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1. Introduction

Metamaterials are engineered materials,
typically composed of periodically arranged
building blocks (i.e., unit cells), that exhibit
properties and functionalities beyond their
constituent materials.[1,2] We can achieve
certain effective material properties of
metamaterials by designing their structure
(i.e., geometries of unit cells) rather than
chemical composition. Optical,[3] acous-
tic,[4] thermal,[5] and mechanical metamate-
rials[2,6] are metamaterials with unique
properties tailored to manipulate specific
types of waves or energy. For example, opti-
cal metamaterials or metasurfaces (i.e., the
2D form of metamaterials) are designed to
control and manipulate electromagnetic
waves, which can lead to unusual proper-
ties such as a negative refractive index.[7]

Acoustic metamaterials are designed to
control how sound (acoustic) waves propa-
gate which enables functionalities such as
noise reduction.[8]

Functional responses refer to varying
properties or behaviors under different
conditions. A notable example that involves

functional responses is metamaterials, which alter their electro-
magnetic, acoustic, or elastic wave propagation behaviors
depending on the wavelength or frequency.[9] Another example
is metamaterials that exhibit changing properties or functionali-
ties due to deformation in response to external stimuli like tem-
perature[10] and magnetic fields.[11] Tailoring functional
responses of these metamaterials is of interest to applications
such as sound and vibration control, analog computing, medical
imaging, sensing, communication, and soft robotics. In many
use cases, rather than precisely controlling the complete func-
tional responses, we only care about qualitative behaviors under
certain conditions. For example, acoustic metamaterials were
usually designed to have bandgaps at specified frequencies to
achieve functionalities like wave guiding,[12,13] focusing,[14,15]

and vibration mitigation.[16–18] However, it is unnecessary and
computationally expensive to design for the whole dispersion
relation.[19–23] Similarly, we may design optical metamaterials
to qualitatively manipulate optical properties (e.g., high or low
absorption/reflection/transmission) under certain wavelengths,
without requiring the entire spectral response to match an exact
target.[24,25]

Identifying metamaterial designs from a given target forms an
inverse design problem. Unlike many forward problems where
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Metamaterials with functional responses can exhibit varying properties under
different conditions (e.g., wave-based responses or deformation-induced prop-
erty variation). This work addresses rapid inverse design of such metamaterials to
meet target qualitative functional behaviors, a challenge due to its intractability
and nonunique solutions. Unlike data-intensive and noninterpretable deep-
learning-based methods, this work proposes the random-forest-based inter-
pretable generative inverse design (RIGID), a single-shot inverse design method
for fast generation of metamaterials with on-demand functional behaviors. RIGID
leverages the interpretability of a random forest-based “design! response”
forward model, eliminating the need for a more complex “response! design”
inverse model. Based on the likelihood of target satisfaction derived from the
trained random forest, one can sample a desired number of design solutions
using Markov chain Monte Carlo methods. RIGID is validated on acoustic and
optical metamaterial design problems, each with fewer than 250 training sam-
ples. Compared to the genetic algorithm-based design generation approach,
RIGID generates satisfactory solutions that cover a broader range of the design
space, allowing for better consideration of additional figures of merit beyond
target satisfaction. This work offers a new perspective on solving on-demand
inverse design problems, showcasing the potential for incorporating interpretable
machine learning into generative design under small data constraints.
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one can obtain solutions (e.g., spectral responses or material
properties under external stimuli) by modeling the physics or
conducting experiments, inverse design problems are usually
intractable. Traditionally, these problems are solved by iterative
optimization (i.e., minimizing the difference between the actual
quantity of interest and the target).[19,20,22,26,27] This, however,
requires repeatedly updating the design solution and solving for-
ward problems. When the design target changes, one needs to
rerun the entire optimization process. Thus, inverse design by
iterative optimization becomes impractical if solving the forward
problem (by simulations or experiments) is time-consuming or if
the design target needs to change frequently. For example, in the
case of acoustic metamaterial design, one may want to obtain a
material waveguide containing spatially varying unit cells with
different bandgap ranges at different locations in a tessellation.
To accelerate the optimization approach, prior works replaced
simulations or experiments with machine learning models.[28,29]

However, the efficiency and quality of final solutions are highly
dependent on both the machine learning model and the optimi-
zation algorithm. On the other hand, a single run of optimization
usually only returns one final solution, althoughmultiple designs
might satisfy a given target (i.e., the nonuniqueness of solutions).
For example, multiple acoustic metamaterial designs may have
bandgaps within the same target frequency range. This non-
uniqueness nature of inverse design problems was also shown
for optical metasurfaces,[27,30–32] especially when we only care
about qualitative target responses. It is generally advantageous
for inverse design approaches to yield a diverse set of solutions,
as this allows consideration of additional figures of merit beyond
target satisfaction. For example, deriving diverse solutions for
acoustic metamaterials will allow us to consider the kinematic
compatibility of multiple designs in waveguide design problems.
However, optimization approaches cannot explore diverse alter-
native solutions efficiently.

In this work, we aim to achieve iteration-free, single-shot
inverse design for metamaterials—given a qualitative target
response, we want to generate multiple satisfying design solu-
tions rapidly, without the need for iteratively evaluating designs
(i.e., running simulations or conducting experiments); and after
one-time initial training, no additional training or design evalu-
ation is required to generate designs for different targets. This
allows fast and comprehensive exploration of the feasible design
space under different target responses.

Prior research attempted to realize iteration-free, single-shot
inverse design using machine learning. There are three main-
stream methods. The most straightforward approach is to learn
a direct inverse mapping from the response to design variables.
Neural networks are the most commonly used machine learning
model for this purpose, due to their high flexibility in approxi-
mating arbitrary nonlinear input–output relationships.[21,33]

Despite the simplicity of the direct inverse mapping, its under-
lying assumption of the response-design mapping being one to
one does not hold in many cases due to the nonuniqueness of
solutions, as mentioned earlier. Such nonuniqueness will cause
conflicting training instances where the same input (response) is
associated with distinct outputs (designs), which will destabilize
the convergence during neural network training.[30,34] To avoid
this issue, past work has proposed the tandem neural network
(T-NN) that cascades an inverse-design network with a pretrained

forward-modeling network to avoid using designs as labels when
training the inverse-design network and hence solved the train-
ing convergence issue.[30,35–40] Nonetheless, the original T-NNs
still learn a one-to-one response-design mapping and cannot
account for the nonuniqueness of design solutions. To funda-
mentally solve this problem, one needs to learn a one-to-many
mapping. For example, Bastek et al.[38] integrated stochastic sam-
pling into the inverse-design network to allow the generation of
multiple feasible solutions. Ha et al.[41] used multiple T-NNs to
predict multiple design solutions given a target response. Wang
et al.[42] adapted the T-NN to mimic the structure of a variational
autoencoder that is capable of learning the conditional distribu-
tions of designs given target responses. A large body of recent
works achieved the goal of learning one-to-many mapping using
conditional generative models, typically conditional generative
adversarial networks,[32,43–46] conditional variational autoen-
coders,[31,47,48] and conditional diffusion models.[49–51] These
models can generate multiple designs given a target response
by learning the distribution of designs conditioned on the
response. We include more detailed explanations of these three
mainstream methods in Section S1, Supporting Information.

