
TORCHSISSO: A PYTORCH-BASED IMPLEMENTATION OF THE
SURE INDEPENDENCE SCREENING AND SPARSIFYING OPERATOR

FOR EFFICIENT AND INTERPRETABLE MODEL DISCOVERY

Madhav Muthyala

Chemical and Biomolecular Engineering
The Ohio State University

Columbus, OH, USA

Farshud Sorourifar

Chemical and Biomolecular Engineering
The Ohio State University

Columbus, OH, USA

Joel A. Paulson

Chemical and Biomolecular Engineering
The Ohio State University

Columbus, OH, USA
Correspondence: paulson.82@osu.edu

December 30, 2024

ABSTRACT

Symbolic regression (SR) is a powerful machine learning approach that searches for both the
structure and parameters of algebraic models, offering interpretable and compact representations of
complex data. Unlike traditional regression methods, SR explores progressively complex feature
spaces, which can uncover simple models that generalize well, even from small datasets. Among
SR algorithms, the Sure Independence Screening and Sparsifying Operator (SISSO) has proven
particularly effective in the natural sciences, helping to rediscover fundamental physical laws as well
as discover new interpretable equations for materials property modeling. However, its widespread
adoption has been limited by performance inefficiencies and the challenges posed by its FORTRAN-
based implementation, especially in modern computing environments. In this work, we introduce
TorchSISSO, a native Python implementation built in the PyTorch framework. TorchSISSO leverages
GPU acceleration, easy integration, and extensibility, offering a significant speed-up and improved
accuracy over the original. We demonstrate that TorchSISSO matches or exceeds the performance
of the original SISSO across a range of tasks, while dramatically reducing computational time and
improving accessibility for broader scientific applications.

1 Introduction

First principles models, derived from fundamental physical laws, have been instrumental in the development of scientific
theories and technological systems. For example, the Navier-Stokes equation offers a comprehensive description of fluid
flow, enabling predictions of complex behaviors in everything from blood flow [1] to weather patterns [2]. Traditionally,
this pursuit has relied on the extensive expertise of domain specialists, requiring trial and error to identify features and
model structures that fit the observations. In recent years, the landscape of scientific inquiry has been transformed by the
availability of machine learning frameworks, such as neural networks, support vector machines, and Gaussian processes,
which offer a powerful alternative for deriving predictive models [3]. These data-driven regression methods are often
complex, do not typically generalize outside of the training set, and provide limited insights into the underlying physics.
For instance, while these models may be trained to accurately predict the Reynolds number, they cannot capture the
competitive nature between inertial and viscous forces in fluid flow. The only data-driven modeling framework that
can provide insights comparable to first principles models, to the best of our knowledge, is symbolic regression (SR)
[4, 5, 6].

A PREPRINT - DECEMBER 30, 2024

SR is an automated supervised learning technique that takes a user provided operator set and initial feature space to
engineer expressions by combinatorically applying the operators to the base features set. Early work in SR [4] introduced
the concept of using genetic programming (GP) to discover mathematical expressions and computer programs. The
framework evolves a population of mathematical equations by applying genetic operations to the fittest individuals from
the space of engineered expressions. Building on this work, Eureqa [7], developed a fitness function used to evaluate
and evolve the population towards a ground-truth model. The GPLearn algorithm [8] is an open source implementation
that improved on Eureqa by adding custom operators and the option to include constraints. The AI-Feynman and
subsequent AI-Feynman 2.0 [9, 10] build on this work by first exploiting simplifying properties of the data to to improve
reliability and second returning a Pareto-optimal set of models to balance the model complexity with accuracy. Most
recently, PySR [11] has proposed several modifications to the genetic-based SR frameworks. This work proposed the
use of a simulated annealing to actively tune the the fitness function used for identifying the fittest individuals from
the population, a model simplifying stage between evolving candidates and optimizing the model parameters, and
incorporates a novel complexity metric as a penalty in the fitness function.

The approaches discussed thus far employ creative strategies to navigating the enormous spaces of possible models, due
to high computation demand of exhaustive exploration. However, the these approaches are not guaranteed to find the
correct model structure, as SR has been proven to be an NP-hard problem [12]. While a truly exhaustive search would
not be possible, several methods have investigated strategies to perform a targeted search over the sparse models. The
Sparse Identification of Nonlinear Dynamics (SINDy) method [13] uses traditional sparse regression methods over
an engineered feature space to balance model complexity with prediction accuracy, mainly for dynamic systems. An
important challenge with SINDy in practice is the selection of the pre-defined feature set that plays big role in the
achievable performance (e.g., the method will start to struggle if too many expanded features are considered). The Sure
Independence Screening and Sparsifying Operators (SISSO) method [14] instead aims to tackle the problem of working
with huge feature spaces (up to ⇠ 109 candidate features) by combining a fast feature screening method with exhaustive
search over the subspace of features. SISSO relies on sure independence screening (SIS) [15] to identify the most
correlated features to the target using a simple dot product and a sparsity operator (typically `0 regularization) to find
the best simple model that fits the available training data. Recent work has also shown that SISSO can effectively be
combined with other feature screening methods, such as mutual information pre-screening, to help deal with problems
involving a large number of primary features/inputs before expansion [16]. Furthermore, a Python wrapper package,
pysisso, was recently developed to make the FORTRAN-SISSO implementation accessible to practitioners without
knowledge of the FORTRAN language [17]. However, the backend of pysisso still requires the a FORTRAN compiler,
which does not fully address the difficulties with installation.

