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The trend toward increasing complexity in many industries has made component malfunctions and
other abnormal events increasingly frequent. These events, often referred to as faults, must be quickly
and accurately diagnosed in order to ensure safe and reliable system operation. Active fault diagnosis
(AFD) refers to methods that design particular input signals to be injected into a system that improve
detectability of faults. In this work, we present a novel optimal AFD strategy focused on the design

of minimally invasive input signals that guarantee safety (i.e., state constraints are not violated) while
also providing a complete fault diagnosis (i.e., measurements are consistent with at most one model)
for general nonlinear systems under uncertainty. Our approach is inspired from taking a data-driven
perspective to this problem wherein we aim to learn its solution by querying an oracle that certifies if
a given input sequence satisfies separability and safety constraints or not. Since the oracle is expensive
to query in many cases, we develop an efficient active learning method that uses deep neural network
models to sequentially identify a batch of informative input sequences to query at every iteration.
We discuss strategies for practically evaluating upper and lower bounds on the oracle using over- and
under-approximations of reachable state and output sets for the dynamic system. The effectiveness and
generality of our proposed approach is demonstrated through multiple case studies including linear

and nonlinear systems.

1. Introduction

In many critical industries, such as aerospace [15], chem-
ical manufacturing [36, 34], and healthcare [37], “faults”
(e.g., component malfunctions or other abnormal changes
in system behavior) can lead to hazardous situations, poten-
tially endangering lives, causing environmental harm, and
reducing operational efficiency. Early detection and diag-
nosis of faults is important for achieving safe and reliable
system operation, especially as systems are becoming in-
creasingly complex. However, the fault detection and diag-
nosis (FDD) task is highly non-trivial to solve in practice
due to several confounding factors including disturbances,
measurement errors, and model structure and parameter
uncertainty.

There has been a significant amount of work on FDD,
with the vast majority of methods being categorized as either
passive or active. Passive FDD methods focus on compar-
ing available input-output system data to models and/or
historical data [13, 52, 51]. A wide variety of techniques
have been investigated for passive FDD including princi-
pal component analysis [31, 14], partial least squares [30],
canonical variate analysis [21, 20], residual [27], observer
[39, 10], set-based [23, 28], machine learning [29, 50, 3],
and manifold learning [22, 12] methods; interested readers
are referred to the following review paper [51] for a more
comprehensive overview. The main challenge with passive
FDD is that many faults may not be diagnosable without
explicitly exciting the system [35, 9, 5, 18]. In other words,
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the collected system measurements may be consistent with
many different fault scenarios, which is a problem often
further exacerbated by the compensatory actions made by
the control system in a passive setting. Active FDD methods,
on the other hand, aim to inject specially designed input
signals to improve diagnosability of faults. Both passive and
active FDD methods can be further categorized as model-
based [52] or model-free [13]; we focus on model-based
approaches in this paper. Note that by “model-based”, we
mean these methods assume the existence of models for the
nominal and faulty versions of the plant.

An optimization-based formulation of the (model-based)
active FDD problem was first proposed in [35], which in-
volved two linear time-invariant models subject to bounded
disturbances and measurement errors: one representing the
nominal (fault-free) system, and the other representing a
system with a fault. For models defined by a set of dy-
namic linear equations, this work showed that the set of
separating inputs (i.e., input signals that generate output
signals that are consistent with at most one model, thus
providing a complete fault diagnosis) is the complement of
a projection of a high-dimensional polytope. Unfortunately,
polytope projection operations can be computationally in-
tensive and even numerically unstable in large dimensions.
By minimizing the input cost/energy subject to being within
the set of separating inputs, one can design so-called op-
timal separating inputs [9]; however, this type of method
requires the solution to a complex bilevel optimization prob-
lem that is highly non-convex, even in the linear two-model
case. To overcome numerical challenges with these methods,
more recent work has explored the use of zonotopes and
mixed-integer programming to improve the scalability of
this framework [49, 48, 45]. However, such methods rely
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on explicit characterization of reachable state and output
sets, which is not possible for most system classes [1]. Thus,
there has been very limited work on optimal active FDD
for general nonlinear systems. A method for design of near-
optimal separating inputs for polynomial/rational systems is
presented in [43], which uses a convex relaxation strategy
to compute outer approximations to the reachable sets. This
method still requires one to solve a complex bilevel opti-
mization problem, with computational cost quickly growing
as more fault models are considered and the tightness of the
relaxation is increased.

In this work, we propose a first-of-its-kind optimal active
FDD method for nonlinear systems under bounded uncer-
tainties with the following features: (i) applicable to a large
number of fault models; (ii) systematically finds separating
inputs with increasingly lower cost/energy (if they exist); and
(iii) can easily incorporate worst-case state constraints on all
models. The only assumption that we make about the system
class is that we can query an oracle for a given input signal
that provides a guaranteed yes or no answer to satisfaction
of the separability and state constraint conditions. We show
how such an oracle can be derived by computing reachable
sets for the different models, and how upper and lower
bounds on this oracle can be practically computed for a
large class of nonlinear systems using existing state-of-the-
art reachability algorithms (implemented in, e.g., [2]). Since
we cannot compute a closed-form expression for this oracle,
we instead propose to learn an approximation of it from
data. The ability to efficiently learn optimal separating inputs
across a much broader range of systems opens the door for
active FDD to tackle previously inaccessible challenges. For
instance, as digital twins become increasingly integrated into
manufacturing processes, our method could be interfaced
with a digital twin, allowing for the simulation of numerous
“virtual” fault scenarios. This fast exploratory analysis with
advanced plant emulators represents a significant advance-
ment, as such capabilities are currently lacking in the optimal
active FDD space. By enabling proactive identification and
intervention, our approach could help prevent major system
disruptions before they escalate, adding a powerful new tool
to the modern predictive maintenance arsenal.

