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In engineering design, global sensitivity analysis (GSA) is used for analyzing the effects of
inputs on the system response and is commonly studied with analytical or surrogate models.
However, such models fail to capture nonlinear behaviors in complex systems and involve
several modeling assumptions. Besides model-focused methods, a data-driven GSA
approach, rooted in interpretable machine learning, would also identify the relationships
between system components. Moreover, a special need in engineering design extends
beyond performing GSA for input variables individually, but instead evaluating the contri-
butions of variable groups on the system response. In this article, we introduce a flexible,
interpretable artificial neural network model to uncover individual as well as grouped
global sensitivity indices for understanding complex physical interactions in engineering
design problems. The proposed model allows the investigation of the main effects and
second-order effects in GSA according to functional analysis of variance (FANOVA)
decomposition. To draw a higher-level understanding, we further use the subset decompo-
sition method to analyze the significance of the groups of input variables. Using the design
of a programmable material system (PMS) as an example, we demonstrate the use of our
approach for examining the impact of material, architecture, and stimulus variables as
well as their interactions. This information lays the foundation for managing design
space complexity, summarizing the relationships between system components, and deriving
design guidelines for PMS development. [DOI: 10.1115/1.4064633]

Keywords: data-driven design, global sensitivity analysis, interpretable machine learning,
artificial neural networks, grouped global sensitivity indices, sensitivity analysis for design

1 Introduction

Global sensitivity analysis (GSA) is widely used in engineering
design to study the inner workings of complex systems. GSA iden-
tifies the contribution of system inputs to the uncertainty of the
output by analyzing the impacts of design inputs on the model
response. Model verification, model simplification, and establish-
ment of research priorities for identifying the critical model inputs
are examples that benefit from GSA.

Numerous statistical methods have been developed for studying
the relationship between the model inputs and outputs. Sensitivity
analysis is a task related to uncertainty quantification and has
been extensively studied in statistics. The first historical approaches
to sensitivity analysis focused on revealing the impact of small
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input perturbations on system response, which is referred to as
local sensitivity analysis (LSA) [1]. Following that, methods that
consider the variation of the entire model parameters were devel-
oped in statistical frameworks under GSA approaches [1]. Among
them, regression coefficients are used for sensitivity analysis pur-
poses where a simple linear model is first fit, then its regression
coefficients are regarded as sensitivity indices [2]. Variance-based
methods decompose the output variance into terms caused by com-
binations of input variable and input variable groups. Here, sensitiv-
ity is assessed with the amount of output variance explained by an
input [3]. Some other approaches include design of experiments,
graphical methods, Fourier amplitude sensitivity test (FAST),
mutual information index, mathematical approximation strategies
such as polynomial chaos expansion (PCE), and so on [4].
Despite the availability of diverse techniques, statistical methods
use analytical or surrogate models to study the relationships
between system inputs and outputs. However, model-focused
approaches involve critical challenges created by the modeling
assumptions and limitations. When working with a linear regression
model, for example, we assume that the true model form is linear,
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residuals are normally distributed, they have equal variance, and
samples are independent. Such conditions must be satisfied for
the model to be valid, restricting the flexibility to accurately identify
complex behaviors. Most real-world problems consist of numerous
subsystems interacting with each other, leading to an increase in
model size and complexity. In such cases, system models are diffi-
cult to define and even if they are built, they fail to capture nonlinear
behaviors. On the contrary, researchers can conduct physical exper-
iments or run simulations to collect data about a system. With the
availability of sufficient data, machine learning models usually
allow for obtaining accurate models of complex systems where
the physics behind the model behavior is not analytically
unknown. Along with being flexible, machine learning models
can also be employed for GSA purposes.

Even though black-box machine learning models do not serve the
objectives of GSA, interpretable machine learning focuses on trans-
forming black-box models into glass-box models which can provide
insights from a sensitivity point of view. Interpretable models offer
justifications behind model predictions as “Interpretability is the
degree to which a human can understand the cause of a decision”
[5]. The more interpretable a model is, the easier for researchers
to understand its inner workings, which perfectly aligns with the
purposes of GSA. Similar to sensitivity analysis goals, various
interpretable machine learning techniques are available for local
and global analysis. Local interpretability explains why an individ-
ual prediction is made whereas global interpretability describes the
entire model behavior. In the engineering design context, interpret-
able machine learning would allow researchers to identify the rela-
tionships between model variables, eliminating the necessity of
model-based sensitivity analysis implementations. In this article,
we introduce a data-driven approach rooted in interpretable
machine learning for performing GSA in engineering design.

Apart from a data-driven GSA approach for evaluating individual
variables, a special need in engineering design problems is extend-
ing GSA results for assessing the contributions of variable groups
on system response. Dividing the independent variables into
groups and studying the contributions of these is valuable, for
example in cases where the model is complex with many variables
or where there are explicitly meaningful variable groups. One
example would be robust design where researchers aim at designing
systems that meet the performance requirement regardless of the
many sources of variation. In robust design, two broad problems
involve: first, minimization of the performance variations caused
by variations in noise factors and second, minimization of the per-
formance variations caused by control factors [6]. In this frame-
work, it is valuable to evaluate the sensitivity indices for groups
of uncontrollable parameters and design variables. Studying the
importance and effect of these two groups helps with mitigating
the effects of the uncontrollable parameters. A second example of
motivation is the design of programmable material systems
(PMS) manufactured with smart materials that are responsive to
an external stimulus such as magnetic field, temperature, or humid-
ity [7]. This property brings the opportunity of programming PMS
to change their shapes and dimensions for performing sophisticated
functions, controlled drug release for example. For such complex
structures with high-dimensional representations of spatially
diverse material composition, topological architecture, and external
stimulus, data-driven GSA of variable groups allows the investiga-
tion of the role of material, architecture, and stimulus. This informa-
tion then can be used as input for prioritizing the design efforts,
considering that material design, architecture design, and stimulus
design belong to different domains within multidisciplinary
design efforts. In cases where for instance material variables are
identified as the biggest contributors, research efforts and resources
could be centered around the material design domain. Furthermore,
if the interactions between material and architecture variable
groups stand out, collaborative design endeavors between these
two teams will be critical for achieving the desired performance.