In this work, we present the TorchSISSO package, a user-friendly Python implementation of the SISSO framework
designed to make the methodology accessible to a wider range of researchers and practitioners across diverse scientific
fields. By eliminating the need for a FORTRAN compiler, TorchSISSO simplifies installation and usage, especially in
modern computing environments. Furthermore, it allows users to easily modify the feature expansion process, which
is hard-coded in the original FORTRAN implementation. This flexibility is a critical improvement, as we observed
that the original SISSO does not always expand features as intended. Through simple examples, we demonstrate that
TorchSISSO is capable of discovering the correct symbolic expressions in cases where the FORTRAN-based version
cannot.

Additionally, the combinatorial expansion of the feature space may be slow or even infeasible, depending on the
available memory. To address this issue, TorchSISSO uses parallel computing and optional GPU acceleration,
providing significant computational speed up and scalability of the SISSO method. The remainder of the manuscript is
organized as follows: first, we provide a detailed description of the SISSO framework in Section 2, and introduce the
proposed toolbox in Section 3. In Section 4, we present performance comparison metrics for the proposed TorchSISSO

to the FORTRAN-SISSO implementation. Lastly, we provide concluding remarks in Section 5.

2 The SISSO Method

The SR problem can be formulated as an empirical risk minimization over a function space F . For given target variables
y(i) 2 R and feature variables x(i)

2 Rd for i 2 {1, ..., N} data points, the SR problem can be defined as [18]

f? = argmin
f2F

1

N

NX

i=1

L(f(x(i)), y(i)). (1)

Here, F consists of all mappings f : Rd
! R and f? is the optimal model that produces the lowest average loss L(·),

across the training data.

2

A PREPRINT - DECEMBER 30, 2024

The main difference between classical regression methods and SR is how F is defined. Classical regression defines the
function space by assuming a structural form F = {f✓(x), 8✓ 2 ⇥}, where ✓ is a collection of model parameters in
some set ⇥. As long as the structures f✓ lead to differentiable loss functions in (1), one can then apply (stochastic)
gradient descent methods to approximately solve (1) (to at least a local optimum depending on the convexity of the
loss). The SISSO method, on the other hand, aims to optimize over a set F that is formed by function composition over
a primitive set. The primitive can contain variables, algebraic operators (such as addition, subtraction, multiplication),
and transcendental functions (such as exponential, square root). The set F then contains all valid combinations of
elements of the primitive applied recursively up until some level (see, e.g., [12] for details). A key challenge with this
perspective is that the size of F grows exponentially fast with the size of the primitive set, and this space is finite (for
fixed recursion depth), such that solving (1) exactly requires exhaustive brute force search over all functions in F .

SISSO can be thought of as an effective heuristic to exactly search over a subset of useful functions in F . We break
down our description of SISSO, originally proposed in [14], into three parts. First, we describe how feature expansion
is recursively performed to build an engineered feature set that in general will be a subset of F . Second, we summarize
the sure independence screening (SIS) that identifies the very small subset of features that we want to more carefully
analyze. Lastly, we present the sparsifying operator (SO) component that shows how the best functional form is selected
from the subset of features identified in the previous step.

2.1 Feature Space Expansion

The choice of F is completely up to the user, however, in general it will contain potentially too many functions to even
store in memory. Therefore, SISSO aims to recursively build a set of “expanded features” by applying a set of operators
to all possible combinations of features. Let �0 = x be the initial features and let O denote the operator set that consists
of some number of unary o[xi] and binary o[xi, xj] operators. Then, we define the expanded features at level l � 1
recursively as follows

�
l
= {O[zi, zj], 8zi, zj 2 �l�1} with �0 = x. (2)

As an example, consider the d = 2 and a very simple operator set of O = {I(zi), zi + zj , zi ⇥ zj}. Then, we can
construct the features up until level 2 as follows:

�0 = {x1, x2},

�1 = {x1, x2, x1 + x2, x1 ⇥ x2},

�2 = {x1, x2, x1 + x2, x1 ⇥ x2, 2x1 + x2, x1 + x1 ⇥ x2, x1 + 2x2, x2 + x1 ⇥ x2,

x1(x1 + x2), x
2
1 ⇥ x2, x2(x1 + x2), x1 ⇥ x2

2, (x1 + x2 + x1 ⇥ x2), (x1 + x2)(x1 ⇥ x2)}.

