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ABSTRACT ARTICLE HISTORY
The need for data literacy is an increasingly pressing priority in Received 20 February 2023
society, but most of the work in data-centred education has Accepted 19 December 2023
focused on developing skills at the middle school, secondary, and
post-secondary levels, with little attention on the potential for g -
X . . . ementary/primary; earth
engaging elementary-aged students in reasoning with and about science education;
data. This paper reports findings from a foundational study to argumentation
explore the natural strengths, skills, and strategies that upper
elementary students bring to reasoning about data-centred
problems. It was the first phase of a project that aimed to design
and test activities to promote data literacy among upper
elementary students. Clinical interviews with students in grades 3,
4, and 5 centred on a series of non-mathematical data ‘scenarios’
designed to elicit students’ reasoning about data without
requiring them to manipulate or interpret tabular or graphical
representations. The findings indicate that young students were
able to reason about multivariate problems and were particularly
adept at thinking critically about the data sources and evidence
in the data. The findings indicate that students bring
foundational strengths that can inform the development of
curricular interventions, as well as stimulate further research into
the early stages of students’ development of data literacy.

KEYWORDS

Introduction

Data literacy has become essential to an ever-broadening array of professions, as more
careers and fields require the ability to work with, interpret, and think critically about
a variety of types of data (Association of American Colleges and Universities [AACU],
2011; National Academies of Sciences, Engineering, and Medicine [NASEM], 2018;
OD], 2016). Innovations in data collection and infrastructure technologies in scientific
research are making increasingly large, and complex data sets more immediately and
widely available. The potential for rapidly expanding access to such data is transforming
how we live and work, and at a minimum, there is a need for every person to be a skilled
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reader and critical consumer of data (Kastens et al., 2015; Louie, 2022). Given the impor-
tance of data literacy, educators and scholars recognise the need to identify and develop
in students the skills needed to think critically about and work productively with data
(Engle, 2017; Kastens et al., 2015; Wolff et al., 2016).

To date, much of the work in data-centred education has focused on supporting
middle and high school students in learning about content through work with large,
complex, and/or professionally collected data sets (e.g. Gold et al, 2015; Kochevar
et al., 2015; Rubin, 2021; Vahey et al., 2012). With the exception of research of statistical
reasoning (discussed below), there has been relatively little exploration of data literacy
development with elementary-aged students. Although some early efforts to incorporate
data-centred learning experiences in early grades have found ways that these students
can develop and refine key skills for thinking about and working with data (English,
2012; Wolff et al., 2015), this remains a relatively big gap in the educational research
landscape.

Frameworks of data literacy

As a relatively new area of exploration, there is no clear consensus of a single framework
for data literacy or its underlying skills; instead, a number of frameworks have emerged.
One perspective of data literacy draws upon statistical education literature, which has
long studied the development of students’ statistical reasoning (Ben-Zvi & Garfield,
2004; Konold et al., 2015; Konold & Higgins, 2002). Rubin’s (2020) recent review of
this literature positions five well-researched statistical literacy concepts as essential com-
ponents of an emerging data literacy framework, including contextualising data, consid-
ering variability, aggregate views, visualisation for sense-making, and drawing inferences.

Others have taken a broader lens, looking at data skills used across the life cycle of an
inquiry. This includes statistical literacy and extends to skills of engaging in scientific
inquiry with data (e.g. problematising, planning, collecting or acquiring data, construct-
ing explanations, and evaluating explanations), as well as data management skills and
ethical considerations (Herschel & Miori, 2017; ODI, 2016; Wolff et al., 2016). A
related perspective emphasises data literacy needing to include skills for grappling
with the complexity and ‘messiness’ of data, particularly the types of big data that are
increasingly available and of concern in discussions of data science education (Erickson,
2022; Kjelvik & Schultheis, 2019). From this perspective, data literacy requires the ability
to work with large amounts of multivariate data (including more data than are necessary
to answer a given question), grappling with their complex properties, and actively select-
ing, organising, and manipulating data to answer questions. This definition emphasises
the need for computational thinking and computer science skills.

Several scholars have proposed integrating these frameworks to position data literacy
at the centre of a Venn diagram representing the intersections of mathematical or stat-
istical skills, computational thinking or data science skills, and disciplinary content
knowledge (Conway, 2011; Finzer, 2013; Kjelvik & Schultheis, 2019). A critical attribute
of this integrated framing is placing content understanding as a key piece of data literacy,
highlighting the importance of applying knowledge about the subject matter and data’s
context in order to effectively identify and evaluate relevant data, interpret patterns
within data, and draw conclusions (Figure 1(a)).
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Figure 1. (a) Full integrated framework of data literacy (adapted from Kjelvik and Schultheis (2019)
and Finzer (2013)); (b) Focused framework used for this study.

Adapting the integrated data literacy framework for elementary grades

We needed to further adapt this integrated data literacy framework, which was
designed to encapsulate the full spectrum of adult-level skills of data science, for
our inquiry into foundational data literacy skills in young students. We grounded
our research in a narrowed version of the framework to account for the fact that
young students are still mastering fundamental mathematical concepts (CCSSI,
2010). Our adaptation (Figure 1(b)) focused on the data literacy skills that intersect
with subject area content understanding, while de-emphasising specialised mathemat-
ical knowledge and computational abilities. This focused framework minimised
emphasis on the mechanics of collecting, manipulating, or processing values contained
in data or data representations, while maintaining a focus on skills that involve think-
ing about data as ways of characterising objects and events in the natural world and of
connecting scientific phenomena with data that represent them. Further, for appli-
cation within a science classroom, considering data literacy skills as they intersect
with disciplinary understanding was a promising approach for academically meaning-
ful explorations that teachers would find relevant to their goals (and curriculum stan-
dards) for science education.

This narrower framing does not neglect quantitative reasoning but emphasises apply-
ing broad mathematical principles to real-world problems using critical thinking and
logic (Kjelvik & Schultheis, 2019), without relying on precise mathematical operations
or familiarity with rational numbers. Similarly, this framing does not neglect compu-
tational and data skills (the third element of the framework) but focuses on skills of eval-
uating and thinking critically about data collected by someone else, for
example, assessing the source of data, understanding their limitations, and recognising
what data can and cannot tell you about phenomena of interest (Rubin, 2021), rather
than skills of data manipulation for quantitative pattern-finding. We posit that students
can, and should, be developing the foundational skills of this narrower framework to
combine content understanding, quantitative thinking, and data-centred reasoning
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from early in their schooling. Through this lens, educators would benefit from greater
understanding of how students use and reason with and about data when they are
relieved from both the demands for mathematical computation and decoding the
symbols and graphic language of data representations. This understanding could
inform the development of curricular interventions, as well as stimulating further
research directions about the early stages of students” development of data literacy.

