1722

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024

FoveaSPAD: Exploiting Depth Priors for Adaptive
and Efficient Single-Photon 3D Imaging

Justin Folden*”, Atul Ingle

Abstract—TFast, efficient, and accurate depth-sensing is impor-
tant for safety-critical applications such as autonomous vehicles.
Direct time-of-flight LIDAR has the potential to fulfill these de-
mands, thanks to its ability to provide high-precision depth mea-
surements at long standoff distances. While conventional LiDAR
relies on avalanche photodiodes (APDs), single-photon avalanche
diodes (SPADs) are an emerging image-sensing technology that
offer many advantages such as extreme sensitivity and time res-
olution. In this paper, we remove the key challenges to widespread
adoption of SPAD-based LiDARs: their susceptibility to ambient
light and the large amount of raw photon data that must be
processed to obtain in-pixel depth estimates. We propose new algo-
rithms and sensing policies that improve signal-to-noise ratio (SNR)
and increase computing and memory efficiency for SPAD-based
LiDARSs. During capture, we use external signals to foveate, i.e.,
guide how the SPAD system estimates scene depths. This foveated
approach allows our method to “zoom into” the signal of interest,
reducing the amount of raw photon data that needs to be stored and
transferred from the SPAD sensor, while also improving resilience
to ambient light. We show results both in simulation and also with
real hardware emulation, with specific implementations achieving
a 1548-fold reduction in memory usage, and our algorithms can be
applied to newly available and future SPAD arrays.

Index Terms—Foveation, single-photon avalanche diode (SPAD),
time-of-flight, computational imaging.

I. INTRODUCTION

IOLOGICAL vision systems have the remarkable ability
B to foveate — i.e. redistribute cognitive resources towards
“salient” features or objects in a scene, depending on context.
Unfortunately, most conventional cameras and computer vision
systems today capture scene information in a non-adaptive fash-
ion, spending power and bandwidth on sensing scene compo-
nents that may not help the overall imaging task. In fact, the
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current framework for deep learning-based systems assumes
uniform sampling of the scene and overcomes these limitations
through data-driven pipelines that focus on interesting regions
of the scene [1], [2] in the input RGB images.

While this inefficient but popular framework for conventional
RGB sensors may be difficult to change, our proposed method,
called FoveaSPAD, can impact the next wave of single-photon
avalanche diode (SPAD) sensor technology. SPADs can capture
scene information at the granularity of individual photons, at
timescales as small as 10’s of picoseconds. Recent advances in
CMOS-compatible SPAD pixel designs has enabled real-time
in-pixel processing of these photon timestamp streams. Thus,
SPADs are a natural candidate for designing efficient depth
cameras — individual pixels can be reprogrammed on-the-fly
to adaptively accept or reject a spatio-temporal subset of the
photon stream.

Our FoveaSPAD algorithms enable capturing scene informa-
tion at higher granularity in regions that are most relevant to a
downstream vision task. In this sense, we generalize the term
“foveation” in the context of adaptive SPAD spatio-temporal
sampling to allow both depth and memory efficiencies. For
robots, remote sensor nodes, and other resource-constrained
systems, foveation for SPAD sensors can allow accurate depth
sensing under constraints on power and bandwidth (see Fig. 1).

The raw data captured by an array of SPAD pixels can be
thought of as a spatio-temporal photon stream. Each photon
detection is represented as an (x,y,t) coordinate, where the
x — y coordinates denote the pixel location and the ¢ coordi-
nate denotes the photon detection timestamp. Each SPAD pixel
captures the round trip time of a laser pulse to and from a
given scene point, constructing a photon timing histogram which
records the number of photons captured at various time delays
with respect to the time the laser pulse was transmitted. Each
pixel must construct one such histogram, typically with 1000’s
of bins, which causes a severe data bottleneck for today’s SPAD
cameras. To illustrate the severity of the bottleneck, consider a
1-megapixel SPAD array with a 1000-bin histogram per pixel,
storing 1 B per bin. At 30 frames per second, this setup generates
a staggering 30GB of data every second

Our algorithms foveate across the spatio-temporal histogram
space to efficiently recover the peak, providing the time-delay
t for depth computation. We adaptively capture subranges to
locate laser photons, rejecting ambient photons. Note that our
proposed algorithms are not exhaustive; rather, we aim to define
a class of algorithms that rely on a depth prior. In this work, we
propose three methods for acquiring priors, though many other
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Depth Prior Driven SPAD Depth Foveation: SPAD sensors suffer from a data bottleneck, since thousands of histogram bins are used to generate depth

as shown in the top left. If fewer bins are used, this reduces depth resolution, as shown in the limited bins depth result. Our idea is to use additional information,
such as a color image (Section IV, VII) or optical flow (Section VI), to foveate the SPAD bins. Therefore, for the same memory cost we can place the bins near
where the histogram peak should be, results in accurate depth, as shown in the depth foveation result. The insets show that our method achieves the accuracy and
resolution of ground truth, with fewer bins. They also show that the depth prior, in this case monocular estimation, by itself cannot provide the correct depth, and

foveation is required.

methods exist, such as depth from stereo, depth from defocus [3],
or non-vision-based methods such as sonar. Each method has
trade-offs, and it is up to the user to determine which method
best suits their use case. Our contributions in this work are as
follows:
® We present a theoretical model for expected gains (in terms
of increased signal-to-noise-ratio and depth resolution)
from foveation with SPADs.
® We explore the question of how to foveate in space and
time at a single time instant by leveraging monocular depth
estimates, which can come either from the SPAD-generated
image or a cheap, external color camera. We propose differ-
ent flavors of practical FoveaSPAD designs that optimize
for memory/bandwidth and depth resolution.
For images of moving scenes, we demonstrate how to use
optical flow cues to direct SPAD foveation.
e We show results both in simulation and using recently
available real SPAD datasets.

A. Hardware Emulation

Time-correlated single photon counting is the technique that
enables SPAD cameras to build histograms and control binning
on-sensor. Our work is limited to simulation experiments and
hardware emulation of existing SPAD LiDAR data. Hardware
emulation refers to leveraging real-world data captured using a
single SPAD or line arrays [4], [5], which we then use to emulate
the performance of larger SPAD arrays. While SPAD sensor
arrays with native support for foveation are not yet available
commercially, we believe our proposed techniques could be
implemented at the pixel or camera level. This is supported by
recent proofs-of-concept in kilopixel-resolution reconfigurable
SPAD arrays with in-pixel timestamping, gating, and histogram-
ming capabilities [6], [7]. We anticipate that this work will

inspire future hardware designs, leading to more efficient and
versatile SPAD sensor arrays.

