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Abstract

Data-driven inverse optimization (IO) aims to estimate unknown parameters in an opti-
mization model from observed decisions. The IO problem is commonly formulated as a large-
scale bilevel program that is notoriously difficult to solve. We propose a derivative-free op-
timization approach based on Bayesian optimization, BO4IO, to solve general IO problems.
The main advantages of BO4IO are two-fold: (i) it circumvents the need of complex reformu-
lations or specialized algorithms and can hence enable computational tractability even when
the underlying optimization problem is nonconvex or involves discrete variables, and (ii) it
allows approximations of the profile likelihood, which provide uncertainty quantification on
the IO parameter estimates. Our extensive computational results demonstrate the efficacy and
robustness of BO4IO to estimate unknown parameters from small and noisy datasets. In addi-
tion, the proposed profile likelihood analysis effectively provides good approximations of the
confidence intervals on the parameter estimates and assesses the identifiability of the unknown
parameters.

1 Introduction

Inverse optimization (IO) is an emerging method for learning unknown decision-making pro-
cesses (Chan et al., 2023). Following the principle of optimality (Schoemaker, 1991), the funda-
mental idea is to use mathematical optimization as a model for decision-making, where decisions
can be viewed as the optimal or near-optimal solutions to an underlying optimization problem.
Given observed decisions made by an agent, the goal of IO is to learn the unknown optimiza-
tion model that best represents the agent’s decision-making process. A key advantage of the IO
approach is that it can directly consider constraints, which allows us to leverage all the model-
ing flexibility of mathematical programming, incorporate domain knowledge, and hence obtain
inherently interpretable decision-making models (Gupta and Zhang, 2023); this makes it distinct
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from common black-box machine learning methods such as deep learning, where neural networks
are trained as optimization proxies to map inputs to decisions (Sun et al., 2018; Karg and Lucia,
2020).

The concept of IO was first introduced in an inverse shortest-path problem, where travel costs
in a network are determined based on a given route taken by a user (Burton and Toint, 1992).
Since then, IO has been applied to problems across a wide variety of fields, including personal-
ized treatment planning in healthcare (Chan et al., 2014; Ghate, 2020; Ajayi et al., 2022), network
design in transportation and power systems (Bertsimas et al., 2015; Zhang et al., 2018; Fernández-
Blanco et al., 2021), risk preference learning in portfolio optimization (Li, 2021; Yu et al., 2023), and
inference of cellular decision making in biological systems (Burgard and Maranas, 2003; Uygun
et al., 2007; Zhao et al., 2016).

Early IO research focused on the development of solution approaches for various classes of
deterministic IO problems (IOPs) where it is assumed that observed decisions are exact globally
optimal solutions to the unknown forward optimization problem (FOP). Ahuja and Orlin (2001)
proposed a general solution method for estimating the cost coefficients of a linear program. Oth-
ers have proposed extensions that address conic (Iyengar and Kang, 2005; Zhang and Xu, 2010),
discrete (Schaefer, 2009; Wang, 2009), and nonlinear convex FOPs (Zhang and Zhang, 2010), as
well as constraint estimation (Chan and Kaw, 2020; Ghobadi and Mahmoudzadeh, 2021). In re-
cent years, the focus has shifted toward data-driven IO, where parameters are estimated based on
a set of noisy observations collected under different experiment (input) conditions (Mohajerin Es-
fahani et al., 2018). As such, data-driven IO can address real-world problems where the observed
decisions are rarely perfectly optimal given a hypothesized structure of the FOP.

A data-driven IOP is typically formulated as a bilevel program, featuring as many lower-level
problems as there are observations. Each lower-level problem represents an instance of the FOP
with the corresponding model inputs and observed decisions. The upper-level problem aims to
estimate model parameters that align the FOP solutions with the observed decisions. IOPs are no-
toriously difficult to solve as their size grows with the number of observations. Common solution
approaches involve single-level reformulations based on replacing the lower-level problems with
their optimality conditions (Keshavarz et al., 2011; Aswani et al., 2018) or cutting plane methods
(Wang, 2009). Recent works have also considered tailored decomposition methods for solving
IOPs with high-dimensional FOPs and large datasets (Gupta and Zhang, 2022, 2023). In general,
existing exact solution methods for IOPs cannot be applied to all classes of IOPs, and designing
such algorithms becomes particularly challenging when the FOP is nonconvex.

In this work, we depart from the existing literature and take a derivative-free optimization
(DFO) approach to solve general IOPs, where we treat the evaluation of the loss function as a
black box. DFO is commonly applied to optimization problems where the full derivative infor-
mation is not easily accessible (Rios and Sahinidis, 2013). In the field of bilevel or multilevel
optimization, local or global sampled-based algorithms, e.g. evolutionary algorithms, have long
been used as metaheuristic solution methods (Talbi, 2013; Sinha et al., 2017). In the DFO frame-
work developed by Beykal et al. (2020), a bilevel program is solved as a single-level grey-box op-
timization problem, where at each sampling point, the lower-level problem is solved to generate
input-output information that the grey-box solver can leverage to suggest new solution candi-
dates and iteratively optimize the upper-level objective. In this work, we propose to use Bayesian
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optimization (BO), a model-based DFO method designed to find the optimum of an expensive-
to-evaluate objective function within a relatively small number of iterations (Frazier, 2018). BO
leverages Bayesian statistics and surrogate modeling to update a prior distribution for the objec-
tive function as new function evaluations are performed, and it provides a means of balancing
exploration and exploitation in sampling the next points. BO has become very popular in recent
years and has proven to be an effective method for, for example, hyperparameter tuning in deep
learning (Snoek et al., 2012; Shahriari et al., 2015) and design of experiments (Greenhill et al., 2020;
Frazier and Wang, 2016). However, only recently, it has also been used to tackle bilevel programs
(Kieffer et al., 2017; Dogan and Prestwich, 2023) as well as multilevel optimization problems that
arise in feasibility analysis and robust optimization (Kudva et al., 2022, 2024).

In our proposed BO framework for solving general IOPs, which we call BO4IO, we approx-
imate the loss function of the IOP with a non-parametric probabilistic surrogate using Gaussian
process (GP) regression (Williams and Rasmussen, 2006). It converges to the optimal parame-
ter estimates that provide the minimum decision loss by iteratively selecting candidate solutions
through the minimization of the acquisition function. Here, the key advantage of BO4IO is that,
at each iteration, it only requires the evaluation of the loss function with the current parameter
estimates; this can be achieved by directly solving the FOP for every data point, which circum-
vents the need for a complex reformulation or special algorithm. Consequently, BO4IO remains
applicable even when the FOP is nonlinear and nonconvex, and it can consider both continuous
and discrete decision variables. This approach also naturally decomposes the problem in a sense
that the FOP can be solved independently for each data point, which allows parallelization and
hence enhances the scalability of the algorithm with respect to the number of data points.