Creating non-mathematised problems to elicit reasoning

Our research aim was to explore the reasoning skills that elementary students apply,
unassisted, to engage with complex, open-ended problems involving familiar and con-
crete representations of data — images, photographs, objects - rather than mathematical,
symbolic, or graphical representations of data. As students in early grades are still learn-
ing mathematics and conventional graphic representations of data (Konold et al., 2015;
Lehrer & Schauble, 2004), data-centred tasks that rely on mathematical understanding or
conventional data representations could mask students” actual abilities by implicitly
requiring mathematical literacy. We wanted to understand young students” underlying
abilities to reason about contextualised data in their environments (e.g. Engle, 2021;
Gopnik, 2012), disentangled from abilities to read or manipulate conventional data visu-
alisations and representations. This was a first stage in a larger research and development
project that aimed to develop classroom activities and supports to engage young learners
to build data literacy skills by working with professionally collected (rather than student-
collected) data.

Therefore, our research question was: What analytical thinking approaches do stu-
dents spontaneously use when making meaning from data presented through familiar
representations and with minimal adult scaffolding? Based on the literature, we identified
three key attributes of data problems that would allow students to demonstrate their
natural strengths, proclivities, and limits when it comes to reasoning through complex
data. These attributes guided our development of research stimuli to maximise access
to students’ data-centred reasoning.

Reducing the potential influence of a mathematical literacy barrier

Research has shown promise in developing young students’ abilities to make sense of the
relationship between observed phenomena and identifying a quantitative measurement
that would operationalise that phenomenon for inquiry. To date, this success has
largely relied on students designing their own inquiry, variables, and measurement strat-
egies (Lehrer & English, 2018; Manz, 2018). Because we were interested in young stu-
dents’ abilities to make sense of data collected by others, we wanted to consider that a
lack of some fundamental mathematical literacy could obfuscate otherwise comprehen-
sible relationships if data were expressed primarily by numbers. This issue pointed to the
need for data problems that did not represent data with traditional science or mathemat-
ics representations, but presented students with data that represented the underlying
phenomenon directly, concretely, and in familiar formats. We anticipated exploring stu-
dents’ responses to conventional, quantitative representations of data in a subsequent
study.
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Problems without clear answers

Data literacy requires the ability to reason through complex variables, conflicting infor-
mation, limitations of the data source or collection method, and draw interpretations that
address uncertainty and consideration of many potential solutions or interpretations
(Erickson, 2022; Finzer, 2013). Research has shown that children as young as three
can accurately isolate causally relevant variables in a multivariate problem when the
problem has a single correct solution (Goddu & Gopnik, 2020), so it was important
that the data problems we presented to students introduce complexity and uncertainty
regarding potential solutions — qualities which have also been shown to encourage stu-
dents to engage in reasoning and argumentation (Manz, 2014).

Grounding problems in accessible contexts

Students are more likely to persevere at data-centred investigations when they are able to
connect to and find personal relevance in the work (Vahey et al., 2012; Wolff et al., 2019).
This study was focused on Earth science data, which connects to many aspects of the
natural world that children can observe and experience, such as weather, stream flow,
and erosion; it is also a relevant content area for curricula in upper elementary grades
in the United States (NGSS Lead States, 2013). Moreover, such phenomena lend them-
selves to data questions that can reveal complex, multivariate systems and relationships
that manifest in highly familiar, observable ways within the natural world, even for young
learners.

Method

We used the attributes described in the above section (i.e. reducing mathematical literacy
barrier, creating problems without clear answers, and grounding in accessible contexts)
to develop a series of data scenarios, representations, and an interview protocol to guide
one-on-one conversations with students about their interpretations of the data and
accompanying reasoning. First, we identified rainfall as an Earth science phenomenon
that met the criteria of being complex and multivariate, as well as familiar, observable,
and relevant to students. Rainfall is a phenomenon that students encounter regularly
(particularly in the Mid-Atlantic region of the United States) and would have experi-
enced its many variations - in intensity, duration, and interaction with objects in the
physical world (e.g. when rain hits a roof, overhang, or tree the surface diverts the
rain and can keep people or objects underneath dry or drier than if they were uncovered).

Second, we represented data in formats familiar to students, using a set of images,
labelled with non-technical language to introduce each new variable in the scenarios.
Independent variables included intensity of rainfall (photographs of rain events at
several intensities, labelled as heavy, medium, or light); duration of data collection
event (labels of half hour, 1 hour, and 2 hours); and interaction of rainwater collector
with the physical world (photographs of an empty drinking glass placed to collect rain-
fall on pavement, on soil, and under branches of a bush). Rather than represent the
dependent variable (amount of rainfall collected) quantitatively (as with a graduated
cylinder or rain gauge), it was represented by photographs of the same drinking
glass with water at different levels (low, medium, high). Images used in the student
tasks are shown in Figure 2.
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Anne Bobby Cara

Intensity of Rainfall Images: included in every scenario

Length of Time of Rainfall Labels: Introduced in Scenario 2; removed in Scenario 3; reintroduced in Scenario 4

1 hour of rain 2 hours of rain Half hour of rain

Placement of Glasses to Catch Rain Images: Introduced in Scenario 3; remained for Scenario 4

Figure 2. Images and labels used with students during interviews.

The interview probed students’ thinking as they were presented with a series of four
scenarios, which asked them to apply their knowledge of rainfall to the provided photo-
graphic data related to rain intensity, rain duration, and placement of the glass to collect
rain. The first scenario asked students to match levels of water (dependent variable) with
only one independent variable, intensity of rainfall. This was used to verify that students
were able to reason through the fundamental conceptual relationship between rain inten-
sity and rain capture. The interview then presented a sequence of three multivariate scen-
arios (outlined in Table 1), which gradually increased in complexity, introducing new
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Table 1. Details of the four scenarios and variables presented to each student.

Each child’s rainfall collection conditions (independent variables
in the scenario)

Question (dependent

variable)
Scenario Anne Bobby Cara
1: Intensity e Light Drizzle o Steady Rain e Heavy Rain  With everything that we
know from these
2: Intensity & duration e Light Drizzle o Steady Rain o Heavy Rain pictures, which child
e One hour o Two hours o Half hour do you think collected

which glass of water?
3: Intensity & collection e Light Drizzle e Steady RainGlass set e Heavy Rain (low, middle, high)

site e Glass set on under a leafy bush o Glass set
pavement on soil
4: Intensity, duration, & e Light Drizzle e Steady Rain e Heavy Rain
collection site e One hour e Two hours o Half hour
o Glass set on o Glass set under a leafy e Glass set
pavement bush on soil

independent variables with conflicting effects on the dependent variable (e.g. high inten-
sity rainfall occurring for the shortest amount of time). Scenario 2 asked students to con-
sider rain intensity with rainfall duration. Scenario 3 asked students to consider rain
intensity with the site chosen for rainfall collection. Scenario 4 asked students to consider
all three independent variables together. Because data were not quantified, the scenarios
allowed for multiple paths of reasoning about possible interactions of the independent
variables in drawing conclusions about the dependent variable. In addition, the scenarios
provided an opportunity to consider uncertainty and articulate limitations of the data
provided.

