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Abstract

Fibrinogen and its insoluble degradation product fibrin are pivotal plasma proteins that

play important roles in blood coagulation, wound healing, and immune responses. This

review highlights research from the last 24 months connecting our progressing view of

fibrin(ogen)’s structure, and in particular its conformational flexibility and post-

translational modifications, to its (patho)physiologic roles, molecular interactions, me-

chanical properties, use as a biomaterial, and potential as a therapeutic target. Recent

work suggests that fibrinogen structure is highly dynamic, sampling multiple confor-

mations, which may explain its myriad physiologic functions and the presence of cryptic

binding sites. Investigations into fibrin clot structure elucidated the impact of post-

translational modifications, therapeutic interventions, and pathologic conditions on

fibrin network morphology, offering insights into thrombus formation and embolization.

Studies exploring the mechanical properties of fibrin reveal its response to blood flow

and platelet-driven contraction, offering implications for clot stability and embolization

risk. Moreover, advancements in tissue engineering leverage fibrin’s biocompatibility

and customizable properties for diverse applications, from wound healing to tissue

regeneration and biomaterial interactions. These findings underscore the structural

origins of fibrin(ogen)’s multifaceted roles and its potential as a target for therapeutic

interventions.

K E YWORD S

blood clot, fibrin, fibrinogen, mechanics, tissue engineering
1 | INTRODUCTION

Fibrin(ogen) is a paradigmatic blood plasma protein, whose insol-

uble form was first observed in a microscope in 1666 by Marcello

Malpighi. Numerous recent review articles have detailed the

development of our understanding of fibrin(ogen)’s structure and

function [1–6] and its use in tissue engineering [7]. Thus, this re-

view will specifically focus on recent advances in our understand-

ing of the fibrin(ogen) structure and will only cover the historical
aemostasis. Published by Elsevier I
developments in this topic to the extent necessary to understand

this progress.
2 | HISTORICAL INSIGHTS INTO

FIBRIN(OGEN) STRUCTURE

Historically, the nomenclature fibrin(ogen) refers to overlapping

structural similarities between soluble fibrinogen and its insoluble
nc. All rights are reserved, including those for text and data mining, AI training,
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product fibrin. In function, however, fibrinogen and fibrin differ

greatly. Fibrinogen molecules are homodimers of trimers, consisting of

2 sets of Aα-chains, Bβ-chains, and γ-chains, with the most prevalent

splice variant, Fib340 (�60% to 70% of circulating human adult

fibrinogen), having a mass of �340 kDa [8]. The chains extend out-

ward from both sides of this central nodule, forming triple helical

coiled-coil structures, with the β-chains and γ-chains terminating in

compact β-nodules and γ-nodules, respectively, while the α-chain

terminates in a partially disordered αC-region [9] (Figure 1). The αC-

region is further subdivided into the mostly disordered αC-connector

(Aα221-391; human amino acid numbering using secreted protein

number, where the signal peptide is not included in numbering

scheme), and the αC-domain (Aα392-610) [10]. Because of these

diverse structural features, fibrin(ogen) interacts with various re-

ceptors and enzymes through numerous binding sites—some of which

are cryptic and become exposed during conformational changes—

playing crucial roles in immunity, thrombosis, cancer, pulmonary

fibrosis, and wound healing (Figure 1B) [11,12].

A fibrinogen splice variant (�1% of circulating human adult

fibrinogen), often referred to as Fib420, contains extensions of both

Aα-chains by 236 residues, which form a β/γ-nodule homologous

structure commonly referred to as the αE or αEC domain (Figure 2A)

[13,14]. A second splice variant (�7% of circulating human adult

fibrinogen), often referred to as γ′-fibrinogen, contains an altered C-

terminus of the γ-chain [15]. The chains are linked by 29 disulfide

bonds, including a disulfide bridge near their N-termini and 2 disulfide

rings, which flank both ends of each coiled coil [16]. In addition to

splice variants, potential fibrinogen posttranslational modifications

(PTMs) include removal of signal peptides and the final 15 amino acids

in the Fib340 α-chain, α-chain proteolytic degradation (Fib305 �26% of

circulating fibrinogen; Fib270 �4% of circulating fibrinogen) [8],

oxidation, nitration, O-glycosylations and N-glycosylations, phos-

phorylation, sulfation, and citrullination [17]. Importantly, fibrinogen

PTMs are known to impact the occurrence and course of bleeding and

thrombotic diseases [18,19].