BO4IO also enables us to address another major challenge in IO that is often overlooked,
namely the quantification of uncertainty with respect to the estimated parameters. In IO, there
are often multiple parameter estimates that lead to the same loss; these “equally good” estimates
form the so-called inverse-feasible set. The size of the inverse-feasible set can be viewed as a mea-
sure of uncertainty in any point estimate drawn from that set; the larger the inverse-feasible set,
the less confident one can be about the estimate. In the case of linear programs where the cost
vector is unknown, the inverse-feasible set takes the form of a polyhedral cone; Gupta and Zhang
(2022) use this insight to develop an adaptive sampling method that tries to sample points that can
help further reduce the size of the inverse-feasible set. However, that method is specific to linear
programs and cannot be directly extended to general IOPs. A common approach in parameter
estimation is to derive confidence intervals for the point estimates. Asymptotic confidence inter-
vals can be computed using a Fisher information matrix (Sobel, 1982), but it is only exact when
the estimated model is linear (Joshi et al., 2006). In contrast, sample-based confidence intervals
derived using the profile likelihood function also apply to the nonlinear case (Neale and Miller,
1997; Raue et al., 2009). We find that in BO4IO, we can use the posterior of the GP surrogate to
approximate the profile likelihood, which provides uncertainty quantification and insights into
the identifiability of given model parameters.

To assess the efficacy of the proposed BO approach for various classes of FOPs, we per-
form computational case studies wherein we learn cellular objectives in flux balance analysis of
metabolic networks as well as market requirements in standard and generalized pooling prob-
lems. The computational experiments demonstrate that BO4IO can efficiently identify estimates
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of the unknown model parameters with a relatively small number of iterations. It proves to be
especially beneficial in cases where the size of the FOP is large relative to the number of unknown
parameters. In addition, using the approximate profile likelihood, we can assess how the identifi-
ability of certain parameters changes with the number and quality of observations. To the best of
our knowledge, this is the first DFO method specifically designed to solve IOPs as well as the first
approach that provides a direct measure of uncertainty on the IO parameter estimates.

The remainder of this paper is structured as follows. In Section 2, we present a general formu-
lation of an IOP. We provide the necessary background on GPs and BO and introduce our BO4IO
algorithm in Section 3. In Section 4, we introduce the profile likelihood and derive its approxima-
tion based on the GP surrogate in BO4IO. Finally, we demonstrate the performance of BO4IO in
three numerical case studies in Section 5 and conclude in Section 6.

2 The inverse optimization problem

In IO, we assume that a decision-making process can be modeled as an optimization problem, also
referred to as the forward optimization problem, formulated in the following general form:

minimize
x2Rn

f(x, u; ✓)

subject to g(x, u; ✓)  0,
(FOP)

where x 2 Rn is the vector of decision variables, u 2 Rm denotes the vector of contextual inputs
that describe the system conditions, and f and g represent the objective and constraint functions,
respectively, that are parameterized by model parameters ✓ 2 ⇥, where ⇥ is some compact set
in Rd. In a data-driven IO setting, ✓ are unknown, but decisions {xi}i2I can be collected under
varying conditions {ui}i2I , where I denotes the set of observations. The observations are assumed
to be noisy, which could be due to, for example, measurement errors, suboptimal decisions, or
model mismatch. The goal of IO is to estimate ✓ such that the solutions of (FOP) best fit the
observed decisions, which gives rise to the following bilevel optimization problem:

minimize
✓̂2⇥, x̂

l(✓̂) :=
X

i2I
(xi � x̂i(✓̂))

>W (xi � x̂i(✓̂))

subject to x̂i(✓̂) 2 argmin
x̃2Rn

n
f(x̃, ui; ✓̂) : g(x̃, ui; ✓̂)  0

o
8 i 2 I,

(IOP)

where the objective of the upper-level problem is to obtain parameter estimates, denoted by ✓̂, such
that the (empirical) decision loss l : ⇥! R+, a function that quantifies the agreement between the
model predictions (x̂i) and observations (xi), is minimized. For simplicity, we focus on the case
where l is defined as a weighted sum of squared residuals, where W 2 Sn+ denotes the positive
definite matrix of weighting factors; this loss function can be easily replaced with a more general
likelihood or posterior loss function (see, e.g., (Goodfellow et al., 2016, Chapter 5)). In the |I|
lower-level problems of (IOP), one for each observation, x̂i is constrained to be an optimal solution
to the corresponding optimization problem parameterized by ✓̂; as such, x̂i is a function of ✓̂.
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3 The BO4IO framework

In this section, we provide a brief overview of derivative-free optimization and Gaussian process
regression, and show how they are applied to solve (IOP) in the proposed Bayesian optimization
for inverse optimization (BO4IO) framework.

3.1 Derivative-free inverse optimization

We propose to solve general IOPs using a DFO approach where we treat (IOP) as the following
black-box optimization problem:

minimize
✓̂2⇥

l(✓̂).

DFO methods aim to sequentially optimize the target objective within a designated search space,
where the query points are suggested based on past function evaluations. At each iteration, the
objective function, which in our case is the loss function l, is evaluated for a given ✓̂ by solving the
|I| individual FOPs to global optimality. Specifically, for every i 2 I, we solve (FOP) with u = ui
and ✓ = ✓̂ to obtain x̂i(✓̂) with which we can then compute l(✓̂) =

P
i2I(xi� x̂i(✓̂))>W (xi� x̂i(✓̂)).

Note that each FOP can be solved independently; hence, they can be solved in parallel to further
reduce the computation time.

Even though parallel computing can be applied, each evaluation of the loss function can still
be expensive if the underlying FOP is difficult to solve; hence, it is important to select a DFO
algorithm that requires as few evaluations as possible. DFO methods can be roughly categorized
into direct and model-based methods (Rios and Sahinidis, 2013). While direct algorithms explicitly
determine a search direction from previous function evaluations, model-based methods use these
function evaluations to construct a surrogate model that approximates the target function and
determine the next sampling point using that surrogate (Jones et al., 1998; Huyer and Neumaier,
2008). In this work, we choose Bayesian optimization (BO) to be our preferred model-based DFO
method (Mockus, 1994; Frazier, 2018). In BO, a probabilistic surrogate model is constructed where
Bayes’ rule is used to compute the surrogate posterior distribution based on the selected prior
and past function evaluations. BO uses the posterior to quantify the uncertainty in the estimate
and forms a utility (acquisition) function that balances the exploration-exploitation trade-off in
the search process. A wide variety of probabilistic surrogate models have been used in BO, e.g.,
Gaussian processes (Mockus, 1994), random forests (Hutter et al., 2011), tree-structured Parzen
estimators (Bergstra et al., 2011), and deep neural networks (Snoek et al., 2015). In this work, we
use GP as the probabilistic surrogate due to its nonparametric feature and the analytical expression
of the posterior; however, it should be noted that the proposed framework can readily consider
other surrogate models.