For mu unary operators, mb,s symmetric binary operators, and mb,ns non-symmetric binary operators, we can compute
an upper bound on the number of features at any level l � 1:

dl  mudl�1 +
⇣mb,s

2
+mb,ns

⌘
dl�1(dl�1 � 1), d0 = d. (3)

Note that this is an upper bound since it is possible that some of the combinations are not unique. In the example above,
we get d1  2 +

�
2
2

�
(2)(1) = 4, which is exact for the first level since all combinations are unique. For the second

level, we get d2  4 +
�
2
2

�
(4)(3) = 12. This bound is larger than the 14 unique combinations shown above because

we can exclude, e.g., x1 + x2 and x1 ⇥ x2 that would be regenerated when expanding from level 1 to 2.

The quadratic term quickly dominates as l increases such that we can write out a rough scaling law as dl ⇠ m0
b
d2
l�1

where m0
b
= (mb,s/2 +mb,ns) for l � 1. Rewriting this in terms of the number of primary/starting input features, we

find that the size of �l should be roughly

dl ⇠ (m0
b
)2

l�1d2
l

, (4)
which grows exponentially with the number of levels l (and the number of binary operators in the operator set). In
practice, we can limit this growth by performing dimensional analysis during the expansion process, which restricts
certain operators from being applied (e.g., addition and subtraction can only be applied if the features share the same
units). However, this does place a strong limit on the maximum expansion level in SISSO – typically needs to be below
4, except in special cases. Also, note that our implementation, described in Section 3, enables the user significant
flexibility in their choice of operator set O, which plays a major role on the growth in the feature space.

2.2 Sure Independence Screening

Although higher expansion levels create a richer feature space for mapping the target, they also increase the complexity
of the learning task. Specifically, finding an optimal sparse linear combination of these features becomes crucial to avoid

3

A PREPRINT - DECEMBER 30, 2024

overfitting, particularly in high-dimensional spaces. Sparsity is often achieved by applying regularization techniques
in the regression process. Common strategies include `1 regularization (LASSO) or a combination of `1 and `2
regularization (elastic net), which penalize non-zero coefficients to enforce sparsity in the model. However, selecting the
appropriate hyperparameters (penalty weights) can be both challenging and time-consuming. This issue is particularly
pronounced in limited data settings, where extensive validation to tune these hyperparameters is often infeasible, leading
to potential model instability. The SISSO method tackles this problem by first applying sure independence screening
(SIS) [15] to quickly and efficiently select a much smaller set of features for use in the modeling training/selection step.

SIS is a simple, non-parametric statistical method designed for variable selection in high-dimensional feature spaces.
Variables are ranked based on the correlation magnitude metric between each feature and the target. Let y 2 RN be the
vector of training target values and � 2 RN⇥D be matrix of feature values that corresponds to all D features evaluated
at the N training input values. Note that we describe the SIS procedure for an arbitrary feature matrix that could be
derived from any expansion level. Assuming the columns of � have been standardized to have zero mean and unit
variance, we can compute the following weights that measure the correlation between each feature and the target:

w = (w1, . . . , wD) = �>y. (5)

SIS then identifies the indices (the particular features) with the top k magnitude weight:

S = {i 2 {1, . . . , D} : |wi| is among the first k largest}. (6)

We denote this process with the shorthand: S = SIS(y,�). Note that the choice of k is up to the user; larger values
will make the subsequent step more computationally demanding. We implement a default value of k = 20 based on the
recommendation from [14]. An alternative strategy is to only keep features whose correlation wi exceed a threshold
value, which is also implemented in our TorchSISSO package.

2.3 Sparsifying Operator

Let �(x) denote the set of nonlinearly expanded features at any expansion level (we suppress the subscript l for
notational simplicity). We are aiming to find a model that is a linear combination of these features, i.e., �(x)>c where
c 2 RD is a coefficient vector that we want to fit to data. Note that we assume the constant feature is included in �(x)
to serve as a bias term in the model. Although we could fit cl using standard linear regression, this problem will be
underdetermined when D > N , which is typically the case. We also do not expect the vast majority of the features to
be important when predicting y. SISSO thus combines SIS with a sparsifying operator (SO) to overcome this challenge.