Fibrinogen is typically converted into fibrin when thrombin

cleaves the first 16 residues in the Aα-chain (fibrinopeptide A or FpA)

and, in a slower reaction, the first 14 residues of the Bβ-chain (fibri-

nopeptide B or FpB) [20]. Fibrinopeptide removal reveals knob ‘A’ and

knob ‘B’ on the α-chain and β-chain, respectively, which bind to a

corresponding hole ‘a’ in the γ-nodule, and hole ‘b’ in the β-nodule

during polymerization (Figures 1A, C, and 2A). Polymerization pro-

ceeds initially through A:a interactions, leading to the formation of

molecularly half-staggered protofibrils [21]. The protofibrils laterally

aggregate into thicker fibers, which is thought to be mediated, in part,

through the release of FpB and interactions between αC-regions [10]

(Figure 2B), although the role of αC-regions in mediating lateral ag-

gregation has been recently questioned [22]. Finally, fibers branch into

a 3D gel, the structure of which (fiber thickness, spacing between fi-

bers, etc) is determined by the local biochemical/biophysical/cellular

environment. The fibrin structure is reinforced through chemical

crosslinks mediated by factor (F)XIIIa, which forms γ-glutamyl-ε-lysyl

bonds between lysine and glutamine residues at the C-terminus of
fibrin γ-chains within protofibrils, and between residues in the αC-

regions, forming α-polymers that link separate protofibrils [23]. As

clotting progresses, the platelets pull on the fibrin network, leading to

clot contraction (also known as retraction), which shrinks the volume

of the clot, expels plasma and its constituent molecules, helps with

recanalization, and alters clot lysis [24,25].
3 | FIBRINOGEN STRUCTURE AND

FLEXIBILITY AND ITS PHYSIOLOGIC ROLES

While much is known about the structure of fibrinogen, recent ad-

vances reveal that fibrinogen displays more conformational flexibility

than previously anticipated, including significant bending in the coiled-

coil and E region (Figure 2A; coiled-coil bent [magnifying glass 1] and

central bent conformations [magnifying glass 2]) [26]. Although this

dynamism has been proposed [27–29], recent orthogonal observa-

tions by negative stain electron microscopy, hydrogen-deuterium ex-

change, and X-ray scattering demonstrated this behavior for

fibrinogen in solution. The confirmed flexibility allows fibrinogen to

adopt highly heterogeneous conformational states in solution. More

studies are needed to understand how this vast conformational

landscape of fibrinogen is further altered or modified in response to

metabolic changes, such as variations in blood viscosity and dielectric

permittivity in different physiologic circumstances.

One way in which fibrinogen’s structural flexibility and dynamics

can influence its function is through exposing or encrypting its mo-

lecular binding sites (Figure 1B). Recent work has further illuminated

the role of fibrinogen’s molecular interactions. Elimination of the αMβ2
(Mac-1)–binding site in the fibrinogen γ-chain protects against diet-

induced obesity [30]. Additionally, the removal of the αIIbβ3
integrin–binding site in mice, resulting in altered fibrin(ogen) cross-

linking, is associated with elevated acute liver injury [31].

However, in the physiologic role(s) of fibrinogen, and possibly

fibrin, flexibility seems to extend beyond the regulation of these

molecular interactions. For instance, alterations in fibrinogen dyna-

mism appear to result in different functional outcomes. When present,

the αE-chain sterically hampers the protofibril associations, enhancing

protofibril sliding and resulting in the formation of a less stiff fibrin

network in the absence of FXIIIa-mediated crosslinking [32]. More-

over, elevated levels of mannan and fucose moieties in fibrinogen have

been linked to increased mortality in patients with end-stage renal

disease undergoing peritoneal dialysis [33]. In fact, strong support for

the (patho)physiologic roles of fibrinogen dynamism also comes from

numerous point mutations. The spectrum of phenotypic severity in

thrombosis or hemorrhage caused by these single mutations, as seen

in patients with dysfibrinogenemia, is broad, and potentially, some

patients experience severe bleeding episodes, while others exhibit

thrombotic phenotypes, and some remain asymptomatic throughout

their lifespan [26,34]. On the opposite facet of this phenomenon,

engineering the extent of fibrinogen flexibility could potentially target

unique aspects of fibrin polymerization, blood coagulation, or platelet

function, offering a way to strike a delicate balance between



F I GUR E 1 Fibrinogen crystallographic structures, highlighting different specific binding sites, and subdomains. (A) Fibrinogen D-region (PDB