3.2 Gaussian process regression

Based on the standard GP detailed in Williams and Rasmussen (2006), we build a GP model that
approximates the loss function l : ⇥ ! R+. The approximation is obtained by assuming that the
function values l(✓̂) at different ✓̂ values are random variables of which any finite subset forms a
joint Gaussian distribution. A GP model can thus be interpreted as an infinite collection of these
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random variables, describing a distribution over the function space.
We let l̂(✓̂) ⇠ GP(µ(✓̂),(✓̂, ✓̂0)) denote the GP surrogate of the true loss function l. The GP

model is fully specified by a prior mean function µ(✓̂) and a covariance (kernel) function (✓̂, ✓̂0)

that is the covariance of the function values l̂(✓̂) and l̂(✓̂0) for any ✓̂, ✓̂0 2 ⇥. Without loss of gen-
erality, we assume that µ(✓̂) = 0, which can be achieved by normalizing the output data when
fitting the surrogate. The kernel function encodes the smoothness and rate of change in the target
function (see, e.g., Williams and Rasmussen (2006, Chapter 4)). We focus on the stationary covari-
ance function from the Matern class, which is a popular kernel choice in many GP applications.
Let Dt = {(✓̂i, l(✓̂i)}ti=1 denote a set of t past evaluations. Conditioned on the evaluations in Dt,
the predicted posterior distribution of the function l̂ at a future input ✓̂t+1 remains Gaussian with
the following posterior mean µt(✓̂t+1) and covariance �2

t (✓̂t+1):

µt(✓̂t+1) = >
t (✓̂t+1)K

�1
t lt

�2
t (✓̂t+1) = (✓̂t+1, ✓̂t+1)� >

t (✓̂t+1)K
�1
t t(✓̂t+1),

where lt = [l(✓̂1), ..., l(✓̂t)]> is the vector of t past loss function evaluations, Kt 2 Rt⇥t is the
covariance matrix with entries [Kt]i,j = (✓̂i, ✓̂j) for all i, j 2 {1, ..., t}, and (✓̂t+1) is the vector
of covariance values between the new input ✓̂t+1 and the evaluated inputs {✓̂i}ti=1. In practice,
the kernel function contains unknown hyperparameters, such as smoothness and length-scale
parameters, which are calibrated to the dataset Dt using maximum likelihood estimation.

3.3 The BO4IO algorithm

A pseudocode for the proposed BO4IO algorithm is shown in Algorithm 1, which aims to min-
imize the decision loss l(✓̂) of (IOP) over the parameter domain ✓̂ 2 ⇥ by sequentially querying
✓̂ based on the predicted posterior distribution of the GP surrogate. At the tth iteration, the GP
model is updated using the past t evaluations (Dt). An acquisition function that encodes the
exploration-exploitation trade-off is constructed based on the predicted GP posterior and is opti-
mized to query the next sampling point ✓̂t+1. The true loss function value l(✓̂t+1) is then evaluated
by solving |I| FOPs. The dataset Dt is then appended with the new evaluation (✓̂t+1, l(✓̂t+1)) to
create a concatenated dataset Dt+1. The new dataset Dt+1 is then used to update the GP model,
and the same process is repeated until the maximum number of iterations is reached. Note that
other termination criteria, such as an acceptable level for the decision loss or a maximum number
of consecutive iterations without improvement in the loss value, can also be considered if needed.

A wide variety of acquisition functions have been developed in BO; here, we use the lower
confidence bound (LCB) acquisition function (Auer, 2002) due to its simplicity and nice theoretical
properties. The acquisition function is minimized to obtain the next sampling point, i.e.

✓̂t+1 2 argmin
✓̂2⇥

µt(✓̂)� �1/2
t �t(✓̂), (1)

where �t > 0 is an exploration factor. When �t is defined as an iteration-dependent parameter,
some theoretical guarantees can be derived for the convergence to a global optimal solution (Srini-
vas et al., 2009); however, the resulting search process may become very slow with the adaptive
approach. Instead, one often considers a constant �t value that bounds the failure probability per
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iteration. For example, a value of �t = 4 has demonstrated good results in practical applications
(Berkenkamp et al., 2019).

Algorithm 1: BO4IO: Bayesian optimization for inverse optimization
Input: parameter domain ⇥;

kernel for GP prior (✓̂, ✓̂0);
exploration parameter �;
set of observations {(ui, xi)}|I|i=1;
FOPs with inputs {ui}|I|i=1;
initial evaluation dataset D0;
maximum number of iterations T .

1: Generate GP model using D0

2: for t = 1, 2, ..., T do

3: ✓̂t+1 2 argmin✓̂2⇥ µt(✓̂)� ��t(✓̂), see (1)
4: Solve the |I| FOPs with ✓̂t+1 and compute l(✓̂t+1)
5: Dt+1  Dt [ {(✓̂t+1, l(✓̂t+1))}
6: Update GP model using Dt+1

7: end for

8: return optimal solution ✓̂⇤T 2 argmin✓̂t2DT
{l(✓̂t)}Tt=1

4 Uncertainty quantification using profile likelihood

In this section, we propose a method to quantify the uncertainty in the parameter estimates from
BO4IO using the profile likelihood (PL) method. We first review uncertainty quantification in
general parameter estimation problems and discuss how the confidence interval (CI) of each pa-
rameter estimate can be derived using the PL method. We then propose approximations of the
PLs and CIs based on the GP surrogate in BO4IO, which can be used to derive optimistic and
worst-case CIs of parameter estimates and provide insights into the identifiability of the unknown
parameters in IO.

4.1 General approach for parameter estimation and uncertainty quantification

It is widely known that the weighted sum of the residuals function l(✓) defined in (IOP) is directly
related to the likelihood function under the assumption of independent and identically distributed
(i.i.d.) Gaussian observation noise. In particular, if xi = x̂i(✓̂) + ✏i with ✏i ⇠ N (0,�2

i ), then

l(✓̂) = c� 2 log(L(✓̂)),

where L(✓̂) = p({xi}i2I |{ui}i2I , ✓̂) is the likelihood function, c is a constant, and l(✓̂) is given
in (IOP) with W = diag(�1, . . . ,�|I|). Let ✓̂⇤ 2 argmin✓̂2⇥ l(✓̂) denote the maximum likelihood
estimate (MLE) of the unknown parameters ✓. Finite sample confidence intervals, which signify
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that the true value is within a set with at least some probability 1� ↵, can be derived as follows

CI✓̂⇤ = {✓̂ 2 ⇥ : l(✓̂)� l(✓̂⇤) < �↵}, (2)

where �↵ denotes the ↵-level quantile of the standard �2 distribution with degrees of freedom
equal to 1 for pointwise and d for simultaneous CIs, respectively.