Combining these two objectives, performing data-driven GSA,
and further extending the analysis to variable groups, we propose
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employing an interpretable neural network model. The interpretable
neural network model is already introduced in the literature [8] and
allows the investigation of the importance of the main effects and
second-order effects of the input variables. To draw a higher-level
understanding, we further propose a subset decomposition
method [9] to be combined with the interpretable model for analyz-
ing the significance of groups of input variables. The synthesis of
these two techniques allows us to:

(1) improve an interpretable neural network analysis, which
works with individual input variables, to further interpret var-
iable groups,

(2) reveal the complex physical interactions in engineering
design problems,

(3) represent an application and the benefits of data-driven
global sensitivity analysis in an engineering design context.

The remainder of the article is organized as follows. In Sec. 2, we
start by reviewing the relevant studies and provide background
information. Following that, Sec. 3 introduces the interpretable
neural network model which is then combined with the subset
decomposition approach as a contribution of this work to serve
the need for the GSA of variable groups as shown in Fig. 1.
Then, Sec. 4 demonstrates our approach in a mathematical
example problem and a programmable photonic metasurface
design problem where we elucidate the complex relationships and
compile design rules. Finally, Sec. 5 concludes the article and dis-
cusses future work.

2 Background

2.1 Interpretable Machine Learning. Interpretable machine
learning resolves the disadvantages of black-box models and
allows an understanding of how a machine-learning model works.
Research on interpretability involves two types: post hoc and intrin-
sic which is determined by whether interpretability is achieved by
using additional methods after a predictive model is obtained or
whether it is achieved during the training phase [10].

Intrinsically interpretable models mostly have simple structures
which make it easy to evaluate model behavior. For example,
sparse linear models and decision trees are easy to interpret
without any additional effort. The coefficients of linear models
can be referred to as feature importance. As for the decision tree
models, measuring how much a split reduces the Gini index com-
pared to the parent node reveals the importance of that variable.

Post hoc interpretability includes adopting an external method
after the model training is completed. This follow-up interpretabil-
ity analysis after obtaining a model can aim to understand a local
decision or draw global inferences. Post hoc interpretability tools
are model-agnostic and can be adapted to any model. Some exam-
ples of post hoc methods for global interpretability include partial
dependence plots (PDP) [11], accumulated local effects (ALE)
[12] plots, and permutation feature importance (PFI) [13]. PDP
and ALE are visual tools that show how one or two features
affect model prediction. PFI evaluates an input’s importance by
varying it and observing the change in the model’s prediction
error; the more important the input is, the higher the model error
becomes. Besides, post hoc interpretability of local decisions can
be achieved with individual conditional expectation (ICE) [14]
plots, local interpretable model-agnostic explanations (LIME)
[15], and Shapley additive explanations (SHAP) [16]. ICE plots
are equivalent to PDP with the only difference being constructed
for individual data points. An ICE plot consists of separate lines
per instance showing how the instance’s prediction changes with
respect to a feature. LIME involves training a simple local surrogate
model around the area of interest to explain the individual predic-
tion. SHAP is adopted from game theory and explains the contribu-
tion of each input on the model prediction for individual data points.

A tradeoff between predictive performance and interpretability is
reported in the literature [17-20]. That is, intrinsically interpretable
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models limit the model complexity which hurts the predictive accu-
racy. In such cases where predictive performance is more critical
than interpretation, post hoc methods are favored. Still, intrinsically
interpretable models are advantageous as they extract sensitivity
indices of the input variables together with providing a predictive
model. Considering these benefits, an intrinsically interpretable
modeling approach is adopted in this study.

2.2 Sensitivity Analysis With Artificial Neural Networks.
The proposed approach in this article employs artificial neural net-
works (ANNs) for identifying the importance of model inputs.
ANNs provide distinguished predictive advantages for detecting
complex nonlinear relationships between model inputs and
outputs. Nevertheless, they have complex model structures with
varying numbers of layers, all sorts of connections, and numerous
neurons with many weight and bias parameters. Consequently,
finding methods for revealing how an ANN model uses the inputs
for predicting the output is an expanding research area.

Several existing methods address ANN weights as being partially
analogous to coefficients of a linear model and use these for reveal-
ing the input contributions. Simply dividing the sum square of the
weights of the input variable of interest by the sum square of the
weights of all input variables is an intuitive approach in this
regard [21]. Similarly, weights from the input variable through
the hidden layers up until the output variable can be tallied and
scaled relative to all input variables [22]. Adding noise to each
input variable one at a time is also useful for assessing the change
in a chosen error metric which signals the input importance [23].
Moreover, partial derivatives of the ANN outputs with respect to
input neurons is also informative from a GSA point of view [24].
Some other approaches construct an ANN model sequentially
where inputs and their weights are added or eliminated. Tracing
the change in a specified error metric indicates the importance of
the input variable [25]. As introduced previously, PDP, ICE, and
LIME visualization tools can also be utilized with ANN as the sur-
rogate model for revealing the input variable contributions.

2.3 Global Sensitivity Analysis of Variable Groups. For
cases when identifying the contribution of groups of variables on
the model prediction is meaningful, several statistical methods are
offered in the literature. Sobol indices [26], a very well-known
variance-based sensitivity analysis method, can handle -either
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Steps of the proposed method for identifying contributions of the variable groups

individual inputs or sets of inputs as the output variance can be
decomposed with respect to input groups. Morris’s method of
grouping [27] also allows for analyzing variable groups by
varying the variables within a group simultaneously along a trajec-
tory and then observing the change in the system response.
However, this method fails to distinguish low and high-order inter-
actions. Derivative-based global sensitivity measures (DSGM) [28]
calculate the average of local derivatives of the variables from the
same group. This approach involves working with gradients,
which is not applicable to problems with categorical variables.
The approach introduced in this article further extends GSA
results to variable groups while eliminating many of the challenges
raised by these methods.