B. Scope: Simulation and Emulations

In this work, we anticipate future hardware advancements that
will enhance SPAD-based depth sensing. Our simulations and
emulations are intended to project the performance of emerging
SPAD sensor technologies, focusing on adaptive and efficient
bin sampling to mitigate memory bottlenecks with minimal loss
of accuracy, which is particularly advantageous for flash-based
SPAD LiDARs systems. Potential future implementations could
feature a shared “macropixel” architecture and a dynamic gating
system, allowing pixel groups to adjust to appropriate gating sig-
nals in real time. We explore these ideas further in Section VIII
and present a speculative “macropixel” array design in Fig. 10,
which includes a variable-resolution TDC’a key component for
one of the proposed methods. These simulations play a critical
role in validating our algorithms and highlighting their potential
impact on future sensor designs, even in the absence of current
hardware.

II. RELATED WORK

Our research takes inspiration from biology, since many
animals have a region of high spatial acuity, i.e. the fovea,
which they scan over the scene. In this sense, we are allied with
foveated imaging research in computer vision and computational
photography, and we now outline these related efforts:

Efficiency in Single-photon 3D Cameras: The data bottleneck
issue in SPADs due to high-resolution sampling in histograms
is well-known. Research that attempts to mitigate this issue in-
clude novel statistical representations [8] as well as compressive
histograms [9], [10], [11] that use a small number of bins at
maximum resolution to recover the entire scene. In contrast,
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our approach works and scales easily with a large number of
SPAD pixels. Other efforts include partial histogram methods
such as using sliding windows for sub-range gating has been in-
vestigated [12], [13], [14], [15] which have linear efficiency and
two-stage coarse-to-fine resolution scaling [16] which provide
logarithmic efficiency. Our method uses context from cues such
as optical flow to provide ~ O(1) near-constant time efficiency.
Finally, other work has used external sensors for guided upsam-
pling or upscaling, [4], [17], but these are post-capture processes.
In contrast, we perform foveation during capture and this gives
us SNR and compute efficiencies that we have theoretically
analyzed. A complementary approach to foveation is to use
adaptive “equi-depth” histogramming approach for the signal
peak [18]. Our approach is also complementary to adaptive
gating approaches for SPAD LiDARs [19], with adaptive gating
and exposure techniques working with or without a prior.

Foveated Depth Sensors: Our work is related to post-capture
methods for upsampling and superresolution shown on data
from many modes, such as depth images, color photographs
etc. [20], [21], [22], [23], [24] and many of these have blended
deep learning algorithms into the process of deciding where
to sample [24], [25], [26], [27], [28], [29]. In fact, some of
these algorithms are mature enough that commercial depth and
LIDAR sensors allow post-capture foveation of the 3D point
cloud through, for example, LIDAR-RGB fusion. In contrast,
FoveaSPAD adapts during capture, and the efficiencies can
impact small autonomous systems with power constraints. Di-
rectionally controlled LIDAR systems foveate spatially [30],
[31], [32], [33]. These results complement our work on temporal
foveation of SPAD sensors, including spatio-temporal foveation
results (Section V).

Foveation in Display Graphics: Foveation is an important
research topic in computer graphics, where data displayed to a
viewer on AR/VR glasses, for example, is rendered in a way
that reduces bandwidth [34]. Most of the work in this area
does not focus on data capture but only on data visualization
post-capture [35], [36]. Foveated light-field optics have been
proposed [37] and these can be integrated with algorithms that
foveate which portions of the scene to render at high reso-
lution to reduce rendering resource consumption. Algorithms
include perceptually guided foveation [38], [39] and hardware-
optimized rendering [40]. Unlike our depth sensor, these use
passive displays and cameras to optimize bandwidth, storage,
and compute.

SPAD Histogram Techniques: Various techniques have been
recently proposed to reduce the memory and bandwidth required
to capture high-resolution photon timing histograms. Compres-
sive histogramming techniques rely on a lower-dimensional
linear projection of the high resolution histogram [5], [11] and
estimating scene distances directly from the compressed repre-
sentation. Algorithms that rely on “sketching” [41] attempt to
directly estimate a parametric form of the true underlying wave-
form. These compressive acquisition approaches can be com-
bined with foveation techniques developed here to further reduce
the bandwidth required to store histograms. Differential capture
methods [42], [43] can provide large reduction in bandwidth, but
unlike foveation-based techniques, differential capture methods
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require additional post-processing to recover absolute scene
depths. Recently, photon processing techniques that bypass the
need for constructing a histogram have also been proposed, but
they only work in the case of a single strong peak [44]. Sun
etal.’s optical coding and super-resolution techniques leverage a
phase plate and deep learning to achieve super-resolved images
with minimal photon counts, further optimizing SPAD-based
imaging [45]. Such optical techniques can work synergistically
with our foveated capture approach, collectively reducing data
transfer and computational demands.

III. IMAGING MODEL AND THE FOVEATION ADVANTAGE

In this section, we present the imaging model and the con-
cept of foveation, specifically focusing on how foveation can
enhance the efficiency and effectiveness of (SPAD) LiDAR
systems. We will delve into the specifics of how the imaging
model is constructed, including assumptions about the behavior
of laser pulses and photon detection, and how these factors
influence the design and performance of SPAD sensors. Fur-
thermore, the impact of ambient light on signal-to-noise and
signal-to-background ratios will be examined, demonstrating
how foveation can mitigate these effects. The theoretical foun-
dations laid out in this section will serve as the basis for the
foveation techniques proposed in the subsequent sections, where
we will develop and analyze algorithms to optimize the selection
of foveated bins in SPAD imaging.

A. Foveation and Scene Priors

We propose two methods of foveation, specifically memory
foveation and depth foveation, are designed to optimize the ef-
ficiency of SPAD LiDAR systems by leveraging a priori knowl-
edge about the scene’s depth. Both methods require adaptive
per-pixel gating, for which the hardware has yet to be developed.

Memory foveation focuses on reducing the amount of data that
needs to be stored and processed by concentrating on a subset
of histogram bins where the depth information is most likely
to reside. Depth foveation, on the other hand, aims to improve
depth resolution by reallocating histogram bins into a smaller,
more focused region around the expected depth. The strategies
proposed are fundamentally dependent on the accuracy and
reliability of the scene depth prior, which guide the allocation
of sensor resources.