Let �S 2 RN⇥k denote the submatrix of feature matrix � that extracts columns with indices S. Since k ⌧ D, it is
now typically possible to use standard linear regression to fit the coefficients of the k remaining features. However,
it is still not clear how many non-zero coefficients to retain in the model. We could address this problem using more
traditional regularization methods mentioned previously, but this introduces some additional tuning parameters that are
hard to select in practice. SISSO takes an alternative approach to address this issue by sequentially building models
from a single term (one feature/descriptor) up until a maximum number of T terms. Every time that a new term is
considered, the residual error from the previous model is used to guide the chioce of the feature subset. Let rt 2 RN

denote the residual error for a model with t terms selected from a subset St. It turns out that we can compute rt in
closed form as follows

rt = y ��StEtct where ct = (E>
t
�>

St
�StEt)

>E>
t
�>

St
y, (7)

where Et 2 RK⇥t is a binary matrix that selects t feature columns out of the available ones in �St 2 RN⇥K , K is the
number of features in St, and ct 2 Rt is the coefficient vector corresponding to the least squares solution from fitting
�StEt to y. Furthermore, let r?

t
denote the residual error for the best model tested with t terms from the subspace St.

SISSO recursively adds more features to the subspace as follows

St+1 = St [SIS(r?
t
,�) with S1 = SIS(y,�). (8)

In words, this procedure looks at the best t-term residual and then adds the next k best features with the highest SIS
scores with respect to the residual. We can actually compute r?

t
using exact `0 regression (or exhaustive search) over all

possible t term models in St, which corresponds to the minimum krtk2 over
�
tk

t

�
models. The SISSO method keeps

executing (8) until the best model found for a particular t achieves low enough error or until the maximum number of
terms T is reached. Since the number of trained models grows quickly with T , we typically set it to be T = 3, meaning
we at most consider 3 term models (though again this choice can be easily modified by users in our implementation).
This means SISSO will attempt at most

P
T

t=1

�
tk

t

�
least square regression steps. The best trained model (i.e., the model

with the lowest residual norm) is returned as the final model.

A simple illustration of the complete SISSO method is shown in Figure 1.

4

A PREPRINT - DECEMBER 30, 2024

Figure 1: Illustration of the major steps in the SISSO method from [14].

3 The TorchSISSO Package

3.1 Feature pre-screening for high-dimensional problems

The original version of SISSO, outlined in Section 2, does not scale to high-dimensional primary features x 2 Rd, i.e.,
when d is very large. Since this case commonly arises in practical applications (e.g., molecular property modeling),
we incorporate a strategy for dealing with large d in TorchSISSO. Specifically, we implement an optimal mutual
information (MI) screening procedure that has been previously explored in [16, 19]. MI between a component of the
primary feature vector xi and the target y is defined as

MI(y;xi) =

Z
p(xi, y) log

✓
p(xi, y)

p(xi)p(y)

◆
dxidy, (9)

where p(xi, y) is the joint probability density function between xi and y, p(xi) is the marginal probability density
function of xi, and p(y) is the marginal probability density function of y. MI is a strictly non-negative measure of the
relationship between xi and y and is only zero if xi and y are statistically independent. In practice, we approximate the
integral in (9) with kernel density estimation. MI is used to down-sample the feature space, effectively assuming that
high MI implies higher likelihood that a feature contributes to the target prediction. Based on the choice by the user, we
either keep the top ranked MI features up until a maximum number of terms or keep only the features whose MI fall
into a specified quantile range.

3.2 PyTorch implementation

To ensure a flexible and easy to use/install package, we decided to implement the SISSO algorithm in PyTorch [20],
which is an open-source machine learning library. A key feature of PyTorch is its Tensor computing framework that
allows efficient implementation of multivariate tensor objects with strong acceleration using, e.g., graphics processing
units (GPUs). This makes it straightforward to efficiently carry out the most expensive operations in SISSO. Looking
back at Section 2, we see that SISSO mainly involves performing recursive feature expansion (2), running SIS via the
matrix-vector multiplication in (5), and fitting many models with a small number of terms to find the residuals in (8). All
of these steps can be straightforwardly executed using native operations in PyTorch. For feature expansion, PyTorch is
highly optimized to perform efficient element-wise operations on tensors, which can be executed in parallel, leveraging
the available power of the CPU or GPU for fast computation. In addition to supporting a wide variety of element-wise
operations, PyTorch also enables broadcasting the result to tensors of different shapes. The torch.matmul function
for matrix multiplication is generally very efficient, especially for large matrices. This makes it straightforward to
execute the SIS procedure, even as the feature matrix � gets very large. Lastly, the torch.linalg.lstsq function
can be used to efficiently compute the residual rt for a t-term model. Unlike many existing linear least square methods,
torch.linalg.lstsq can simultaneously solve a “batch” of problems. This means we can simultaneously solve (7)
for all

�
tk

t

�
possible models (the different possible binary matrices Et), as opposed to sequentially solving each problem

within a standard for loop. Note that we do not explicitly construct Et and multiply it by the feature matrix, as this
would be inefficient. Instead, we broadcast all possible t-term combinations of the features into a B ⇥ t⇥N tensor
where B =

�
tk

t

�
is the batch size (number of combinations of the tk features split into t terms), t is the number of terms

considered, and N is the number of datapoints.