Although the idea of surrogate-assisted optimization is
not new, the key observation here is that much of the input
space is not informative for improving our knowledge of the
optimal separating input. Thus, the learned surrogate model
is not good at distinguishing separating and non-separating
inputs in high dimensions without a huge amount of data.
Since querying the oracle is expensive, we are operating
in a relatively low-data regime and thus need a more in-
telligent sample selection policy. We derive a novel active
learning policy for this problem that uses a combination
of information theory (Shannon entropy) and optimization
to sequentially identify informative batches of samples to
query. At every active learning iteration, the current surro-
gate model (trained on all labeled data) is used to quantify
how useful new samples could be if they are added into
the training dataset. Lastly, to demonstrate the effectiveness

of our proposed method, we apply it on two distinct case
studies with different features including a highly nonlinear
continuously stirred tank reactor system. We observe that
our method is able to consistently find high quality solutions
given a limited sample budget, and it also significantly
outperforms existing sample selection strategies.

The remainder of this paper is organized as follows.
Section 2 introduces the optimal active FDD problem of
interest in this work. Section 3 provides a detailed overview
of our proposed active learning method and how it can be
practically implemented using reachable set approximations.
We evaluate the performance of the method on numerical
examples in Section 4 and provide some concluding remarks
in Section 5.

2. Problem Statement

2.1. System dynamics

In this work, we consider nonlinear discrete-time sys-
tems indexed by time k£ with k = 0 as the initial time. In
each interval [k, k+ 1] for k = 0, 1,2, ..., the system evolves
according to one of n,, possible models, distinguished by an
argumenti € | = {1, ...,n,,}. For the sake of generality, we
allow the model to change between intervals denoted by a
subscript i, that indicates the active model over [k, k + 1].
Following a similar notation to [48], we denote the system
evolution as follows

Xk+l = f(xks uks wkvlk)’ (1a)
Y = hx,u, v, ip). (1b)

Here, x, € R™ are the states, y, € R" are the measured
outputs, u;, € R™ are the manipulated inputs, w, € R"»
are the disturbances, and v, € R" are the measurement
errors. The model corresponding to iy = 1 represents
nominal operation, while all other models i;, > 1 denote
the “abnormal” or “faulty”” models. The choice of the set of
considered models [ is up to the user such that it may include,
e.g., simultaneous faults if desired.

The functions f : R"x X R™ X R"v X R"» X - R"x and
h : R"x x R x R"™ x R" x 1 - R™, respectively, define
the state transition and measurement process.

Note that we assume that all models in [ share the same
“global” state definition. If a model has a “local” state
that does not directly appear in the other models, one can
always introduce a dummy state that remains constant and
does not influence the other states to arrive at a consistent
system definition in (1). A similar argument can be made
for the other unobserved system variables w;, v;, and p.
However, it is critical that the inputs u, and outputs y,
share the same meaning since these quantities are physically
changed/observed in the system.

2.2. Constraints

Since we are interested in discriminating between nor-
mal and faulty models, there must be some system un-
certainty for this to be a non-trivial task. We model this
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uncertainty as the unobserved variables taking on values in
(known) sets, i.e.,

X) € Xg, (Wi, V) EW XV, VkeN, 2)
where x,, denotes the initial state of the system. Note that we
can also incorporate time-invariant parametric uncertainty
by extending the definition of the state to include unknown
parameters (see, e.g., [41, 42] for details). The state and input
must also to satisfy pointwise-in-time constraints, i.e.,

(x.u) € X XU, VkeN. A3)

The set U represents bounded input constraints that limit
the amount the inputs can be changed (e.g., valve opening
can only range from 0% to 100%). These constraints can
be directly enforced through proper selection of the input
sequence. The set X, on the other hand, represents potential
safety constraints on the states (e.g., temperature limits) and
must be implicitly enforced through proper design of the
input sequence. For simplicity, we further assume U and
X are polytopes, though more complex (non-convex) set
representations can be relatively easily incorporated into our
proposed framework at additional computational cost.

2.3. Reachable set notation

We are interested in the reachable sets derived from the
system (1) over various time intervals. We use tildes * to
denote sequences. We further use subscripts to denote the
range of time indices, i.e., a;., = (a, ..., a;) for any variable
aand 0 <! < k. A single subscript implies that the starting
time index is 0, i.e., 4, = a,.,. For any k € N, we define the
solution mappings as

(d)k’ Wk) : R(k+l)”u X I]k+l % R"x x Rk”w x R
- R™ x R",

such that ¢ (T, iy, X, Wy_1, V) and y (T, I, Xg, W15 Vi)
correspond to the state and output in (la) and (1b), re-
spectively, given the specified inputs. In other words, these
mappings represent the recursive application of the dynamic
system (1) from time O up until time k, which depend on
the collection of control input, model index, and disturbance
sequences as well as the initial state and most recent mea-
surement noise term. Note that the state mapping ¢, does
not depend on uy, iy, and v;, but they are included for
notational convenience as ¢, does depend on w;_;, i;_q,
and v,_;. We further define sequences of these mappings
as ¢y = (¢, ..., ¢p) and ., = (v, ..., ;) where the
arguments of these functions have been omitted for the sake
of brevity. For each 7, € ! and §, € R*+Dm  we
define the reachable state and output sets on the interval
[1,k] as ®,.,(Qi,7,) and P,., (i1, 7). The reachable state
and output sets at a particular time index k then correspond
to @ (U, i) = Dy (W, 1) and Py, i) = Py (A, 1)
Note that @;., and ., still depend on the full input and
model index sequences since we always assume the system
evolves from the initial condition X starting at time 0.