1LT9), highlighting β/γ-nodule subdomains, holes A and B, calcium binding sites, and a cryptic tPA/Plasminogen binding site. (B) Half-molecule

of fibrinogen with selected fibrinogen ligand binding sites colorized. The structure was created using crystal structure PDB 3GHG [9], combined
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preventing thrombosis and maintaining hemostasis. Indeed, recent

findings demonstrate that poorly polymerizing fibrinogen protects

against arterial and venous thrombosis while exhibiting similar

platelet aggregation to wild-type fibrinogen [35].
4 | FIBRIN NETWORK STRUCTURE

The structural flexibility of fibrinogen likely translates upon its con-

version to monomeric fibrin, enabling adaptation to various physio-

logic conditions and likely influencing fibrin structure and mechanical

properties [36]. Additionally, PTMs and subdomains can regulate fibrin

function, and characterizing correlations between specific fibrin

modifications and gel structures has been of significant interest. For

example, citrullination (the hydrolysis of the guanidine group of argi-

nine, resulting in citrulline) results in thinner and softer fibers that are

more closely packed together [37]. The presence of polyphosphate

and/or histones results in thicker fibers than fibrin alone in thrombin-

induced [38] and staphylocoagulase/prothrombin-induced clots [39].

On the contrary, oxidation of certain methionine residues in fibrin-

ogen did not dramatically impact fibrin polymerization or structures,

suggesting these PTM’s may serve an oxygen scavenging mechanism

[40]. Clots made of recombinant fibrinogen αE-splice variant (rFib420)

were typically composed of thinner fibers and more highly branched

junctions compared with clots made of the predominant splice variant

(rFib340), particularly at high fibrinogen concentrations [32]. Finally,

introducing 3 mutations (γD297N, γE323Q, and γK356Q), which alter

the A:a interaction by abrogating “catch-bond” behavior, resulted in

thinner fibers, fewer protofibrils per fiber, and denser networks

(especially when all 3 mutations are combined) [41].

Identifying changes in fibrin structures under pathologic condi-

tions has also received recent attention. Antithrombin deficiency was

reported to cause thinner fibers and decreased permeability [3].

Conditions characterized by hypercoagulability, such as increased

fibrinogen or FVIII concentrations, result in denser fibrin networks

with shorter fiber lengths [42]. Meanwhile, COVID-19 fibrin resulted

in shorter and thicker fibers, with more fiber junctions, and higher

fiber density, likely as a result of increased sialylation of COVID-19

fibrinogen [43,44]. Interestingly, the percentage of fibrinogen splice

variant Fib420 is elevated in patients with COVID-19, while the

percentage of γ′-fibrinogen is decreased when compared with healthy

plasma levels [45].

The effects of clot contraction on fibrin structures were also

assessed. An analysis of the composition of coronary artery thrombi in

human patients over time demonstrated that initial thrombi were

primarily platelet rich, containing minimal fibrin, while thrombi older

than 12 hours exhibited temporal layering, characterized by thick

fibrin fibers predominantly on the exterior [46]. In a murine model of

thrombi formation following aortic dissection, fibrin was identified as
with homology modeling and molecular dynamics methods to fill in residu

structure was generated using I-TASSER. (C) Full fibrinogen molecule, pre

detailed in (A) and (B).
the second most abundant component of the intramural thrombus,

surpassed only by red blood cells, with fibrin being more prevalent in

distal regions [47] due to contraction. Other studies demonstrated

that, in addition to platelets [2], megakaryocytes (platelet precursors)

[48], and zebrafish thrombocytes [49] can also contract fibrin fibers.