Depth priors may be derived from any variety of means,
including coarse initial scans, external sensors, or deep learning
models. In this paper, we explore a few options, namely monocu-
lar estimation in Section I'V, optical flow warping in Section VI,
and coarse initial scans in Section VII. The quality of the
prior directly impacts the success of foveation, with inaccurate
priors potentially misallocating memory resources into incorrect
regions. This dependence implies a trade-space between depth
prior accuracy, and the amount of resources foveation stands to
reduce. Exploring this trade-space is out of the scope of this
paper, rather, we focus on using priors that are prone to error or
are otherwise lower quality.

In the following subsections, we will define the image forma-
tion model, detailing the assumptions and mechanics of photon
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detection. We will then explore the effects of ambient light
on SPAD histogram formation and discuss how the proposed
foveation techniques provide an advantage.

B. Image Formation Model

We assume that each pixel in the SPAD sensor array is co-
located with a pulsed laser illumination source with a Gaussian
pulse shape. Assuming no multi-path or sub-surface scattering
effects, the photon flux incident on each pixel consists of a
superposition of laser photons (that arrive in a short time window
corresponding to the round-trip time-of-flight to and from the
scene point) and background photons due to ambient light (that
arrive uniformly randomly distributed throughout the capture
duration). The laser repetition period (71") determines the max-
imum depth range of the SPAD LiDAR. We assume that this
period is discretized into N bins (/N is often on the order of
1000’s of bins in conventional SPAD cameras). The number of
photons captured by the SPAD pixel in the n'" bin (1 < n < N)
is Poisson distributed with a mean of ®;,1(n = 7) 4+ Py, Where
1 is the bin location corresponding to the true scene depth.
Various sources of noise such as dark counts and afterpulsing are
assumed to be absorbed in the @y, term. A complete histogram
captured by this SPAD pixel over C' laser cycles is given by a
Poisson random vector with mean C'®g,1(n = i) + C Py, for
1 <7< N.

The simplified imaging model assumes all laser photons arrive
in a single bin ¢. In practice, the laser pulse spans several bins
“smearing” the signal photons over more than one bin. The laser
peak is often modeled as a Gaussian shaped pulse; we use a
1 ns full width at half maximum (FWHM) in our simulation
results. Since the peak can span more than one histogram bin
location, the defined Gaussian pulse may be used to estimate
depth through match filtering. It is also possible to obtain a
pseudo-intensity image by aggregating photon counts across his-
tograms for each pixel which can be used in lieu of a co-located
RGB or monochrome camera image for monocular depth cues.

C. Effects of Ambient Light

The integration time taken for all experiments is consistent. In
this scenario, we show how foveation saves memory or improves
depth resolution, and how the signal-to-noise ratio changes
depending on ambient light, bin width, and the number of laser
cycles or exposure time. Consider a SPAD pixel imaging a scene
point illuminated by a pulsed laser. Initially, let us assume there
are no multi-bounce effects and no ambient light, although we
address these issues later on.

Photon detections from the SPAD pixel generate a histogram
of arrival times. A conventional approach would use all NV
bins across the full histogram, whereas we propose methods to
foveate attention onto a subset M < N of these bins, where M
is a window or gate with a user defined width (number of bins).
Therefore, it is not surprising that, in the SNR analysis of our
system, the ratio % appears since this represents the advantage
due to foveation.
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In the analysis below, we will not make any assumption as to
how the foveated bins M were obtained and instead just char-
acterize the advantage of these, given that the desired histogram
peak is captured by these bins. The analysis is not specific to
any one method of acquiring a depth prior. In Sections IV, V,
VI, and VII we propose algorithms to drive the selection of the
foveated bins M and in Section VIII we provide a worst case
analysis for whether the foveated M bins capture the histogram
peak or not.

1) Low Ambient Light (No Pileup): Now consider the con-
ventional imaging case, where the SPAD sensor detects time-
of-arrival of photons and accumulates into a photon timing
histogram to find the time that corresponds to the true depth
of the scene point.

We assume that the histogram has a full scale range of T’
seconds which is related to the maximum unambiguous depth
range Z as T = % where c is the speed of light. Consider
N histogram bins that are uniformly distributed across the full
scale range T'. The width of each bin is % Since narrower bins
produce fewer photons, the SNR for each bin is proportional to
the width of that time bin:

T
SNR o< €'y / 5 ey

where C' denotes the number of laser cycles (i.e., the total
exposure time) that was used to capture the histogram.

We now consider two types of foveation. In memory foveation,
only a limited number of bytes in memory can be dedicated to
the task of finding the histogram peak, and therefore placing
these at the peak is most efficient. In depth foveation, memory
allocation remains fixed but is concentrated in the foveated
region, bringing the bins closer together near the histogram peak,
thereby improving depth resolution.

Memory foveation: In memory foveation, we identify M bins
M < N where the true depth exists. The width of the bins
remains the same %, and therefore the SNR is also identical
to the conventional case:

ML /T
N -
SNR o (2)

Depth foveation: In depth foveation, we concentrate the N
bins that would have been distributed over the entire depth range,
into a small region. The region is the same region used in memory
foveation, and is given by multiplying the number of memory
foveation bins M with the original bin width to give M % This
region is divided into N bins, and therefore the new bin width
is %ZT . As before, the SNR is proportional to the bin width, and

therefore much lower,

| MT [MT

Therefore, we have improved depth resolution but at the cost of
SNR. To increase the SNR of the foveated depth we can increase
C, the number of cycles the laser pulses through to create the
histogram. The new cycle number must be equal to or greater
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Algorithm 1: Memory and Depth Foveation.