Computing the exact reachable sets is not possible for
general nonlinear systems such that we will rely on ap-
proximate computational procedures in practice. We discuss
this further in Section 3.3, which describes how we can
compute over- and under-approximations using established
algorithms.

2.4. Optimal separating inputs

A “fault” (i.e., change in the behavior of the system)
occurring at time k is modeled as a transition from one model
in [ to another such that iy # i,_;. Following a similar
paradigm to [48], we define a fault scenario on an interval
of [0, N] (with N > 0 denoting the final time index) as a
sequence of model indices iy € IV. We let T c IV denote
the set of allowable fault scenarios on [0, N]. Note that,
in general, a fault scenario could involve a different fault
occurring at every time interval, which would correspond to
multiple, simultaneous faults. As discussed in Remark 1, this
would result in a combinatorial explosion of the number of
fault scenarios that we need to check. However, in practice,
many of these scenarios are not important such that we can
explore a much smaller subset of all possible scenarios in
IV. We are interested in finding feasible open-loop input
sequences U, over this interval such that: (i) the observed
output sequence ¥, is consistent with only a single fault
scenario in [ for all possible unobserved variables (2) and (ii)
state safety constraints are satisfied for all all fault scenarios
in 1. Input sequences that satisfy these conditions are called
separating inputs. We can characterize the set of separating
inputs . () = S(@)nc(0) as the intersection of the inputs that
ensure separation of the fault scenarios S(I) and the inputs
that ensure state constraint satisfaction C(I), which depend
on the set of fault scenarios I. We can express these sets
directly in terms of the reachable state and output sets

S = {ay : liIO:N(ﬁN’;N) n fPO:N(ﬁN’jN) =,
C(l)y = {iy : ®y(iy,iy) C X,Vk e NV Vi €1).

where Nf’ ={1,2,...,N}.

It is possible that many possible input sequences satisfy
these constraints. As such, in this work, we are particularly
interested in finding so-called optimal separating inputs that
further minimize a cost function J : UN*! — R that
measures the “energy” of the input sequence (e.g., average
deviation from the nominal operating conditions) subject to
the separability and safety conditions. An optimal separating
input can be found by solving

infy {J@@y) : iy € Uy n7(D)}. )

Solving this problem in practice, however, is very challeng-
ing mainly due to the difficulty in characterizing the set
5 (ﬁ). As shown in, e.g., [48], this set is non-convex even for
simple linear time-invariant systems, with a cost that quickly
grows with the number of states, vertices in polytopic repre-
sentations of the sets, and number of fault scenarios s = |1].
Although these costs can be partly controlled using zonotope
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set representations, these ideas do not easily extend to gen-
eral nonlinear systems. Here, we take a different approach
that looks to sidestep the creation of an implicit form of . (T)
that is likely to be computationally expensive (and must be
tailored to the details of the dynamics). Instead, we opt for a
general approach that aims to learn an explicit representation
of .7 () from data in a sample-efficient manner. The details
of our proposed method are described in the next section.

Remark 1. The separability conditions in /(1) require
checking that every distinct pair of scenarios iy,jy € 1
are not overlapping, which results in (;) with s = [l
The combinatorial growth of these constraints can be pro-
hibitively expensive when either the number of models n,, or
horizon N is large since s = (n,,)" scenarios are needed to
represent all possible situations. However, as noted in [48],
many of these scenarios are either irrelevant or extremely
unlikely in practice. The size of s can also be greatly reduced
by assuming a slow frequency of occurrence of faults (e.g.,
ig =iy = ... = iy over the horizon of interest). We assume
that 1 is known, though its specific form is dependent on the
application.

Remark 2. In this work, we focus primarily on the “offline”
version of (4), where we aim to identify optimal input se-
quences u;‘\, for avariety of scenarios. For example, we may
solve the problem for different values of X, 1, or Uy, with
the results ready for online deployment in various contexts.
In practice, these pre-computed sequences ux would be used
once an online fault detection method indicates a potential
fault. Consequently, there are no strict real-time constraints
for solving (4). However, since we deal with complex, large-
scale models across many conditions, efficient algorithms
are essential to ensure that we can find reasonable solutions
within a feasible computational budget. Note that there has
been work on so-called “closed-loop active fault diagnosis,”
which does attempt to repeatedly solve (4) in a receding-
horizon fashion, e.g., [45, 40]. Extending our method to this
setting is an interesting direction for future work.

3. Active Deep Learning of Optimal
Separating Inputs

In this section, we describe our proposed approach. We
first discuss how to view (4) as a “learning problem” using
a separability oracle and then discuss an efficient active
learning strategy for querying points that are particularly
informative for learning optimal separating input sequences.
We end this section by discussing how one can practically
query over- and under-approximations of the separability
oracle using state-of-the-art reachability methods.

3.1. Learning to distinguish separating and
non-separating inputs
The core observation motivating our approach is that we
can effectively take a “data-driven” view of (4) by learning
an explicit (approximate) representation of the set of separat-
ing inputs .#(1). This is achieved by defining a separability

oracle © : Uy — {0,1} that maps an input sequence to a
binary number

_ )+ ifay e 20,
Oy) = {o ifay ¢ 70, )

where the explicit dependence on the fault scenarios I is
omitted for brevity. Since O(liy) = +1, Viiy € (1) and
OGy) = 0, Vay ¢ .7 (1), we can interpret the set .7(1)
as the decision boundary separating the two classes defined
by O. Although we do not know the structure of O, we can
attempt to learn it from data as long as we can label input
sequences. We defer a discussion on the labeling process to
Section 3.2. For now, let us assume that we can obtain a set
L of labeled samples