Further studies assessed the impact of therapeutic interventions

on network structures. A study analyzing fibrin structures after car-

diopulmonary bypass in neonates, comparing the addition of cry-

oprecipitate with fibrinogen concentrate demonstrated that the

addition of fibrinogen concentrate led to denser networks compared

with those treated with cryoprecipitate alone, with comparable fiber

alignment [50]. In another study comparing fibrin clot structure in

hemophilia patients receiving either rFVIII or emicizumab, it was

found that emicizumab-induced clots exhibited denser networks,

albeit composed of fibrin “patches” (sometimes referred to as sheets

[51]) rather than cylindrical fibers [52]. Moreover, research investi-

gating interventions for coronary artery disease concluded that

high-dose statin treatment correlated with a decrease in low-density

lipoprotein cholesterol and higher clot permeability [53].

One important observation stemming from numerous structural

studies has been a need for standardization across techniques that

assess fibrin structure [54–56]. Preliminary results to that end

demonstrate that super-resolution fluorescence microscopy, turbi-

dimetry, and scanning electron microscopy (Figure 2B-E) can provide

congruent results [54]. Further work in this area is important for

facilitating comparisons between different experimental studies.

Taken together, these results demonstrate that even though fibrin

structures have been studied for over a century, there is still an

important need for understanding how molecular conformations and

alterations in fibrinogen translate through the fibrin structural

hierarchy.
5 | FIBRIN(OGEN) STRUCTURE SND

IMMUNOLOGY

Apart from blood clot structure, monomeric fibrin(ogen) structures

themselves and their fragments, generated before and after fibrin

network formation, orchestrate immune responses, ranging from

inflammation, allergy, and immune cell activation to tissue wound

repair physiolo [57]. Fibrinogen dimer formation catalyzed by

transglutaminase-2 exhibits direct proinflammatory activity compared

with unmodified fibrinogen, enhancing the macrophage response

induced by lipopolysaccharide [58]. Similarly, fibrinogen, with 2 unique

genetic polymorphisms, demonstrates proinflammatory activity in the

central nervous system, leading to microglia activation in patients with

multiple sclerosis. It is proposed that microglia-expressed αMβ2
integrin receptor recognizes cryptic or conformationally hidden epi-

topes on deposited fibrinogen molecules in the central nervous
es Aα1-26, Aα201-610, Bβ1-57, and γ395-411. The αC-region
pared as described in (B), with boxes around the regions that are



F I GUR E 2 Fibrin(ogen) structure and polymerization. (A) Schematic of an individual protofibril and fibrin fiber. Magnifying glasses highlight

the locations of different conformational changes mentioned in the main text. Confocal microscopy images of clots made with plasma with (B)

0.23 and (C) 2.1 mg/mL of fibrinogen (scale bar 50 μm). Scanning electron microscopy images of clots made with plasma with (D) 1 and (E) 10

mg/mL of fibrinogen (scale bar 5 μm). Source: Panel (A) was modified from [14].
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system, correlating fibrinogen levels with multiple sclerosis severity

[59]. Interestingly, removal of the cryptic integrin αMβ2 site (Figure 1B)

on fibrinogen improves renal damage in patients with sickle cell

anemia, who typically experience kidney damage driven by fibrinogen-

dependent coagulation activation and inflammation [60], highlighting

the αMβ2/fibrinogen interaction as a potential target in prothrombotic

inflammatory diseases. Furthermore, the αMβ2/fibrin interaction con-

tributes to neutrophil effector function in mucosal immuno-

surveillance [61].

Fibrin(ogen) structure not only influences immunity but is also

affected by immune cells and even by changes in cellular metabolism.

Activation of myeloid leukocytes, particularly neutrophils and mono-

cytes, accelerates fibrinogen-dependent coagulopathy during inflam-

mation through the oxidation of circulating fibrinogen [62]. In addition,

methylglyoxal-mediated glycation and subsequent structural
alterations in fibrinogen during glucose oxidation and lipid peroxida-

tion may induce immunogenicity, such as the generation of autoanti-

bodies against fibrinogen as observed in type 2 diabetes mellitus

[61,63]. Fragments generated by selective proteinase cleavages of

fibrinogen activate Toll-like receptors or αMβ2 integrin signaling,

contributing to innate allergic and antifungal immunity [64], although

direct interaction of fibrinogen with toll-like receptors has been

recently questioned. Moreover, activated leukocytes prime fibrinogen

for proteolysis, further accelerating coagulopathy during inflammation

[62].