3 Methods

Aiming to acquire the benefits of data-driven design, we propose
combining two methods for conducting data-driven GSA for vari-
able groups. Our approach first starts with obtaining an intrinsically
interpretable deep neural network model of a given dataset instead
of first training a model and then using post hoc interpretability
tools. This intrinsically interpretable system model delivers the sen-
sitivity indices of individual input variables. Then subset decompo-
sition is introduced to obtain the sensitivity indices of variable
groups. In the end, this workflow enables revealing the complex
interactions between system components and accordingly
manages the design space complexity as described in Fig. 2.

The proposed approach allows the following:

(1) utilizing data-driven design when an analytical or surrogate
model is unavailable or expensive,

(2) managing large datasets and high-dimensional problems,

(3) avoiding any model limitations as the approach is flexible to
capture nonlinear system behavior,

(4) working with mixed input spaces consisting of both contin-
uous and categorical variables,

(5) working with both regression and classification tasks,

(6) performing both GSA and LSA,

(7) visually interpreting the input variable contributions.

3.1 Functional Analysis of Variance Decomposition. The
suggested approach is based on functional analysis of variance
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Fig. 2 Flowchart of the proposed data-driven global sensitivity
analysis approach for variable groups

decomposition (FANOVA) where the variance of a function is
decomposed into terms attributable to input variables and their rela-
tionships [29]. In this section, first, a mathematical example is used
to introduce the approach, and then FANOVA representation terms
are presented.

Considering a simple function defined in Eq. (1) as an example,
the decomposed form of f(x) contains the 4 terms in Eq. (2). Among
these, fy represents a constant value, f; refers to what happens in
f(x) when x; is varied, similarly f, shows what happens in f(x)
when x; is varied, and f, is the case when x; and x, vary together.

S@)=x1x2
S@)=fo+fi +2+/n2 2)

The decomposition terms involve the calculation of conditional
expected values which are provided for the example problem in

Egs. (3)—(6).

x € (0,1}, Vi (1

fo=Elfe = )
fi=Elf®lx]—fo= 5‘ i “
h=Ef@e] =7 ©)

f2 = ELf@)|x1, 2] = fi =12 —f0=x1x2—%—%2 % (6)
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After obtaining the decomposed representation of f(x), n being
the number of samples, function variance is calculated using the
decomposition terms and the orthogonality between them in Eq. (7).

i 2
Var(feey) = L= f[lf(x)]) _{h+h +nf2_ +1 fi)—fo

=fl2 +f; +fh

n—1

N

Then, the sensitivity indices S}, S, and S}, represent how much
of the total variance Var(f(x)) is caused by the individual terms flz,
12, and 3 as shown in Egs. (8)—(10).

S =$22 ®)
fi+5+5h
13
Sy=— 2 9
AR AT ©
_ I
SRR 4o

Results of GSA with FANOVA for the example problem in Eq.
(1) provide the pie chart in Fig. 3. The contributions of x; and x,,
which are named as the main effects in the sensitivity analysis
studies, are equal and account for 43% of the variance in the
output whereas the second-order effect of x; and x, have 14%
importance. Analyzing the main effects is important for not just
eliminating insignificant model variables but also summarizing
the impact of model inputs, x; and x, having the same impact in
Eq. (1) for example. While main effects refer to the controlled var-
iables, second-order effects arise because of the interactions
between these variables, for which the researchers do not have
direct control over. In cases where the main effect of a variable is
not significant, it can be removed from the model. However, if a
second-order effect of the same variable holds substantial weight,
its exclusion creates a change caused by not only the negligible
main effect but also the critical second-order effect. Accordingly,
analyzing main and second-order effects together is essential for
summarizing model behavior.

Following this example, FANOVA representation of any model
can be expressed with Eq. (11) where for Vi = {1, 2, ..., M}, x;is
an independent random variable with probability density functions
pi(x;), @;(x;) is main effects, and ¢, ;,(x;, x;,) is second-order
effects.

fGen . xu) fo+Zw,<x,>+Z Z Pty (i i) +

h=1 ir=i;+1

+ @1 X Xu) (11)

Sensitivity Indices

x1,x2
14% x1
43%

X2
43%

Main effects: x1 = x2 = 0.43, Second order effects: x1,x2 = 0.14,
Total effects: x1 =x2 =0.57

Fig. 3 Global sensitivity analysis results of the example
problem
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The model is decomposed into a constant mean, main effects,
second-order effects, and so on [29]. Preferably, a few low-order
terms, Eqgs. (12)-(14), will be sufficient to approximate f,
eliminating the necessity of complex decomposed model represen-
tations.

M

fo= jf(x) [ [{pitxdx] (12)
i=1

030 = [ [T inespas1 o (13)
J#i

Piyiy Kiys Xiy) = jf(x) 1_[ [p;(x)dx;] — @, (xi,) — @i, (xi,) — fo (14)

J#iLD

3.2 Functional Analysis of Variance Decomposition of an
Artificial Neural Network Model. The interpretable neural
network model is a generalized additive model based on
FANOVA where the dependent variable is the sum of a combina-
tion of variables as shown in Eq. (15) [8]. The method captures
the main effects, h;(x;) in Eq. (16), as well as the second-order
effects, fi(xj, xx) in Eq. (17), where is a u constant value and
F(xj), F(xj, xt), and F(x) are the respective cumulative distribu-
tions.