An important challenge in many parameter estimation problems is determining the identifi-
ability of the parameters to be estimated in the model (Bellman and Åström, 1970; Cobelli and
Distefano III, 1980). We can think of identifiability in terms of the size of the CI. If the CI is small,
we have found a narrow range in which the true parameter exists and so we can say that the
model is fully identifiable (and we can consequently trust the found estimates ✓̂⇤). On the other
hand, if the CI is extended in any direction, we are unable to pinpoint an accurate estimate of
the parameter; hence, the parameter is non-identifiable. As discussed in Wieland et al. (2021),
there are two types of non-identifiabilities that can emerge in a model. The first is structural non-
identifiability, which is the result of an effectively redundant model parametrization. Structurally
non-identifiable parameters result in non-unique MLE estimates ✓̂⇤ such that they cannot be re-
solved by gathering more data or improving the quality of the existing data. The second is practical
non-identifiability, which refers to a parameter that is structurally identifiable (in the sense that it
has a unique MLE estimate) but l(✓̂) � l(✓̂⇤) < �↵ remains below the threshold �↵ for a large
portion of ⇥. One may be able to make practically non-identifiable parameters identifiable by col-
lecting additional and/or higher-quality data to reduce the CI. One can use model-based design
of experiments (DOE) methods (Balsa-Canto et al., 2008; Bandara et al., 2009; Kreutz and Timmer,
2009) to systematically select new experimental trials that are most informative for reducing the
CI. We plan to study the DOE problem for (IOP) in more detail in future work.

4.2 The profile likelihood method

The PL method is an effective strategy for differentiating between the different identifiability cat-
egories, even in high-dimensional spaces (Raue et al., 2009). The approach assesses the identifia-
bility of a parameter of interest ✓̂k by profiling the maximum likelihood (i.e. minimum loss). The
profile likelihood PL(✓̂k) for a given value of ✓̂k is defined as

PL(✓̂k) = min
✓̂k0 6=k

l(✓̂). (3)

Note that PL(✓̂k) is obtained by fixing ✓̂k while re-optimizing the rest of the parameters. Based on
the definition given in (2), the CI of each parameter estimate ✓⇤k can be computed as follows:

CI✓̂⇤k = {✓̂k | PL(✓̂k)� l(✓̂⇤)  �↵}, (4)

where l(✓̂⇤) is the decision loss with the optimal parameter estimates of (IOP). It should be noted
that the re-optimization during the PL evaluation provides useful information about the nonlinear
relationships between the parameters, which can be further leveraged in model reduction (Mai-
wald et al., 2016).
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4.3 Approximation of profile likelihood and confidence intervals in BO4IO

Similar to (IOP), solving (3) exactly is challenging for general FOPs; as a result, we do not have
access to the exact PL values and CIs of the parameter estimates. Instead, we approximate them
using the GP posterior obtained in BO4IO. We first define the upper and lower confidence bounds
on the true loss function l(✓̂) at the tth iteration as follows:

l̂UCB
t (✓̂) = µt(✓̂) + ⇢1/2t �t(✓̂)

l̂LCB
t (✓̂) = µt(✓̂)� ⇢1/2t �t(✓̂),

where ⇢t is a parameter denoting the confidence levels. The confidence bounds on the PL of a
parameter of interest ✓̂k at the tth iteration can be further derived as

cPL
UCB
t (✓̂k) = min

✓̂k0 6=k

l̂UCB
t (✓̂) (5)

cPL
LCB
t (✓̂k) = min

✓̂k0 6=k

l̂LCB
t (✓̂), (6)

where cPL
UCB
t (✓̂k) and cPL

LCB
t (✓̂k) denote the upper and lower confidence bounds on the PL, re-

spectively. In addition, the optimistic estimate of the minimum decision loss can be determined
by l̂*LCB

t = min lLCB
t (✓̂), whereas a pessimistic estimate of the minimum decision loss is the current

best-found loss l⇤t = min{l(✓̂i), ..., l(✓̂t)}. The outer-approximation (OA) and inner-approximation
(IA) of the CI on each best parameter estimate ✓̂⇤k at the tth iteration can hence be written as

OA-CIt,✓̂⇤k = {✓̂k|cPL
LCB
t (✓̂k)� l⇤t  �↵} (7)

IA-CIt,✓̂⇤k = {✓̂k|cPL
UCB
t (✓̂k)� l̂*LCB

t  �↵}. (8)

Since l⇤t � l⇤ � l̂⇤LCB
t and cPL

UCB
t (✓̂k) � PL(✓̂k) � cPL

LCB
t (✓̂k), we have OA-CIt,✓̂⇤k ✓ CI✓̂⇤k ✓ IA-CIt,✓̂⇤k .

In other words, OA-CIt,✓̂⇤k provide a worst-case estimate of the confidence level, whereas IA-CIt,✓̂⇤k
is an optimistic estimate. An illustrative example of the approximate and true CIs are shown in
Figure 1. Notably, we are primarily interested in the worst-case estimate of the CI; hence, we
only report OA-CIt,✓̂⇤k in our case studies. The pseudocode for the algorithm used to determine
OA-CIt,✓̂⇤k is shown in Algorithm 2.

5 Computational case studies

We apply the proposed BO4IO algorithm to three computational case studies covering various
classes of FOPs. In the first case study, we estimate the optimal linear combinations of multiple
cellular objectives in the flux balance analysis, which is formulated as a convex nonlinear pro-
gram (NLP). In the second case study, we learn the product demands in the standard pooling
problem, which is formulated as a nonconvex NLP. Finally, we extend the second study to a gen-
eralized pooling problem that contains mixed-integer decisions and estimate the product quality
constraints. Using synthetic data, we evaluate the performance of the algorithm and apply the
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Figure 1: Illustrative example of outer-approximate (OA-CI, blue), original (CI, green), and inner-
approximate (IA-CI, red) confidence intervals of a parameter of interest (✓̂k) based on the proposed
PL analysis.

Algorithm 2: Outer-approximation of confidence intervals in BO4IO

Input:

parameter of interest, ✓̂k;
posterior mean and covariance function of GP µt(✓̂) and �2

t (✓̂);
confidence parameter ⇢;
the ↵-quantile of �2 distribution �↵;
the best decision loss of t past evaluations l⇤t ;
the step size for ✓̂k �✓̂k ;
the sampled PL range [✓̂LB

k , ✓̂UB
k ]

1: S  ; and ✓̂k  ✓̂LB
k

2: while ✓̂k  ✓̂UB
k do

3: cPL
LCB
t (✓̂k) min✓̂k0 6=k

µt(✓̂)� ⇢�t(✓̂), see (6)

4: S  S [ {(✓̂k, cPL
LCB
t (✓̂k))}

5: ✓̂k = ✓̂k + �✓̂k
6: end while

7: OA-CIt,✓̂⇤k  {✓̂k|cPL
LCB
t (✓̂k)� l̂⇤t  �↵} based on S

8: return OA-CIt,✓̂⇤k
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approximate PL method to assess the confidence intervals and identifiability of the IO parameter
estimates. For each specific case, 10 random instances were considered to provide reliable com-
putational statistics. The algorithm was implemented in Python 3.8 using Pyomo (Bynum et al.,
2021) as the optimization modeling environment and Gurobi v10.0.1 (Gurobi Optimization, LLC,
2023) as the optimization solver. The BO framework was built under BoTorch (Balandat et al.,
2020) where GPyTorch (Gardner et al., 2018) was used to construct the GP models. All codes were
run on the Agate cluster of the Minnesota Supercomputing Institute (MSI) using a node allocated
with 32 GB of RAM and 64 cores. The implementation of all case studies can be found in our
GitHub repository at https://github.com/ddolab/BO4IO.