Participants

Forty-five students, evenly distributed across grades 3, 4, and 5, participated in the study.
The students were drawn from three partner schools, each located in a different school
system in the Mid-Atlantic region of the United States. Two were rural schools
(School A and School B) and one was an urban school (School C). Ultimately, 14 inter-
views were conducted at School A, 15 at School B, and 16 at School C.

Procedure

Each student participated in a one-on-one, clinical interview process with a researcher.
Because our interests lay in the reasoning students spontaneously brought to the tasks,
interviewers focused on eliciting student thinking processes, including their struggles.
Interviewers were careful not to include any instruction or scaffolding during the inter-
view. For example, if a student made a statement that was factually incorrect, the inter-
viewer agreed and encouraged them to explain their reasoning without redirection or
indication that their understanding or reasoning may have been flawed. This approach
is helpful to prompt students to engage in an ongoing process of reasoning, rather
than simply doing things ‘the right way’ (Miller et al., 2018). Similarly, students would
occasionally ask the interviewer questions or seek additional information about the
images or scenarios. For example, asking about what was beyond the frame of the
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picture or if something/someone interfered with the glasses. When this occurred, the
interviewer could clarify but did not provide additional information; instead, the inter-
viewer probed further to understand the thinking behind the question, specifically how
the student thought the information could help them make a decision.

Each interview took between 10 and 20 min, during which the student was presented
with the four scenarios about three fictional children who had collected rainwater in
glasses at their homes. In introducing each scenario, the researcher presented the
student with photographs and/or labels showing different data to consider (Figure 2).
With each scenario (Table 1), the student was asked to arrange the images to match
the amount of water collected (dependent variable; low, medium, and high) with a
child (Anne, Bobby, and Cara), based on the images of their rainfall collection conditions
(independent variables). While the scenarios did not include values or measurements,
they did incorporate concepts of relative quantity — within variable sets there was a
maximum, a minimum, and an intermediate level. This allowed us to observe some
degree of quantitative reasoning without requiring either mathematical computations
or decoding of data representations that were likely to be beyond most students’ experi-
ence level.

Analytic approaches and coding

The interviewer audio recorded the conversation and took observational notes about stu-
dents’ sorting behaviours and choices within each scenario. Because our goal was to
understand how students reasoned about variables related to a familiar phenomenon,
our approach to analysis of the transcripts and notes was qualitative. We developed a
system to code data with two lenses to address two distinct lines of inquiry: (1) Level
of reasoning demonstrated within each scenario (2-4) and (2) Specific reasoning strat-
egies applied at any time in an interview. The former reflected our primary interest in
learning more about the range of complexity in reasoning abilities among students,
and the latter reflected our secondary interest in the presence and qualities of several
specific reasoning strategies that emerged, such as efforts to mathematise the problem
or critically question data sources. However, each of these lenses required a different
system for coding data; each is described in the following sections.

Coding with lens 1: reasoning levels

A major focus of analysis was on characterising the range of students’ analytical reason-
ing abilities within the multivariate scenarios. To this end, we developed a rubric that
would capture more of the nuance of students” success and struggles than a rubric that
focused only on an outcome’s presence (e.g. not at all, a little, more, or a lot) and
support a systematic categorisation of the level of complexity demonstrated by the
data of students’ reasoning. Rubric development was guided by both the literature
about the use of rubrics in education (Popham, 1997; Stevens & Levi, 2013) and our
own prior use of rubrics to assess data literacy skills in an undergraduate setting
(Sickler et al., 2021). After an initial review of the data, we identified three evaluative cri-
teria to characterise the level of complexity exhibited in students’ reasoning: (a) number
of variables considered, (b) coherence of articulated reasoning, and (c) consistency
between students’ sort of the photographs and verbal reasoning. Using these criteria,
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Table 2. Description of coding criteria within the rubric for level of reasoning displayed, applied to
each student’s entire student reasoning per scenario (scenarios 2-4).

Complex Reasoning

Approaching Complex
Reasoning

Univariate Reasoning

Minimal Reasoning

Reasoning shows
student considered
multiple variables in their
choices.

Articulates how they
‘connected the dots’
between the evidence
sources and their

Reasoning shows effort to
consider multiple variables

but is not fully successful (see

below).

Struggles to explain how
they ‘connect the dots’
between variables or use
interpretations beyond the

Does not
meaningfully
consider a second
(or third) variable.
Clearly states how
the one variable
matters to their
answer.

Struggles with all
components of task.
May mention multiple
variables, but
consideration isn't
clearly articulated.
Struggles to explain
thinking; reasoning is

choices. available evidence to arrive Sort aligns with unclear, wandering,
e Sort and reasoning are at answer. stated reasoning. and/or contradictory.

consistent with one e Sort aligns with stated e Reasoning and sorts

another. reasoning. may not match.

we examined the data to create concrete definitions of four levels of reasoning, based on
what was observable in the data, shown in Table 2. (Note: Table 4, in Results, includes
student quotations that illustrate each level of reasoning). We then worked to refine
the rubric and its definitions to assure it both reflected the data and could be used reliably
to independently code our corpus of interviews.

The rubric was applied three times to each interview, once per multivariate scenario
(i.e. scenarios 2-4). The rubric considered the totality of the students’ reasoning and
responses to a single scenario. Because each student considered three separate scenarios,
each was considered an instance of reasoning and coded for the level of complexity
shown. This approach reflected the reality that students could display different levels
of reasoning in response to different scenarios.

Our analysis of these levels was descriptive, intended to examine the relative frequency
of the levels of reasoning across all instances of reasoning in the sample (n =135 [45 stu-
dents x 3 scenarios]). For further exploration, we examined the range of levels of reason-
ing exhibited within an individual student’s interview (n=45), including how many
students exhibited complex reasoning in at least one scenario and how many students
exhibited minimal reasoning in at least one scenario of the interview. We also considered
how reasoning abilities varied, depending on the number of independent variables in a
scenario (n =90 instances of reasoning for the two, two-variable scenarios and n =45
instances of reasoning for the one, three-variable scenario). Finally, we explored how
reasoning was distributed across the three grade levels included in the study (n=45
instances of reasoning per grade level). These explorations were descriptive, conducted
to inform our interpretations of the aggregate findings and point to potential areas for
further research; they should not be construed as conclusive comparative analysis.