£={(@, 0@y, ... @y oy, ©

where |L£| < co. We can use L to train a surrogate model for
the unknown function ©@; we denote the model by Mg where
0 are the set of model parameters. Although in principle
we can use any surrogate model, we focus on deep neural
network (DNN) models in this work since (@ can have a
complex structure. DNNs with more than 1 hidden layer
are postulated to be universal function approximators under
relatively mild conditions [17] such that they can be flexibly
applied to many different problems of interest. We investi-
gate the choice of model type in the context of an example
in Section 4. Here, we restrict the activation function of the
output layer to be a sigmoid function such that the output
of the DNN corresponds to the probability of the separating
input class label being equal to +1. The full set of DNN
parameters, which consists of the weights and bias terms
in each layer of the network, are trained by minimizing the
binary cross-entropy loss function [33]

0* (L) = argmin, _|2_| o
where £,(0) = y; log(p;(0)) + (1 — y)) log(l — p;(0)), y; =
(9(1”1('N)) denotes the true label (equal to +1 for separating in-
puts and O for non-separating inputs) for the ith sample point,
and p;(0) = Me(ﬁx,)) denotes the predicted probability for
the +1 (separating input) class for the ith sample point. In
practice, (7) is solved approximately using local gradient-
based optimization techniques such as stochastic gradient
descent. Interested readers are referred to [17] for details on
DNN training; we rely on standard methods throughout this
work. We let M = Mgyx () denote the final DNN model
trained using labeled dataset L.

This approach will be effective under the assumption
that £ is a sufficiently rich dataset for training M. This
may not be the case if the input sample locations are chosen
in a naive fashion such as uniformly at random. A more
practical sampling method is to use active learning (AL) to
select samples that are likely to be informative toward our
end goal. This is particularly important in the application
of interest in this work where querying © is expected to
be relatively computationally expensive, meaning we do not

(), @)
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Deep learning classification
model for separating inputs
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)
Generate diverse batch of inputs that have highest
classification uncertainty and good performance

Train model using all data Estimate prediction uncertainty

Training Pool Unlabeled Pool
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Add labeled data to the
training pool

Labelinputs using separability
oracle based on reachable sets

7\ Mo

el

Select informative queries
using optimization

Figure 1: lllustration of proposed active deep learning frame-
work for efficiently identifying near-optimal (low-energy) sepa-
rating inputs that, when provided to a system, ensure that only
a unique fault scenario is consistent with the measurements.

have the luxury to “waste” queries on samples that may not
improve our knowledge about the solution to (4).

Remark 3. DNN models have several hyperparameters that
can be tuned in practice including the number of nodes and
layers, the selected activation functions in the hidden layers,
and the choice of parameters in the training procedure (e.g.,
learning rate). Here, we assume that these hyperparameters
have been appropriately selected; however, this assumption
can be straightforwardly relaxed in practice by incorporat-
ing automated hyperparameter tuning methods. There has
been a substantial amount of recent work on this topic [19,
16, 55, 6] that can be directly leveraged by our approach (the
auto-tuning method is simply folded into the model training
process). The time required to complete the training process
depends on several details including the specific training
and hyperparameter tuning algorithms as well as the avail-
able computing resources. Since we are mainly focused on
development of a general framework, these issues are not
addressed in this paper; however, we believe a systematic
exploration of this space is an interesting direction for future
work. We do provide a discussion on the implementation
details, for both the DNN and the oracle O, in Appendix A.

3.2. Active learning algorithm for optimal
separating inputs

The main advantage of AL over traditional supervised
learning methods is the ability to systematically utilize prior
learners/models to iteratively improve performance. An il-
lustrative figure of how AL can be used to solve (4) by
learning how to classify separating input sequences using
an oracle O is shown in Figure 1. A complete description
of such an AL algorithm is also provided in Algorithm
1. The main idea is that, at every iteration ¢, one trains a
classification model M given the current labeled data L.
This model is then used to select a batch of new (unlabeled)
“important” input sequences that are then labeled by query-
ing the oracle, denoted by 53,. This new data is appended to
the current dataset £,, | = L, U B,, and the entire process is
repeated until the sampling budget has been exhausted.

Algorithm 1 Proposed active deep learning method for
training classification surrogate model to efficiently identify
optimal separating input sequences

1: Inputs: Separability oracle O, initial data L, bud-
get N, batch size B, and sample selection function
batch_select(:).

2: Initialize: Iteration 7 « 0, train DNN model M,
(Section 3.1).

: while budget remaining, i.e., |£;] < N, do

Get batch 77](\;) = batch_select(M, , L;, B).

Compute labels (9(171(\;)).
Update data £,,; =
(. 0@ ).
7: Train new DNN model M Ly (Section 3.1).
8: Increment iteration counter ¢ < ¢ + 1.
9: end while
10: return Final model M and labeled dataset L,.

AN

L, U B, where B, =

Line 4 is a critical step in Algorithm 1, which identifies
the next batch of “important” input sequence samples that
are deemed worthy of spending part of our budget toward
labeling them. Previous work has focused on the use of Shan-
non entropy to quantify the informativeness of new samples
aeU, e.g., [11, 7] (note we drop the subscript N in this
section for notational simplicity); however, these methods
are focused on identifying samples that globally improve the
classifier. Here, we are most interested in optimal (minimal
energy) input sequences according to (4) and therefore want
to prioritize finding samples that help us better distinguish
between low-energy separating and non-separating input
sequences. Thus, we propose a novel batch_select function
that accounts for both the energy of the input sequence and
the prediction uncertainty in the classifier, which is summa-
rized in Algorithm 2. The algorithm starts by calculating the
incumbent value #, which corresponds to the minimum cost
separating input sequence contained in the training data L.
The quantity # serves as an upper bound on the solution
to (4). It then generates a finite pool of candidate points
by randomly sampling a large number of values in the set
{a : J() < n}. Shannon entropy is still used to quantify
informativeness of future input sequences; the expected gain
in information by adding a new sample @ to the existing
labeled data is given by

1@ M) = =M (1) log(M(@)) ®)
— (1 = M (@) log(l — M, (@)).