Another complicated area of intense immunology research lies in

the intertwined fibrin(ogen) and neutrophil extracellular traps (NETs)

structures, which include fibrin, DNA (negatively charged partner),

histones (positively charged partner), elastases, RBCs, and neutrophils.

NETs release peptidyl arginine deiminase that results in the



T AB L E Experimental methods to quantify, visualize, and analyze fibrin(ogen).

Parameter Method

Representative recent research

using these techniques

Clot mechanics Rheometry, biomechanic tensile tester, atomic force microscopy,

micromanipulator, Chandler loop, Brownian motion and light microscopy

[32,42,68–71]

Clot formation Turbidity, turbidimetry, Chandler loop [54,72,73]

Clot structure Confocal microscopy, scanning electron microscopy, Förster resonance energy

transfer, atomic force microscopy (AFM), transmission electron microscopy

(TEM), permeability

[53,54,68,70,72–75]

Clot contraction Thromboimager, turbidity, confocal microscopy, rheometry, computed

tomography

[76,77]

Molecular structure Small angle X-ray scattering, hydrogen-deuterium exchange mass spectrometry,

TEM, molecular dynamics simulations, AFM

[26,41,78]
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citrullination of fibrinogen [65]. Recent work showed that citrullinated

fibrinogen results in denser fibrin networks, thinner fibers, and

reduced porosity [3]; however, previous work showed that an increase

in fibrin network density due to NETs is mediated by FXI, so the ef-

fects of NETs on fibrinogen structure are likely complex [66].

Fibrin(ogen) in NETosis is not the focus of this review; however, given

the data discussed in other sections, we hypothesize that the simul-

taneous release of NETs constituents such as DNA and histones could

alter the fibrin(ogen) conformational landscape resulting in altered

in vivo fibrin formation, structures, and degradation. Limited work in

the past 2 years has been furthered our understanding of the rela-

tionship between NETs and fibrin structure, but the composite

makeup of NETs suggests further research is warranted to disentangle

these various effects.

In short, the emerging hypothesis suggests that fibrinogen and

soluble-monomeric fibrin exist in dynamic equilibrium among multiple

conformational states, with PTMs, proteolytic cleavages, and even

single-point mutations regulating this equilibrium toward alternative

or different dominant state(s). The conformational equilibrium of

fibrin(ogen) appears to both influence and be influenced by immunity.
6 | FIBRIN STRUCTURE AND MECHANICAL

PROPERTIES (AND

MECHANOTRANSDUCTION)

The intricate and hierarchical structure of fibrin(ogen) gives rise to its

unique mechanical properties. Standard biophysical and engineering

methodologies have been applied to further understand the visco-

elastic and general mechanical properties that correspond with the

structural properties of the individual fibrin fibers and the network as

a whole. For example, early studies using atomic force microscopy

identified the role of crosslinking on the time-dependent weakening

and strain hardening of fibers [67]. Diversifying the experimental

repertoire utilized to study fibrin(ogen) has aided in the tremendous

development of the field, shedding light on aspects that were previ-

ously obscure. A list of common techniques can be found in Table
[68–78]. In particular, blood flow and platelet-driven contraction

apply forces to the clot; recent studies have made advancements in

understanding how fibrin fibers and networks respond to these pro-

cesses and their pathophysiological roles.

Both fibrin fibers and fibrin networks exhibit bilinear force/stress-

strain curves (also known as strain-stiffening), the origins of which has

puzzled researchers due to the biomaterial’s structural and mechani-

cal complexity [79]. Previous work described the flexibility and sliding

of protofibrils while individual fibers stiffen once they are stretched

[80]; the next generation of modeling included protofibril stretching,

extension of the αC-region, and protein unfolding as possible mech-

anisms [81]. Recent mechanics tests and modeling have suggested that

intrafiber mechanics arise from several sources including the

following: (1) entropic extension of the αC-region between protofibrils

and protofibril sliding (Figure 2B) [32,82]; (2) catch-bond behavior of

the knob A:hole a interactions within protofibrils (Figure 2A, proto-

fibril bending [magnifying glass 3]) [41]; (3) protein unfolding; and (4)