QEDIXD =+ Y hO)+ Y [l %) (15)

JeSi (RS>
Jh_,-(xj)dF x)=0, VjeS, (16)
j i@, x)dF (g, x1) =0, V(j, k)eSs 17)
jhj(X/yjk(%, x)dF(x) =0 (18)

Equation (16) ensures that the sum of the main effects cancel
each other out; so that when some variables have positive impact on
the output, others have negative impact to enforce g(E[y|x]) =u
after assessing all variable impacts. Similarly, Eq. (17) represents
the same constraint for the second-order effects where all
second-order effects negate one another in the end. Equation (18)
enforces the orthogonality of the main and second-order effects
which is essential for differentiating whether the impact of a vari-
able is caused by its main effect or interaction effect. As an
example, main effect x; and second-order effect x;, x, both
contain the same variable x;. In this situation, it is critical to identify
which one accounts for the contribution of x;. This constraint
imposes that main and second-order effects are independent by
being orthogonal.

As explained in Sec. 3.1, the calculation of main and
second-order effects involve conditional expected values which
are approximated with ANN in the introduced method. The ANN
model starts with y, the average of the output value then captures
the main effects, and in the second stage, the second-order effects
as demonstrated in Fig. 4.

Model training starts with capturing the main effects for which
fully connected subnetworks are trained simultaneously between
each individual input variable and the output. Subnetworks of the
input variables are then introduced to the model sequentially, and
the change in the loss function is traced. Input variables are
ranked according to their impact on the loss function and added
to the model in descending order. After identifying the significant
main effects in this first stage, a similar approach is adopted for
the second-order effects where fully connected subnetworks are
fitted between two input variables and the residuals after the first

Journal of Mechanical Design

gE[Y|x])=u+ ) h; (x,) + fjk(xj,xk)
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Fig. 4 Schematic of the interpretable neural network model

stage. These subnetworks with pairs of input variables in the
input layer are added to the model sequentially and change in the
loss function is monitored. Input variable pairs are ranked with
respect to the change they bring upon the loss function and added
to the model in descending order. After identifying 7;(x;) and
fix(xj, x;) terms to be included in the ANN model, all network
parameters are fine-tuned.

For enhancing interpretability and limiting model complexity, the
method employs several constraints. First, insignificant main and
second-order effects are pruned to make sure that the ANN model
contains only critical terms. Furthermore, a second-order effect is
kept in the model only if at least one of its parent main effects is
included in the model. Finally, the main effects and their corre-
sponding child effects are not correlated as dictated in Eq. (18).

The constrained optimization problem in Eq. (19) is solved by
obtaining 4;(x;) and f(x;, x) terms where @ is the model parame-
ters, /(@) is a loss defined by the corresponding regression or classi-
fication task, Q(x;, x;) = |%Z RO (x;, xk)’ n being the number
of samples, and 4 is the coefficient for the orthogonality constraint.

min £,0)=10) +4)_ > Q. x).

JeS (jk)eSa

s.t.jhi(xj)dF(xf) =0, Vj €S, (19)

jfjk(xj, xk)dF(xj, Xk) = O, V(], k)SSz

hj(x;) and f(x;, xi) are then used for quantifying the importance
of main and second-order effects as shown in Egs. (20) and (21)
where n is the number of samples, D(h)= ﬁZh}(xj), and

D(fu)=-5 ijzk(xj, Xp)-
. D(hy)

IR(j) = 20
D=SDi+ > DUw 0

JjeS (j.k)eSa

. D(fj)
IR(j, k)_ZD(h_j)'i‘ S DU 21

JjeS (j:k)eSa

3.3 Variable Set Decomposition. We employ subset decom-
position [9], which is a variance-based sensitivity analysis method
similar to the FANOVA decomposition for individual variables,
for assessing the impact of variable groups. In this study, we
cover problems where meaningful variable groups are already
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defined, that is by predefining variable groups based on the physical
nature of these variables and application of interest. Assuming that
the groups are statistically independent, we use the same logic for
variance decomposition of the input variable groups as shown in
Eq. (22) where “7” refers to the decomposition items belonging
to the same group.

r r
F@ =+ duCu)+Y Y v v, 6u,u, Xv,0,)

ir=1 iy=ij+1
s Xup) (22)

Total variation now can be decomposed in Eq. (23) into the sum
of variances caused by the groups.

V= Z Vo, + Z Vu[l v, +...t+ Vo, .ur (23)

i1<iy

+Qu,..u,(xuys -

The importance of each subset then represents how much of the
total variability each group accounts for as expressed in Eq. (24).
Obtained group importance values correspond to grouped global
sensitivity indices which can be used for model interpretability
with respect to input groups.

Vu, .u

Su, = (24)

4 Results

4.1 Mathematical Example. As the first example, we analyze
an analytical function with 10 input variables shown in Eq. (25).
The defined function is a high-dimensional problem with 10 input
variables, involving terms with a variety of interactions of
varying shapes and strengths between them. The problem of interest
is a complex function with different mathematical operations
including trigonometric, logarithmic, and exponential calculations.
The goal of applying the proposed data-driven GSA for variable
groups in this problem is to analyze the effect of different mathe-
matical operation terms on the function output.

f@) =tanh (x;x2 + x3x9)v/|x5] + 0.3 + log (xgx7x8)° + 1)

1
2 - 2

FESO B Bl 2
The importance of the main effects is not easy to predict before
the analysis as it highly depends on the sampling distribution of
the variables as well as the respective mathematical operation
type. Still, second-order effects of variables contained within the
same mathematical operation, such as xs and xs from the exponen-
tial term and xg, x7, and xg from the logarithmic term, are expected

before performing the analysis.

4.1.1 Dataset Construction. A dataset of 10,000 samples is
constructed with the Latin hypercube sampling method for the

function f(x). All data points are sampled from the same distribution
U(-1, 1) over adomain Z=X X Y where X € R'”, Y e R.