Coding with lens 2: analytical thinking strategies

Our second interest was looking for evidence of instances when specific types of analytical
thinking strategies emerged in students’ verbalised thinking. We used a generalised induc-
tive approach (Thomas, 2006), in which the topics to explore were guided by the objectives
of the larger curriculum development project that this research was meant to inform, but
the final set of categories and code definitions were developed inductively based on
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students’ behaviours and talk as they worked through the scenarios. The final code book of
analytical thinking strategies identified four overarching categories: (a) Connecting data to
experience; (b) Thinking critically about evidence; (c) Analytically addressing complexity;
and (d) Other strategies used to manage complexity. Within these high-level categories,
sub-codes were created to describe the specific strategies and skills exhibited.

Coding process

To test the reliability of the coding system, two researchers engaged in four iterations of
independently coding two transcripts per iteration and comparing for inter-rater reliability,
until the target of 75% agreement between coders was reached. After each iteration,
researchers met to compare coding and discuss discrepancies; disagreements were used
to revise the codebook and rubric. For transcripts coded during this process, the research-
ers agreed upon a final consensus coding after resolving discrepancies. Once the threshold
of reliability was reached, each remaining transcript was coded by one researcher. To
further bolster reliability, during independent coding each researcher flagged any excerpts
where they felt there might be ambiguity in applying the codebook; the two researchers
then met to discuss each flagged excerpt to ensure agreement and consistency on the appli-
cation of the codebook. With this final stage of consensus coding, we sought to mitigate the
risk of subjectivity of a single coder when the verbalisation of reasoning was not clear-cut
by working collectively to ensure we consistently applied scores.

Results

All students in the study easily made the correct matches for the first scenario, confi-
rming that they readily understood the basic principle that greater rain intensity pro-
duces more water falling from the air and reaching the ground. Because the first
scenario was designed to check this assumption, it was not coded for level of reasoning.

Levels of reasoning

We examined students’ level of reasoning from several angles. First, we identified the fre-
quency with which each level was observed across all 135 instances of reasoning in the
sample. Then we disaggregated the data to explore the range of reasoning levels exhibited
by an individual student across the three scenarios, whether the reasoning levels were
different between two-variable and three-variable scenarios, and any variation in reason-
ing by grade level.

Levels of reasoning observed overall

Across all 135 instances of reasoning possible (3 scenarios x 45 students), Complex Reason-
ing was the most commonly observed, accounting for 41% of all coded instances of reason-
ing (Table 3). Students demonstrating Complex Reasoning showed they were able to
consider multiple variables, compare them against one another, make a choice based on
the information provided, and explain their thinking in a consistent way. This group
reflected the most sophisticated level of reasoning we observed among student participants.
Somewhat less sophisticated reasoning was reflected in the Approaching Complex Reason-
ing level, in which students exhibited some elements of Complex Reasoning, but did not
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Table 3. Frequency distribution of reasoning levels displayed across all instances of student reasoning
in scenarios 2-4.

Instances of Reasoning Coded to Level (n = 135)

Level of Reasoning Demonstrated Count Percentage
Complex Reasoning 55 41%
Approaching Complex Reasoning 24 18%
Univariate Reasoning 35 26%
Minimal Reasoning 18 16%

articulate how they connected all of the variables in their thinking. Eighteen percent of all
instances of reasoning about the three scenarios fell into this level.

Univariate Reasoning was the second most common level of reasoning observed (26%
of all instances). In these cases, students focused on a single variable they considered to be
most important or easiest to understand and did not address other, contradictory vari-
ables in their explanations of their sorts. A small subset of responses (16% of all
instances) were coded as reflecting Minimal Reasoning, in which students were not
able to articulate or explain their sorting choices. Examples of all four categories of
reasoning are presented in Table 4.

Range of reasoning levels used by individual students

When examining reasoning exhibited by individual students, the overall pattern is
similar, but not identical, to the aggregated patterns across every instance of reasoning.
Of the 45 individual students interviewed, 64% used Complex Reasoning at least one time
in the interview. However, only six students maintained Complex Reasoning through all

Table 4. Examples of students’ responses to Scenario 3: Rain intensity & collection site
Level of Reasoning Example Excerpt from Coded Transcripts

Complex Student’s final sort: Bobby: lowest, Anne: middle, Cara: highest

Interviewer: What makes you think those are the matches now?

Student: Because Anne had it out in the open, so did Cara and she had the heavy rain. So more
rain would be coming down and Bobby had the glass covered by leaves so not much would get
into the glass. ... Because if you're going to put it under like a tree, it wouldn’t get much water
in it because it's covered by it and like it would go beside it where the tree isn’t covering.

Approaching Student’s final sort: Anne: lowest, Cara: middle, Bobby: highest
Complex Student: [Pointing to Anne as the lowest] [Anne] is still the same [as Scenario 2]. Because right
here, it's not that hard, she said. So, it’s light rain, that’s what Anne said.

Interviewer: OK. What about Bobby and Cara? Who do you think got more now that we know
where they put their glass?

Student: Bobby. Because Bobby put it in the leaves in the centre because maybe ... Why did he
put the cup inside the leaves? Maybe because the leaves get wet so it gets more ... And then
the leaves put it in the water so and then it makes it bigger ... . And then it went drop, drop,
drop. And then it rained hard and then it went faster and then it stopped here.

Univariate Student’s final sort: Bobby: lowest, Cara: middle, Anne: highest

Student: [Bobby] had the least, because of the leaves. The leaves around cup, the glass. And this
cup, this glass, there was no space for the water to go in there. And this [Cara’s placement] was
like maybe it was a lot of trees around there so it would fill the cup to the middle.

Minimal Student’s final sort: Anne: lowest, Bobby: middle, Cara: highest

Interviewer: [After introducing the scenario] Do you think that would change which glass do you
think came from which place?

Student: Probably. [Long pause.]

Interviewer: What do you think is making it hard to decide? Is there something tricky about it?

[Student nods.] Yeah? What do you think is tricky about it? Student: That they're different. They're all
in different places and | can’t think about which one should go where or if they're fine.
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three scenarios. On the other end of the spectrum, 36% of students showed Minimal
Reasoning at least once during the interview; but only four students (9%) showed this
level of reasoning in more than one scenario. Most students showed a range of reasoning
abilities across their interview.

Differences in reasoning in relation to increasing number of variables

During interviews, students sometimes expressed uncertainty, and even frustration when
asked to reason about variables that did not yield a clear and definitive solution to the
task of assigning water levels to the children in the scenarios. Anecdotally, these
affective responses were especially strong during the final scenario, which asked students
to consider all three independent variables together. In examining the levels of reasoning
exhibited, however, the overall frequency of Complex Reasoning demonstrated within the
three-variable scenario (38% of 45 instances) was only slightly lower than it was within the
two two-variable scenarios (42% of 90 instances; see Table 5) despite students’ affective
acknowledgements of the challenges they were encountering. At the same time, the fre-
quency with which students demonstrated Approaching Complex Reasoning actually
increased with the additional complexity (from 14% of instances to 24% of instances).
The frequency of Univariate Reasoning dropped dramatically from 32% to 13% when stu-
dents were asked to reason about all three-variables simultaneously (scenario 4), however
there was also an increase in the proportion of students who showed Minimal Reasoning,
struggling to articulate reasoning at all when three variables were introduced.