Require: Total histogram bins /N, Temporal Volume 7',
Number of foveated bins M, Total histogram bins for
depth foveation N’

1: Calculate bin widths

At = %, Atdepth = %

2: Acquire a depth prior:

Monocular Section IV, Optical-Flow Section VI,
Low-Resolution Super-Pixel Sampling Section VII

3: for (z,y) € S do

4:  Utilize the depth prior to find d(z, 1)

5:  Center foveation window M around d(z, y)

Memory Foveation:

6: Capture histogram in the foveated window with bin
width At and M number of bins
Depth Foveation:
7 Capture histogram in the foveated window with bin
width At gepe, and N’ number of bins
8: end for
9: return Histogram image H

10: Decode depth image D. H — D
Optional Spatio-Temporal steps:

11:  Quantization Based Sampling Section V

12: Quantize depth prior into discrete buckets B

13: Select several pixels in each bucket at random.
S — 8

14: Complete steps 3—10 with S

15: Quantize sparse depth map.
D(B) = min(D(S) € B)

16: SuperPixel Based Sampling Section VII

17: Acquire a pseudo-intensity map through photon
counting

18: Apply the superpixel algorithm to segment the
pseud-intensity map

19: Sample the centroid of each superpixel segment at
full histogram resolution. cfsp

20: Complete steps 3-10 with S and dsp

2
than S > 2 then,

C
[MT T
SNRpew X Chew 7N2 =C N @)

In summary, memory foveation reduces memory usage with
no change in SNR. Depth foveation increases depth resolution
but with reduced SNR that can be compensated by more laser
photons (i.e. longer exposure).

Below, in Algorithm 1, we define the general algorithm for
memory and depth foveation. Note that the algorithms are inde-
pendent of depth prior, and the spatio-temporal step, which we
show in Section V, is optional.

2) Strong Ambient Light (Pileup): With strong ambient light,
we now focus on the signal-to-background ratio (SBR), defined
in [46] for SPADs as the ratio of the total number of signal
photons to the total number of background photons received
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over each laser cycle. W.L.o.g, here we note that the SBR is pro-
portional to the probability of receiving signal photons divided
by the probability of receiving background photons.

With ambient light, photons from both the laser source and the
ambient illumination may be measured by the SPAD. Each time
a photon is detected, the SPAD sensor resets creating a pause. It
is this pause that creates a binomial model for image capture in
SPADs [46], [47].

Therefore, the SBR analysis cannot simply compare the pho-
ton bin widths as in the prior section for the full resolution
(N bins) and the foveated resolution (M bins). Instead, SBR
calculations must include the probability of photons from the
source vs. the background.

Conventional scenario: Let us first consider the SBR in the
conventional case, with no foveation. From [47], using the Pois-
son model for photon distribution, we can write the probability
of a photon from the laser incident on the bin corresponding to
the correct depth as piaer = (1 — e~ %), Correct depth detec-
tion will happen even if an ambient photon is detected at the
correct depth, so the probability of correct depth detection is
Pcorrect = (1 - 67(¢<ig+¢bkg))~

Let 7 be the location of the bin corresponding to the cor-
rect depth of the scene point. This photon is only detected
at ¢ if, in addition, no photon from the laser is detected at
any prior bin. Since the laser photons only show up at bin 4,
constrained by depth, the probability of the photon showing up
at any other bin is zero. However, in this conventional scenario,
photons from ambient light could show up at any prior bin to
1, pausing detection at bin ¢. Therefore, the probability that
the photon from the laser is detected at the correct depth is
Dsig = (1 _ e*(‘bsig-i-‘l)bkg)) 672171@1"‘3.

The situation is different for ambient photons, which can
arrive at any time instant before photons from the i bin arrive.
We can write the probability that an ambient photon is detected
atlocation g as pfi, = (1 — e~ o) e~ =1 ®ue We can therefore
write the SBR proportionality for the conventional imaging case
as:

SBR o Pz o (L= (Pt Puel)) ¥ T
Pokg

- 5
2Z]:lpl(:olkg ( )

FoveaSPAD with Ambient Light: We now consider both mem-
ory foveation and depth foveation where the foveated bins NV
are given to us. In both these scenarios, we model the arrival of
photons from both ambient and laser sources.

Memory foveation: Consider the foveated bins N, which we
assume contain the bin with the histogram peak. Suppose the
closest index for these bins is j. Then, the SBR increases, since
the histogram sensitivity is unaffected by photons that impact
the sensor before bin j.

i1
(1 _ e*(q)sig-‘r@bkg)) 6_21' Dy
SBR .

(6)

7 q
2g=iDPbkg

In the extreme case, where we have perfect foveation, and ¢ = j,
then the terms for ambient light before bin ¢ become 1,

SBR ox (1 — e~ (Pt Poe)) (7)
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i.e. in other words, the effect of foveation is to remove the
dependence on prior photon arrival for detection, since these
no longer delay the measurement of photons at the ¢th bin.
This “perfect foveation” SBR term is dependent on the ratio
of the strength of the laser and ambient signal directly and is not
constrained by the binomial nature of SPAD photon capture.

Depth foveation: Since we concentrate all N bins into the
foveation window, we are again susceptible to the binomial
nature of SPAD photon capture. In addition, the bins are smaller
to fit within the window, and as described in the non-ambient
light section, the bin width is reduced as %

We can write the probability that an ambient photon is de-
tected at location ¢ as pfy, = (1 — e~ ¥ Poie) ¢~ ' ¥ %o The
SBR proportionality also shows the effect of reduced signal
strength as:

(1— e*(%(‘b»iﬁ‘bbkg))) e 1 K Pk

SBR o 2
Pokg

, 8
EZ]:lp gkg ( )
In summary, memory foveation increases SBR. While depth
foveation has the same SBR as conventional capture, it improves
depth resolution. It is this theory that motivates the remaining
simulation results in the paper, where we explore different ways
of creating depth and memory foveation for SPAD sensors.

IV. SPAD FOVEATION FROM MONOCULAR DEPTHS

With the imaging model defined, we proceed to our first ex-
periment, demonstrating how our memory and depth foveation
techniques can effectively work with a monocular depth prior.

Monocular depth estimation is inherently brittle due to biases
in training datasets, whereas SPADs provide high-accuracy sen-
sor measurements. In this section, we leverage the less accurate
monocular depth to reduce the number of SPAD bins needed
for capturing data, thereby saving memory and improving depth
resolution.

Simulation Details: We conducted our simulations using the
SPAD simulation framework provided in Gutierrez-Barragan
et al. [5], [48], utilizing the code available on GitHub. While
the simulations are initialized with RGBD datasets, all “ground
truth” depth images presented in this paper result from SPAD
simulation on full high-resolution histograms.

Monocular depth estimation algorithms use visual cues from
2D images to infer depth information and are trained on anno-
tated datasets such as NYU Depth v2 [49] and KITTI [50]. We
employed ZoeDepth [51], a monocular depth estimator chosen
for its performance and ability to produce metric depth estimates.
The monocular depth is used to guide a foveation window
consisting of M bins in the histogram. The window size is a
hyper-parameter, with larger sizes offering better accuracy at
the cost of reduced efficiency.