stretching of protofibrils [82]. Moreover, the presence of the αE-

domain of the αC-region prevents strong interactions between the

αC-chains, allowing for protofibrils to slide more easily [32]. Mean-

while, network mechanics are governed both by the intrafiber

mechanisms as well as the stretching, bending, buckling, and

compression of individual fibers [32,68]. FXIIIa crosslinking adds

additional complexity by decreasing fiber bending, causing fibers to

stretch/compress rather than bend/buckle [68], and decreasing αC-

region extension and protofibril sliding [32]. Fluorescence lifetime

microscopy and Förster resonance energy transfer methodologies

established a novel way to view fibrin monomer deformation [74]. This

improved understanding of fiber, and protofibril deformability ex-

plains some of the mechanical strength of the fibrin network and

incorporation of the recently emphasized molecular flexibility of

fibrin(ogen) molecules [26] will be an important next step in these

efforts.

While notable work has been done to understand the interplay

between clot structure and clot contraction [2], specifically looking at

how alterations in fibrin concentration and FXIIIa crosslinking impact

the final extent of contraction, there are still gaps in our



F I GUR E 3 Schematics of platelet-driven contraction and blood flow–driven shear alters fibrin structure. (A) Changes in fibrin structure due

to platelet-driven contraction. (B) Clot formation and contraction due to platelet activation and embolization due to applied shear from blood

flow. Source: Panel (B) was modified from [14]
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understanding. For example, research has delved into how clot

contraction is altered in (pro)thrombotic conditions where fibrin

network structure is known to be altered [83]; however, there the

causative nature of changes in network structure and/or mechanics in

altering contraction has not been explored. While it is known that clot

contraction is driven by platelet-driven forces [2], a recent computa-

tional model identified that activated platelet filopodia wrap around

fibers and apply contractile forces that result in the formation of

bundles of fibrin near platelet clusters (Figure 3A, magnifying glasses 1

and 2) [84]. The platelet aggregates become a focal point around

which the fibrin fibers bundle and align (Figure 3A, magnifying glass 3).

Interestingly, this behavior relies on the degree of crosslinking of the

fibrin network, as inhibition of FXIIIa before fiber rearrangements,

results in the formation of nonuniform fibers and thinner fiber di-

ameters due to weaker fibrinogen-platelet interactions [68]. Similarly,

a novel reproducible and accessible microplate clot contraction assay

recapitulated previous findings that clot densification is reduced when

fibrin(ogen)-platelet interactions are inhibited [76]. This microplate
assay provides opportunities to perform higher throughput clot

contraction studies. Recent findings suggest that clot contraction is

not altered by platelet glycoprotein VI-fibrin interactions [75], but

rather by integrin αIIbβ3 (glycoprotein IIb/IIIa) binding [85]. Contrac-

tion is dependent on the expulsion of RBCs, a process that was pre-

viously shown to be contingent on FXIIIa crosslinking [86], leading to

the formation of a dense fibrin shell on the clot periphery [87].

Blood clots and thrombi must withstand the hydrodynamic forces

generated by blood flow to prevent embolization (Figure 3B). Arterial

clots, formed under high pressure, have been studied in vitro using the

Chandler loop system [88,89]. It has been shown that the blood flow

increases fibrin densification as well as leads to deformities such as

twisted fibers and bundles [72]. These irregularities can lead to cracks

in the thrombus and embolization. Prior to recently, there has been

evolution in our understanding of fibrin rupture mechanics due to

tensile loading since it was first unveiled in the 1980s [90]. Novel

techniques have allowed for the visualization and mechanistic un-

derstanding of the changes in fibrin structure during tensile loading
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[74,91]. Moreover, the application of standard mechanical engineering