We refer interested readers to Refs. [34,52–57] for comprehen-
sive reviews of existing metamaterial design methods. To the
best of our knowledge, almost all the existing iteration-free,
single-shot metamaterial inverse design methods are based on
deep learning, which has many common issues such as high data
demand, exhaustive hyperparameter tuning, slow training, and
low interpretability, especially compared to traditional machine
learning models like decision trees and random forests. On
the other hand, Elzouka et al.[58] proposed to use the decision
tree as a more interpretable model to solve both the forward pre-
diction and inverse design problem. After training a decision tree
for forward prediction, one can identify explicit design rules (i.e.,
feasible regions in the design space) by tracing from target leaf
nodes to the root node. This approach also captures the one-to-
many mapping nature of inverse design problems since it gives
feasible design variable ranges rather than a single solution.
However, there remain some limitations. First, for solutions
identified by the design rules, the method does not differentiate
their likelihood of target satisfaction. Yet in reality, solutions
always have different likelihoods due to the uncertainty of model
estimation. Second, the method has to train two models: a ran-
dom forest was trained first to ensure model accuracy and robust-
ness, and then a large decision tree was trained to emulate the
performance of the random forest and provide design rules. This
is due to the challenge of deriving explicit design rules from an
ensemble model like the random forest. Finally, the method was
demonstrated on a problem with more than 104 training data,
while the effectiveness on smaller datasets (i.e., data with orders
of magnitude smaller sample sizes) was not studied.

This work aims to address the aforementioned problems by
proposing a method called random forest-based interpretable
generative inverse design (RIGID). Figure 1 shows an overview
of this method. Specifically, we first train a forward prediction
random forest. Then given a design target, we can probe the
trained random forest to infer the likelihood of any design satis-
fying the target. To generate new designs tailored to the target,
we can sample from the design space according to the likelihood.
Compared to the most widely studied neural network-based
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methods, RIGID has a much lower cost in training and hyper-
parameter tuning and works more robustly on small-size datasets
(as random forests are less prone to overfitting). Similar to deep
generative models, it can generate a desired number of solutions,
allowing one to explore alternative solutions that might have
desired properties or functionalities beyond the ones considered
as the target. The explicit likelihood estimation also offers an
interpretable quantification of a design’s target satisfaction prob-
ability and allows an exploitation–exploration trade-off when
selecting generated designs. We validate the RIGID method
on twometamaterial design examples—an acoustic metamaterial
design example, where the goal is to generate metamaterials with
specific bandgaps, and an optical metasurface design example,
where the goal is to generate metasurfaces with high absorbance
at specified wavelengths.

Our contributions are threefold. First, we propose an iteration-
free, single-shot inverse design method that is fast, generative,
interpretable, and small data compatible. Second, we demon-
strate the effectiveness of the proposed method on acoustic and
optical metamaterial design examples and propose both qualita-
tive and quantitative ways of assessing our method. Finally, we
create two synthetic test cases for fast examination and validation
of model performance. These test cases can be used for future
benchmarking studies of related methods.

2. Methods

The functional response of metamaterials can be modeled as
y ¼ f ðx, sÞ, where x denotes metamaterial design variables
(e.g., materials and geometry parameters), s is an auxiliary vari-
able representing the independent variable (or the “x-axis”) of the
response (e.g., the frequency/wavelength or the external stimuli
such as temperature), and y indicates the value of the response
associated with our design target. In this article, we assume
y ∈ f0, 1g since we only focus on qualitative behaviors at speci-
fied frequencies (e.g., for an acoustic metamaterial or an optical

metamaterial design, whether a bandgap exists or whether the
energy absorbance is higher than a threshold within a range
of frequencies). We leave the more challenging problem of tai-
loring quantitative behaviors as future work.

Our goal is to solve the inverse problem—find a set of design
solutions that satisfy f ðx, sÞ ¼ 1 when s is inside a target domain
Ω, that is, fx�jf ðx�, sÞ ¼ 1, ∀s ∈ Ωg. Here f ðx, sÞ ¼ 1 could mean,
for instance, the existence of bandgaps for acoustic metamateri-
als or high absorption for optical metamaterials. The domain Ω
can be any frequency or wavelength interval(s). Note that this
design target only requires the satisfaction of behaviors within
the specified domain Ω, while behaviors outside this domain
are out of concern in this study, although it is straightforward
to adopt our method to this problem setting.

We use a random forest to approximate the function f . A ran-
dom forest is an ensemble learning method that combines the
predictions of multiple decision trees to improve accuracy and
reduce overfitting.[59] The trained random forest serves as a for-
ward prediction model that predicts the outcome y given design
variables x and the auxiliary variable s. Compared to the widely
used neural networks, the random forest as a forward prediction
model 1) offers significantly faster training, 2) has fewer hyper-
parameters to tune, 3) is less susceptible to overfitting on small
data, and 4) has higher interpretability (i.e., the decision-making
of each tree in the random forest is transparent). More impor-
tantly, this interpretability also allows us to realize inverse design
without training a separate inverse model.

Figure 2 shows how, by probing the trained random forest,
one can estimate a likelihood distribution for target satisfaction
of solutions over the entire design space and sample (generate)
new designs based on this likelihood distribution. Since we tar-
get qualitative (binary) behaviors at specified s (e.g., a bandgap in
3–4MHz frequency or high absorption at a wavelength of
400–500 nm), we first identify the leaf nodes (on each decision
tree in the random forest) that are relevant to the s in the target
(Figure 2, Step 1). We do this by tracing down each tree, checking
only the nodes that use s as the splitting feature, and pruning the
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Figure 1. Schematic diagram of the RIGID method. We first train a random forest on a design-response dataset to learn the forward design-response
relation—predicting qualitative responses (e.g., bandgap existence at any given wave frequency) of designs. Then given a design target, we can infer the
likelihood of any design satisfying the target by probing into the trained random forest. New designs with tailored responses can be generated by sampling
the design space based on the likelihood estimation.
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branches that are irrelevant to the s in the target. For example, as
shown in Figure 2, there are two tree nodes using s as the splitting
feature, with splitting criteria at s ≤ 5 and s ≤ 7. Given the target
frequency range of 3 ≤ s ≤ 4, we can remove the right branches of
both nodes as these branches are only relevant to s > 5 and s > 7,
respectively, which conflicts with the target range of 3 ≤ s ≤ 4.
After pruning these branches, we end up with a set of leaves rele-
vant to the target (highlighted in Figure 2, Step 1). When we have a
combined target (e.g., bandgaps in both 3–4 and 6–7MHz, as

shown in Figure 2), we need to get the intersection of all the sets
of relevant leaves and use that as the final set of relevant leaves
(highlighted in Figure 2, Step 2). Note that a combined target
includes cases where there are multiple nonadjacent target ranges
(e.g., 3–4 and 6–7MHz) or when a target range is split by a tree
node (e.g., a target range of 4–6MHz can be split by the node “
s ≤ 5”, thus we need to consider it as the combination of two target
ranges—4–5 and 5–6MHz). A more detailed discussion of this
step is in Section S2, Supporting Information.