Range of reasoning across grade levels
Students in fourth and fifth grades tended to use Complex Reasoning at a higher fre-
quency than third grade students and, overall, the fourth and fifth grade students
tended to show similar patterns of reasoning. Conversely, third graders displayed
Minimal Reasoning at a much higher rate than the older students, as well as higher
rates of Univariate Reasoning (Table 6).

Analytical thinking strategies

Students in the study exhibited a variety of specific, verbalised strategies for thinking ana-
Iytically with and about the data or for dealing with the problems’ complexity, regardless
of the level of complexity they demonstrated in their reasoning. Below we provide
descriptive results of how frequently students demonstrated strategies in the four
coded categories: (a) connecting data to content knowledge; (b) thinking critically
about evidence; (c) analytically addressing complexity; and (d) other strategies used to
manage complexity.

Table 5. Frequency distributions of levels of reasoning demonstrated by students, comparing
reasoning during two-variable scenarios and the three-variable scenario.

Percentage of Instances of Reasoning Coded to Level

Level of Reasoning Demonstrated Two-Variable Scenarios (n = 90) Three-Variable Scenario (n = 45)
Complex Reasoning 42% 38%
Approaching Complex Reasoning 14% 24%
Univariate Reasoning 32% 13%

Minimal Reasoning 1% 24%
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Table 6. Frequency distributions of levels of reasoning demonstrated by students, comparing
reasoning exhibited by grade level of the student
Percentage of Instances of Reasoning Coded to Level

Level of Reasoning 3rd Grade Students (n= 4th Grade Students (n = 5th Grade Students (n =

Demonstrated 45) 45) 45)

Complex Reasoning 22% 49% 51%

Approaching Complex 1% 27% 16%
Reasoning

Univariate Reasoning 38% 16% 24%

Minimal Reasoning 29% 24% 9%

Connecting data to content knowledge

Just under half (49%) of the 45 students in the study made spontaneous statements
during their interviews that indicated they were drawing on prior knowledge and experi-
ences in thinking about the data and problems posed in the scenarios. Most often, these
connections between prior knowledge and current tasks showed students were drawing
upon science concepts and practices they thought might be relevant to the problem, such
as the effects of evaporation and climate (e.g. differences in rainfall between a forest or an
arid climate) or designing experiments. These connections came up regularly across stu-
dents in all three grades. Connections that relied solely on personal experience were less
frequent, and primarily expressed familiarity with the different types of rain shown (e.g.
‘That’s May rain’).

Student: And then the heavy rain is like where it’s raining, where it’s a lot, a lot of precipi-
tation that could actually cause a flood.

Student: Because in Anne’s [picture], it looks like it’s a very hot place and I don’t think water
is really going to fall. So I thought it was like the lowest [amount]. ... And for Bobby, ...
when I see the leaves, maybe it’s a forest and probably a lot of rain comes here, so that’s
why it’s at the top.

Thinking critically about evidence

Students’ responses were coded as demonstrating critical thinking when they questioned
or critically evaluated aspects of the data and scenario as it was presented, including
pointing out specific visual evidence within images to support an inference, asking clar-
ifying questions about data collection or images, or identifying other information that
would help them draw a conclusion. Critical thinking occurred in more than half of
the interviews overall (56%) and was seen at all three grade levels, but we observed critical
thinking most often among fourth graders interviewed.

Students most often demonstrated critical thinking with respect to placement of the
glass, often by paying close attention to visual evidence in the images, asking questions,
and reasoning about how rainfall at different intensities might interact with the data col-
lection position. For example, a common observation was commenting on or asking
about shadows students noticed in Cara’s photo of the glass placement (see Figure 2).
Students inferred that these shadows might indicate a tree being overhead (but not
visible in the photograph), which could influence the amount of rain caught by the
glass. This inference would factor into their decisions about the amount of water
Anne, Bobby, and Cara collected. Another example of critical thinking involved students
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considering a range of ways the leaves over Bobby’s glass (Figure 2) could interact with
the rainfall. Some students concluded that the leaves would block much of the rain and
result in a lower collection total while others developed hypotheses of how the force of
the rain might interact with the leaves differently to allow some or more water to pass
through the barrier into the glass.

More than 1 in 5 students (22%) expressed critical thinking about the measurement of
water in the glass (the dependent variable). The range of critical interpretations students
posed primarily focused on disputing the amount of rain captured (e.g. that heavy rain
would produce far more volume than any of the options), but isolated students observed
the three glasses may not be identical or identified better receptacles for collecting rainfall data.

Interviewer: But you're saying. . . you think that [Cara’s glass] would be even fuller [than
shown]? Why is that?

Student: Because, [when] it’s heavy rain, it rains a lot. I've even had where it’s almost a flood
... I feel like [the glass] would be overflowing.

Student: I would put out a bowl. Maybe ... a medium size, like bigger bowl like that, like the
one you use for cooking. Because this [glass] is only that big, but the bowl’s top could be that
[hand gesture] big, so it would collect more.

Interviewer: Oh. So, you’d get something with a wider opening?

Student: Because they looked like they got pictures [of the glasses used] from different
angles, but it might be the same spot [where the photo was taken]. ... Well some [of the
glasses] might be smaller.

Analytically addressing complexity

Across the entire corpus of data, we observed students engaging in several different strat-
egies that appeared to help them manage the complexity of the data in the scenarios.
These efforts also signalled the development of foundational analytical thinking skills
of data literacy.

Deductive sorting. Deductive sorting was the most common, explicit strategy we observed
students using; over 40% of students in the study called upon this strategy at some point in
their interview. We coded students’ decision-making process as deductive sorting when they
described deconstructing the problem into smaller pieces so they could make one ‘easy’ pla-
cement at an extreme end of the sort, and then focus on the more difficult task of reasoning
through the remaining two matches. Both their explanations and their physical interactions
with the materials suggested that making the placement they were most sure about simplified
the problem by narrowing the problem to two sets of variables to compare.

Student: Cara would still have the most. The heavy rain will drip down the whole bottle and
it’s in the middle of the place and it’s not somewhere between here. [Bobby’s glass] is hiding.
So, [Cara’s glass] has a better chance of hers having the most.

Interviewer: Okay. So Cara, we think, has the most. You sound real confident about that.
Who do you think got more water in their glass, Bobby or Anne?

Student: Bobby’s would slip out of the cup. I think it’s Anne’s. ... Yeah, if you put it near
shelter it wouldn’t fill up anything. And if you put it in the middle of the place, it would
fill up something.
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Interviewer: Were there any that were harder to decide between?