techniques has allowed for recent advances in understanding how clot

composition and fibrin structure impact blood clot toughness and

resistance to rupture (embolization). Previous work found that clot

rupture occurs at a critical stretch—the threshold strain at which in-

dividual fibrin fibers begin to break [92]. Recent studies have revealed

that rupture resistance of blood clots increases with higher fibrinogen

concentration [69,70,91]. The strain on the fibers resulted in a

densified network with aligned fibrin fibers, which hindered the ability

of platelet and tissue plasminogen activator (tPA) binding [93]. Cyclic

loading results in fibrin fatigue [94]. Additionally, various factors like

microplastics/nanoplastics [95], DNA and histones [39], fibrinogen

citrullination [37], and medications such as warfarin [96] have been

shown to affect clot mechanics. Furthermore, conditions such as

smoking [97] and liver disease [98] alter the clot structure and/or

subsequent clot stiffness. This improved understanding of factors that

alter the mechanics of fibrin can provide information for the devel-

opment of improved diagnostics and therapeutics for embolization.
7 | FIBRIN STRUCTURE AND FIBRINOLYSIS

Fibrinolysis is the process of the fibrin network degradation and the

resolution of a blood clot. It is known that the fibrin network structure

impacts a clot’s susceptibility or resistance to lysis. Notably, it is

generally accepted that individually thick fibers lyse slower than

individually thin fibers while dense networks composed of thin fibers

lyse slower than loose networks with thick fibers [99]. However, other

work has demonstrated that these results depend on the tPA-to-fibrin

fiber ratio [100]. These studies focused on specific, unique structures

and conditions. Ongoing investigations explore how various conditions

or diseases influence this dynamic. A recent careful study teased out

the effects of FXIIIa and α2-antiplasmin (AP) on network structure and

lysis rates, demonstrating that the molecules had modest effects on

network structure (eg, a slight increase in network density), but that,

while FXIIIa alone slightly reduced lysis rates, FXIIIa-crosslinked α2-

AP was the predominant contributor to the decrease in lysis activity

[101]. These results helped to clarify a long-running debate on

whether FXIIIa or FXIIIa-crosslinked α2-AP was the primary deter-

minant of the decreased lysis rates [102]. Plasma that polymerized

under applied shear [103] also resulted in a denser fibrin network and

increased resistance to lysis. Blood clots formed in the presence of

DNA and histones exhibit increased fiber diameter and maximal

turbidity, leading to an inhibition of lysis [39]. Consistent with this,

modeling and experiments have demonstrated that the dense fibrin

periphery caused by clot contraction also limits clot degradation

(Figure 3A, magnifying glass 4) [104]. Surprisingly, despite the wide-

spread use of fluorescent microbeads to fluorescently label fibrin fi-

bers for microscopy in standard structure analysis, increasing bead

concentrations hinder fibrinolysis [105,106].

In addition to examining how the fibrin network affects fibrino-

lysis [99], recent studies have investigated how fibrinolysis changes

the structure of the degrading fibrin network. One study revealed that
endogenous tPA breaks a clot down by incrementally expanding the

size of pores inside the network, a process dependent on the ratio of

tPA-to-fibrin molecules, rather than just the concentration of tPA [73].

Furthermore, a novel mathematical model of fibrinolysis suggests that

the ability of tPA to remain bound to chunks of degraded fibrin and

hitch a ride farther into the clot improves the efficiency of degradation

[107].

Several clinical studies in both mice and humans have been con-

ducted to probe how fibrinogen concentration and fibrin network

structure impact fibrinolysis with the goal to aid in the development of

improved, targeted treatments. A comprehensive clinical study iden-

tified the key contributions that affect traumatic injury human patient

outcomes. Fibrinogen concentration decreased while D-dimer con-

centration (fibrin degradation products) increased for patients with a

traumatic injury resulting in increased lysis, compared with healthy

patients; this trend was exaggerated for patients who had died. While

the injured population in general did not have a significantly different

network structure compared with the healthy, there was high vari-

ability among patients [71]. Contrastingly, a similar trauma study

found that patients with hyperfibrinolysis have denser clots compared

with patients with fibrinolysis shutdown or healthy controls [108]. A

different human study showed that the prothrombin Belgrade muta-

tion, which causes antithrombin resistance, resulted in slower clot

formation and thicker fibrin fibers without affecting overall network

density (pore size) or fibrinolysis [109]. These human studies allow for

an improved understanding of the clinical implications of these con-

ditions; however, multiple factors other than the condition in question

could be playing a role in the results. Therefore, controlled in vivo and

in vitro studies will be needed to inform causation. A mouse model

investigating thrombus formation and resolution identified multiple

possible fibrin structural features, such as fibrin sponge, bundles, and

ends and how these structures change over time. In a comparison

between wild-type and PAI-1 knockout mice, they found fewer fiber

ends and the presence of a fibrin mesh in the PAI-1 knockout mouse,

indicating enhanced lysis [110].