5.1 Case study 1: Learning cellular objectives in flux balance analysis

Flux balance analysis (FBA) is a method for simulating the flux distributions in the metabolic net-
work of a cell at steady state (Orth et al., 2010b). Metabolic flux is one of the critical determinants
of cellular status under different physiological and environmental conditions; the FBA method
serves as a powerful tool for the optimization of biosynthesis in microbial industries (Pardelha
et al., 2012; Choon et al., 2014) and the identification of drug targets in human diseases (Lee et al.,
2009; Nilsson and Nielsen, 2017). The original FBA problem is formulated as a linear program
by assuming that the cells try to optimize a cellular objective subject to the reaction stoichiometry
of cell metabolism. An extension with l1 or l2 regularization is often used to avoid degeneracy
in the FBA solutions (Bonarius et al., 1996; Lewis et al., 2010). Moreover, a variation that consid-
ers multi-objective optimization via a weighted combination of common objectives has proven to
better describe the fluxes in some organisms (Lee et al., 2004; Schuetz et al., 2012; Garcı́a Sánchez
et al., 2012); however, the weights are often arbitrarily assigned (Nagrath et al., 2010). The goal of
this IOP is to learn the weight vector in multi-objective FBA from the synthetic datasets. The FBA
problem is formulated as the following quadratic FOP with l2-regularization:

minimize
v

X

k2Robj

✓kvk + �
X

k2R
v2k (9a)

subject to
X

k2R
sjkvk = 0 8j 2M (9b)

Lk  vk  Uk 8k 2 R, (9c)

where M and R denote the sets of metabolites and metabolic reactions, respectively. Here, the
reaction fluxes are represented by v. The first term of the objective function (9a) is a linear com-
bination of common cellular objectives in the set Robj with unknown weight parameters ✓. The
second term of (9a) is the l2-regularization scaled by a factor �. Constraints (9b) represent the ma-
terial balances for all metabolites, where sjk denotes the stoichiometric coefficient of metabolite j

in reaction k. Constraints (9c) set lower and upper bounds, respectively denoted by L and U , on
the metabolic fluxes.

We consider the core E. coli model (ID: e coli core) from the BiGG database (Orth et al., 2010a;
King et al., 2016), where the metabolic network specification (|M|, |R|) is (72, 95). The true cel-
lular objective is assumed to be an unknown linear combination of up to five common cellular
objectives in Robj, including maximization of biomass formation, maximization of ATP genera-
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tion, minimization of CO2, minimization of nutrient uptake, and minimization of redox potential
(Savinell and Palsson, 1992; Schuetz et al., 2007; Garcı́a Sánchez and Torres Sáez, 2014) with an
unknown weight vector ✓. In each random instance of the IOP, we first generate the ground-truth
parameters ✓ from a Dirichlet distribution, where the weight vector is scaled by assuming the sum-
mation of all weights to be one. The same equality constraint is considered when minimizing the
acquisition function; hence, the number of unknown parameters is d = |Robj|� 1. Next, using the
same ✓ vector, we collect the optimal flux vectors v⇤i for each observation i by solving the FOP un-
der varying input conditions {ui}i2I = {(Li, Ui)}i2I , where the flux bound vectors Li, Ui 2 R|R|

are sampled from Lik, Uik ⇠ U(10, 100) for each k 2 R. We then generate the noisy data by first
standardizing each optimal flux v⇤ik across all observations and perturb the standardized values
such that v̄ik = v̄⇤ik + ✏ik for all i 2 I and k 2 R, where v̄⇤ik denotes the standardized optimal flux
for reaction k and ✏ik ⇠ N (0,�2).

5.1.1 Computational performance under varying dimensionality

We run 10 random instances with 50 training data points, i.e. |I| = 50, under varying dimen-
sionality of unknown parameters (d = 1 ⇠ 4) at a low noise level of � = 0.01. Separate testing
datasets with the same |I| number of data points are generated to test the model prediction. The
convergence profiles for the training and testing decision errors as well as the parameter error
over 250 BO iterations are compared under a noise level of � = 0.1, as shown in Figure 2. One can
see that while the speed of convergence decreases as the dimensionality increases, the algorithm
effectively estimates accurate FOPs as all conditions achieve low training errors within 100 BO
iterations. The estimated FOPs generalize well to the testing datasets as the training and testing
errors share nearly identical convergence rates and reach the same level after 100 iterations. The
ground-truth parameters are recovered in all random instances under different dimensionality,
where low parameter errors (⇠ 10�4) are achieved after 200 iterations.

We also record the computation times for solving the 2- and 4-dimensional problems with and
without solving the FOPs with 10 parallel workers in a machine on MSI. Table 1 reports the total
times as well as the breakdown into the BO and FOPs parts. The BO part includes the time for
updating/fitting the GP surrogate and minimizing the acquisition function, whereas the FOPs
part accounts for the time required to solve the individual FOPs and compute the loss function
value. We observe little differences in the total computation times when the dimension of the
problem increases from 2 to 4. Reductions in the total computation time of 46% and 33% are
achieved in the 2- and 4-dimension problems, respectively, with FOPs solved in parallel. The
breakdown times indicate that more computational resources are used to solve the FOPs, and
the speed-ups are mainly attributed to the reduced time from the parallel implementation as we
see 47⇠56% time reduction in solving the FOPs. Notably, the computation time of the BO part
increases around 10⇠15% when the dimension of unknown parameters is doubled.