4.1.2 Data-Driven Global Sensitivity Analysis of Individual
Variables. We build an interpretable ANN model for modeling
Eq. (25) using the toolbox [30] established by the interpretable
ANN model developers [8]. A ratio of 0.8/0.2 is used for randomly
splitting the dataset into training and testing sets. In the network
architecture, we consider the main effects and the most critical
first 20 s second-order effects. Each subnetwork has 5 ReLU
hidden layers with 40 nodes per layer. The batch size is 512
while the maximum number of epochs for the main effects,
second-order effects, and model tuning is 1000. The learning
rates of the Adam optimizer for the main effects, second-order
effects, and model tuning are all 0.0001. Model accuracy is evalu-
ated with mean squared error. The obtained interpretable neural
network model achieved 0.0001 mean squared error and 0.7346
R-squared on the testing set which indicates sufficient accuracy.

Figure 5(b) shows that the interaction between the variables xs
and xjo has the highest impact on the output, accounting for
56.2% of the total variation. Following that comes another
second-order effect between x9 and x;¢ but with only 18.3% impor-
tance. All main effect contributions are less than 10% with x;q, xg,
X5, and xg standing out. Significant interactions between xs, xjo and
X9, X19 are mathematically valid with the consideration of the terms
2xsx10 and 1/(|3x9| + |3x10]) in Eq. (25). Considering the sampling
distributions, multiplication, and multiplicative inverse of absolute
value sums mathematical operations are expected to have high
impacts on the function output.

We also employed the Sobol sensitivity analysis method for the
same problem to validate the results of the introduced data-driven
GSA approach. The same dataset with 10,000 samples is used in
the analysis. The most significant effects are observed as xs, xj9
the second-order effect with 0.3368 and x9, x19 second--order
effect with 0.2099 Sobol sensitivity indices. Following these
come X9, X9, Xg, X5, X1, and x, interaction, x3 and x4 interaction,
and finally, x5 and x4 interaction, all having negligible sensitivity
indices compared to the two dominant second-order effects of xs,
x10 and xg, x19 as presented in Fig. 5(a).

When Figs. 5(a) and 5(b) are examined, Sobol GSA results are
consistent with the data-driven GSA results regarding the ranking
of the important effects as xs, xjo and xg, x1o are identified as the
major contributors in both methods. Minor differences are observed
between the two methods for some of the less significant effects.
The importance ranking and the strength of the effect differ for
X9, Xg, and xs in two methods. Besides, Sobol sensitivity analysis
reveals second-order effects between x3 and x4, x; and x,, x5 and
xe which are not detected by the data-driven GSA method. This is
an expected result as the ANN model prunes insignificant main
and second-order effects; additionally, second-order effects can
further be discarded if none of the parent main effects are signifi-
cant. Overall, the Sobol sensitivity analysis results validate the data-

GSA of Individual Variables GSA of Variable Groups
(a) Sobol Indices (b) Effect Importance (%) (C) Effect Importance (%)

0 0.085 0.17 0.255 0.34 0 14.5 29 43.5 58 0 14.5 29 43.5 58
X5,x10 x5, X 10 S Group 1,Group 3
X9, X 10— x9,x 10— Group 3

X1 0 m— x 10— Group 2
X9 X6 m— Group 1mmm
X6 m— x5 -
x5 m— xOmm

x3,x4 .
x1,x2m.
x5,x68

Fig. 5 Global sensitivity analysis results of the mathematical example (a) with Sobol’s method for individual vari-
ables, (b) with interpretable neural networks for individual variables, and (c) with interpretable neural networks for

variable groups
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driven GSA method within the limits of previously defined model-
ing constraints for managing model complexity.

Regarding the computational efficiency of both methods, Sobol
GSA takes a couple of seconds whereas data-driven GSA requires
a couple of minutes for this problem (with a known analytical
model) on one single-core CPU and 12.7 GB RAM. However,
such an increase is not worth considering because when using
Sobol’s method in real applications, more computational time
needs to be allocated to surrogate modeling than GSA itself
before the Sobol GSA can even be applied. In addition, compared
to the time used for data collection through either physical experi-
ments or physics-based simulations, the time for GSA is often neg-
ligible. No matter which technique is used, the computational cost
for GSA is expected to grow as the number of input variables
increases. In general, an interpretable machine learning-based
approach is better suited when the underlying physical relationship
is complex and when the data are sufficient.

As for the dataset size, results for a dataset of 10,000 samples
have been presented in this study. With the purpose of accurate
comparison between Sobol’s method and the proposed method,
such a large dataset is employed in both analyses considering that
Sobol’s method uses a surrogate model which makes it affordable
to work with large datasets. On the other hand, the proposed data-
driven GSA approach can work with a large dataset provided by
a surrogate model or be used as an end-to-end approach where a sur-
rogate model is not necessary and sufficient data for an accurate
ANN model is available from physical experiments/simulations.
The effect of dataset size is summarized in Fig. 6 where the pro-
posed approach is adopted for datasets ranging from 1000
samples to 10,000 samples. The mean squared error of all models
is at acceptable levels 0.0021 being the highest error observed for
the model trained on 1000 samples. R-squared value of all
models similarly indicates accurate models with 0.84 being the
lowest value for the model trained on 1000. Out of all possible
main and second-order effects, all models identify the same
effects as the top six effects which are x5 and x0, x9 and x9, X0,
X6, X5, Xg9. The ranking of these effects shows variations for
models trained on smaller datasets, yet becomes stable for datasets
with 4000-5000 samples or larger in this problem with 10 input var-
iables. The actual values of the effect importances follow similar
proportions in all models, still showing variations. In brief, for
models that successfully capture the physical relations between var-
iables, the same important effects and importance ranking are antic-
ipated for datasets with varying sample sizes. Considering the
purpose of GSA, identification of the important effects and impor-
tance ranking has higher importance compared to the numerical
values of the effect importance. It should also be noted that com-
pared to the time used for data collection through either physical
experiments or physics-based simulations, the time for GSA is
often negligible.
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Blue: x5, x10; Red: x9, x10; Green: x10; Yellow: x6; Purple: x5; Pink: x9, Orange: x3, x4

Fig. 6 Global sensitivity analysis results of the mathematical
example for datasets with 1000 to 10,000 samples
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4.1.3 Data-Driven Global Sensitivity Analysis of Variable
Groups. The proposed approach allows extending the GSA
results of individual variables to variable groups. Having sampled
every variable from independent distributions, no correlations
between the inputs exist. Thus, we can form variable groups
within the input space using the subset decomposition method.

