTMs, proteolytic cleavages, and even
single-point mutations regulating this equilibrium toward alternative
or different dominant state(s). The conformational equilibrium of

fibrin(ogen) appears to both influence and be influenced by immunity.

6 | FIBRIN STRUCTURE AND MECHANICAL
PROPERTIES (AND
MECHANOTRANSDUCTION)

The intricate and hierarchical structure of fibrin(ogen) gives rise to its
unique mechanical properties. Standard biophysical and engineering
methodologies have been applied to further understand the visco-
elastic and general mechanical properties that correspond with the
structural properties of the individual fibrin fibers and the network as
a whole. For example, early studies using atomic force microscopy
identified the role of crosslinking on the time-dependent weakening
and strain hardening of fibers [67]. Diversifying the experimental
repertoire utilized to study fibrin(ogen) has aided in the tremendous
development of the field, shedding light on aspects that were previ-

ously obscure. A list of common techniques can be found in Table

Thromboimager, turbidity, confocal microscopy, rheometry, computed

Small angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry,
TEM, molecular dynamics simulations, AFM

[76,77]

[26,41,78]

[68-78]. In particular, blood flow and platelet-driven contraction
apply forces to the clot; recent studies have made advancements in
understanding how fibrin fibers and networks respond to these pro-
cesses and their pathophysiological roles.

Both fibrin fibers and fibrin networks exhibit bilinear force/stress-
strain curves (also known as strain-stiffening), the origins of which has
puzzled researchers due to the biomaterial’s structural and mechani-
cal complexity [79]. Previous work described the flexibility and sliding
of protofibrils while individual fibers stiffen once they are stretched
[80]; the next generation of modeling included protofibril stretching,
extension of the aC-region, and protein unfolding as possible mech-
anisms [81]. Recent mechanics tests and modeling have suggested that
intrafiber mechanics arise from several sources including the
following: (1) entropic extension of the aC-region between protofibrils
and protofibril sliding (Figure 2B) [32,82]; (2) catch-bond behavior of
the knob A:hole a interactions within protofibrils (Figure 2A, proto-
fibril bending [magnifying glass 3]) [41]; (3) protein unfolding; and (4)
stretching of protofibrils [82]. Moreover, the presence of the aE-
domain of the aC-region prevents strong interactions between the
aC-chains, allowing for protofibrils to slide more easily [32]. Mean-
while, network mechanics are governed both by the intrafiber
mechanisms as well as the stretching, bending, buckling, and
compression of individual fibers [32,68]. FXllla crosslinking adds
additional complexity by decreasing fiber bending, causing fibers to
stretch/compress rather than bend/buckle [68], and decreasing aC-
region extension and protofibril sliding [32]. Fluorescence lifetime
microscopy and Forster resonance energy transfer methodologies
established a novel way to view fibrin monomer deformation [74]. This
improved understanding of fiber, and protofibril deformability ex-
plains some of the mechanical strength of the fibrin network and
incorporation of the recently emphasized molecular flexibility of
fibrin(ogen) molecules [26] will be an important next step in these
efforts.

While notable work has been done to understand the interplay
between clot structure and clot contraction [2], specifically looking at
how alterations in fibrin concentration and FXllla crosslinking impact

the final extent of contraction, there are still gaps in our
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understanding. For example, research has delved into how clot
contraction is altered in (pro)thrombotic conditions where fibrin
network structure is known to be altered [83]; however, there the
causative nature of changes in network structure and/or mechanics in
altering contraction has not been explored. While it is known that clot
contraction is driven by platelet-driven forces [2], a recent computa-
tional model identified that activated platelet filopodia wrap around
fibers and apply contractile forces that result in the formation of
bundles of fibrin near platelet clusters (Figure 3A, magnifying glasses 1
and 2) [84]. The platelet aggregates become a focal point around
which the fibrin fibers bundle and align (Figure 3A, magnifying glass 3).
Interestingly, this behavior relies on the degree of crosslinking of the
fibrin network, as inhibition of FXIllla before fiber rearrangements,
results in the formation of nonuniform fibers and thinner fiber di-
ameters due to weaker fibrinogen-platelet interactions [68]. Similarly,
a novel reproducible and accessible microplate clot contraction assay
recapitulated previous findings that clot densification is reduced when
fibrin(ogen)-platelet interactions are inhibited [76]. This microplate