Instead of maximizing I (@1; M) over the entire U space, we
maximize it over the finite pool P that only includes samples
that improve upon the incumbent cost. The pool consists of a
finite number of points that is typically generated by random
sampling in the input space U. We avoid using continuous
optimization in this step for two main reasons: it ensures
there is at least some distance between possible inputs so
that there is little chance of redundant queries and it reduces
computational cost. It is common in the AL literature to
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Algorithm 2 batch_select(O, M, L, B; U, J, €)

1: Inputs: DNN model M, training data £ that consists of
input sequences and oracle labels as defined in (6), batch
size B, input constraints U, input cost (energy) function
J, and the number of optimization-based samples in a
batch with b < B probability levels € = (g, ..., &p).

2: Set batch of samples to empty U = @J.

3: Get incumbent # = ming 0 {J(@) : 0 = 1} (cost of
best separating input).

4: Generate candidate pool P by randomly generating in-
put sequence values in U with cost less than #.

5:fori=1,...,Bdo

6: if i > b then

7: Solve the optimization given I(-) in (8):
" — argmaxgepy g {10 M) )

8: else

9: Solve the optimization problem:
T argmingcg {J (@) @ M) > g;}. (10)

10 end if

11: Append U « U U {ia'}.

12: end for

13: return Selected batch of important input sequences /.

have a fixed starting pool of unlabeled samples; however, the
quality of the final incumbent will be limited by the quality
of the starting pool. Since it is unlikely that the solution to (4)
is inside 7, we also incorporate a step that runs a continuous
optimization procedure in (10) to find the lowest cost input
subject to a constraint on the predicted probability that the
input is a separating input. Low (high) probability levels lead
to more explorative (exploitative) sample selections. Since it
is useful to have a mixture of exploration and exploitation,
we introduce parameters € = (€1, ..., £;) into the algorithm.
Specifically, these parameters correspond to b < B distinct
probability levels that are used to generate samples through
continuous optimization. We found that a default selection
of b =4, =03, = 04,65 =05, and gy, = 0.6
gave consistently good results in our numerical examples for
batch sizes 8 < B < 16. We plan to study the impact of
these choices more in future work, though we did not find
the results were particularly sensitive to the number or exact
values of €.

We provide a visual illustration of the proposed Algo-
rithms 1-2 on a benchmark example in Appendix B.

3.3. Practical over- and under-estimation of
reachable sets

In most cases of interest, we cannot compute exact
reachable sets ®. y (ly,1y) and \i'o: ~ (@, n), which are
needed to evaluate the true separability oracle O(iiy). In-
stead, we rely on existing approximation methods that can be
computed in a reasonable amount of time. Let superscripts 1
and O, respectively, denote inner and outer approximations

of the reachable sets

®f, @y Ty) € Doy iy Ty) € BY (i, i),
Wl @y Ty) € W n (s Ty) € B9 @y, ).

The outer approximated reachable sets are particularly useful
since they can be used to derive input sequences that guaran-
tee the safety and separation constraints are satisfied, though
the resulting cost (energy) might be suboptimal. The inner
approximated sets, on the other hand, are useful for helping
measure the suboptimality gap. To formalize the idea, we
define the following notation

J* = J@y), af =argmin{J(iy) : Oy) = 1},

iiyely

Jp=J@y), Uy =argmin{J(iy) : Oiy) = 1},
iiyely

Ty =J@%), uy =argmin{J(iy) : Oy) =1},
iyely

where J* denotes the energy of the exact optimal separating
ﬁj’(l and JZ and J l’; are, respectively, lower and upper bounds
on J* (e, J; < J* < J}) found from the approximate
reachable sets. Notice how ﬁx has been equivalently defined
in terms of the separability oracle (equivalent to the solution
of (4)). The input sequence ﬁk, which leads to the lower
bound on the cost, is defined similarly to ﬁx with the main
difference being that the uncomputable exact oracle © has
been replaced by an upper bound O constructed from the
inner reachable set approximations (-)/. The function ©
upper bounds O because inner reachable set approximations
lead to outer approximations of the separability set (1),
which corresponds to a relaxation of the true feasible region
of (4). Similarly, the input sequence ﬁ% leads to an upper
bound on the cost using a lower bound O of O constructed
from the outer reachable set approximations (-). Since the
proposed AL framework applies to any form of O, we can
simply apply it to © and/or O depending on what informa-
tion is needed. The quality of the upper and lower bounds
for J* will depend on the tightness of the reachable set
approximations. Tighter approximations are more expensive
to compute, which is the main rationale behind the use of AL
in this context.

There has been a substantial amount of work on outer-
approximated reachability analysis in recent years [4, 46,
54, 53]. In the numerical examples considered in this work,
we focus on the use of COntinuous Reachability Analyzer
(CORA) [2], which is a Matlab toolbox implementing an
array of algorithms for reachability analysis of various sys-
tem types including those with continuous, discrete, and
hybrid dynamics. CORA supports many types of linear and
nonlinear dynamics — the main restriction is that f and h
satisfy some continuity conditions in at least some regions
of the state space. The core functionality of CORA is also
modular, so that new algorithms utilizing basic set types and
operations can be easily implemented in the toolbox. Again,
we note that future developments in reachability analysis
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can be directly leveraged by our proposed AL method, as
it is agnostic to the source of data. To construct inner
approximations of the reachable sets, we can rely on the
approach from [26] that extract them from the pre-computed
outer-approximations.