In conclusion, recent studies have deepened our understanding of

how the fibrin network structure influences the susceptibility or

resistance of clots to degradation in both healthy individuals and

those with various diseases. Enhancing this understanding of their

interdependence holds promise for the development of precise pre-

ventive measures and treatments tailored to specific conditions.
8 | MODIFYING FIBRIN(OGEN)

STRUCTURE FOR ALTERNATE

APPLICATIONS

While fibrin is primarily associated with its role in blood clotting,

recent advancements in tissue and biomedical engineering have

explored alternative applications due to its tunable properties and

biocompatibility. In particular, 3D bioprinting skin to aid in wound

healing using fibrinogen-based bioink allowed for the successful

growth of fibroblasts, keratinocytes, leukocytes, and endothelial cells
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[111]. Fibrin gels with physiological concentrations of fibrinogen were

shown to improve wound healing better than highly concentrated

commercially available products [111]. Tannic acid was then used as a

crosslinker for the fibrin scaffold, which reduced swelling and degra-

dation as well as increased antibacterial properties. However,

increasing concentrations of tannic acid resulted in cytotoxicity [112].

Furthermore, stem cells can be cultured in the fibrin scaffolds to

enhance processes, such as hosting skin-derived precursors for engi-

neered myocardial tissue [113]. Fibrinogen hydrogels can also be used

to generate pulp-like tissue following a root canal if a blood clot is

unable to form on its own [114]. Finally, some studies have investi-

gated the role of biomaterial interactions of fibrin structures; this is

important as medical devices innately interact with blood vessels and

thus fibrin. Fibrin formed on metallic surfaces (gold, titanium, and

stainless steel) typically formed a fibrous mesh, whereas fibers formed

on polymer surfaces formed a branched, fractal morphology [115]. In

conclusion, these examples scratch the surface of alternate applica-

tions of fibrin(ogen) and suggest that modified fibrin structures show

great potential as biomaterials.
9 | CONCLUSIONS

In conclusion, the last 2 years have led to significant progress toward

connecting fibrin(ogen)’s structure and its (patho)physiologic roles.

Notably, recent research has uncovered the remarkable flexibility of

fibrinogen, influencing its conformational states and interactions with

other molecules. Other advancements involved characterizing the

impact of the αE-domain and PTMs on fibrin(ogen) structure and

mechanical properties. Studies on fibrin structure emphasized the

necessity of standardization in assessing fibrin structure across

various techniques and elucidated alterations in fibrin structure under

pathologic conditions and their impact on mechanical properties. Im-

mune responses intertwined with fibrin(ogen) structures further

highlight its dynamic role beyond hemostasis. Understanding of the

origins and function of the mechanical properties of fibrin fibers and

networks has advanced significantly, with implications for clot stability

and embolization risk.

Future research on fibrin(ogen) should focus on elucidating the

dynamic equilibrium of its conformational states, clarifying which

binding sites are exposed on fibrinogen vs fibrin, exploring the regu-

latory roles of PTMs, proteolytic cleavages, and single-point mutations

in modulating this equilibrium and correlating these findings with

physiologic conditions. Additionally, efforts toward standardizing

techniques for assessing fibrin structure are crucial to enable consis-

tent comparisons across experimental studies, thereby advancing our

understanding of fibrin network formation, fibrinolysis, and me-

chanics. Future work incorporating cells or flow could inform more

physiologic fibrin mechanics. There is also a need to use the acquired

knowledge about fibrin mechanics to make targeted therapeutics.

Furthermore, investigating the potential of modifying fibrinogen

structure for alternate biomedical applications, such as tissue engi-

neering and medical device interactions, holds significant promise for
the development of innovative solutions in regenerative medicine and

therapeutics.
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