5

A PREPRINT - DECEMBER 30, 2024

3.3 Installation and usage

The TorchSISSO package can be installed using the PIP package manager as follows

1 pip install TorchSisso

endgroup The complete package is available on Github, which includes a Google Colab notebook that implements a
series of simple examples using TorchSISSO that can be run interactively in the cloud1. All of the core operations of
TorchSISSO can be accessed using the SissoModel class that can be imported as follows

1 from TorchSisso import SissoModel

To construct an instance of this class, one needs to set a number of inputs including a Pandas dataframe consisting of
the training data df, the set of operators to include in the feature expansion step operators, the number of expansion
levels n_expansion, the number of terms in the final model n_term, and the number of features to keep for every term
in the model k. The first column of df should contain the target variable at all the training points y and the reminaing
columns should contain the primary feature matrix �0 = X that is expanded internally to form �l where l is equal
to n_expansion. The operators should be passed in the form of a Python list, with each element being a string (for
standard operators) or a function that can operate on torch.Tensor objects. We can then call the .fit() method to
train the model, which returns the root mean squared error (RMSE) of the best-found model, a string version of the
equation (that can easily be converted to symbolic form or a LaTeX expression), and the corresponding R2 (coefficient
of determination) value. Therefore, one can effectively train a model using SISSO with just a few lines of code:

1 # import necessary packages

2 import numpy as np

3 import pandas as pd

4 from TorchSisso import SissoModel

5 # create dataframe with targets "y" and primary features "X"

6 data = pd.DataFrame(np.column_stack ((y, X)))

7 # define unary and binary operators of interest

8 operators = ["+", "-", "*", "/", "exp", "ln", "pow(2)", "sin"]

9 # create SISSO model object with relevant user -defined inputs

10 sm = SissoModel(data , operators , n_expansion =4, n_term=1, k=5)

11 # run SISSO training algorithm to get interpretable model with highest

accuracy

12 rmse , equation , r2 = sm.fit()

There are two additional optional arguments that can be provided to SissoModel to help mitigate the growth of the
feature space with number of expansion levels. The first is an initial_screening argument that implements the MI
screening approach described in Section 3.1. The data is passed as a list of the form [method, quantile] where
method="mi" indicates the use of MI screening and quantile should be a floating point number between 0 and 1 that
specifies only features with MI inside of this quantile range should be kept for expansion. We also implement a simple
linear correlation pre-screening method, which can be selected by setting method="spearman", though we typically
find that MI performs better in practice. The second optional argument is dimensionality that should be a list of
strings that represent the units of a given feature. For example, in the case that we have 5 features where features 1 to 4
have unique units while feature 5 shares the same units as feature 3, we would set this argument as dimensionality =

["u1", "u2", "u3", "u4", "u3"]. This ensures that non-physical features are not generated during the expansion
process, reducing both memory usage and computational cost.

4 Numerical Examples

In this section, we compare the performance of TorchSISSO with the original SISSO implementation, referred to as
FORTRAN-SISSO, and its derivatives across various test cases, including synthetic equations, challenging scientific
benchmarks, and a real-world application in molecular property prediction. All results are based on a single realization
of training data generated from the ground-truth equations, potentially corrupted by random observation/measurement

1The Github code to the TorchSISSO package can be found at this link https://github.com/PaulsonLab/TorchSISSO. Fully worked
out examples using TorchSISSO can be found at this link https://colab.research.google.com/drive/1ObQJJXTpz5l04pphSH1nHT-
Rsd2zBszC?usp=sharing.

6

https://github.com/PaulsonLab/TorchSISSO
https://colab.research.google.com/drive/1ObQJJXTpz5l04pphSH1nHT-Rsd2zBszC?usp=sharing
https://colab.research.google.com/drive/1ObQJJXTpz5l04pphSH1nHT-Rsd2zBszC?usp=sharing

A PREPRINT - DECEMBER 30, 2024

Table 1: Ground-truth models for the synthetic equations and corresponding training time and RMSE for TorchSISSO
and FORTRAN-SISSO on each equation. The bold font denotes a better score and the ? denotes a tied score.

TorchSISSO FORTRAN-SISSO

Expression Time (sec) RMSE Time (sec) RMSE

1 10 x1
x2(x3+x4)

0.04 0.0391? 0.11 0.0391?

2
2 sin(x2) + 3

p
x1

0.01 0.0434? 0.32 0.0434?

3
3 exp(x1)
x2+exp(x3)

0.26 0.0342 0.20 1.4359

4
3x3 + x2

2 + x3
1

0.27 0.0348? 0.57 0.0348?

5 x2+exp(x2)
x
2
1�x

2
2

0.12 0.0557 0.22 1.0786

6 p
x2
1 + x2

2
0.02 0.0646? 0.29 0.0646?