Student: Bobby and Anne’s. Because light rain is light, and there’s not as much rain,
and light rain doesn’t last as much. And rain does last as much, but the placing
that [gives] shelter for you. So, it’s just going to all slip out of there because of the
leaves. And Cara, she’s in the middle of the place, and then the whole thing would
be way fuller.

Mathematising the problem. A few students (6 of the 45 students interviewed, or 13%)
approached the non-numeric (photographic) data by trying to mathematise the problem
in some way. Typically, these students either attempted to attach units of measurement to
the data or tried to quantify the problem itself. Efforts related to the latter included
talking about the problem using mathematical terminology (e.g. rate or measurement)
or asking the researcher for quantitative information about the variables (e.g. ‘If you
could tell me how many inches fell per hour’). None of the third-grade students in
this study used this strategy, while roughly one in five fourth- and fifth-grade students
were observed trying to mathematise the problem.

Student: If T was trying to measure all of these things ... I think I would take at least a side of
a centimetre ruler and measure how much rain we got.

Interviewer: So you want more precise measurements of how much water is in each cup.

Student: Mm-hmm [affirmative]. I would also write down how much rain there was and
make estimates each time it rains and say, ‘Oh, there’s heavy rain, we’re probably going
to get about so-so inches or centimetres.’

Acknowledging uncertainty. The scenarios presented students with thought-provoking
puzzles without clear answers, and we looked within interview transcripts for evidence of
how students talked about uncertainty. Only a few students, primarily fifth graders,
articulated a clear awareness that the problems as presented did not provide them
enough or precise enough data for them to offer a definitive solution. This articulation
of uncertainty was observed in only seven (16%) of the 45 interviews. These thoughtful
expressions of uncertainty were distinguished from comments expressing struggle with
the problem or uncertainty that their placement was correct. Such comments did not
as clearly demonstrate an awareness of the uncertainty inherent in the data or relation-
ships between variables.

Student: I mean Bobby, [his glass was out for] like two hours. [Cara] is only half an hour. So
maybe once you switch around ... who knows? But it could be the same, there’s a possible
chance.

Other strategies to manage complexity

While the scenarios were challenging for most students, many students interviewed
expressed verbally that the tasks pushed them both cognitively and affectively to
manage the challenge, such as this example.

Student: I need to look at the picture. It’s hard. 'm trying to think. ... 'm looking at this one
[Anne] and I'm saying light rain, but it rained for one hour. And [for Cara] it’s heavy rain
and it rained for a half hour, so I'm like, oh my God, it’s heavier rain. But it would fill up a lot
quicker. ... It's complicated.
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In addition to the analytical strategies discussed above, a smaller subset of students
brought other strategies to manage the complexity, which were not as aligned with
skills of data literacy. A relatively small proportion of students (16%) dealt with the chal-
lenge of conflicting variables by attempting to make the problem easier by rearranging
the independent variables (rather than the dependent variable) to align all of the data
along their low, medium, or high categories. Another approach was used by 13% of
the students, who came up with explanations that went beyond the data presented or
their content knowledge to (often imaginatively) explain away difficult variables.
Examples included asserting that a glass had tipped and spilled water, bugs got in the
glass, and other unsupported assertions of data collection problems.

Student: [About Bobby’s placement] That’s a dumb spot. Because it’s covered by everything.
And there’s also too many animals on there.

Interviewer: So it’s covered by all the leaves and animals. What about animals?

Student: Insects. Because like worms are on this stuff, I don’t watch to touch that glass after
they touched it. And [the glass] stayed there for a year.

Interviewer: Oh, those bugs might have crawled all over it while it was down there.

Student: Yeah, it looks like it’s been there for years.

Discussion

This study adds to a relatively small research literature about elementary students’” data
literacy skills writ large (Cui et al., 2023; English, 2012; Shreiner, 2019; Wolff et al., 2015).
Like these studies, it paints an optimistic picture of the cognitive assets that young stu-
dents bring to tasks calling on data literacy. The majority of students in this study, irre-
spective of grade level, were able to make claims, use evidence, and articulate their
reasoning in response to complex, multivariate problems when using non-quantified,
commonplace data. Our exploration by grade level suggests that higher-grade students
may be somewhat more adept at achieving complex levels of reasoning than those in
third grade; although we still saw that most third grade students were able to productively
take on the task to some degree. As with prior work that introduced activities and dis-
cussions that centred on empirical uncertainty (Manz, 2018), using complex data visual-
isations to solve problems (Wolff et al., 2016), or modelling data from a story to answer
new questions (English, 2012), our findings suggest that elementary aged students
demonstrate the capacity to reason about complex and sometimes ambiguous data. As
part of this growing literature base, this study suggests that offering young students
the opportunity to engage in reasoning about data involving situations that are both fam-
iliar and complex is not only possible, but could be a stepping stone to expanded and
more quantitative reasoning with data.

The study also found that the introduction of three independent variables prompted a
divergence of reasoning abilities with fewer students applying univariate reasoning,
implicitly showing awareness that a single variable explanation was insufficient for the
complexity of the problem. But with awareness of that complexity, it seemed to
become difficult for some students to reason through independently at any level.
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These trends suggest that children’s ability to coordinate multiple variables is, in part,
subject to cognitive-developmental constraints (Case & Griffin, 1990; Fischer, 1980),
and is a promising area for further research.

Because we were interested in learning about the intellectual assets and approaches
that students access on their own, our data cannot address the question of whether
early-grade students like those in our study would be able to employ the complex and
sophisticated reasoning strategies of their higher-grade peers within a more scaffolded,
instructional context. However, prior research has suggested that through intentionally
designed instructional strategies, careful facilitation by an educator, and opportunities
for discussion, elementary students are able to be successful at thinking critically
about empirical uncertainty (Manz, 2018), scientific argumentation (McNeill, 2011),
and use of data lenses (English, 2012), for example. Alongside this prior work, it
seems likely that, with classroom scaffolding and data problems like those used here,
an even broader range of students would be able to employ more complex reasoning
to make sense of the scenarios in educational practice.

Also of note, many of these students spontaneously demonstrated data literacy prac-
tices by thinking critically about the nature of the data they were working with, asking
thoughtful questions about the data, and methods of collection. When asked to reason
about familiar phenomena using non-mathematised data, students showed a willingness
and ability to think about the limitations of the data and to identify information that
might help them arrive at a better supported solution, as they freely asked the interviewer
for more information about the variables, data collectors, or context of the data collection
scenarios. Students searched images for visual evidence to inform and support their
reasoning, connected it to their knowledge of phenomena related to rainfall, and
applied their understanding of the world to generate a better-supported solution. This
paralleled findings of elementary students’ abilities to recognise and discuss the impor-
tance and differences of investigative design decisions, when faced with scenarios of
empirical uncertainty (Manz, 2018); both our study and Manz’s work indicate that
elementary students can think critically and discuss the sources, validity, and meaning
of data, if they are given the opportunity. Developing the capacity and the disposition
to engage in such practices is fundamental to data literacy, and this study’s evidence
was very encouraging for the value of including more data exploration in early grades.