Equation (26) contains five terms associated with the function.
Intuitively, three variables groups contained in the same mathe-
matical operations can be defined such that Group,=
{x1, X2, X3, X4, x5}, Groupy = {x¢, X7, X3}, Groups = {x9, x10}

f@) =tanh (x;x2 + x3x9)/|x5] + 0.3 + log (xgx7x8)° + 1)

1
2 - 2

FESO B Bl 20
Figure 5(c) displays that the second-order effects between the
variable groups outweigh the main effects. Variables from
Group; and Group,, similarly from Group, and Groups; appear
together within the same mathematical operation terms in Eq. (26).
Thus, interactions are expected between Group;, Group, and
Groupy, Groups. The second-order effect between Group, and
Groups accounts for 56.2% importance while the main effects of
Group; and Groups are 5.1% and 31.8%, respectively. Interestingly,
the second-order effect significantly exceeds the main effects of both
parent groups. This result sets an example for the benefit of analyzing
the interplay between variable groups. It is crucial in this problem to
analyze how these two groups influence each other and create a joint

effect that is more critical than the parent groups.

4.2 Programmable Photonic Metasurface Design

4.2.1 Background. Photonic metasurfaces are artificially engi-
neered structures that can support sophisticated light-matter interac-
tion through subwavelength inclusions [31,32]. Advancements in
the design and fabrication of photonic metasurfaces enable remark-
able functionalities such as perfect absorption, super-resolution
imaging, sensing, waveguiding, and invisibility cloak.

Programmable photonic metasurfaces are a special type of pho-
tonic metasurfaces that can transform between different functional
states as a response to external stimuli. This characteristic enables
programming these structures to switch certain properties under
changing external stimuli for performing. To enable programmable
photonic metasurfaces, a diverse array of physical mechanisms has
been reported in the photonic communities, such as mechanical
[33,34], thermal [35,36], electric [37-39], chemical [40,41], and
light [42—-44].

Light-based programmable photonic metasurfaces, which are the
focus of this article, transform their functional state when stimulated
with light and involve the simultaneous design of multiple systems,
namely material, architecture, and stimulus. Stimulus, an input elec-
tromagnetic loading at a high level, deserves separate attention for
modeling and design as it allows rich design freedom jointly formed
by amplitude, phase, and polarization. In some prior work, the
whole two-dimensional incident field was viewed as the stimulus
to be designed. Ideally, material, architecture, and stimulus
should be modeled and designed concurrently to ensure transpar-
ency and avoid suboptimality. Still, the common practice has
been specifying the material (e.g., dielectric; metallic) and stimulus
(e.g., a single frequency or a frequency band; polarization type) a
priori and then only modeling/designing with respect to architec-
ture. To this end, we analyze the complex interactions between
these design entities and restate the design space with simple
expressions using the data-driven GSA method for variable
groups of material, architecture, and stimulus.

4.2.2 Design Problem. Figure 7(a) depicts a photonic metasur-
face which contains subwavelength structures and is responsive to
light. When light is exerted on the metasurface, it is reflected and
transmitted at certain amounts. The system response of interest
for the design problem is this light transmission property. The
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design problem involves architecture design, design of the subwa-
velength structures, and stimulus design. Architecture variable
group contains three variables one being the unit cell type, a cate-
gorical variable; and two continuous variables for parametrizing
the unit cell designs (Fig. 7(d)). As for the stimulus, two variables
involve the excitation frequency of the light (Fig. 7(b)), a continu-
ous variable, and polarization property of the light (Fig. 7(c)) which
is a categorical variable.

The stimulus variable group includes frequency which is a con-
tinuous input variable in our model as shown in Fig. 7(b). Excitation
frequency is inversely proportional to wavelength A. The ratio
between A and a characteristic length scale of the system (e.g., peri-
odicity A in a metasurface) primarily governs the light-matter inter-
action. Depending on the order of the ratio A/A, the associated
behavior of light-matter interaction tends to vary significantly in
relation to different physical mechanisms.

The second input variable in the stimulus group is polarization
which is illustrated in Fig. 7(c). Polarization is a property of trans-
verse waves, and it characterizes the orientation of the field oscilla-
tions. An electromagnetic wave, an instance of transverse waves,
contains electric field E and magnetic field H, both of which have
orthogonal directions to the wave propagation direction k. Polariza-
tion is conventionally described by stating the electric field direc-
tion. In this article, we consider two types of polarizations:
x-directional and y-directional linear polarization which are treated
as categorical variables in the model. Provided that the wave prop-
agation is given as k = (0, 0, k), each polarization is described by the
notation of Johns vector as shown in Eqgs. (27) and (28).

E, .o 1
Ox _
(52)=(0) @

SO R
(Eo,vf’“" S V2 \ - 29

Under the architecture variable group, we examine unit cell
design as described in Fig. 7(d). Photonic metasurfaces contain
periodic subwavelength features as the major building blocks in
architectural design. The cross-sectional geometry of the building
blocks can take free form without any restrictions. In this article,
we are particularly interested in four canonical classes of unit
cells reported in photonics communities. Two continuous unit cell
design parameters create parametric variation within each unit cell
class.