7
sin(x1x3) + 1.5 exp(�x1x2)

0.00 0.0452? 0.39 0.0452?

8
5(x1x3

3) + x3
1 + 3(x1x2

2)
0.01 0.0353? 0.27 0.0353?

9
x1x2x3 (ln(x4)� ln(x5))

66.96 1.61E-15 0.27 2.218

10 exp(� x1
x3x2

) 0.04 1.17E-16? 0.12 1.17E-16?

noise. However, we found the results to be largely insensitive to the specific data realization. The experiments were run
on a computing cluster with two nodes, each equipped with an Intel Xeon Gold 6444Y processor (16 cores) and 512
GB of DDR4 RAM.

4.1 Synthetic equations

We initially compare TorchSISSO to FORTRAN-SISSO on 10 synthetic expressions inspired from benchmarks commonly
used in the symbolic regression (SR) literature [18]. The expressions are summarized in Table 1. For each expression,
we generate 10 training datapoints by randomly sampling x in [1, 5]d where d matches the number of variables appearing
in the expression; all observations are corrupted with Gaussian noise with zero mean and standard deviation equal to
0.05. The computational time and the root mean squared error (RMSE) on the training set for the best-found models
with TorchSISSO and FORTRAN-SISSO are shown in Table 1. We see that for several of the expressions (1, 2, 4, 6, 7,
8, 10), TorchSISSO obtains exactly the same RMSE as FORTRAN-SISSO but does so in less time. In the other three
cases (3, 5, 9), TorchSISSO achieves low RMSE (indicating it has learned something very close to the ground-truth
expression) while FORTRAN-SISSO learns a model with high RMSE (meaning it has failed to learn the ground truth).
Case 5 is particularly interesting, as TorchSISSO finds a model with two orders of magnitude lower RMSE in nearly
half the time (substantially improves in both metrics). It is not immediately obvious why FORTRAN-SISSO fails to learn
the true structure for cases 3, 5, and 9; however, we believe this is due to some implementation differences in the feature
expansion step. Regardless of the reason, TorchSISSO is clearly capable of achieving better performance in less time
than the original FORTRAN-SISSO.

4.2 Scientific benchmarks

Next, we consider four equations from the SRSD-Feynman dataset [21], which is a modified version of the data proposed
in [9] to have more realistic sampling ranges for the primary features and constants. Each of these equations can be
found in Richard Feynman’s famous “Lectures on Physics,” and are becoming increasingly common as benchmarks
for SR methods (because it mimics a realistic scientific task of discovering fundamental physical laws). The selected
equations shown in Table 2 span a variety of physical phenomena including (i) the relationship between distance and
two points in space, (ii) particle displacement in an electromagnetic field, (iii) relativistic mass as a function of velocity
and the speed of light, and (iv) the oscillation amplitude of a charged particle in an electromagnetic field. We generate

7

A PREPRINT - DECEMBER 30, 2024

Table 2: Ground-truth models for the scientific benchmarks and corresponding training time and RMSE for TorchSISSO
and FORTRAN-SISSO on each equation. The bold font denotes a better score.

TorchSISSO FORTRAN-SISSO

Name Physics-based Equation Time (sec) RMSE Time (sec) RMSE

Distance
d2 = (x0 � x1)2 + (x2 � x3)2

0.40 1.35E-15 0.11 0.0363

Particle Displacement
F = q(E +Bv sin(✓))

0.21 2.1E-15 0.24 0.0449

Relativistic Mass m2 = m
2
0

1� v2
1

c2

1.44 7.64E-6 0.13 1.185

Oscillation Amplitude x = qe

m(!2
1�!

2
2)

42.25 6.31E-23 0.17 0.0402

50 training datapoints without noise using the distributions reported in [21]. The computational time and RMSE for
both TorchSISSO and FORTRAN-SISSO are also shown in Table 2. Note that we use dimensional analysis in both
cases to limit the growth in the expanded feature set. We see that TorchSISSO achieves the best accuracy and, in fact,
discovers the exact ground truth equation in all cases. FORTRAN-SISSO, on the other hand, is unable to derive the exact
equation in any of the considered cases. It is worth noting that, for the final case (oscillation amplitude), TorchSISSO
does take around 42 seconds as it requires going to a third expansion level. Although this is considerably longer than
the other cases, this is still substantially less time than that required by most existing SR methods (that can take several
hours to find expressions of similar complexity).