For effective use of the monocular estimate as a prior, it must
provide metric depth, and to enhance foveation performance,
it needs to be scaled to match the scene. ZoeDepth fulfills the
metric depth requirement, and we ensure compatibility with the
dataset through appropriate scaling and bounding.

We chose a polynomial fit for scaling, observing that a ma-
jority of points in a randomly selected subset of the monocular
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TABLE I
MATHEMATICAL SYMBOLS USED IN THIS PAPER TO STUDY
THE FOVEATED SPAD IMAGING MODEL

Symbol Meaning

N Number of bins across full histogram

M Number of bins across foveated histogram

7 Bin location of corresponding to true scene depth

Z Working volume of the sensor

T Temporal volume calculated from Z and speed of
light

SNR Signal-to-noise ratio

SBR Signal-to-background ratio

(& Number of cycles to create histogram

Do Mean number of signal photons received per bin

Dpyg Mean number of background photons received per
bin

Dat Probability that a detected photon originated from
the laser

Pmultipath Probability that a detected photon experienced mul-
tipath bounces

Plloor Probability of a low noise floor

S Number of pixels in the camera

output for the NYUv2 dataset exhibited a linear relationship.
This scaling can be performed either locally, fitting the data to
a specific scene, or generally across the dataset. In both cases,
a small set of pixels is sampled at full histogram resolution,
and the relationship between the monocular estimate and the
SPAD estimate at these pixels is modeled. The fitis then applied
to the entire monocular estimate, with bounds enforced for the
minimum and maximum values across the dataset, which are Om
and 10m for NYUv2.

We now describe our results shown in Fig. 2 and evaluated
in Table II which are calibrated locally. The first two columns
in the figure show the ground truth from the NYUv2 dataset.
The depth is not simply the depth from the NYUv2 dataset, but
the output of full-resolution SPAD simulation followed by the
detection of the histogram peak. The third column shows the
scaled monocular output.

Memory Foveation: The fifth column in Fig. 2 shows our
memory foveation results. Here, most bins are not used, saving
memory for the same SNR. The foveated window is given at the
right of the figure as a fraction of the original number of bins
N, with N set to 1000 bins for all experiments. The results are
visually indistinguishable from ground truth, in some cases with
a %6 save in memory. In Table IT we show the change in accuracy
with these memory savings. Unsurprisingly, there is an inverse
relationship between memory usage and depth error.

Depth Foveation: In Fig. 2 the foveated window around the
estimated monocular depth is packed with a limited number
of bins. With no foveation, as in the fourth column, a limited
number of bins N’ are distributed over the entire SPAD volume.
The depth foveation in the last column shows what happens
when these limited number of bins are packed into the foveated
window. Note that the depth resolution has increased from
the limited bins case because the samples are placed within a
foveated window where we expect to find the histogram peak.
In Table II, entries with the same memory usage demonstrate
the effects of depth foveation, where higher depth resolution
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Qualitative Comparison on NYUv2 Our memory and depth foveation techniques produce quality depth reconstructions with a fraction of the memory

usage. Each row consists of the NYUv2 ground truth images, the monocular depth output from ZoeDepth, a simulated SPAD output with N’ bins, and our foveation
techniques. The rows show different combinations of M and N’, where M is the number of bins in the foveated histograms, and N’ is the limited number of bins
used for depth foveation. Monocular estimation is just one method of obtaining a depth prior in a class of methods, in Section VI and Section VII we show two

more methods.

TABLE II
MEMORY AND DEPTH FOVEATION EVALUATION - LOCAL SCALE

M RMSE\L lOg]_o,L RELJ, 51T 62T 53T N’ RMSEi Lim. Bins¢ lOg]_oJ, REL\L 51T 52T 53T
(Fraction) (m) (m) (%) (%) (%) || (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)
1/16 0.211 0.0106 0.0211 | 97.07 99.13 99.55 16 0.235 0.504 0.0173 0.0360 | 96.55 98.96 99.48
32 0.211 0.250 0.0119 0.0241 | 97.1 99.14 99.55

64 0.211 0.121 0.012 0.0242 | 96.44 99.01 99.54

1/8 0.151 0.005 0.0109 |98.36 99.42 99.79 16 0.201 0.509 0.018 0.0418 | 97.87 99.26 99.71
32 0.184 0.250 0.011 0.0254 | 98.1 99.38 99.77

64 0.152 0.121 0.0064 0.0141 | 98.36 99.45 99.81

1/4 0.117 0.0032 0.00686 | 99.24 99.57 99.79 16 0.221 0.501 0.0326 0.0714 | 98.77 99.6 99.82
32 0.166 0.2497 0.015 0.0355|99.15 99.59 99.82

64 0.145 0.123 0.0087 0.0195|99.01 99.52 99.78

This table shows a quantitative comparison of RMSE and depth inlier metrics for different depth and memory foveation strategies for the NYUv2 dataset and a monocular estimation prior. For each
memory foveation fraction, we vary the number of histogram bins in the foveated sub-window to achieve depth foveation. metrics used from left to right: root-mean-squared errror, absolute log,,

error, absolute relative error, 6 < 1.25, 6 < lA252,c5 <125,

consistently produces better results. These depth foveation out-
comes are directly dependent on the memory foveation results,
as both algorithms place fovea windows based on the same depth
prior, with the depth foveation experiments having a lower depth
resolution. Meaning, the memory foveation results establish a
lower bound for the depth foveation error. Additionally, the
limited bins case, which is not confined to a foveated window
and thus reliant on a depth prior, shows that the error continues
to decrease as depth resolution increases.

V. SPATIO-TEMPORAL SPAD FOVEATION

The previous section seeks to reduce the SPAD histogram
bottleneck by reducing the number of bins to examine per-pixel
with a monocular estimate prior. This section aims to improve
these savings by incorporating spatial foveation. By exploiting
depth coherencies and applying foveated windows to a small
selection of pixels we show an order of magnitude increased
bandwidth savings.

Foveated LiDAR systems [31], [32], [33] can place samples
onto depth edges and recover the rest of the scene, post-capture,
through algorithmic estimation such as deep guided upsampling
or gradient-based reconstruction. Similarly, here, we place sam-
ples across depth edges and, rather than use an algorithm, we use
the SPAD measurement to provide correct depths in redundant
areas.