The system response of major interest is transmission that quan-
tifies the energy transport from input to output in a two-port system
as shown in Fig. 7(b). We aim to reveal the relationships between

(b)
T
=& o
f air
f(s) || =
z Qe
)_; Qs stra
y X 2

architecture-transmission, stimulus-transmission, and their interac-
tion on transmission. The power transport between the ports is
described by an S-parameter matrix whose individual components
correspond to pairwise power transports. Given an n-port system
with port & as the input port, the power transport S;; from port i to
port j of the electromagnetic system is computed with Eq. (29)
[45] where E. is the computed electric field that includes both exci-
tation and scattered field, A; is the face of port i, and T is the conju-
gate operator. This simulation can be viewed as a two-port network
with the excitation port at the top face (I'; in Fig. 7(a)) and the lis-
tener port at the bottom face (I'; in Fig. 7(a)). From the S-parameter
matrix, transmission is formulated with Eq. (30) where w is the
excitation angular frequency.

[, (E.—E).E}da

T
E,.E/)dA;
Sy = Ja (1) 29)
[, (E..EDda,
e S— otherwise
I, (E,-.E,T)dA,.
T(0) = |2 (o)) (30)

4.2.3 Dataset Construction. The incident wave, stimulus in the
design problem, can be viewed as an electromagnetic loading con-
dition and is illuminated from the top face, propagating along the
-z-direction. It is a plane wave specified by two input conditions:
excitation frequency f € Ir =[30, 60] THz and two polarization
types, x-directional and y-directional linear polarization.

As for the architecture, we consider four different geometric fam-
ilies. The cross section is extruded along the z-direction with the
height H = 1000 nm. The periodicity A of the analysis domain is
set as A =2800nm. Assumed to be lossless, the refractive index
n of the metasurface and the SiO, substrate is set as n =15 and
n = 1.45, respectively. All the lateral faces I" are subject to periodic
boundary conditions. This setting effectively mimics the periodical
tessellation of identical, infinitely many building blocks on the
xy-plane.

The full-wave analysis is conducted by the RF module of
COMSOL Multiphysics® [45]. The simulations for the data gener-
ation process formulate and solve the differential form of transmis-
sion spectra, system response in the design problem, according to
Eq. (29) together with the initial and boundary conditions. The
equations are solved using the finite element method with numeri-
cally stable edge element discretization.

The mapping of interest is constructed as U X GX P Xf — T
where U= {cj[j=1,2,3,4} is the set of unit cell types, g=

U (a) (d)
U/
& TiETL

r: response, s: stimulus, a: architecture

Fig. 7 Schematic of the programmable metasurface design problem (a) wave analysis,
(b) transmission as response and frequency as stimulus, (c) polarization as stimulus,

and (d) unit cell type as architecture variables
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{gii=1,2}eGC N? is the continuous vector that specifies para-
metric variation within G with respect to a given unit cell type c;,
P={s]i=1,2} is the set of polarization types, f € lp=
[30, 60] THz is the excitation frequency, and T € [0, 1] is the trans-
mission. To generate a dataset D, 20 space-filling designs are
sampled from G using the Latin hypercube sampling method. The
frequency band Ir is discretized with a spacing of Af =1THz.
As a result, D includes |D|=|U| X |G| X |P| X (|Ig|/Af) = 4960
observations.

4.2.4 Data-Driven Global Sensitivity Analysis of Individual
Variables. We start with training an interpretable ANN model for
this problem [30]. The testing to training datasets are obtained by
randomly splitting the dataset with a 0.8/0.2 ratio. Main effects
and the most meaningful first 20 second-order effects are consid-
ered. Each subnetwork has five ReLU hidden layers with 40
nodes per layer. The batch size is set to 512 while the maximum
number of epochs is 1000, and the learning rates of the Adam opti-
mizer are 0.0001 for the main effects, interaction effects, and model
tuning. Model accuracy is evaluated with mean squared error. The
obtained interpretable neural network model achieved 0.0022 mean
squared error and 0.9793 R-squared on the testing set.

Figure 8(a) indicates that excitation frequency steps up with
40.3% of the total effects on transmission, followed by the
second-order effect between unit cell type and frequency with
37.1%, and finally the main effect of unit cell type with 21.2%
importance. Polarization on its own and its interactions with other
variables exhibit less significant impact compared to the others.

4.2.5 Data-Driven Global Sensitivity Analysis of Variable
Groups. We examine the groups of input variables to further
analyze the importance of variable group main and second-order
effects instead of individual consideration of each input variable.
Since we sampled every variable from independent distributions,
no correlations between the inputs exist. Thus, variable groups
can be defined using the subset decomposition method.

The design problem naturally contains variables related
to architecture and stimulus such that Architecture = {U, G},
Stimuli = {P, f}. Here, we are interested in inferring the importance
of these groups as well as any interactions between them for sum-
marizing the complex design space and inferring guidelines for
the design methodology.

Figure 8()) indicates stimulus as being the most important vari-
able group for explaining the metasurface response with 41.4%
importance. The other variable group, architecture, accounts for

GSA of Individual Variables
Effect Importance (%)
0 10.5 21 31.5 4?2

s: stimulus, a: architecture

(b) GSA of Variable Groups
Effect Importance (%)

0 10.5 21 31.5 42
Stimu | U S

Architecture, Stimulus HE———
Architecture HE———
Fig. 8 (a) Data-driven global sensitivity analysis results of the

programmable photonic metasurface for (b) individual variables
for variable groups
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21.2%. Designing architecture on its own or similarly designing sti-
mulus in isolation would be an inadequate approach for this case as
the interaction between stimulus and architecture has a substantial
effect on the response with 37.4%. In the following section, we
further analyze the architecture—stimulus relation and their com-
bined influence on the system response.

4.2.6 Discussion. Figure 8(b) illustrates the importance of
designing architecture and stimulus together as their combined
effect accounts for 37.4% of the total variance in the model
response. For this purpose, impacts of the input variables are visu-
ally assessed with PDP which was introduced in Sec. 2. The main
effects of polarization, frequency, and unit cell type are illustrated
in Figs. 9(a)-9(c). The critical contribution of architecture and sti-
mulus is then further studied with the second-order effects of polar-
ization and unit cell type in Fig. 9(d), and frequency and unit cell
type in Fig. 9(e).