Target      : Generate acoustic metamaterials with bandgap(s) in 3-4 and 6-7 MHz frequency ranges
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Figure 2. The inverse design pipeline of the proposed RIGID method (using the inverse design of acoustic metamaterials as an example). Given design
parameters x and the auxiliary variable s (e.g., wave frequency), a trained random forest predicts the probability of the qualitative response y (e.g., bandgap
existence). Each tree in the random forest splits the joint space of x and s into regions, each associated with a specific prediction (shown on leaf nodes).
The splitting criteria are encoded in tree nodes. “T” means meeting a criterion and “F” means not meeting it. RIGID first identifies leaf nodes that are
relevant to the considered range of auxiliary variable s by checking splitting criteria related to s and pruning tree branches that are irrelevant (Step 1). If the
considered range of s has multiple parts, we repeat this step for each part and take the intersection of relevant leaves (Step 2). Each relevant leaf node
corresponds to a decision path, indicating a region in the design space, as well as a predicted probability of target satisfaction, which is a score we assign
to the corresponding design space region (Step 3). With multiple trees in a random forest, we can average the scores predicted by each tree and use the
average score as our likelihood estimation (Step 4). We can then sample from the design space based on the likelihood distribution to generate new
designs tailored to the target (Step 5). Note that the 2D likelihood maps are only for visualization purposes. The actual dimension will be the same as the
design space dimension (i.e., the number of design variables).
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The next step is to trace up the tree from the N relevant leaves,
obtained by Step 2, to the root node (Figure 2, Step 3). This will
result inN decision paths, along which are nodes indicating split-
ting criteria for design variables x. Thus, each decision path rep-
resents a set of design variable ranges or in other words, a region
in the design space. We assign each region a score equal to the
predicted probability at each corresponding leaf. This probability
is learnt from the training data and equals the proportion of pos-
itive data in a leaf. It indicates the tree’s belief in the probability
of a design x satisfying the target T ¼ ff ðx�, sÞ ¼ 1j∀s ∈ Ωg
(Ω ¼ ½3, 4� ∪ ½6, 7� in this example) if the design falls in the design
space region corresponding to the leaf. Therefore, with a single-
decision tree m, we already have the map of likelihood
ℒmðxjT Þ ¼ ℙmðT jxÞ for target satisfaction: each of theN regions
has a uniformly distributed likelihood equal to the predicted
probability at the corresponding leaf, and the rest of the design
space has a likelihood of 0 (Figure 2, Step 3).

Since a single decision tree usually lacks accuracy, robustness,
and a way to quantify estimation uncertainty, we still want to take
advantage of the random forest as an ensemble model for inverse
design. We use Steps 1–3 to derive the likelihood distribution for
each of theM trees in the random forest and simply use the aver-
age of these M likelihood distributions as the final likelihood for
target satisfaction, ℒðxjT Þ ¼ PM

m¼1 ℒmðxjT Þ=M, which is a
more complex and smooth function (Figure 2, Step 4). If more
trees believe a design x has a higher likelihood of satisfying the
target, then the design will have a higher likelihood ℒðxjT Þ.
Finally, to generate new designs, we can sample from ℒðxjT Þ
using Markov chain Monte Carlo (MCMC) methods such as
Metropolis–Hastings[60] (Figure 2, Step 5).

We can also derive the posterior of a design x given the target if
we know the prior pðxÞ based on Bayes’ theorem.

pðxjT Þ ∝ ℒðxjT ÞpðxÞ (1)

In this work, we assume a uniform prior, making the posterior
directly proportional to the likelihood ℒðxjT Þ, and sampling
from the posterior is equivalent to sampling from the likelihood.

Compared to prior works, RIGID provides the following
unique benefits. 1) It is effective on small data problems as
the random forest is less susceptible to overfitting. 2) The train-
ing is fast (in seconds of wall time) and does not require com-
putationally demanding hyperparameter tuning. Once the
training is done, no further training or iterative optimization
is required to generate designs for different targets. 3) The
method estimates the explicit likelihood of target satisfaction
for every possible solution in the design space. Given a design
target of specific functional behavior, we can generate an unlim-
ited number of solutions based on the likelihood, allowing us to
explore alternative solutions that might have desired properties
or functionalities beyond the ones considered as the target.
4) The method offers a high level of transparency as one can eas-
ily probe the trained model to understand its reasoning behind
any decision-making (i.e., why a design has a high/low likeli-
hood). 5) When generating design solutions, one can use a single
parameter—the sampling threshold—to easily tune the trade-off
between exploitation (i.e., generated designs have higher chances
of satisfying the target) and exploration (i.e., generated designs

cover a broader area of the design space), as we will demonstrate
in Results.

3. Results

We demonstrate our RIGIDmethod on an acoustic metamaterial
design problem, an optical metasurface design problem, and two
synthetic design problems. Based on a recent review article by
Lee et al.[34] and other related works (e.g., ref. [38]), existing
iteration-free, single-shot inverse design methods were demon-
strated on training data size ranging from 103 to 106 in scale.
Here we show that our method can work with much smaller-
scale datasets (i.e., fewer than 250 training samples for all the
case studies in this work).

For all the test problems, we used the same random forest
hyperparameter settings and did not perform hyperparameter
tuning. Specifically, each random forest contains 1000 trees with
a minimum of two samples required to split an internal node and
a minimum of one sample required to be at a leaf node. Gini
impurity[61] was used as the splitting criterion at tree nodes.
The train-test split ratio was 4:1. Since the positive/negative train-
ing data can be highly imbalanced (e.g., the frequency ranges
with bandgaps are much narrower than those without), we used
the synthetic minority oversampling technique[62] to oversample
the positive class. For all the case studies, the random forest
training took less than 10 s on an Intel Core i5-9300 H CPU
2.4 GHz and 8 GB memory. After training, we generate new
designs by sampling from the resulting likelihood distribution
using Metropolis–Hastings. In practice, Metropolis–Hastings
can generate identical samples, which provides no benefits for
design purposes. Thus in this work, we reject the designs iden-
tical to previous ones during sampling.