5.1.2 Uncertainty quantification of parameter estimates using profile likelihood

We next apply the proposed PL analysis to evaluate the uncertainty and identifiability of the pa-
rameter estimates of BO4IO in the two-dimensional case. All parameters of the 10 random in-
stances show finite OA-CIs, indicating that they are all structurally identifiable. For simplicity,
we choose a random instance from the two-dimensional case as an example. The full-space PL
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Figure 2: Effect of the dimensionality (d) of ✓ on the accuracy of the estimated FOPs. Convergence
analysis of (a) training error, (b) testing error, and (c) parameter error with varying d. Training
and testing errors refer to the average standardized decision error defined as

P
i2I

P
k2R(v̄ik �

v̂ik)2/|I|/|R| and calculated based on the training and testing datasets, respectively, whereas the
parameter error denotes the difference between the ground-truth (✓) and the estimated (✓̂⇤) values.
Here, the solid lines and shaded areas respectively denote the medians and confidence intervals
of the corresponding error across the 10 random instances. The synthetic dataset of each random
instance is generated under the setting of |I| = 50 and � = 0.01.

n✓ Parallelism Median time (s) Reduction (%)

Total BO FOPs Total FOPs

2 No 3703.0 731.6 2953.7 45.9 55.6
Yes 2005.0 698.4 1312.1

4 No 3149.4 812.9 2369.5 33.2 46.7
Yes 2104.8 825.6 1262.2

Table 1: Computational time of BO4IO as FOPs solved with and without parallel computing.
Results based on 10 random instances with |I| = 50, � = 0.1, and 250 BO iterations. If parallelism
is implemented, 50 FOPs are sequentially solved by 10 parallel workers to global optimality. The
BO time includes initializing/updating the GP surrogate and minimizing the acquisition function,
whereas the FOPs time denotes the time for solving the |I| FOPs.

on the two parameters, ✓1 and ✓2, are shown in Figures 3a and 3d, whereas the zoomed-in region
are shown in Figures 3b and 3e, respectively. As mentioned, both parameters are identifiable with
finite and small OA-CIs. We further evaluate the outer-approximation PL and the approximate
CIs across the BO iterations, as shown in Figures 3c and 3f. We observe a monotonic decrease in
the width of the OA-CI; the shrinking CI can be attributed to a more accurate GP surrogate of the
loss function as the number of BO iterations increases.

Next, again using the two-dimensional case as an example, we test the algorithm performance
under varying noise levels (�) in the observed decisions (Figure 4). The average testing decision
and ✓ error increase as the noise level increases; nonetheless, all conditions converge to the lowest
testing errors that can be reached (⇠ �2) at 250 iterations. We further perform the PL analysis
to the same random instance discussed in Figure 3 at different BO iterations to trace the changes
in the parameter CIs over time, as shown in (Figures 4c and 4d). While we observe wider OA-
CIs under higher noise levels, which aligns with the traditional PL analysis (Raue et al., 2009)
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where decreasing data quality reduces the parameter identifiability with a wider CI, the estimated
parameters remain structurally identifiable under the high noise level.

Figure 3: Approximation of profile likelihood and identifiability of parameter estimates in a two-

dimensional FBA problem (d = 2). a) and d) show the full-space cPL
LCB

of ✓1 and ✓2, whereas b)
and d) are the zoomed-in regions around the significant threshold level as defined in (7). c) and
f) trace the changes in the upper and lower bounds of the OA-CIs of two parameters over the BO
iterations. The PL analysis is performed using �↵ = �2(0.05, 1) and ⇢ = 3.84 (95% confidence
level).

Figure 4: Impact of noise levels on the BO4IO performance. (a) Testing decision error and b)
parameter error at 250 iterations under varying noise levels. Outer-approximation confidence
intervals (OA-CIs) of two parameters, (b) ✓1 and (c) ✓2, under varying noise levels (�). OA-CIs are
derived using �↵ = �2(0.05, 1) and ⇢ = 3.84 (95% confidence level).
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5.2 Case study 2: Learning market demands in the standard pooling problem

In the second case study, we consider a standard pooling problem where an operator blends a set
of feedstocks in a pooling network to create different final products that meet desired qualities
and demands while minimizing the total cost. Provided below is the formulation of a standard
pooling problem (Misener and Floudas, 2009):

minimize
f,y,z,q

X

(s,l)2Tf

⌘sfsl �
X

(l,j)2Ty

�y
ljylj �

X

(s,j)2Tz

�z
sjzsj (10a)

subject to
X

l:(s,l)2Tf

fsl +
X

j:(s,j)2Tz

zsj  AU
s 8s 2 S (10b)

X

s:(s,l)2Tf

fsl �
X

j:(l,j)2Ty

ylj = 0 8l 2 L (10c)

X

s:(s,l)2Tf

Cskfsl � plk
X

j:(l,j)2Ty

ylj = 0 8l 2 L, k 2 K (10d)

X

l:(l,j)2Ty

plkylj +
X

s:(s,j)2Tz

Cszsj  PU
jk

0

@
X

l:(l,j)2Ty

ylj +
X

s:(s,j)2Tz

zsj

1

A 8j 2 J , k 2 K

(10e)
X

l:(l,j)2Ty

ylj +
X

s:(s,j)2Tz

zsj  ✓j 8j 2 J (10f)

fsl � 0 8s 2 S, l 2 L (10g)

ylj � 0 8l 2 L, j 2 J (10h)

zsj � 0 8s 2 S, j 2 J (10i)

plk � 0 8l 2 L, k 2 K, (10j)

where S , L, J , and K are the sets of input feedstocks, mixing pools, output products, and quality
attributes, respectively. As incoming feedstocks can connect to a pool or directly to an output, sets
Tf , Ty, and Tz denote the existing streams from input s to pool l, pool l to output j, and input s
to output j, respectively. The quality per unit of feedstock s of attribute k is denoted as Csk. The
cost per unit of feedstock s is denoted as ⌘s. The revenue per unit flow from pool l to output j and
input s to output j are denoted by �y

ij and �z
sj , respectively. The upper limit of the quality attribute

k in each output product j is noted as PU
jk. Decision variables include fsl, ylj , and zsj denoting the

flow from input s to pool l, pool l to product j, and input s to output j, respectively, whereas the
quality level in pool l of attribute k is denoted by plk.

In problem (10), we assume that each feedstock s has limited availability AU
s as indicated in

constraints (10b); the material and quality balance at pool l are maintained through constraints
(10c) and (10d), respectively; the upper acceptable product quality constraint is set in (10e). We
consider a scenario in which the demand for each product j (✓j in constraints (10f)) is unknown
as the unknown dimension denoted as d. Notably, constraints (10e) contain bilinear terms that
render the overall optimization problem nonconvex. The goal is to apply BO4IO to estimate the ✓j
values by observing a part of the decisions, namely fi and yi, based on varying input conditions
ui = (AU , PU , ⌘,�y,�z)i in a set of observations I.
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We test the proposed BO4IO framework on two benchmark pooling networks, Haverly1
(Haverly, 1978) and Foulds3 (Foulds et al., 1992) where their network specifications
(|S|,|L|,|J |,|K|) are (3,1,2,1) and (32,8,16,1), respectively. For each random instance of the IOP, the
synthetic dataset is generated as follows. We first generate a set of ground-truth ✓j ⇠ U(0.5, 1.0)
for every j 2 J with randomized feedstock price ⌘ ⇠ U(⌘̄min, ⌘̄max) and product revenue
�ljy,�sjz ⇠ U(�̄min, �̄max), where ⌘̄min/max and �̄min/max denote the minimum or maximum of
the nominal ⌘ and � values in the original problems. Using the same values of (✓, ⌘,�y,�z) and
the nominal values of PU , we solved (10) with randomized availability AU ⇠ U(0.5, 1.0) to collect
the true optimal solutions x⇤i = (f⇤

i , y
⇤
i ) for every i 2 I. Lastly, we generated noisy observations of

decisions xi = x⇤i + �, where � ⇠ N (0,�2I) for all i 2 I. A separate set of testing data is generated
based on the same randomization procedure with 50 experiments. The computational statistics
are obtained from the results of 10 random instances of each IOP.