4.3 Interpretable models for molecular property prediction

As a final case study, we focus on constructing simple, interpretable models for predicting molecular properties – an
essential challenge in fields such as pharmaceuticals, materials science, and environmental science. Here, we look at
modeling the specific energy of organic compounds, which is a property that is known to be strongly correlated to
energy density when the material is used as an electrode in batteries [22]. Specific energy can be computed using the
following equation

Specific Energy =
(E � Eanode)nF

3600MW

, (10)

where E is the redox potential, Eanode is the redox potential of the anode (in this case a Zinc anode), n is the number
of moles of electrons transferred, F is Faraday’s constant, and MW is the molecular weight of the molecule. All
quantities in (10) are known except for E, which can be approximated using density functional theory (DFT). The
challenge, however, is that DFT is computationally expensive, making it impractical to scale (10) to millions of
candidate molecules. Larger candidate sets are essential when the goal is to discover multiple high-performance
molecules. To address this, we construct our training set by sampling data from a literature database presented in [23].
Specifically, we use results for 115 paraquinone molecules as our training set and reserve 1,000 quinone molecules
for testing. A crucial step in building molecular property models is featurization, which involves selecting a suitable
representation of molecular structure for computational analysis. For this purpose, we use the open-source PaDEL

package [24] to compute 1,445 molecular descriptors for each molecule. These descriptors range from basic features,
such as atom counts and molecular weight, to more complex graph-based properties. Given the high dimensionality
of this problem (d = 1445), traditional SISSO is not applicable. To manage this, we employ the mutual information
(MI) screening approach in TorchSISSO, using the setting initial_screening = ["mi", 0.01] to retain only the
top 1% of descriptors by MI value, which reduces the feature set to 11 out of the original 1,445. For comparison, we
evaluate TorchSISSO against VS-SISSO [25], an extension of SISSO designed for high-dimensional problems that uses
pre-screening. Note that VS-SISSO relies on the original FORTRAN-SISSO code for backend computations, making it a
useful benchmark for our case study.

The training and testing results for both TorchSISSO and VS-SISSO are shown in Figure 2. We see that both approaches
are able to obtain good training performance, with TorchSISSO and VS-SISSO achieving R2 values of 0.985 and 0.936,
respectively. However, we see a bigger difference on the test data wherein TorchSISSO and VS-SISSO achieve R2

values of 0.932 and 0.604, respectively. In particular, VS-SISSO shows a significant drop in performance for specific
energy values below 0.75 where it clearly has a biased over-prediction in this range. TorchSISSO, on the other hand,
has a much tighter parity plot throughout the full range of specific energy values, implying it has learned an equation
that generalizes much better beyond than the training dataset.

8

A PREPRINT - DECEMBER 30, 2024

Figure 2: Results for TorchSISSO and VS-SISSO on training (top) and testing (bottom) datasets for modeling specific
energy of organic compounds.

The equation found by TorchSISSO can be expressed as follows:

Specific Energy ⇡ 144.14676

✓
PGH + �M

MW ⇥ PGH

◆
+ 0.06388, (11)

where PGH is the solute gas-hexadecane partition coefficient, �M is the largest absolute eigenvalue of the Burden
modified matrix weighted by relative mass, and MW is molecular weight. One interesting thing to notice right away is
that (11) has exactly the same MW term in the denominator as (10) – we emphasize that this structure was not imposed
during the training process, but was uncovered directly from the data. Although the other two features PGH and �M are
not quite as intuitive, they do carry physical significance. For example, PGH provides a measure of how a molecule
interacts with solvents, which can impact the electronic properties (such as redox potential). Despite starting with a
large and complex set of potential descriptors, TorchSISSO was able to pinpoint a compact, interpretable equation that
relies on just three fundamental molecular features, combined in a simple form, to achieve high predictive accuracy on
both the training and test sets. Furthermore, the specific implementation choices clearly result in an improvement over
the state-of-the-art VS-SISSO code for at least this real-world example.

5 Conclusions

In this work, we introduced TorchSISSO, a native Python implementation of the Sure Independence Screening
and Sparsifying Operator (SISSO) method, designed to overcome the limitations of the original FORTRAN-based
implementation. By leveraging the PyTorch framework, TorchSISSO provides enhanced flexibility, allowing users to
easily modify the feature expansion process and integrate modern computational resources such as GPUs for significant
speed-ups. This adaptability removes barriers to install ation and usage, particularly in cloud-based or high-performance
computing environments, making the SISSO method accessible to a broader scientific community.

9

A PREPRINT - DECEMBER 30, 2024

Our results demonstrate that TorchSISSO performs comparably or better than the original SISSO implementation across
a range of tasks, including synthetic test equations, scientific benchmarks, and real-world applications such as molecular
property prediction. Notably, TorchSISSO shows improved accuracy in discovering true symbolic expressions in cases
where the original FORTRAN-SISSO implementation falters. Additionally, the reduction in computational time, achieved
through parallel processing and optional GPU acceleration, makes TorchSISSO a highly scalable tool for symbolic
regression tasks on larger datasets and more complex feature spaces.