4. Numerical Examples

In this section, we demonstrate the proposed optimal in-
put design method (Algorithms 1-2) on three problems. The
first is a benchmark linear system, which we use to illustrate
some key aspects of our method such as the importance of
the type of model and the sequential (active) query point
selection strategy. The other two problems are a benchmark
and an industrially-relevant continuously stirred tank reactor
that are meant to showcase the generality and scalability of
our method. To the best of our knowledge, our approach is
the first to find low-energy input sequences that provide a
guaranteed fault diagnosis in such complex systems.

Note the code used to generate these results can be found
on Github: https://github.com/PaulsonLab/Guaranteed_AFD_
ADL.

4.1. Illustrative linear system

To illustrate some of the key features of our proposed
approach, we initially apply it to a simple benchmark linear
system that is a variation of that studied in [47]. The system
dynamics are of the form (1) where f and h are given by the
following linear expressions

£(x;. 0. Wy, ip) = Alilx, + BUidla, + BUw,  (11a)

h(x,., ug, vy, i) = Cliklx, + DIy, | (11b)
where Al Bl Bg,], Cl1, and D! are system matrices
describing the interaction between two signals. In this case,
we take a total of 3 fault scenarios over a horizon of N =1
corresponding to one of the nominal or two faulty models
being active. The nominal model system matrices and vec-
tors are given by

Al [0-6 0 02] gy [-03861 0.1994
|-02 07]"7 T |-0.1994 03861|"

C[l]= 0.7 0 B[l]= 0.1215 0.0598
0 03] w 0.0598 0.1215(°

10
=l ]

and the two fault models are defined as being the same as the
nominal model except for the following modifications

g2 _ [03861 0] L5y _ [0 0.199
= |-0.1994 o7 T |o 03861]

Models 2 and 3 correspond to a fault/failure in the second
and first actuator, respectively. The uncertainty sets (2) are
represented as follows

(]|

¢:eerinena <},

W=V={weR?: ||w|, <0.1},

We do not consider hard state constraints in this example,
i.e., X = R%. The bounded input constraints are given by

U={ueR?: ul, <10}.

The cost function J (uy) = |lugl|, corresponds to the 2-norm
of the input vector.

4.1.1. Importance of deep neural network classifier

Note that, since the output does not depend on u; in
this case, the set of separating inputs .%(l) only depends on
U _;. Further, due to the simplicity of the constraint sets and
the system dynamics, we can exactly compute the reachable
sets for this problem, which enables us to visualize .7 (I) by
querying the oracle (5) on a fine 100 x 100 grid of points
in the two-dimensional space iy = u, € U; the results
are shown in Figure 2 with .#(0) being depicted in green.
Notice how this set is disjoint and non-convex, even for such
simple dynamics. We also see relatively sharp features that
are non-trivial to capture with many existing classification
model types. To study the impact of the choice of model, we
compare the DNN (Section 3.1) to three alternative machine
learning methods: (i) support vector classification (SVC),
(ii) Gaussian process classification (GPC), and (iii) k-nearest
neighbor (kNN) classification. We use the default imple-
mentations of these methods in the scikit-learn package in
Python [44]. We use a DNN with 3 hidden layers, 20 nodes in
the first layer, 13 in the second layer, 7 in the third layer, and
ReLU activation functions, which is implemented using the
PyTorch package [38]. The Adam optimizer [24] was used
for training by minimizing the cross-entropy loss function
(7) for 1000 epochs with a batch size of 200 and a learning
rate of 810~ (all inputs are scaled to be in the range of -1 to
1). We found these architectural choices to be robust across
the examples considered in this work; these parameters can
easily be modified in accordance with Remark 3.

A performance comparison of these models trained us-
ing labeled data collected by querying the oracle at 1024
and 2048 quasi-random Sobol samples from U is shown in
Figure 3. We see that the DNN performs the best out of all
models in both cases and is especially good at resolving the
sharp transitions that occur near the optimal solution. The
kNN model is the second-best model, though it does tend
to struggle near the boundary. This issue is exacerbated in
higher dimensions where the volume of the search space
increases exponentially. DNNs are less susceptible to this
issue and have more overall flexibility such that we prefer
them over kNN in this work. Both the GPC and SVC show
a clear drop in performance compared to the DNN and
kNN, as they assume a stronger degree of smoothness of the
decision boundary that is not satisfied in this problem.

4.1.2. Performance comparison with other methods
We now compare our proposed method in Algorithms 1—

2 to two alternative methods. The first is a standard “passive

learning” approach that simply generates data uniformly at
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Figure 2: lllustration of the set of separating inputs for the
linear system over a single-step time horizon N = 1. Input
values that do and do not lead to separation of the output
reachable sets are shown in green and red, respectively. Thus,
any input in the green region provides a guaranteed fault
diagnosis when given to the system. The optimal separating
input values that minimize the cost function are shown with
yellow markers.

random within the input constraint bounds U, (equal to U in
this case). The second is a more traditional active learning
method that follows the same skeleton as Algorithm 1 but
uses a different batch_select function that maximizes the
expected information gain in (8) over a fixed large pool of
unlabeled samples (generated through random sampling in
the full Uy input space). All algorithms are run using 32
initial data points generated uniformly at random within the
input constraint set, a batch size of B = 8, and a total
budget of N, = 32 4+ 8 X 30 = 272 (equivalent to 30 total
learning iterations). For our proposed method, we set € as
described in Section 3.2. Due to the inherent randomness
of the selection of the initial labeled and unlabeled points,
we perform 20 independent replicates of each algorithm
(all algorithms share the same random seed to ensure a
fair comparison). The best found value (i.e., the incumbent
defined in Line 3 of Algorithm 2) for each algorithm versus
the number of learning iterations averaged over the replicates
is shown in Figure 4. The shaded regions correspond to
confidence bounds computed from +1 standard deviation.
We see that our method outperforms passive learning and
traditional active learning for the given budget. Furthermore,
it consistently gets close to the exact solution computed
using the method in [47]. It is worth highlighting that we
see advantages of our method even in such a simple case
that only involves two independent input dimensions. As we
study next, the observed improvement in sampling efficiency
grows as the problem complexity increases.