assay provides opportunities to perform higher throughput clot
contraction studies. Recent findings suggest that clot contraction is
not altered by platelet glycoprotein VI-fibrin interactions [75], but
rather by integrin o,B3 (glycoprotein Ilb/Illa) binding [85]. Contrac-
tion is dependent on the expulsion of RBCs, a process that was pre-
viously shown to be contingent on FXllla crosslinking [86], leading to
the formation of a dense fibrin shell on the clot periphery [87].
Blood clots and thrombi must withstand the hydrodynamic forces
generated by blood flow to prevent embolization (Figure 3B). Arterial
clots, formed under high pressure, have been studied in vitro using the
Chandler loop system [88,89]. It has been shown that the blood flow
increases fibrin densification as well as leads to deformities such as
twisted fibers and bundles [72]. These irregularities can lead to cracks
in the thrombus and embolization. Prior to recently, there has been
evolution in our understanding of fibrin rupture mechanics due to
tensile loading since it was first unveiled in the 1980s [90]. Novel
techniques have allowed for the visualization and mechanistic un-
derstanding of the changes in fibrin structure during tensile loading
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[74,91]. Moreover, the application of standard mechanical engineering
techniques has allowed for recent advances in understanding how clot
composition and fibrin structure impact blood clot toughness and
resistance to rupture (embolization). Previous work found that clot
rupture occurs at a critical stretch—the threshold strain at which in-
dividual fibrin fibers begin to break [92]. Recent studies have revealed
that rupture resistance of blood clots increases with higher fibrinogen
concentration [69,70,91]. The strain on the fibers resulted in a
densified network with aligned fibrin fibers, which hindered the ability
of platelet and tissue plasminogen activator (tPA) binding [93]. Cyclic
loading results in fibrin fatigue [94]. Additionally, various factors like
microplastics/nanoplastics [95], DNA and histones [39], fibrinogen
citrullination [37], and medications such as warfarin [96] have been
shown to affect clot mechanics. Furthermore, conditions such as
smoking [97] and liver disease [98] alter the clot structure and/or
subsequent clot stiffness. This improved understanding of factors that
alter the mechanics of fibrin can provide information for the devel-
opment of improved diagnostics and therapeutics for embolization.

7 | FIBRIN STRUCTURE AND FIBRINOLYSIS

Fibrinolysis is the process of the fibrin network degradation and the
resolution of a blood clot. It is known that the fibrin network structure
impacts a clot’s susceptibility or resistance to lysis. Notably, it is
generally accepted that individually thick fibers lyse slower than
individually thin fibers while dense networks composed of thin fibers
lyse slower than loose networks with thick fibers [99]. However, other
work has demonstrated that these results depend on the tPA-to-fibrin
fiber ratio [100]. These studies focused on specific, unique structures
and conditions. Ongoing investigations explore how various conditions
or diseases influence this dynamic. A recent careful study teased out
the effects of FXllla and a2-antiplasmin (AP) on network structure and
lysis rates, demonstrating that the molecules had modest effects on
network structure (eg, a slight increase in network density), but that,
while FXllla alone slightly reduced lysis rates, FXllla-crosslinked a2-
AP was the predominant contributor to the decrease in lysis activity
[101]. These results helped to clarify a long-running debate on
whether FXllla or FXllla-crosslinked «2-AP was the primary deter-
minant of the decreased lysis rates [102]. Plasma that polymerized
under applied shear [103] also resulted in a denser fibrin network and
increased resistance to lysis. Blood clots formed in the presence of
DNA and histones exhibit increased fiber diameter and maximal
turbidity, leading to an inhibition of lysis [39]. Consistent with this,
modeling and experiments have demonstrated that the dense fibrin
periphery caused by clot contraction also limits clot degradation
(Figure 3A, magnifying glass 4) [104]. Surprisingly, despite the wide-
spread use of fluorescent microbeads to fluorescently label fibrin fi-
bers for microscopy in standard structure analysis, increasing bead
concentrations hinder fibrinolysis [105,106].

In addition to examining how the fibrin network affects fibrino-
lysis [99], recent studies have investigated how fibrinolysis changes
the structure of the degrading fibrin network. One study revealed that

endogenous tPA breaks a clot down by incrementally expanding the
size of pores inside the network, a process dependent on the ratio of
tPA-to-fibrin molecules, rather than just the concentration of tPA [73].
Furthermore, a novel mathematical model of fibrinolysis suggests that
the ability of tPA to remain bound to chunks of degraded fibrin and
hitch a ride farther into the clot improves the efficiency of degradation
[107].