In summary, TorchSISSO addresses the key limitations of the original SISSO method, offering a faster, more accessible,
and more adaptable solution for symbolic regression across a wide range of scientific fields. We believe this tool
will facilitate the discovery of interpretable models in materials science, physics, and beyond, while also empowering
researchers to further customize the method to fit specific domain needs. Future work will focus on extending
the functionality of TorchSISSO, including multi-objective optimization, advanced regularization techniques, and
automated hyperparameter tuning to further enhance its applicability.

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation under Grant No. 2237616.

References

[1] Charles S Peskin. Flow patterns around heart valves: A numerical method. Journal of Computational Physics,
10(2):252–271, 1972.

[2] Norman A. Phillips. Numerical weather prediction. Advances in Computers, 1:43–90, 1960.
[3] Akshaya Karthikeyan and U. Deva Priyakumar. Artificial intelligence: machine learning for chemical sciences.

Journal of Chemical Sciences, 134(1):2, Dec 2021.
[4] John R. Koza. Genetic programming as a means for programming computers by natural selection. Statistics and

Computing, 4(2):87–112, Jun 1994.
[5] Yiqun Wang, Nicholas Wagner, and James M Rondinelli. Symbolic regression in materials science. MRS

Communications, 9(3):793–805, 2019.
[6] William La Cava, Bogdan Burlacu, Marco Virgolin, Michael Kommenda, Patryk Orzechowski, Fabrício Olivetti

de França, Ying Jin, and Jason H Moore. Contemporary symbolic regression methods and their relative perfor-
mance. Advances in Neural Information Processing Systems, 2021(DB1):1, 2021.

[7] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science, 324(5923):81–
85, 2009.

[8] T. Stephens. gplearn: Genetic programming in python, with a scikit-learn inspired api, 2015.
[9] Silviu-Marian Udrescu and Max Tegmark. Ai feynman: a physics-inspired method for symbolic regression, 2020.

[10] Silviu Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark. Ai feynman 2.0:
Pareto-optimal symbolic regression exploiting graph modularity. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 4860–4871.
Curran Associates, Inc., 2020.

[11] Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl, 2023.
[12] Marco Virgolin and Solon P. Pissis. Symbolic regression is np-hard, 2022.
[13] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data by sparse

identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932–
3937, 2016.

[14] Runhai Ouyang, Stefano Curtarolo, Emre Ahmetcik, Matthias Scheffler, and Luca M. Ghiringhelli. Sisso: A
compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered
candidates. Phys. Rev. Mater., 2:083802, Aug 2018.

[15] Jianqing Fan. Sure independence screening for ultrahighdimensional feature space. Journal of the Royal Statistical
Society, 2008.

[16] Yuqin Xu and Quan Qian. i-sisso: Mutual information-based improved sure independent screening and sparsifying
operator algorithm. Engineering Applications of Artificial Intelligence, 116:105442, 2022.

[17] David Waroquiers. Pysisso.

10

A PREPRINT - DECEMBER 30, 2024

[18] Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a review. Artificial
Intelligence Review, 57(1):2, 2024.

[19] Roberto Battiti. Using mutual information for selecting features in supervised neural net learning. IEEE
Transactions on Neural Networks, 5(4):537–550, 1994.

[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, and A. Desmaison. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Processing Systems, 32, 2019.

[21] Yoshitomo Matsubara, Naoya Chiba, Ryo Igarashi, and Yoshitaka Ushiku. Rethinking symbolic regression
datasets and benchmarks for scientific discovery. arXiv preprint arXiv:2206.10540, 2022.

[22] Madison R Tuttle, Emma M Brackman, Farshud Sorourifar, Joel Paulson, and Shiyu Zhang. Predicting the
solubility of organic energy storage materials based on functional group identity and substitution pattern. The
Journal of Physical Chemistry Letters, 14(5):1318–1325, 2023.

[23] Daniel P Tabor, Rafael Gómez-Bombarelli, Liuchuan Tong, Roy G Gordon, Michael J Aziz, and Alán Aspuru-
Guzik. Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow
batteries. Journal of Materials Chemistry A, 7(20):12833–12841, 2019.

[24] Chun Wei Yap. Padel-descriptor: An open source software to calculate molecular descriptors and fingerprints.
Journal of Computational Chemistry, 32(7):1466–1474, 2011.

[25] Zhen Guo, Shunbo Hu, Zhong-Kang Han, and Runhai Ouyang. Improving symbolic regression for predicting
materials properties with iterative variable selection. Journal of Chemical Theory and Computation, 18(8):4945–
4951, Aug 2022.

11

	Introduction
	The SISSO Method
	Feature Space Expansion
	Sure Independence Screening
	Sparsifying Operator

	The TorchSISSO Package
	Feature pre-screening for high-dimensional problems
	PyTorch implementation
	Installation and usage

	Numerical Examples
	Synthetic equations
	Scientific benchmarks
	Interpretable models for molecular property prediction

	Conclusions