We compare RIGID to a commonly used low-cost generative
design strategy—surrogate modeling combined with a genetic
algorithm (GA).[63–67] We choose this baseline according to
the following criteria to ensure that its efficiency and application
scenario are comparable to those of RIGID: 1) the baseline
method should generate design solutions quickly (i.e., no
additional training or design evaluation is required given
different design targets), 2) the baseline method can generate
multiple satisfying solutions to the inverse design problem,
and 3) the baseline method can handle small data. These criteria
exclude sequential design strategies like Bayesian optimization
(as they violate the first criterion) and any existing single-
shot inverse design methods mentioned in Section 1 (as direct
inverse mapping and T-NN violate the second criterion and con-
ditional generative model-based methods usually violate the last
criterion).

GAs are optimization methods that iteratively evolve a popu-
lation of candidate solutions, based on biologically inspired oper-
ators such as mutation, crossover, and selection, toward better
solutions.[68] As we usually need to evaluate a large population
of candidate solutions at each iteration (referred to as a genera-
tion), a surrogate model (usually a machine learning model) is
often constructed to accelerate design response prediction,
thereby speeding up the optimization process. For the surrogate
model in the baseline method, we use the same trained random
forest as in RIGID for consistency, eliminating differences due to
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forward prediction accuracy and focusing on comparing the
inverse design methods. We set the objective of GA to maximize
the aggregated probability of target satisfaction within the target
domain Ω, that is, maxx

P
si∈Ω f

0 ðx, siÞ, where fsigni¼1 are discre-
tized auxiliary variable values (e.g., discrete values of frequencies
or wavelengths) and f

0
represents the trained random forest. We

include the detailed configurations of GA in Section 6. After opti-
mization, we rank the solutions generated throughout the opti-
mization process based on their objective values and select the
top solutions as final designs. We compare these designs to those
generated by RIGID. From this point, we will call designs gen-
erated by RIGID and GA as RIGID designs and GA designs,
respectively.

3.1. Applying RIGID to Design Acoustic Metamaterials with
Target Bandgaps

Here we consider acoustic metamaterials that can control elastic
wave propagation at ultrasound (MHz) frequencies. Varying the
microscale geometries of acoustic metamaterials changes the
dynamic properties of a material, such as bandgaps[18] (i.e., for-
bidden frequency ranges of a material) and wave propagation
direction.[12] These materials promise applications in wave-
guides,[12,13] lenses,[14,15] and vibration mitigation.[17] Designing
acoustic metamaterials with target bandgaps is challenging, as
many 3D architectures do not naturally have full bandgaps. We
present the braced cubic design framework (Figure 3A,B) as a
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Figure 3. Acoustic metamaterial design problem configuration and results. A) Design variables of center and corner mass radii (rcenter and rcorner) and
strut radius (rstrut). B) High-symmetry points of the cubic irreducible Brillouin zone. C) A sample dispersion relation and bandgap (marked by the
highlighted zone). The design objective is to generate new acoustic metamaterial designs with target bandgaps. D) KDE of the estimated likelihood
for generated designs. E) Satisfaction rates, average scores, and selection rates for RIGID designs under varying sampling thresholds (solid lines), in com-
parison to the satisfaction rate of GA designs (horizontal dashed line). The horizontal dotted line indicates 100% satisfaction. F) Geometries and corre-
sponding dispersion relations of five RIGID designs with the highest likelihood of satisfying a specified target bandgap (marked as highlighted frequency
regions). All the radii (rstrut, rcenter, and rcorner) have unit of μm. Here only the fourth design fails to meet a small portion (at around 6MHz) of the target
bandgap, whereas the others meet it. Generated designs for other targets are shown in Appendix, Figure S2–S6, Supporting Information.
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method to tune the size and location of bandgaps (Figure 3C). In
particular, spherical micro-inertia are added to the center and cor-
ner of a braced cubic unit cell with strut radius rstrut. Microinertia
placed at the center of the brace has radius rcenter while microiner-
tia placed at the corner of the cubic unit cell has radius rcorner.

We randomly created 284 sets of geometric parameters x ¼
ðrstrut, rcenter, rcornerÞ with 4 ≤ rstrut ≤ 6.41, 0 ≤ rcenter ≤ 20, and
0 ≤ rcorner ≤ 20 (unit: μm). The unit cell size was set at
a ¼ 60 μm. For each of these designs, we performed Bloch-wave
analysis to compute its acoustic dispersion relation. Bandgap
location and width were extracted for each design based on its
dispersion relation.

Out of the 284 sets of design variables and bandgap data, we
used 227 samples as training data. We first discretized the entire
frequency range into 100 intervals and trained a random forest to
predict bandgap existence y ∈ f0, 1g at a specific interval s for a
given design x. The trained model has a test F1 score of 0.82. The
resulting confusion matrix on test data is shown in Appendix
Table S1, Supporting Information.

To test the inverse design capability of RIGID, we randomly
created ten targets, each containing 1–2 frequency ranges in
which bandgap(s) should exist. We generated 30 designs for each
target by sampling from the resulting likelihood distribution over
the design space (Note that it is possible for the likelihood to be
zero everywhere in the design space when the model believes the
target is unachievable. We ignore these cases as it is meaningless
and impossible to sample designs from such likelihood distribu-
tion). Bandgaps were identified from dispersion relations com-
puted using Bloch-wave analysis.

Figure 3D shows the kernel density estimation (KDE) for the
likelihood of the 300 RIGID designs, conditioned on their target
satisfaction. We use D and Dfeas to represent the complete set of
generated designs and the set of generated designs that actually
satisfy the target, respectively. Then D\Dfeas denotes the set of
generated designs that cannot fulfill the target in reality. In an
ideal scenario, all solutions in D would satisfy the target, which
means D ¼ Dfeas, and their density profiles should coincide.
However, this ideal scenario is impossible in reality due to both
limited model accuracy and uncertainty. As RIGID generates
designs by sampling the entire design space based on the likeli-
hood values, it is expected for nonsatisfactory designs to be gen-
erated as long as the likelihood values for these designs are
nonzeros. Therefore, the fact that a design is generated does
not mean that the model is certain about the design satisfying
the target. We have to look at the estimated likelihood to know
how likely the target will be satisfied and make decisions from
there. RIGID thus incorporated the model’s confidence into the
inverse design process. For a reasonable model, most designs
in D\Dfeas should have low estimated likelihood values.
Consequently, the density of Dfeas’s likelihood is a result of shift-
ing some of D’s density from left (low likelihood) to right (high
likelihood). This expectation aligns with the observation in
Figure 3D.