Quantized Sampling: Our approach to spatial sampling be-
gins by quantizing the prior through thresholding, resulting in
digitized regions that we refer to as ‘buckets.” We make the
assumption that the values within each quantized bucket are
redundant. From each bucket, we randomly select pixels and
use the SPAD to measure these points in the scene, applying
memory foveation in the process. These measurements provide
a sparse depth map, which we subsequently sort and quantize
based on the buckets defined by the depth prior.

In Fig. 3 we show examples of our approach, where the first
two columns show the scene and ground truth depths. The third
column is a quantized version of the monocular depth estimation,
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Spatio-temporal foveation The first two columns display the scene’s color and ground truth depth. Using the quantized monocular depth in the third
column, we select certain pixels in the fourth column. Processing only histograms at these locations with foveated windows generates results in the last column,
indicating a 1548-fold reduction in memory usage. This is calculated by measuring memory allocation for full-res and spatio-temporal histograms. The results
shown are with M=1/16N and N’ = 16.

TABLE III
SPATIO-TEMPORAL FOVEATION EVALUATION - LOCAL SCALE
IS M RMSEl, lOgloi REL| 51T 52T 53T N’ RMSE\L Lim. Bins¢ lOglOJ( REL| 51T 52T 53T
o || (Fraction) (m) (m) (%) (%) (%) || (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)
g 1/16 0.39 0.06  0.124 | 84.901 97.054 99.429 16 0.649 0.509 0.102  0.15 |[83.788 95.189 96.514
I 32 0.687 0.251 0.103  0.151 | 81.556 95.272 96.972
= 178 0.392 0.068  0.137 | 80.154 94.812 99.046 16 0.738 0.502 0.129  0.19 | 71.23 91.362 95.817
z 32 1.055 0.269 0.17 0202 | 69.595 89.694 92.852
8 1/4 0.355 0.054  0.10 |88.244 98.114 99.186 16 0.756 0.497 0.131  0.199 | 67.472 92.431 96.184
n 32 0.837 0.25 0.137 0.202 | 68.609 86.771 93.232
© M RMSE,L long, RELJ, 51T 52T 63T N’ RMSEJ, Lim. Binsi lOglo,L REL,L 61T (52T 53T
« || (Fraction) (m) (m) (%) (%) (%) || (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)
2 1/16 0.414 0.07 0.12 |87.672 97.008 98.139 16 0.582 0.505 0.092 0.134 | 86.543 96.111 97.068
I 32 0.484 0.25 0.07  0.119 | 87.664 96.492 98.158
= 1/8 0.387 0.051 0.108 | 87.292 99.162 99.919 16 0.518 0.519 0.071 0.136 | 84.049 98.177 99.255
12 32 0.587 0.248 0.074 0.142 | 78.714 94.945 97.969
8 1/4 0.38 0.049  0.0996 | 90.254 96.965 98.365 16 0.734 0.518 0.121  0.184 | 74.702 93.679 96.225
wn 32 0.553 0.256 0.068 0.127 | 85.968 96.942 98.09
S M RMSEi logio) RELJ] 51T 52T 63T N’ RMSEL Lim. Bins¢ logi0l RELJ 61T 62T (53T
<« || (Fraction) (m) (m) (%) (%) (%) (Num. Bins) (m) RMSE (m) (m) (%) (%) (%)
3 1/16 0.288 0.039 0.0855 | 94.214 99.582 99.935 16 0.364 0.508 0.048 0.0959 | 93.693 99.248 99.646
I 32 0.412 0.254 0.051 0.0933 | 93.048 98.179 99.145
= 1/8 0.313 0.04 0.0881 | 91.782 99.443 99.841 16 0.386 0.495 0.056 0.111 | 90.719 99.057 99.474
@ 32 0.432 0.257 0.053 0.106 | 89.662 98.472 99.276
g 1/4 0.274 0.035 0.0786 | 94.264 99.045 99.875 16 0.471 0.503 0.072  0.148 | 82.311 97.104 98.821
2 32 0.399 0.25 0.063 0.111 | 91.482 97.966 98.643

Here we look at a quantitative comparison between the size of the foveation window (memory usage), the number of bins in depth foveation, and the number of total samples per

the spatio-temporal algorithm.

where the number of quantized buckets is 64. For each of these
buckets, we picked 50 points at random and recovered the SPAD
depths of these points. Note that these transients were also
foveated in time, using the method described in the previous
section. The fourth column in Fig. 3 depicts exactly those points
in the SPAD camera that were sampled, with the number of bins
sampled at %6 of the original histogram. This is a factor of 1548
memory savings, compared to the ground truth measurement,
with depth results in the last column. These efficiencies are
evaluated in Table III.

VI. OpTiCcAL FLOW DRIVEN SPAD FOVEATION

In previous sections, we focused on static scenes. However,
one of the key advantages of using SPAD arrays is their fast cap-
ture speed, making them ideal for dynamic environments, such
as when mounted on a vehicle. In this section, we demonstrate
how our techniques can be applied to moving scenes by utilizing
optical flow to guide the foveation process.

Consider a SPAD sensor on a moving platform, say an au-
tonomous vehicle, where high-frame rate and efficient depth
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Optical Flow Driven Foveation Here we see our optical flow driven SPAD foveation using the Carla simulator whose color and ground-truth depth are

shown in the first two columns. Directly using optical flow, as shown in the third column, creates errors that propagate over time. We correct for the optical flow
error by detecting those pixels whose foveated windows are close to the noise floor. The last column shows the final optical flow driven foveated depth at different

window sizes. Please see the supplementary for video results.

capture are important [52], [53]. The foveation algorithm de-
scribed in the previous section analyses pixels in each frame,
reducing the bins in the histogram that need to be processed.
Here we consider an approach to reduce the computation even
further, using temporal information by transferring foveation
information from previous frames to subsequent frames.

Consider a sequence of frames containing both depth and
reflectance information from a scene. Assume that the depth
in the first frame is reconstructed at high quality, such as from
full-resolution SPAD histograms. Now, for a subsequent frame,
we can calculate optical flow between the frames (color or
grayscale), producing a vector (u,v) for each pixel at a given
time ¢. These vectors satisfy the brightness consistency principle,
meaning that I (z + u - 6t,y + v - 0t,t + §t) = I(x, y,t). holds
true. We use the depth information from the previous frame to
guide the positioning of the foveating window in the current
frame, by warping the previous frame based on the vector (u, v).
Although the object may move and the histogram peak will
shift from frame to frame, it will remain within a nearby range,
allowing a window of pixels to recover the histogram peak in
the current frame.