Figure 9(a) shows that the two polarization types covered in this
article, s; and s, have similar effects on the system response.
Hence, the two classes can be used interchangeably.

Figure 9(b) indicates that when the frequency is below 47 THz,
transmission reaches the maximum with a value of 1 and settles
to 0.5 when the frequency is above 52 THz. Between these two fre-
quencies, for [47, 52] THz, a steep decrease occurs.

Figure 9(c) presents the effect of unit cell type. ¢; and ¢, display
identical effects, maximizing the transmission, and a similar situa-
tion is observed for ¢3 and ¢4 resulting in a transmission of 0.7.
Therefore, if transmission is of primary interest for design, ¢; —
¢, and c¢3 — ¢4 can be interchangeably used without significant
changes in the system response.

Figure 9(d) shows the second-order effect of the polarization and
unit cell type and does not offer any unexpected insights in addition
to Figs. 9(a) and 9(c). Again, the polarization type does not have
any meaningful contribution while unit cell types ¢; — ¢; and ¢3 —
¢4 create similar effects.

When it comes to frequency and unit cell type interaction,
insightful observations appear in Fig. 9(e). When frequency is set
below 52 THz, the transmission response of the photonic metasur-
face becomes maximum (unity). This system response is observed
regardless of the unit cell type; no matter what architecture design
is preferred, the maximum system response is attained. When the
frequency is set above 52THz, the system response becomes
either maximum or minimum depending on the unit cell type. To
elaborate, ¢ and ¢, maximize the transmission while ¢3 and ¢4 min-
imize it, revealing that for frequencies higher than 52 THz,

Partial Dependence Plots of Main Effects

430 0 50 60

Frequency

Polarization Unit Cell Type

cI;artlal Dependence PIots of Second Order Effects

e

Unit Cell Type Unit Cell Type

Polarization
Frequency

Fig. 9 Programmable metasurface design problem partial
dependence plots of (a) polarization, (b) frequency, (c) unit cell
type, (d) polarization and unit cell type, and (e) frequency and
unit cell type
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Table 1 Design guidelines for a programmable photonic
metasurface with two functional states

Maximum response: 7' =1 Minimum response: 7' =0

Stimulus Architecture Stimulus Architecture
f> 52THz Cc1, €2 f<52THZ Cc3, C4
f<52THz C1, €2, €3, €4

architecture plays a critical role. This result validates the necessity
of simultaneous consideration of stimulus and architecture since
the interaction between them brings about a unique effect on the
model response.

Table 1 summarizes the conclusions we derive for achieving two
functional states with this programmable photonic metasurface. To
set the PMS to maximum transmission, two alternative configura-
tions are available and as for the other functional state when the
transmission is minimum, just one configuration is convenient. ' <
52 THz allows achieving both states, thus is preferable when using
two different unit cells is inexpensive. Similarly, ¢; or ¢, also can
result in both states and can be a better option when using two dif-
ferent excitation frequencies is inexpensive.

The proposed method suggests that it is sufficient to employ one
frequency and two unit cells or two frequencies and one unit cell for
designing a PMS with two functional states. With this, we reduce a
complex problem with a large input space containing many param-
eters to just a few design inputs.

The interpretations obtained from the data-driven GSA for vari-
able groups serve as an input for managing the design complexity
and deriving design guidelines for PMS development by providing
answers to the following:

(1) Is it possible to obtain a set of functional states with just one
material or is a spatially varying combination of multiple
materials necessary?

(2) Is it possible to obtain the target performance with just
designing the architecture variables or is the concurrent
design of architecture and stimuli required?

(3) Which architectural structures provide a highly diversified
set of functional states when programmed with the stimulus?

5 Conclusion

In this article, we introduce a data-driven approach for perform-
ing GSA based on interpretable neural networks and further extend
the analysis results for variable groups. The proposed method per-
forms the FANOVA decomposition of a machine learning model
for partitioning the output variance into terms associated with the
inputs, then identifies the contributions of the variable groups on
the model response. We demonstrate that the implementation of
the proposed method is valuable for understanding complex physi-
cal interactions in engineering design for which system models
cannot be explicitly derived due to system complexity. Finally,
we present a use case and potential benefits of adopting a data-
driven approach for conducting GSA in the real engineering
design of PMS.

The introduced data-driven methodology provides substantial
benefits to the global sensitivity analysis of variable groups. First,
it is an end-to-end approach that eliminates the necessity of devel-
oping analytical or surrogate models, which can become expensive
to work with or difficult to obtain. Being a data-driven approach, the
method can successfully manage large datasets, high-dimensional
problems with numerous variables, mixed input spaces containing
both categorical and continuous variables, and highly nonlinear
system behavior. Moreover, global and local sensitivity analysis
in both regression and classification problems can be performed
and visually interpreted. The comparative study of datasets with
various sample sizes revealed that the proposed approach is

091703-10 / Vol. 146, SEPTEMBER 2024

successful in identifying the most important variable effects even
in small datasets. Increasing the dataset size is suggested when
data collection costs are manageable as it improves the predictive
accuracy of the model as well as the robustness of the variable
importance ranking. The PMS application presented in this article
shows that the approach is valuable for managing the design
space complexity when working with large input spaces to extract
the most meaningful design entities. These conclusions can then
drive the derivation of design guidelines for PMS development.

We further identify some future efforts with potential benefits for
advancing the introduced approach. First, the interpretable neural
network model used in this article only covers the main effects
and second-order effects. Adjusting the model architecture for con-
sidering higher-order effects can generate more accurate models.
Similarly, the interpretable neural network model is suitable for
single-output problems. Considering that many engineering prob-
lems involve multiple outputs, modifying the model structure for
multi-output problems is a promising effort. Finally, we plan on
analyzing more complex PMS problems where there are more
input variables with interactions between all three groups of mate-
rial, architecture, and stimulus variables to ensure the transferability
of the previously obtained design rules [46].
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