5.2.1 Robust performance against network sizes

We first test how robust the algorithm performance is under different pooling network sizes by
applying it to the two benchmark problems with |I| = 50 and � = 0.05. To provide a fair com-
parison between the two problems, we apply the algorithm to learn different dimensionality d

of the unknown demands ✓ in the Foulds3 problem. We trace the progressions of training, test-
ing, and parameter errors over the BO iterations, as shown in Figure 5. The algorithm efficiently
learns the unknown parameters regardless of the network complexity, as we observe a similar
convergence speed in training and testing errors in the two network problems under the same
number of unknown parameters. Consistent with the first case study, a lower convergence rate
is observed when the dimensionality increases in the Foulds3 problem. It should be noted that
Foulds3 shows a higher parameter error than Haverly1, and the error increases with the dimen-
sionality. We further perform the proposed PL analysis and find that this is due to the larger
numbers of non-identifiable parameters in the Foulds3 problems (data not shown).

Figure 5: Effect of network size to the BO4IO performance. Convergence analysis of (a) training
error, (b) testing error, and (c) parameter error with two benchmark problems, as the numbers
shown in the parentheses in the legend denote the varying dimensionality d. Training and testing
loss are defined as the average standardized decision error,

P
i2I(xi � x̂i)>(xi � x̂i)/|I|/|R| and

calculated based on the training and testing datasets, respectively, whereas parameter error de-
notes the difference between the ground-truth (✓) and estimated (✓̂⇤) values. Here, the solid lines
and shaded areas respectively denote the medians and confidence intervals of the corresponding
loss across the 10 random instances. The synthetic dataset of each random instance is generated
under the setting of |I| = 50 and � = 0.05.
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5.2.2 Data efficiency and identifiability analysis

We next test the data efficiency of the algorithm by learning 8 unknown demands in Foulds3 based
on different sizes of the training datasets, namely |I| = {10, 25, 50, 100, 200}. The convergence
profiles for the training and testing errors under different conditions are shown in Figures 6a and
6b. One can see that BO4IO requires only few data points to achieve a low decision error as there
is little difference in the convergence rates for the different training dataset sizes and no significant
difference in the final testing error as shown in Figure 6c.

Figure 6: Effect of training dataset size on the BO4IO performance using Foulds3 with d = 8
and � = 0.05 as an example. Convergence analysis of (a) training error and (b) testing error as
well as (c) final testing error at 100 iterations under different sizes of training datasets. d)-f) show
the approximate PL of three practically non-identifiable parameters in the selected random IOP
instance under |I| = 50 and � = 0.05. g)-i) show the approximate PL of the same three parameters
as d)-f) estimated under |I| = 200 and � = 0.05. j)-l) show the approximate PL of the same
three parameters as d)-f) estimated under |I| = 50 and � = 0.001. In a) and b), the solid lines
and shaded areas respectively denote the medians and confidence intervals of the errors across
the 10 random instances. In d)-l), the red dashed line denotes the significance threshold for the
identifiability analysis. The PL analysis is performed using �↵ = �2(0.05, 1) and ⇢ = 3.84 (95%
confidence level).
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We further perform the PL analysis to evaluate the impact of training dataset size on parame-
ter identifiability. For simplicity, we select one random IOP instance as an example. The instance
shows 5 structurally identifiable parameters (data not shown) and 3 practically non-identifiable
parameters (Figure 6d-f) when learned from a training dataset with |I| = 50 and � = 0.05. Prac-
tical non-identifiability is typically due to insufficient data quality or quantity (Raue et al., 2009).
One can see that most of the three practically non-identifiable parameters become structurally
identifiable when we further increase the number of data points to |I| = 200 (Figure 6g-i) or re-
duce the observation noise to � = 0.001 (|I| = 200 Figure 6j-l). Notably, the OA-CIs of the 5
other parameters maintain their structural identifiability with smaller OA-CIs (data not shown).
The proposed PL analysis provides a means of uncertainty quantification on the BO4IO parame-
ter estimates, and this example demonstrates its importance in assessing the identifiability of the
unknown parameters.

5.3 Case study 3: Learning quality requirements in the generalized pooling problem

In the third case study, we apply the BO4IO algorithm to learn the product quality parameters in
the constraints of a generalized pooling problem (Misener and Floudas, 2009), which is an exten-
sion of (10) with additional discrete variables. The problem can be formulated as the following
nonconvex mixed-integer nonlinear program:

minimize
f,y,z,q,�pool,�init

X

(s,l)2Tf

(⌘s + ⌘fsl)fsl �
X

(l,j)2Ty

�y
ljylj �

X

(s,j)2Tz

�z
sjzsj +

X

l2L
⌘

pool
l �

pool
l +

X

s2S
⌘init
s �init

s

(11a)

subject to
X

l:(s,l)2Tf

fsl +
X

j:(s,j)2Tz

zsj  AU
s �

init
s 8s 2 S (11b)

X

s:(s,l)2Tf

fsl �
X

j:(l,j)2Ty

ylj = 0 8l 2 L (11c)

X

s:(s,l)2Tf

Cskfsl � plk
X

j:(l,j)2Ty

ylj = 0 8l 2 L, k 2 K (11d)

X

l:(l,j)2Ty

plkylj +
X

s:(s,j)2Tz

Cskzsj  ✓jk(
X

l:(l,j)2Ty

ylj +
X

s:(s,j)2Tz

zsj) 8j 2 J , k 2 K

(11e)
X

l:(l,j)2Ty

ylj +
X

s:(s,j)2Tz

zsj = Dj 8j 2 J (11f)

X

j:(l,j)2Ty

ylj  Sl�
pool
l 8l 2 L (11g)

X

l:(s,l)2Tf

fsl  AU
s �

init
s 8s 2 S (11h)

fsl � 0 8s 2 S, l 2 L (11i)

ylj � 0 8l 2 L, j 2 J (11j)

zsj � 0 8s 2 S, j 2 J (11k)

plk � 0 8l 2 L, k 2 K (11l)
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�init
s 2 {0, 1} 8s 2 S (11m)

�
pool
l 2 {0, 1} 8l 2 L. (11n)

The model is an extension to (10) with some minor changes. Binary variables are introduced to
consider the installation decisions of feedstock s and pool l, denoted as �init

s and �
pool
l , respectively.