When sampling new designs or selecting solutions from gen-
erated designs, we can put a sampling threshold τ ∈ ð0, 1Þ on the
likelihood values to filter out “less promising” solutions. To fur-
ther examine model behavior and quantify how τ affects the
inverse design outcome, we define the following metrics.

SelectionRate ¼ jDϕ≥τj
jDj

SatisfactionRate ¼ jDϕ≥τ ∩Dfeasj
jDϕ≥τj

Average Score ¼ 1
jDϕ≥τj

XjDϕ≥τ j

i¼1

qi

(2)

where Dϕ≥τ is the set of generated designs with the likelihood of
at least τ (i.e., the selected designs) and qi denotes the percentage
overlap between the target and the actual behavior of selected
designs. The satisfaction rate evaluates how many selected
designs satisfy the target based on a binary criterion (i.e., whether
or not a design satisfies the complete target), whereas the average
score provides a soft measure where partial satisfaction is
also counted. The average score is lower bounded by the satisfac-
tion rate.

As shown in Figure 3E, the selection rate decreases when τ
increases since more solutions are filtered out. On the other
hand, both the satisfaction rate and the average score increase
with τ, which indicates a high correlation between the estimated
likelihood of a solution and its probability of actually achieving
the target. As τ reaches 0.6, the satisfaction rate and the average
score reach 1, indicating that all generated designs satisfy their
targets. When sampling or selecting new solutions, we can use
the sample threshold τ to tune the trade-off between exploitation
and exploration—a low τ favors exploration as sampled solutions
will cover a larger area of the design space, while a high τ favors
exploitation as sampled solutions will have a higher chance of
satisfying the target.

In the comparative study, we generated the same number of
designs for the same targets by applying GA. We computed the
satisfaction rate of GA designs and found that the value is close
to the satisfaction rate of RIGID designs when setting τ to 0.2.
This means that if we set τ to be above 0.2, RIGID will most
likely achieve a higher satisfaction rate than GA. The distribu-
tions of generated satisfactory solutions shown in Figure 4
indicate that GA designs are highly localized while RIGID
can capture the high diversity of the inverse design solutions
and sometimes discover solutions very different from the orig-
inal feasible solutions from data. Besides, Figure 4 also shows
an example where GA fails to find any satisfactory solution
while RIGID can still generate a very diverse set of satisfactory
solutions.

Figure 3F visualizes the geometries and dispersion relations
of RIGID designs generated based on a randomly created
bandgap target. Only the top five designs with the highest like-
lihood values are shown. In this example, our method generates
geometrically different designs that have a high probability of
achieving target bandgaps, each yielding a slightly different dis-
persion relation. This is promising in design applications
requiring other material properties, such as dynamic wave
velocity or quasistatic stiffness, in which the user can select
from a menu of designs with the same target bandgap but other
varying properties. Generated designs based on the other nine
bandgap targets can be found in Appendix Figure S2–S6,
Supporting Information.
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3.2. Applying RIGID to Design Optical Metasurfaces with
Target High-Absorbance Wavelengths

Optical metasurfaces are artificially engineered systems that can
support exotic light propagation building on subwavelength
inclusions.[7,69–73] Among a diverse array of applications, meta-
material absorbers[74–80] have been intensely studied for medical
imaging, sensing, and wireless communications.

In this case study, we consider four types of cross sections
(c ∈ f1, 2, 3, 4g) chosen from the literature (Figure 5B). It is
assumed that a 3D geometric instance is composed of a stack
of three layers of prismatic unit cells, each of which is vertically
extruded and stacked (Figure 5A). The geometries constructed in
this way can be regarded as an instantiation of multilayered
metasurfaces,[81–85] which offer richer design freedom than the
single-layer counterpart. The thickness of each layer (hl, l ¼ 1, 2, 3)
is allowed to continuously vary between 50 and 150 nm.Herein we
do not consider parametric variations of a given type of unit cell
cross section; yet those can be trivially incorporated in the pro-
posed design framework if necessary.

We also design thematerial of each layer (ml, l ¼ 1, 2, 3). Three
dielectric materials of interest, each of which is assigned to a dif-
ferent color in Figure 5A, are Ti (red), Si (blue), and Ge (yellow).
The challenge associated with this design problem is its mixed-
variable design space containing three continuous variables (i.e.,
layer thicknesses) and four categorical variables (i.e., material
choices at each layer and the geometry type), which may lead
to potentially complicated underlying design-response relations
(e.g., those across different geometry or material types). In gen-
eral, a dielectric material is characterized through a complex

refractive index ñ ∈ ℂ defined as ñ ¼ nþ jk, where j ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit, n ∈ ℝ involves the speed at which the light
propagates through the material, and k ∈ ℝ is the extinction coef-
ficient that dictates the energy loss due to the material. Within
the frequency regime of interest, those exhibit nonlinear disper-
sion; both the real and imaginary terms in general are a nonana-
lytic function of excitation wavelength s, that is, nðsÞ and kðsÞ. In
addition, the impact of the same material choice on the spectral
response AðsÞ varies depending on the layer location at which the
material is placed.

Based on the above configuration, we randomly sampled 258
sets of design variables x ¼ ðc, h1, h2, h3,m1,m2,m3Þ and com-
puted their corresponding absorbance spectra using wave analy-
sis. We set t ¼ 0.9 as the absorbance threshold, so that “high”
absorbance means the absorbance AðsÞ is no less than 0.9.
We trained a random forest on 206 training data (i.e., 80% of
the 258 designs and corresponding absorbance spectra) to pre-
dict whether “high” absorbance is presented (i.e., the binary indi-
cator y ¼ 1) at a wavelength s for a given design x. The trained
random forest has a test F1 score of 0.83. The confusion matrix on
test data is shown in Appendix Table S2, Supporting Information.

Note that this problem involves inverse design with both con-
tinuous and categorical variables, which common optimization
and generative modeling-based inverse design cannot handle
well without special treatment.[86–88] On the other hand, our
random forest-based method can naturally address such
mixed-variable problems without any issues.