Most students gamely persevered in working towards a solution to each scenario, even
as some indicated that they were challenged by the problems posed. Nonetheless, their pro-
cesses of reasoning demonstrated a wide range of analytically grounded strategies for
problem-solving and reasoning with data, such as breaking the problem into smaller
pieces, trying to mathematise the data, or to address some of the inherent uncertainty in
the task. The strategies they spontaneously employed reflect young learners’ cognitive
strengths, which could potentially be activated more purposefully by elementary science
educators. This suggests a promising starting point for designing data literacy experiences
that would encourage and scaffold accessible routines for managing, evaluating, and
making sense of data. Anecdotally, many students’ language and behaviour during the
interviews made clear that they experienced the scenarios and interview as an enjoyable
challenge to puzzle through. In contrast to being experienced as a routine, step-by-step
process, it provided an engaging mystery and latitude for creative problem-solving.
These are likely important attributes to consider for future data-centred lesson design.
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In addition to identifying seeds of foundational data practices and dispositions that
could be further leveraged through instructional interventions, the strategies we observed
in this study point to an implicit awareness in many students that they needed evidence
to support a conclusion. For example, students who commented on uncertainty
implicitly acknowledged the need for more or different evidence, even if they could
not articulate what evidence they needed to draw a conclusion. Similarly, students’
careful analysis of visual evidence within photographs was in service of finding further
information that could ground a working theory about which child would have collected
more (or less) water. The students in our study demonstrated the capacity to activate the
three key areas of our data literacy framework (Figure 1), searching for ways to gather
qualitative information about the phenomenon (applying content knowledge) and/or
the data collection tools and methods (computational/data skills) to ground and
support their determination about the relative amounts of water (quantitative reasoning).

Conclusions

The focus on educational and curricular interventions to promote data literacy has filtered
down to K-12 education from collegiate and post-collegiate efforts to train students for
future careers (Kochevar et al., 2015; NASEM, 2018). This top-down approach has largely
been step-wise, in which gaps identified in needed knowledge or skills at one grade band
(in this case, data literacy knowledge, practices, and dispositions) have become the focus
of research and intervention at the band below. While there is logic to this approach, it invari-
ably leaves the learning of elementary students to the end, and thereby misses an opportunity
to add a bottom-up approach that can help ensure that young students are prepared for the
more sophisticated disciplinary thinking in later schooling by having learning experiences to
develop familiarity with, grounding in, and dispositions of data literacy.

This study was part of a broader body of research aimed at learning how best to
integrate data literacy skills into K-12 classrooms (e.g. Gold et al., 2015; Kastens
et al,, 2015; Vahey et al, 2012; Wolff et al., 2019). This work is all relatively new
and is still in the process of developing both conceptual and empirical foundations,
especially with regard to the early development of such skills. It is telling that most
of the published data literacy education research has been conducted at the middle
school, high school, and college levels. As Manz has articulated about elementary
science curricula, ‘the default assumption ... is that the easiest entrée to scientific prac-
tice is to ask students to engage in highly simplified investigations’ (2018), where they
are not encountering the authentic complexities and uncertainties of scientific inves-
tigation or working with data. Our finding that students in grades 3-5 were able to
apply their knowledge of phenomena to understand and reason about data problems
suggests that the integration of data literacy activities into elementary science class-
rooms is both possible and is potentially a productive approach to developing foun-
dational data literacy skills and practices. Our findings suggest that complex
reasoning about data - even multivariate data - is well within the capabilities of
upper-elementary grade students. The specific analytical thinking skills we observed,
including connecting data to real-world events, thinking critically about evidence,
acknowledging uncertainty, and mathematising the problem, are all important
aspects of achieving overall fluency in making meaning from data.
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In order to initially understand what students were capable of, these data scenarios
intentionally removed the potential barrier of students’ limited mathematical, statistical,
and/or computational experience or skills. A next step would be to explore how well stu-
dents are able to interpret and/or reason from conventional representations of data, like
those traditionally created from professionally collected geoscience data, to find avenues
for merging students’ natural reasoning abilities with their strengths and limitations
when dealing with professionally collected science data.

This research also points to the need for educators and instructional designers to
experiment with instructional strategies and stimuli that leverage the students’ assets
and strengths for thinking about data, while avoiding bogging down exploration with
introduction of mathematical, statistical, or graphical knowledge that is beyond their
school experience. For data to be practically incorporated into an elementary science cur-
riculum, it will need to work with students’ existing strengths and math skills. This study
identified several attributes of a data problem or task that have promise for the design of
future curricula, including focusing on an open-ended problem that can lead to multiple
plausible conclusions; working with a familiar (or already studied) phenomenon that
requires no additional content instruction to engage with the data; and a series of pro-
blems that progressively increase in complexity, letting students build on their past think-
ing and reasoning as data become more complicated.

Acknowledgements

The authors wish to thank Dr. Edward Robeck for his review of and suggestions to an
earlier daft of this manuscript. We also thank the teachers, administrators, and students
at the schools where this study was conducted.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the U.S. National Science Foundation under Grants 1906264 and
1906286.

Ethics statement

This research was reviewed and approved by the Institutional Review Board of the Edu-
cation Development Center (#1927).

ORCID

Jessica Sickler (2 http://orcid.org/0000-0002-0572-3377
Michelle Lentzner © http://orcid.org/0000-0002-1866-9306
Lynn T. Goldsmith (2 http://orcid.org/0000-0002-9463-7701
Lauren Brase © http://orcid.org/0000-0002-8961-3449
Randall Kochevar (© http://orcid.org/0000-0002-4252-9522



INTERNATIONAL JOURNAL OF SCIENCE EDUCATION 1755

References

Association of American Colleges and Universities (AACU). (2011). The LEAP vision for learning:
Outcomes, practices, impact, and employers’ viewers. AACU.

Ben-Zvi, D., & Garfield, J. B. (2004). Statistical literacy, reasoning and thinking: Goals, definitions,
and challenges. In D. Ben-Zvi, & J. B. Garfield (Eds.), The challenge of developing statistical lit-
eracy, reasoning, and thinking (pp. 147-168). Kluwer Publishers.

Case, R., & Griffin, S. (1990). Advances in psychology. Advances in Psychology, 64, 193-230.
https://doi.org/10.1016/S0166-4115(08)60099-0

Common Core State Standards Initiative (CCSSI). (2010). Common Core State Standards for
Mathematics. https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf

Conway, D. (2011). Data science in the U.S. Intelligence community. IQT Quarterly, 2(4), 24-27.