However, optical flow is never perfect, often having errors at
the edges of a frame. Further, these propagate incorrect depths
through time, since our optical flow method only considers the
depths in the previous frame. To remove this error, we compare
the distribution of the photons under a foveated region to that
from a noise floor. If they match, we ignore the erroneous optical

flow, and recompute depth from the full histogram. In practice,
this is done by thresholding the values in the foveated window.

In Fig. 4, we show some optical flow results. Please see
the supplementary video for all of our video results. These
were created on the CARLA simulator [54] and the results
show two street scenes with ground truth depths. We found
the native optical flow in CARLA to be noisy, and so we
used OpenCV’s in-built optical flow estimator. The third and
fourth columns show first the incorrect results from optical
flow, and our method to detect these regions, shown in red.
The optical flow driven depth foveation results are shown in
the last column. Calculating errors using a running average
across all video frames reveals compounding errors over time.
In the first scene, at %N, RMSE and SSIM are 101.9 m and
0.530, and at %N, 38.6 m and 0.884. In the second scene,
RMSE and SSIM are 0.164 m and 0.87 for both %ON and
1N,

Time Delay: In dynamic scenes, unlike static ones, time delay
becomes a potential issue. The process of calculating optical
flow may introduce a delay between capturing the prior frame
and the current one, which could lead to increased errors. Ad-
ditionally, the proposed error correction method in this section
relies on resampling pixels, which could introduce time-delay
artifacts if the frame rate is not sufficiently high. However, with
a fast enough capture speed, as provided by SPAD arrays, these
delays become negligible, maintaining the accuracy of the output
depth map.
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Fig. 5. Hardware emulation results for scenes from Lindell et al. [4]. (Column 1) The Lindell dataset consists of monochrome images captured by a camera
co-aligned with the SPAD sensor that captures photon data cubes. (Column 2) We obtain monocular depth maps from these monochrome images. (Column 3) Raw
photon data cube without foveation shows a “cloud” of background photon detections. (Column 4) Maxima detection on low SBR photon clouds leads to unusable
depth maps. (Column 5) The CNN-based algorithm of Lindell et al. improves depth map reconstruction. (Column 6) Our approach relies on memory foveation in
a 1/4th size sub-window around an estimate of the true depth obtained from monocular depth maps. Observe that the photon data cubes are less noisy. (Column
7) Even a simple max-estimator provides better depth map estimates after foveation. (Column 8) Providing foveated clouds to the CNN denoiser of Lindell et al.
further improves reconstructions.
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Fig. 6. Hardware emulation results for scenes without co-aligned monochrome camera [5]. (Column 1) RGB images of the “face-vase” and “reindeer” scenes
shown for visualization. (Column 2) A pseudo-intensity image is estimated by accumulating photon counts for each pixel. (Column 3) Pseudo intensity maps are
converted into superpixel representations, and a single pixel in each superpixel is used for measuring complete histograms. (Column 4) The peak location of the
chosen pixel is used to apply foveation windows of 1/4th the total temporal extent for the remaining pixels in each superpixel. (Column 5) Ground truth depth maps
obtained using matched filtering. (Column 6) Our result requires 64 x less memory per pixel for > 99% of the pixels in these scenes.
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Additional Results: Depth Fovea. This figure demonstrates the application of the depth foveation technique described in Section IV to the Lindel dataset,

along with the error correction technique presented in the supplementary material. A window size of M = 1/8 and a bin count of N’ = 16 were used. The results

were subsequently processed using the sensor fusion denoising network [4].
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Fig. 8. Additional Results: Optical Flow and Quantization Spatio-Temporal.
This figure illustrates the application of the techniques described in Section VI
and Section V to the Lindel dataset. The top portion showcases our optical flow
algorithm on the “roll” scene. The first column displays the denoised ground
truth, followed by the optical-flow-driven memory foveation result using maxima
detection, and finally the denoised memory foveation result. The bottom portion
of the figure presents our quantization spatio-temporal foveation technique,
utilizing 9.7% sampling to mitigate the high levels of noise and the abundance
of pixels with no photon counts in the scene.

VII. HARDWARE EMULATION RESULTS

In this section, we present hardware emulation results for
depth and memory foveation using SPAD data captured using

= Non-Foveated
0.25 o Memory Foveation
E 0.20 -
w
2 0.15 1
«
0.10 4 /
0'05 - T T T T T
1.0 0.8 0.6 0.4 0.2
Signal-to-Background Ratio
Fig. 9. Effect of increasing background illumination. The conventional (non-

foveated) depth map quality degrades more rapidly as background illumination
increases. Using memory foveation allows reliable depth map recovery for the
“deer” scene for a wider range of SBR levels.

real hardware. The goal of hardware emulation study is to de-risk
future in-pixel implementations of foveation algorithms. We use
datasets by Lindell et al. [4] and Gutierrez-Barragan et al. [5]
from prior sources [46], [47].

A. Using Monocular for Memory Foveation

We’ll start by showcasing how our memory foveation tech-
nique works on the dataset by Lindell et al. [4] by using monoc-
ular as a prior. The Lindell dataset consists of scenes under
different ambient illumination conditions captured using a linear
SPAD pixel array [55] co-aligned with a monochrome camera
that captures intensity images.

We use these intensity images to obtain a monocular depth
prior. Because the performance of monocular estimation net-
works is dependent on the dataset, we perform a calibration step
by using the “elephant” scene in the dataset to define a global
scaling function. We place foveation windows of 1/4th the total
temporal extent of the full histograms centered around these
scaled monocular depth estimates for each pixel.

Memory foveation improves the overall SBR, in a scene-
adaptive manner, by focusing on regions of the spatio-temporal
photon cube where signal photons arrive. Comparing columns 3
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Fig. 10.  Future pixel and array designs for foveated single-photon 3D imaging.
(a) A speculative pixel design where individual SPADs are gated on or off based
on thresholds set with respect to a linear ramp signal. Pixels only need to store
the thresholds; the ramp signal is generated externally. (b) A possible array of
SPAD pixels with per-pixel gating. Observe that the ramp signal is generated
globally, simplifying pixel design. Variable-resolution TDCs and histogrammers
are shared by small pixel neighborhoods (e.g., 2 x 2 multiplexed “macropixels”)
to improve fill factor.

and 6 in Fig. 5, foveated SPAD measurement cubes show fewer
background photon detections, with clear 3D object structure
in the photon cubes. Depth estimates are improved even with
a simple maxima-detection approach — observe that the lamp
is barely visible in the non-foveated maxima-detection-based
depth map in column 5, but is visible after memory foveation
in column 7. Running memory foveated measurements through
the denoising algorithm of Lindell et al. further improves the
depth map, as seen in the last column of Fig. 5.