4.2. Expanded linear system
We next consider a larger-scale extension of the illus-
trative example in (11). In particular, we incorporate two

1024 2048
R | | Ll
I B RO I -
=2
2 0
a
e — o =
o l w b | wt
1 ™ 1 1‘ |
5] ik | |
¢)
S o
[Vp]
25— - — -
~N I’ ™~ ¥
10 L - i b
0] 3. | ™ |
o]k [N I § o
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)
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=
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Figure 3: Classifier performance comparison using different
model types trained using 1024 (left column) and 2048 (right
column) quasi-random Sobol samples from the input domain.
The dark red points indicate an incorrect prediction of the true
class (in Figure 2), while the light points indicate a correct
prediction.

additional system fault models

0.6 0 0.6 02
41 = [51 =
A ‘[—0.2 0.7]’A ‘[o 0.7]’

and we consider a longer time horizon of N = 4. In this
case, the set of separating inputs now depends on an 8-
dimensional vector corresponding to the 2 inputs over 4
time steps. For simplicity, we only require separation of
the output sets at the final time step, which is technically
an inner approximation of the constraints in .7 (T) that only
require separation of the full output reachable sets over all
time steps. We repeat the same performance comparison
analysis from the previous section (only change is that 512
random initial points are used); the best found value for each
algorithm as a function of number of learning iterations is
shown in Figure 5. Here, we see a substantial improvement
in the quality of the best found separating input sequence,
achieving more than a 2x reduction in input cost over the
course of 30 learning iterations. Furthermore, in nearly all
20 replicates, our method found a solution that was within
< 0.1% of the exact solution.

To demonstrate the importance of finding a better sep-
arating input, we also plot the output reachable sets (and
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Figure 4: Performance of our proposed algorithm versus
traditional active and passive learning on the illustrative linear
problem. All algorithms are repeated 20 times from different
random seeds; the solid line depicts average performance while
the shaded region corresponds to +1 standard deviation. The
black dotted line is the exact solution computed with the
method from [47].
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Figure 5: Performance of our proposed algorithm versus tra-
ditional active and passive learning on 8d version of the linear
problem. All algorithms are repeated 10 times from different
random seeds; the solid line depicts average performance while
the shaded region corresponds to +1 standard deviation. The
black dotted line is the exact solution computed with the
method from [47].

100,000 Monte Carlo samples of the outputs under random
realizations of the uncertainty) at the final time for each
of the five models given the best found solution for each
method and the exact solution in Figure 6. We see that our
proposed method closely matches the exact solution, while
the other methods deviate substantially. Even though all
methods yield disjoint output sets, implying the measure-
ments taken on [0, N] can be consistent with at most one
model, our method ensures these sets are as close together as
possible, meaning they create substantially less disruption to
the operation. The separating input profiles for our method

and the exact solution are shown in Figure 7, which high-
lights that a relatively small input perturbation can reveal the
true status of the system.

Note that we also show that our method continues to
achieve good performance when safety constraints (on states
or outputs) are incorporated in Appendix C.

4.3. Nonlinear continuously stirred tank reactor

We now consider a highly nonlinear continuously stirred
tank reactor (CSTR) model of an exothermic, irreversible
reaction A — B with constant liquid volume. A model of
this type of CSTR is given by [32, 8]

dc E
=2 = %(CM —C,) — kgexp (_E> C,. (12a)
dT ¢ AHkg ( E )
d_ S, _1)- ~ )¢
a - vr=D oC, “P\TRT)™A
(12b)
UA
+ T.-T),
pVCp( ¢ )

where C, is the concentration of A in the reactor, T is
the temperature of the reactor, T, is the temperature of
the coolant stream, and C, f is the feed concentration. The
model parameters are p = 1000 g/L, C, = 0.239 J/(g-K),
AH = -5x10* J/mol, E/R = 8750 K, k, = 7.2 x 10'°
min~!,and U- A = 5x10* J/(min-K). The nominal operating
conditions are g = 100 L/min, Tf =350K,and V =100 L.
The steady-state operating condition for the nominal model
is Cy g = 0.5 mol/L, Ty = 350 K, T, ;, = 300 K, and
Carss = 1.0 mol/L. We define the states of the system
in deviation form, i.e., x = [(C4 — Cy ), (T = THI.
The manipulated inputs u = [u;,u,]" specify the coolant
temperature T, = T, ( + 50 - u; and the feed concentration
Car = Cafs +0.5 - uy. To convert (12) to a discrete-time
system of the form (1), we discretize it at a sampling time
of 0.03 min and incorporate an additive process disturbance
term w, to the right-hand side.

We assume the states are directly measured such that
h(x;,u;, v, i) = x; + v, for all models. The uncertainty
sets (2) in this case are defined as follows

_(foo02s 01, . i
XO_{[ 0 0.05]"5-56“?9,”5”0031},

w={ 9 {|e:eeman <1},
v ={[0,0]"}.