Cui, Y., Chen, F., Lutsyk, A., Leighton, J. P., & Cutumisu, M. (2023). Data literacy assessments: A
systematic literature review. Assessment in Education: Principles, Policy ¢ Practice, 30(1), 76-96.
https://doi.org/10.1080/0969594X.2023.2182737

Engle, J. (2017). Statistical literacy for active citizenship: A call for data science education. Statistics
Education Research Journal, 16(1), 44-49. https://doi.org/10.52041/serj.v16i1.213

Engle, S. (2021). The intellectual lives of children. Harvard University Press.

English, L. D. (2012). Data modelling with first-grade students. Educational Studies in
Mathematics, 81(1), 15-30. https://doi.org/10.1007/s10649-011-9377-3

Erickson, T. (2022). Awash in data. https://codap.xyz/awash/

Finzer, W. (2013). The data science education dilemma. Technology Innovations in Statistics
Education, 7(2), 1-9. https://doi.org/10.5070/T572013891.

Fischer, K. W. (1980). A theory of cognitive development: The control and construction of hier-
archies of skills. Psychological Review, 87(6), 477. https://doi.org/10.1037/0033-295X.87.6.477

Goddu, M., & Gopnik, A. (2020). Learning what to change: Young children use “difference-
making” to identify causally relevant variables. Developmental Psychology, 56(2), 275-284.
https://doi.org/10.1037/dev0000872

Gold, A. U, Kirk, K., Morrison, D., Lynds, S., Sullivan, S. B., Grachev, A., & Persson, O. (2015).
Arctic climate connections curriculum: A model for bringing authentic data into the classroom.
Journal of Geoscience Education, 63(3), 185-197. https://doi.org/10.5408/14-030.1

Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research,
and policy implications. Science, 337(6102), 1623-1627. https://doi.org/10.1126/science.
1223416

Herschel, R., & Miori, V. M. (2017). Ethics & big data. Technology in Society, 49, 31-36. https://doi.
org/10.1016/j.techsoc.2017.03.003

Kastens, K., Krumhansl, R., & Baker, I. (2015). Thinking big. The Science Teacher, 082(5), 25-31.
https://doi.org/10.2505/4/tst15_082_05_25

Kjelvik, M., & Schultheis, E. (2019). Getting messy with authentic data: Exploring the potential of
using data from scientific research to support student data literacy. CBE—Life Sciences
Education, 18(2), eses2. https://doi.org/10.1187/cbe.18-02-0023

Kochevar, R. E., Krumhansl, R., Krumhansl, K., Peach, C. L, Barder, E., Louie, J., DeLisi, J. (2015).
Inspiring future marine and data scientists through the lure of ocean tracks. Marine Technology
Society Journal, 49(4), 64-75. https://doi.org/10.4031/MTS].49.4.4

Konold, C., & Higgins, T. (2002). Highlights of related research. In S. J. Russell, D. Schifter, & V.
Bastable (Eds.), Working with data: Casebook (pp. 165-201). Dale Seymour.

Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2015). Data seen through different lenses.
Educational Studies in Mathematics, 88(3), 305-325. https://doi.org/10.1007/s10649-013-
9529-8

Lehrer, R., & English, L. (2018). Introducing children to modeling variability. In D. Ben-Zvi, K.
Makar, & J. Garfield (Eds.), International handbook of research in statistics education (pp.
229-260). Kluwer Academic Publishers.

Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American
Educational Research Journal, 41(3), 635-679. https://doi.org/10.3102/00028312041003635



1756 J. SICKLER ET AL.

Louie, J. (2022). Critical data literacy: Creating a more just world with data. Workshop on foun-
dations of data science for students in grades K-12. National Academy of Sciences.

Manz, E. (2014). Representing student argumentation as functionally emergent from scientific
activity. Review of Educational Research, 1-38.

Manz, E. (2018). Designing for and analyzing productive uncertainty in science investigations. In
Kay, J. and Luckin, R. (Eds.) Rethinking learning in the digital Age: Making the learning sciences
count, 13th international conference of the learning sciences (ICLS), 1, 288-295. London:
International Society of the Learning Sciences.

McNeill, K. L. (2011). Elementary students’ views of explanation, argumentation, and evidence,
and their abilities to construct arguments over the school year. Journal of Research in Science
Teaching, 48(7), 793-823. https://doi.org/10.1002/tea.20430

Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Investigating the impacts of tar-
geted professional development around models and modeling on teachers’ instructional prac-
tice and student learning. Journal of Research in Science Teaching, 55(5), 641-663. https://doi.
org/10.1002/tea.21434

National Academies of Sciences, Engineering, and Medicine. (2018). Data science for undergradu-
ates: Opportunities and options. The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. The National
Academies Press.

Oceans of Data Institute (ODI). (2016). Building global interest in data literacy: A dialogue.
Education Development Center, Inc.

Popham, W.J. (1997). What’s wrong—and what’s right—with rubrics. Educational Leadership, 55
(2), 72-75.

Rubin, A. (2020). Learning to reason with data: How did we get here and what do we know?
Journal of the Learning Sciences, 29(1), 154-164. https://doi.org/10.1080/10508406.2019.
1705665

Rubin, A. (2021). What to consider when we consider data. Teaching Statistics, 43(S1), 23-33.
https://doi.org/10.1111/test.12275

Shreiner, T. L. (2019). Students’ use of data visualizations in historical reasoning: A think-aloud
investigation with elementary, middle, and high school students. The Journal of Social Studies
Research, 43(4), 389-404. https://doi.org/10.1016/j.jssr.2018.11.001

Sickler, J., Bardar, E., & Kochevar, R. (2021). Measuring data skills in undergraduate student work:
Development of a scoring rubric. Journal of College Science Teaching, 50(4), 25-32. https://doi.
org/10.1080/0047231X.2021.12290515

Stevens, D. D., & Levi, A. J. (2013). Introduction to rubrics: An assessment tool to save grading time,
convey effective feedback, and promote student learning. Stylus Publishing.

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data.
American Journal of Evaluation, 27(2), 237-246. https://doi.org/10.1177/1098214005283748
Vahey, P., Rafnan, K., Patton, C., Swan, K., van ‘t Hooft, Kratcoski, A., & Stanford, T. (2012). A
cross-disciplinary approach to teaching data literacy and proportionality. Educational Studies

in Mathematics, 81(2), 179-205. https://doi.org/10.1007/s10649-012-9392-z

Wolff, A., Gooch, D., Montaner, J. J. C., Rashid, U., & Kortuem, G. (2016). Creating an under-
standing of data literacy for a data-driven society. The Journal of Community Informatics, 12
(3), 9-26.

Wolff, A., Kortuem, G., & Cavero, J. (2015). Urban data in the primary classroom: bringing data
literacy to the UK curriculum. Data Literacy Workshop, 30 June 2015, Oxford.

Wolff, A., Wermelinger, M., & Petre, M. (2019). Exploring design principles for data literacy activi-
ties to support children’s inquiries from complex data. International Journal of Human-
Computer Studies, 129, 41-54. https://doi.org/10.1016/].ijhcs.2019.03.006