B. A Different Approach to Spatio-Temporal Foveation

To illustrate the flexibility of our foveation techniques and
their independence from external sensors as a prior, we propose
an alternative spatio-temporal method, which we apply to two
scenes from the Gutierrez-Barragan et al. dataset [5], for which
there is no co-located camera. The dataset is captured using
a single-pixel point scanned SPAD detector co-aligned with a
pulsed laser. Fig 6 shows the results of the alternate approach
for the single object “face-vase” and “reindeer” scenes, with the
RGB images shown in column 1 for visualization purposes.

SuperPixels: Because there is no intensity map captured in the
dataset, we instead obtain a pseudo-intensity map by summing
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the raw photon data cubes along the temporal axis for each
pixel. In a real hardware implementation, this process would
be achieved by utilizing a counter in each SPAD pixel, a feature
commonly available in existing commercial SPAD arrays. We
then run a superpixel algorithm [56] on the pseudo-intensity
maps to obtain coarse segmentations of the scene, as shown in
column 3. For each superpixel segment, we capture a complete
(non-foveated) histogram of the centroid pixel. By identifying
the true peak location in this histogram, we can then foveate
within a 1/4th sub-window centered around this peak for all
remaining pixels in the superpixel segment, reducing the overall
bandwidth requirement per pixel by a factor of 64.

In the “face-vase” scene, with a spatial resolution of 174 x
154 pixels, the segmentation reduces the data to 473 superpixels.
Similarly, the “deer” scene, originally at 204 x 116 pixels, is
reduced to 515 superpixels. This reduction translates to a 3/4
reduction in memory requirement for approximately 99.98%
pixels in both scenes. Examples of foveated histograms in
column 4 show that the laser impulse response function has a
non-ideal shape which departs significantly from the commonly
assumed Gaussian shape used in simulation studies. (The second
peak is likely due to optical inter-reflections in the hardware
setup). Yet, our method is able to produce reliable depth maps
(columns 5 and 6).

We also examine the impact of reconstruction error under
increasing background noise for the “deer” scene. As shown
in Fig. 9, foveation allows for the accurate selection of the
correct depth peak, even in the presence of strong background
illumination, thereby expanding the operable SBR range in
practice.

VIII. LIMITATIONS AND DISCUSSION

Worst Case Stochastic Limits: We explored the limitations of
our approach by analyzing the worst-case scenario where depth
is incorrectly detected due to various errors, such as monocular
depth calibration issues, ambient light interference, and global
effects like multipath inter-reflections. We characterized these
errors using a probabilistic framework. Specifically, we defined
the probability py, as the chance that a detected photon originates
from the laser i.e. single-bounce photons, pmulipan as the proba-
bility of multipath photon detection, and pgoor as the probability
of spurious peaks due to sensor noise. The overall probability of
accurate depth detection is given by

pgt(l - pgtpmultipath)kjilpﬂoor, 9

where M is the number of foveated bins. We further derived the
probability pyors for the worst-case scenario, where none of the
S pixels detect the correct depth, expressed as

Pworst = (]- - pgl(l - pgtpmultipath)Milpﬂoor)S~ (10)

Through optimization, we identified two conditions that lead to
this worst-case scenario, linked to specific relationships between

Pgt> Pmultipath» and M.

e The first condition occurs when pg; = ﬁ This situa-
'multipat

tion arises when the probability is 1 for every bin to contain

both direct photons from the laser and photons that have
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undergone multipath effects, indicating a degenerate scene,
such as one made entirely of mirror-like surfaces.

® The second condition occurs when pg = This

scenario implies that the number of foveated bins M and
the probability of multipath effects pmyiipatn must satisfy
this relationship, under the constraint that 0 < py < 1.
This suggests that it is possible to avoid the worst-case
scenario by adjusting the number of bins M for scenes
with specific global illumination characteristics.

In order to illustrate the findings of this analysis, consider a
toy example with a number of bins M = 1000 and pronounced
multipath effects, such as ppyiipan = 0.1. In the worst case, the
probability of depth recovery would be significantly hindered
Pg = 0.01, but can be improved by changing the number of
bins M at the cost of depth resolution. The detailed derivations
of these results are provided in the supplementary material.

Quality of depth priors: Our algorithms can enable memory-
efficient SPAD sensing while maintaining depth accuracy. How-
ever, our method strongly relies on the accuracy of the depth
prior. If the prior is incorrect, our algorithms may produce
errors, highlighting the importance of robust error correction
mechanisms. We can correct for such errors by trading off
efficiency. For instance, in Section VI, we discuss a correc-
tion method for low-quality depth priors, where compounded
errors arise from optical flow warping over time. Addition-
ally, in the supplementary material, we present an error mask
correction technique. This method enables adjustments, like
enlarging the foveation windowdeven to the extreme of cov-
ering the entire transient spanafacilitating more robust error
management.

Hardware complexity: A key limitation of our approach is the
lack of available hardware that fully supports our algorithms,
necessitating more complex pixel architectures and driving up
costs. Each SPAD pixel in the 2D array requires a programmable
gate, along with a variable TDC and histogrammer, which
increases the complexity and expense of the hardware. This
presents a significant challenge to the widespread adoption
and practical implementation of our method. In Fig. 10, we
propose a potential array design with per-pixel gating capability,
where a global ramp generator provides individualized on/off
thresholds for each pixel. To enhance the fill factor, the TDC and
histogrammer are shared among groups of neighboring pixels,
forming “macropixels”.

We believe the next generation of programmable and
software-defined SPAD cameras [57], [58] will be key enablers
for in-pixel and on-chip implementation of memory- and energy-
efficient foveated sensing schemes. As SPAD cameras become
low-cost and widely available [59], the integration of in-pixel
foveated sensing algorithm proposed here will reduce memory
consumption while maintaining depth accuracy, or alternatively,
provide more accurate depth estimates without increasing mem-
ory usage.
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