Similar to the acoustic metamaterial design problem, we use
ten randomly created targets to evaluate the inverse design per-
formance of RIGID, except that here a target is represented as the
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Figure 4. Distributions of satisfactory solutions for two bandgap targets. The off-diagonal plots show the pairwise bivariate distributions of design var-
iables, and the diagonal plots show the marginal distributions of the data in each column. The left panel shows that GA designs are highly localized while
RIGID can lead to diverse solutions. The right panel indicates that none of the GA designs satisfy the target, while satisfactory RIGID designs are diverse
and can be very different from feasible designs from data. Solutions from data include feasible designs in both training and test data.
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Figure 5. Optical metasurface design problem configuration and results. A,B) Design variables (materials, layer thicknesses, and cross-section geometry
types). C) A sample absorbance spectrum and the wavelength intervals (highlighted wavelength regions) corresponding to absorbance above the thresh-
old t. The design objective is to generate new optical metasurface designs that exhibit higher absorbance than a threshold t at the user-defined wavelength
interval(s). D) KDE of the estimated likelihood for generated designs. E) Satisfaction rates, average scores, and selection rates for RIGID designs under
varying sampling thresholds (solid lines), in comparison to the satisfaction rate of GA designs (horizontal dashed line). F) Designs (geometries and
material selections) and corresponding absorbance spectra of five metasurfaces generated by RIGID. These five solutions are generated designs with the
highest likelihood of satisfying specified target high-absorbance regions (marked as highlighted wavelength regions). All the layer thicknesses
(hl, l ¼ 1, 2, 3) have a unit of nm. Here all five designs satisfy the target. Generated designs for other targets are shown in Appendix Figure S7–S9,
Supporting Information. G) Distributions of design variables for satisfactory solutions generated by RIGID and GA (for the same target defined in
Panel F). GA designs are highly localized and lack diversity compared to RIGID designs.
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wavelength range(s) within which absorbance should be at least
0.9. We generated 100 designs for each target by sampling from
the estimated likelihood distribution. Among the 1000 generated
solutions, we successfully conducted wave analysis for 911
designs and obtained their absorbance spectra. Figure 5D shows
the KDE for the likelihood of these 911 designs, conditioned on
their target satisfaction. The densities share similar behavior as
in the acoustic problem (Figure 3D)—unsatisfied/infeasible
designs D\Dfeas are concentrated at low likelihood regions,
which cause the likelihood density of satisfied/feasible designs
Dfeas to be a result of shifting some of D’s density from left
(low likelihood) to right (high likelihood). The sampling thresh-
old and metrics relation shown in Figure 5E also follow the same
trend as in the acoustic problem (Figure 3E), which again dem-
onstrates a strong positive correlation between the estimated like-
lihood and the probability of generated designs actually achieving
their targets.

We also generated the same amount of designs under the
same targets using GA. We found that GA designs can generate
100% satisfaction rate (Figure 5E). However, similar to the acous-
tic metamaterial design example, the generated designs are local-
ized compared to RIGID designs which cover much wider
feasible region(s) in the design space. This can be reflected by
the design variable distributions of generated feasible solutions
shown in Figure 5G, which correspond to generated designs for a
randomly created target (the target is shown as the highlighted
wavelength regions in Figure 5F). For example, all the GA
designs have the same cross-section geometric type while RIGID
generated satisfactory designs with different geometric types. It
is easy to see that, without considering solution diversity, achiev-
ing a high target satisfaction rate is trivial—as long as we discover
one satisfactory solution, we can add sufficiently small perturba-
tions to that solution to generate an infinite number of alternative
solutions that have similar responses and thus are also likely to
satisfy the target. Note that compared to the acoustic problem,
this optical problem is less challenging as there is an average
of 28.5% data already satisfying the ten targets (in contrast to
an average of 9.3% satisfactory designs from data in the acoustic
problem). Therefore, finding a few satisfactory solutions for the
optical problem is relatively easy; the challenge lies in discovering
all feasible solutions, where RIGID excels by identifying a wide
range of them. We can also see that when the sampling threshold
is 0.8, RIGID achieves a satisfaction rate of 100%, demonstrating
its ability to trade off the diversity of generated designs for higher
feasibility.

Figure 5F shows generated RIGID designs with the top five
likelihood estimations for a randomly created target. While
the materials, cross-section geometries, and layer thicknesses of
generated designs can be different, all the designs satisfy the tar-
get. Generated designs based on the other nine targets can be
found in Appendix Figure S7–S9, Supporting Information.

3.3. Synthetic Design Problems for Rapid Validation and
Visualization

While the above metamaterial design problems represent practi-
cal use cases, the validation study is time-consuming due to the
expensive computation of metamaterials’ responses such as

dispersion relations and absorbance spectra. To allow fast valida-
tion of the proposed method and easier inspection of the esti-
mated likelihood in the design space, we create two synthetic
case studies. Both problems have 2D “design spaces” that allow
easy visualization.

3.3.1. SqExp Problem

To construct the first synthetic problem, we used a squared expo-
nential function with tunable parameters a and b to mimic the
quantitative functional response of metamaterials. The qualita-
tive response (e.g., “high”- or “low”-energy absorption at a wave-
length) is defined as

Iða, b;sÞ ¼
8<
:0, if z ¼ exp � s� a

0:3bþ 0:1

� �
2

� �
< t

1, otherwise

(3)

where z represents quantitative response and t is a threshold that
converts z into a qualitative response Iða, b; sÞ. Specifically,
Iða, b; sÞ ¼ 1 can mean the existence of a bandgap or high absor-
bance at a frequency s. Then fsjIða, b; sÞ ¼ 1g represents a range
of s that mimics our interested material behavior, such as the
frequency range of the bandgap or the wavelength range of high
absorbance. We call this the positive range. By varying a and b, we
can produce different synthetic responses and positive ranges.
Therefore, we can use a and b as synthetic design variables.
There is a clear relation between these design variables and the
positive range that Equation (3) creates—a and b control the cen-
ter location and the width of the positive range, respectively.

In this design problem, we sampled 100 sets of a and b uni-
formly at random. We set t as 0.9. Based on Equation (3), we
obtained the corresponding responses (Figure 6A). These sets
of a, b, and responses constitute a dataset for training and testing
our model.

3.3.2. SupSin Problem

Another synthetic design problem was constructed by replacing
the squared exponential function in the SqExp problem with a
superposed sine function. Given synthetic design variables a
and b, we can produce qualitative responses using the following
equation.

Iða,b;sÞ ¼
(
0, if z¼ sinð2πðsþ aÞÞ þ sinð3πðsþ bÞÞ< t

1, otherwise
(4)

Same as in the SqExp problem, we set t ¼ 0.9 and created a
dataset with 100 sets of synthetic design variables and corre-
sponding ranges derived from synthetic responses (Figure 6B).
Unlike the squared exponential function, the superposed sine
function can be multimodal, which means it can result in multi-
ple synthetic ranges to mimic, for example, multiple bandgaps.
The bandgap locations are controlled by a and b.

For each synthetic example, we split the data into 80 training
data and 20 test data. We trained a random forest with the same
hyperparameter settings as the other problems, to predict the
binary indicators Iða, b; sÞ. The F1 scores are 0.85 and 0.86 for
the SqExp and the SupSin problems, respectively. The resulting
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confusion matrices are shown in Appendix, Table S3 and S4,
Supporting Information. We evaluated the inverse design perfor-
mance with the trained models.