In addition, new parameters are added to consider the installation cost of feedstock s and pool l,
denoted as ⌘init

s and ⌘
pool
l , whereas ⌘fsl is the cost per unit flow from feedstock s to pool l. Two

additional constraints (11g) and (11h) are included to constrain the flow variables accounting for
the binary feedstock and pool installation, where Sl denotes the pool capacity of pool l.

We consider a benchmark problem called Lee1 (Lee and Grossmann, 2003), which has a net-
work specification (|S|,|L|,|J |,|K|) of (5,4,3,2). This study addresses the scenario in which each
product stream j has a demand that needs to be satisfied (Dj in (11f)) with unknown quality re-
quirements (✓jk in (11e)). We assume the the quality requirements ✓jk of all attributes sum up
to one such that

P
k2K ✓j,k = 1 for every j 2 J . Since Lee1 contains two quality attributes, we

only need to estimate one of the quality attributes, and the number of unknown parameters thus
reduces to |J | = 3. The synthetic data are generated based on the following procedure. For each
instance of IOP, we first generate the ground-truth quality requirements ✓j1 ⇠ U(0.2, 0.6) and
randomized product revenue �y

lj ,�
z
sj ⇠ U(0.5�̄min, 1.5�̄max), where �̄min/max denote the minimum

or maximum of the nominal � values in the original problem. Using the fixed ✓, �y, �z values,
we then solve the |I| FOPs with randomized AU

s , Dj ⇠ U(0.5, 1.5). Similar to the second case
study, only a subset of decisions is collected to generate the noisy observations, where x⇤i = f⇤

i

and xi = x⇤i + � with � ⇠ N (0,�2I) for all i 2 I. A separate testing dataset of 50 experiments is
generated to validate the model prediction.

We apply the algorithm to 10 random instances with |I| = 50 and � = 0.05. The conver-
gence plots are shown in Figure 7. The training and testing decision errors converge to a low level
within 200 iterations. Compared to the standard pooling problem with a similar specification and
number of unknowns (e.g. Haverly1), the algorithm converges more slowly and achieves a higher
parameter error in the generalized pooling problem. To further investigate the cause of the slow
convergence, we plot the true loss function as a function of each unknown parameter (while keep-
ing the other parameters at their best-found values) for Lee1 and Haverly1, and compare it with
the predicted GP posterior, as shown in Figures 8 and 9. In the generalized pooling case (Figure
8), we observe discrete (step) changes in the loss function values, and the confidence intervals of
the GP posterior do not fully cover the true function. Despite the nonsmoothness of the true loss
function, the GP model provides a continuous approximation and leads to a parameter estimate
that is close to the true minimum, albeit with a slightly higher parameter error compared to the
standard pooling problem. In contrast, the GP posterior provides a very good approximation to
the true loss function in the standard pooling problem (Figure 9) since the loss function is smooth,
and the algorithm finds a solution very close to the global optimum. This analysis indicates that
the slow convergence in the generalized pooling problem could be attributed to the discrete nature
of the mixed-integer problem, where the poor GP fitness to the discontinuous and nonsmooth re-
gion can potentially hinder the algorithm. One may consider nonstationary kernels (Paciorek and
Schervish, 2003) or other surrogate types, e.g. deep GP or Bayesian neural networks (Damianou
and Lawrence, 2013; Springenberg et al., 2016), to capture the nonsmoothness and discontinuity
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of the target function, which we plan to explore more in future work.

Figure 7: Algorithm performance for the generalized pooling problem Lee1. Convergence anal-
ysis of (a) training error, (b) testing error, and (c) parameter error with three unknown pa-
rameters. Training and testing errors are defined as the average standardized decision errors,P

i2I(xi � x̂i)>(xi � x̂i)/|I|/|R| and calculated based on the training and testing datasets, respec-
tively, whereas parameter error denotes the difference between the ground-truth (✓) and estimated
(✓̂⇤) values. Here, the solid lines and shaded areas respectively denote the medians and confidence
intervals of the corresponding loss across the 10 random instances. The synthetic dataset of each
random instance is generated under the setting of |I| = 50 and � = 0.05.

Figure 8: Comparison of the changes in the true loss function value (blue curve) and the pre-
dicted GP posterior around the best-found solution in the generalized pooling problem (Lee1).
The purple lines and shaded areas denote the means and confidence intervals of the predicted GP
posteriors.

Figure 9: Comparison of the changes in the true loss function value (blue curve) and the predicted
GP posterior around the best-found solution in the standard pooling problem (Haverly1). The
purple lines and shaded areas denote the means and confidence intervals of the predicted GP
posteriors.

20



6 Conclusions

In this work, we developed a Bayesian optimization approach for data-driven inverse optimiza-
tion problem, which aims to infer unknown parameters of an optimization model from observed
decisions and is commonly formulated as a large-scale bilevel optimization problem. In the pro-
posed BO4IO framework, the IO loss function is treated as a black box and approximated with a
Gaussian process model. At each iteration of the algorithm, the loss function is evaluated and the
next candidate solution is determined by minimizing an acquisition function based on the GP pos-
terior. The key advantage of BO4IO is that the evaluation of the loss function can be achieved by
directly solving the forward optimization problem with the current parameter estimates for every
data point, which circumvents the need for a complex single-level reformulation of the bilevel pro-
gram or a special, e.g. cutting-plane-based, algorithm. Consequently, BO4IO remains applicable
even when the FOP is nonlinear and nonconvex, and it can consider both continuous and discrete
decision variables. Furthermore, we leverage the GP posterior to derive confidence bounds on
the profile likelihood to compute inner and outer approximations of the confidence interval on
each parameter estimate, which provides a means of uncertainty quantification and assessing the
identifiability of the unknown parameters.

We tested the proposed algorithm and PL method in three computational case studies. The
extensive computational results demonstrate the efficacy of BO4IO in estimating unknown pa-
rameters in various classes of FOPs, ranging from convex nonlinear to nonconvex mixed-integer
nonlinear programs. In the tested instances, the algorithm proved to be efficient in finding pa-
rameter estimates with very low prediction errors in relatively few (⇠100) BO iterations. Using
the proposed PL analysis, we were able to determine the different extents of identifiability for the
unknown parameters and also demonstrated how the identifiability of a parameter can change
with the quantity and quality of data.

Finally, we would like to highlight that several important directions for future work remain, in-
cluding integrating high-dimensional BO techniques (Snoek et al., 2015; Eriksson and Jankowiak,
2021) for learning large sets of parameter and developing a customized surrogate for mixed-
integer problems to further improve the algorithm performance.
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Ror Bellman and Karl Johan Åström. On structural identifiability. Mathematical biosciences, 7(3-4):
329–339, 1970.
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objective functions in flux balance analysis. Biotechnology progress, 30(5):985–991, 2014.

Carlos Eduardo Garcı́a Sánchez, César Augusto Vargas Garcı́a, and Rodrigo Gonzalo Torres Sáez.
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