Several clinical studies in both mice and humans have been con-
ducted to probe how fibrinogen concentration and fibrin network
structure impact fibrinolysis with the goal to aid in the development of
improved, targeted treatments. A comprehensive clinical study iden-
tified the key contributions that affect traumatic injury human patient
outcomes. Fibrinogen concentration decreased while D-dimer con-
centration (fibrin degradation products) increased for patients with a
traumatic injury resulting in increased lysis, compared with healthy
patients; this trend was exaggerated for patients who had died. While
the injured population in general did not have a significantly different
network structure compared with the healthy, there was high vari-
ability among patients [71]. Contrastingly, a similar trauma study
found that patients with hyperfibrinolysis have denser clots compared
with patients with fibrinolysis shutdown or healthy controls [108]. A
different human study showed that the prothrombin Belgrade muta-
tion, which causes antithrombin resistance, resulted in slower clot
formation and thicker fibrin fibers without affecting overall network
density (pore size) or fibrinolysis [109]. These human studies allow for
an improved understanding of the clinical implications of these con-
ditions; however, multiple factors other than the condition in question
could be playing a role in the results. Therefore, controlled in vivo and
in vitro studies will be needed to inform causation. A mouse model
investigating thrombus formation and resolution identified multiple
possible fibrin structural features, such as fibrin sponge, bundles, and
ends and how these structures change over time. In a comparison
between wild-type and PAI-1 knockout mice, they found fewer fiber
ends and the presence of a fibrin mesh in the PAI-1 knockout mouse,
indicating enhanced lysis [110].

In conclusion, recent studies have deepened our understanding of
how the fibrin network structure influences the susceptibility or
resistance of clots to degradation in both healthy individuals and
those with various diseases. Enhancing this understanding of their
interdependence holds promise for the development of precise pre-

ventive measures and treatments tailored to specific conditions.

8 | MODIFYING FIBRIN(OGEN)
STRUCTURE FOR ALTERNATE
APPLICATIONS

While fibrin is primarily associated with its role in blood clotting,
recent advancements in tissue and biomedical engineering have
explored alternative applications due to its tunable properties and
biocompatibility. In particular, 3D bioprinting skin to aid in wound
healing using fibrinogen-based bioink allowed for the successful

growth of fibroblasts, keratinocytes, leukocytes, and endothelial cells
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[111]. Fibrin gels with physiological concentrations of fibrinogen were
shown to improve wound healing better than highly concentrated
commercially available products [111]. Tannic acid was then used as a
crosslinker for the fibrin scaffold, which reduced swelling and degra-
dation as well as increased antibacterial properties. However,
increasing concentrations of tannic acid resulted in cytotoxicity [112].
Furthermore, stem cells can be cultured in the fibrin scaffolds to
enhance processes, such as hosting skin-derived precursors for engi-
neered myocardial tissue [113]. Fibrinogen hydrogels can also be used
to generate pulp-like tissue following a root canal if a blood clot is
unable to form on its own [114]. Finally, some studies have investi-
gated the role of biomaterial interactions of fibrin structures; this is
important as medical devices innately interact with blood vessels and
thus fibrin. Fibrin formed on metallic surfaces (gold, titanium, and
stainless steel) typically formed a fibrous mesh, whereas fibers formed
on polymer surfaces formed a branched, fractal morphology [115]. In
conclusion, these examples scratch the surface of alternate applica-
tions of fibrin(ogen) and suggest that modified fibrin structures show
great potential as biomaterials.

9 | CONCLUSIONS

In conclusion, the last 2 years have led to significant progress toward
connecting fibrin(ogen)’s structure and its (patho)physiologic roles.
Notably, recent research has uncovered the remarkable flexibility of
fibrinogen, influencing its conformational states and interactions with
other molecules. Other advancements involved characterizing the
impact of the aE-domain and PTMs on fibrin(ogen) structure and
mechanical properties. Studies on fibrin structure emphasized the
necessity of standardization in assessing fibrin structure across
various techniques and elucidated alterations in fibrin structure under
pathologic conditions and their impact on mechanical properties. Im-
mune responses intertwined with fibrin(ogen) structures further
highlight its dynamic role beyond hemostasis. Understanding of the
origins and function of the mechanical properties of fibrin fibers and
networks has advanced significantly, with implications for clot stability
and embolization risk.

Future research on fibrin(ogen) should focus on elucidating the
dynamic equilibrium of its conformational states, clarifying which
binding sites are exposed on fibrinogen vs fibrin, exploring the regu-
latory roles of PTMs, proteolytic cleavages, and single-point mutations
in modulating this equilibrium and correlating these findings with
physiologic conditions. Additionally, efforts toward standardizing
techniques for assessing fibrin structure are crucial to enable consis-
tent comparisons across experimental studies, thereby advancing our
understanding of fibrin network formation, fibrinolysis, and me-
chanics. Future work incorporating cells or flow could inform more
physiologic fibrin mechanics. There is also a need to use the acquired
knowledge about fibrin mechanics to make targeted therapeutics.
Furthermore, investigating the potential of modifying fibrinogen
structure for alternate biomedical applications, such as tissue engi-

neering and medical device interactions, holds significant promise for

j | 9
the development of innovative solutions in regenerative medicine and

therapeutics.
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