Due to the fast evaluation of Equation (3) and (4), we can exhaust
all the possible solutions in the design space to obtain the ground-
truth feasible region(s) for a target. Figure 7A shows the estimated
likelihood values and the ground-truth feasible regions under ran-
domly created targets. In general, high-likelihood regions match
actual feasible regions well, which further demonstrates the effec-
tiveness of RIGID. We can also observe that feasible regions in the
SqExp and the SupSin problems follow distinct patterns. In the
SqExp problem, a and b control the center location and the width
of the positive range, respectively. Therefore, the position of the
feasible region along the a-axismoves with the location of the target
range, while the feasible region gradually shrinks as b decreases
since the decrease of b (i.e., positive range width) causes the choice
of a (i.e., positive range center location) to be more restricted to fit
the target range. In the SupSin problem, there might be multiple
positive ranges appearing at the peaks of the superposed sine func-
tion in Equation (4). Design variables a and b control positive range
locations by translating each sine function. Due to the sine func-
tion’s periodicity, we can obtain multiple feasible regions along
both a- and b-axes. Figure 7A shows that the likelihood estimation
by RIGID successfully captured the above-mentioned patterns of
feasible regions.

We also visualize the distributions of satisfactory designs gen-
erated by both RIGID and GA in Figure 7A. Again, we observe a

much broader coverage of the feasible design space by RIGID
designs, while GA designs are merely minor perturbations of
one or two feasible solutions.

Figure 7B demonstrates how the estimated likelihood varies
when increasing the number of trees in a random forest.
With a single-decision tree, the estimated likelihood function
is almost a binary function and highly inaccurate. The likelihood
in the SqExp case is even zero everywhere, whichmakes it impos-
sible to sample designs based on the likelihood. As the number
of trees increases, the likelihood function becomes smoother and
eventually converges.

Besides these qualitative visual inspections, we also calculated
the metrics proposed in Equation (2), as shown in Figure 7C. For
each of the two synthetic problems, these metrics were computed
on 500 designs generated by giving five random target ranges.
Again, the satisfaction rate and the average score increase with
the sampling threshold, indicating a strong correlation between
the sampling threshold and the probability of generated designs
actually achieving their targets. In both problems, all the selected
designs satisfy their targets (i.e., the satisfaction rates and aver-
age scores reach 1) when the sampling threshold reaches 0.8.

4. Discussion

In this section, we discuss the benefits and necessities of RIGID
in terms of its interpretability, data demand, the ability to deal
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Figure 6. Synthetic data creation for A) the SqExp problem and B) the SupSin problem. For each problem, the left panel shows 100 functions with
randomly sampled parameters a and b. We treat a and b as synthetic design variables and the corresponding functions as quantitative responses
(e.g., absorbance spectra of optical metasurfaces). The right panel shows qualitative responses (e.g., high-absorbance wavelength ranges or bandgaps)
are simulated by synthetic ranges, derived by thresholding the 100 functions (Equation (3) and (4) with threshold t= 0.9).
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with discrete design variables, and the diversity of generated
designs.

4.1. Interpretability

RIGID offers two levels of interpretability. First, RIGID is more
transparent than deep learning models. The transparency of the
random forest as a forward model helps us understand how the
predictions are made. The inverse design process based on like-
lihood estimation and sampling is also transparent. The transpar-
ency of both forward and inverse processes offers insights into
the decision-making process and diagnostic capabilities. Second,
owing to the interpretability of the forward prediction model, we
can derive the likelihood, which the inverse design relies on, by
probing into each decision path of trees in the random forest.
The likelihood is an interpretable metric to help us understand
the probability of a generated design satisfying the given target
and thus aid the decision-making process when selecting final
solutions. The results (Figure 3D,E, 5D,E, and 7C) have demon-
strated a high correlation between the likelihood and actual prob-
ability of target satisfaction. The likelihood also serves as an

indicator of the need for adjusting the design space. When
the likelihood is low across the entire design space, the model
believes the target is almost impossible to achieve, which may
indicate a need for expanding the design space (i.e., extending
design space bounds or adding new design freedom) to allow
wider coverage of the response space and easier discovery of sat-
isfying solutions. Please see more discussion in Appendix,
Section S4, Supporting Information. Another benefit of having
the explicit likelihood as an interpretable metric is that we can
adjust the likelihood threshold to trade-off between exploration
and exploitation—higher (lower) threshold means more focus
on exploitation (exploration). Both levels of interpretability were
absent from most prior works of iteration-free, single-shot
inverse design methods.

4.2. Data Demand

RIGID is particularly useful when data collection is expensive, as
in many cases where high-fidelity simulation or experimental
data are needed. Despite the advancement of surrogate solvers
and hardware-accelerated simulation, a persistent trade-off

A

B

C

Figure 7. Visualization of estimated likelihood and validation metrics for synthetic problems. A) Likelihood function values for randomly created design
targets. Orange lines show boundaries of actual feasible regions associated with the targets T ¼ fIða, b; sÞ ¼ 1j∀s ∈ Ωg. Points show satisfactory RIGID
designs and GA designs. B) Likelihood function values estimated by random forests with varying numbers of decision trees. The design target is set as
T ¼ fIða, b; sÞ ¼ 1j∀s ∈ ½0.45, 0.48�g for the SqExp problem and T ¼ fIða, b; sÞ ¼ 1j∀s ∈ ½0.63, 0.68� ∪ ½0.69, 0.71�g for the SupSin problem. C) Validation
metrics for inverse design generation.
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between computational resources and accuracy remains, exacer-
bated by challenges in accessing high-performance infrastructure
and collecting high-fidelity data. With most of the prior inverse
design works based on deep learning with a high demand for data
and computational resources, it is useful to create a method that
works under scenarios at the other end of the data/computational
resource requirement spectrum. Additionally, when the only way
to acquire high-fidelity data is through experiments, data defi-
ciency will become a pressing challenge for deep learning-based
methods. While there is a large collection of deep learning meth-
ods to address single-shot inverse design problems with large data-
sets, the setting of small data seems to be understudied by prior
works, despite this setting’s practicality under constrained budg-
ets. RIGID fills this gap by offering amuchmore data-efficient and
interpretable alternative to deep-learning-based single-shot inverse
design methods.

4.3. Diversity Versus Feasibility of Generated Designs

The MCMC in RIGID can sample new designs in the entire
design space based on the estimated likelihood, which is not lim-
ited to local optimality and has the potential to discover multiple
very different satisfying solutions (if any) in one shot. This is
clearly demonstrated in the SupSin example where there are
multiple disconnected feasible regions in the design space
and the likelihood estimated by RIGID successfully coincides
with these feasible regions (Figure 7A). The ability to generate
multiple satisfying solutions allows us to consider other figures
of merit, such as manufacturability, compatibility, and cost, in
addition to the main objective of satisfying the target response.
Besides enabling flexibility of design choice, generating a com-
prehensive solution set can also bring more insights into the
structure–property relation associated with the target. For exam-
ple, after obtaining a diverse set of designs satisfying the same
target, we can investigate the differences among these designs to
identify critical features that lead to the satisfaction of the target.

For all the four problems demonstrated in this work, when the
sampling threshold is set to 0.8, RIGID achieves a satisfaction
rate of 100%. Although GA can also lead to a high target satis-
faction rate for relatively simple inverse design problems (e.g.,
the optical metasurface design problem in Section 3.2), the gen-
erated solutions lack diversity. In contrast, RIGID provides a
unique way to control the trade-off between the diversity and
the feasibility of generated designs by tuning the sampling
threshold. It is important to note that, without considering diver-
sity, a high target satisfaction rate becomes trivial, as we can sim-
ply apply sufficiently small perturbations to one feasible solution
to generate an infinite number of similar solutions that have sim-
ilar responses and hence are also likely to meet the target. In
many inverse design problems where solutions are nonunique,
finding one solution can be simple, but the real challenge lies in
discovering feasible solutions that cover a broad range of the
design space—a problem where RIGID will outperform
optimization-based methods as demonstrated by our results.

4.4. Discrete Design Variables

The use of a random forest in RIGID allows easy consideration of
discrete design variables. For example, our optical metasurface

design problem has the geometry type and the material choice
for each layer as categorical design variables. In contrast, these
discrete variables will pose challenges for other inverse design
methods based on some machine learning models (e.g., condi-
tional generative models) or gradient-based optimization.

5. Summary and Outlook

We proposed RIGID, an iteration-free, single-shot inverse design
method that generates metamaterials to satisfy qualitative behav-
iors of functional responses. Such qualitative behaviors are
important design targets in many applications such as tailoring
bandgaps of acoustic metamaterials for wave-guiding, focusing,
and vibration mitigation or tailoring the absorption level of opti-
cal metasurfaces at certain wavelengths for medical sensing,
imaging, and communication applications. Unlike most existing
machine learning-based inverse design methods that require
training an inverse model to map targets to designs, the RIGID
method takes advantage of the random forest’s interpretability
and derives the likelihood of target satisfaction by probing the
trained forward model. Incorporated with MCMC, one can sam-
ple a desired number of new designs based on the estimated like-
lihood. Therefore, RIGID functions as a generative model that
can capture the conditional distribution of satisfying designs
given a target or in other words, the one-to-many mapping from
the target to satisfying designs. Using both real-world and syn-
thetic design problems, we demonstrated that RIGID is efficient
and effective on datasets with training sample sizes smaller than
250. We used both qualitative and quantitative approaches to val-
idate the proposed method. The quantitative results revealed a
strong correlation between the estimated likelihood of a solution
and its probability of actually achieving the target, which demon-
strated the effectiveness of the likelihood estimation. Due to the
fast evaluation of output responses and the transparency of
ground-truth solutions, the proposed synthetic problems can
be used for future benchmarking studies of metamaterial design
problems.

While we address qualitative design targets in this study, a
similar idea has the potential to generalize to quantitative targets.
Such problems can be, for example, generating optical metasur-
face designs with specific optical spectra,[31,89] generating func-
tional materials with target nonlinear constitutive relations,[49,90]

or generating programmable metamaterials with prescribed
functional responses.[91,92] It is also straightforward to adjust
the target to achieve multifunctionality (e.g., negative/positive
Poisson’s ratio under low/high compression rate[93]).

Although this study only demonstrates the RIGID method on
parametric design (i.e., designs are represented by geometric
and/or material parameters), the method also applies to shape
or topological design problems where the shape or topology of
designs can vary without being restricted to a limited number
of geometric parameters.[31,43,45,89,94] In those cases, as valid
designs only lie on a lower-dimensional manifold of the design
space, the likelihood of target satisfaction will be zero almost
everywhere in the original design space. Thus before applying
RIGID, we need to obtain a latent representation that compactly
captures the manifold of valid designs[95,96] and use the latent
representation as design variables for inverse design.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 2400611 2400611 (13 of 16) © 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/aisy.202400611 by N

orthw
estern U

niversity Libraries, W
iley O

nline Library on [30/12/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://www.advancedsciencenews.com
http://www.advintellsyst.com


6. Experimental Section
Configurations for GA: The initial population for GA was generated by
randomly sampling solutions within the design variable bounds. At each
generation, we selected individuals to reproduce for a new generation by
randomly picking three individuals from the population, selecting the best
one, and repeating this process 300 times. We set the probability for cross-
over and mutation to be 0.5 and 0.2, respectively. Once an individual
mutated, there was a 5% chance for each design variable in this individual
to mutate. For a continuous design variable, we defined the mutation oper-
ation as adding Gaussian noise with a mean of 0 and a standard deviation
equal to 1% of the variable’s range. For a categorical design variable, muta-
tion is defined as randomly reassigning the category of the variable. We ran
GA for ten generations, each with a population of 300. Finally, we selected a
set of solutions with the highest objective values among all the individuals
created during GA and used these selected solutions as generated designs.

Computation of Acoustic Dispersion Relations: We performed Bloch
wave analysis in COMSOL Multiphysics to compute the dispersion rela-
tions of acoustic metamaterials. Poisson’s ratio of 0.49, Young’s modulus
of 2.7 GPa, and density of 1170 kg m�3 were set as material properties with
�1.5� 104 mesh elements per unit cell. We used Floquet–Bloch periodic
boundary conditions to obtain the first 30 eigenfrequencies along all sym-
metry domains of the cubic irreducible Brillouin zone (Figure 3B) for all
lattices, thus generating a dispersion relation.

Computation of Optical Absorbance Spectra: We computed the absor-
bance spectra for optical metasurfaces using wave analysis inspired by
Zhang et al.[85] The RF Module of COMSOL Multiphysics[97] was used
to evaluate the spectral response of concern, which is the energy absor-
bance AðsÞ in the visible regime (380–700 nm). An absorbance spectrum
was computed with respect to 33 wavelength components sk that were
uniformly discretized over the specified range. An incident plane wave
was assumed to be given from the port, located at the top face of the
analysis domain. We set the periodicity of the analysis domain as
400 nm. The periodic boundary condition on electromagnetic fields was
imposed on the lateral faces of the analysis domain. A substrate made
of SiO2 was placed right below a given unit cell instance (the black layers
in Figure 5A,B). With full electric fields computed through the wave analy-
sis, the energy absorbance at a single wavelength s was quantified as
AðsÞ ¼ 1� jS11ðsÞj2, where Sij is the component of the S-parameter matrix
that specifies energy transfer between ports. We used the data presented
in Ref. [98] to set the material dispersion of the dielectric.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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