The state constraints are X = R2, bounded input constraints
are U = {u € R? : |lu|l, < 1}, and input cost function
is J(@y_1) = |[ty_q]l,- We assume a horizon of N = 3.
In addition to the nominal system model described above,
we consider three fault models: (i) fault resulting in loss of
ability to manipulate cooling water such that T, = T, ;; +
0 - uy; (ii) fault resulting in loss of ability to control feed
concentration such that C4r = Cyy s + 0 - uy; and (iii)
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Figure 6: The final output reachable sets and 100,000 randomly sampled outputs from the nominal and faulty models for the
N =4 linear model case study using the input profiles found using (a) the exact solution, (b) proposed active learning method,
(c) traditional active learning method, and (d) passive learning method. Models 1, 2, 3, 4, and 5 correspond to dark blue, green,

light blue, yellow, and red, respectively.
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Figure 7: Best found (minimum cost) separating input profiles
for N = 4 linear model case study using the exact optimal
solution (first and second element of u in red and green,
respectively) and our proposed active learning method (first
and second element of u in blue and black, respectively).

fouling on the reactor walls that causes an increase in the
heat transfer coefficient U - A = 6 X 10* J/(min-K).

Due to the highly nonlinear structure of the dynamics
in (12), there is no known method that can provide even an
approximate solution to (4). In fact, the subproblem of just
calculating the reachable sets cannot be carried out exactly.
As such, we use the CORA toolbox [2] to identify rela-
tively tight outer-approximation of these reachable sets, as
described in Section 3.3. Again, we only require separation
of the full output reachable sets at the final time step for
easier illustration. The cost of the best found separating input
for each algorithm as a function of the number of learning
iterations is shown in Figure 8. Similar to the previous case,
our method significantly outperforms traditional passive and
active learning, achieving a nearly 2x reduction in input
cost (compared to the best found solutions with traditional
active and passive learning over 30 iterations) within only 15
iterations. To demonstrate the value of our method, we also
plot the CORA-computed output reachable sets and 100,000
Monte Carlo samples of the outputs over the considered
time horizon by injecting a constant steady-state input profile
(left column) and the optimal separating input found by our
method (right column) in Figure 9. We see that, given a
constant steady-state input, most of the faults yield reachable
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Figure 8: Performance of our proposed algorithm versus
traditional active and passive learning on the CSTR case study.
All algorithms are repeated 10 times from different random
seeds; the solid line depicts average performance while the
shaded region corresponds to +1 standard deviation.

sets that overlap such that we cannot uniquely diagnose if a
fault has occurred or not. The optimal separating input found
by our method, on the other hand, yields enough perturbation
to uniquely identify the fault, without causing the system to
deviate too much from the steady-state condition.

4.4. Complex Industrial CSTR

Lastly, we consider a more complex (industrially-relevant)
nonlinear CSTR adapted from [25]. This process is an
exothermic irreversible set of reactions A - B — C and
A — D with a constant liquid volume where B is the desired
product. The model is described by four state variables as
follows

dc
_th = F(Cpp— Cy) — k1Cy — k3C2, (13a)
dc
d—tB = —FCy+k,Cy — k,Cp, (13b)
dr ky Ag
S =F(T,-T)+ T, -T 13
G =P+ ey =) (130)
_ kiCAAHAB + kyCy AHBC + k;CRAH P
pC,
dT;, 1 )
K e [0, Ky AR(T =T, 13d
G = e (K ART =Tyl (13d)

where C, and Cjy are, respectively, the concentration of A
and B in the reactor and T' and T are, respectively, the
temperature of the reactor and the coolant. The temperature-
dependent rate coefficients follow an Arrhenius law of the
form

—Ey

—> . (14)
R(T +273.15)

ki(T) = kg, exp <

Note that, for this system, the first and second reaction
rate coefficients are equal, i.e., k; = k,. The complete set

b}

0 - 0 -
5 5
) °
= 10 = -0
I [
15 -15
20 20
-0.05 0 0.05 -0.05 0 0.05
C*Co C*CO
5 5
0 D 0 oD
- >
o5 - o5
[ [ -
= 10 = -0
15 -15
20 20
-0.05 0 0.05 0.1 -0.05 0 0.05 0.1
C-C0 C-CO
5 5
O @
) °
= =
no < T
15 -15 a>
20 20
-0.05 0 0.05 0.1 -0.05 0 0.05 0.1
C-CO C-CO
5 5
0 0
5 5
° °
= =
= 10 = 10
15 5t © nominal
< ) cooling fault
feed fault
20 201 5 fouling fault < >
-0.05 0 0.05 0.1 -0.05 0 0.0 0.4
C-CO C-C0

Figure 9: Outer-approximated output reachable sets and
100,000 randomly sampled outputs from the nominal and
faulty models for the CSTR case study over N = 3 time
horizon. The left column corresponds to keeping the input at
their nominal value wherein we see multiple faults overlapping
for all times. The right column corresponds to injecting the
best separating input sequence found by our proposed method
wherein we see clear separation and thus a guaranteed fault
diagnosis.

of model parameters including the steady-state operating
conditions are summarized in Table 1.

We define the states of the system in deviation form, i.e.,
X= [(CA - CA,ss)’ (CB - CB,SS)’ (T - Tss)’ (Tk - Tk,ss)]T'
The manipulated inputs u [u;,u,]" specify the inlet
flowrate F = F,, + 2.137u; and the cooling rate Q, =
Q'k,ss + 4105.9u,. To covert (13) to a discrete-time system
of the form (1), we discretize it at a sampling time of 0.16
hours. Following the original work [25], w = [w/, w,, w3]T
act as time-varying uncertain parameters with K, = KOI +
(0.04 X 10w, Ko, = Ko, +(0.04 x 10'%)w,, and K, =
Ko, + (0.27 x 10%)w; where K, , K, , and K, are the
nominal parameter values reported in Table 1. We assume
only C, and T are measured in this problem. The uncertainty
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Table 1

Model parameters and steady state values for the industrially-relevant CSTR case study

Model Parameters

Nominal/Steady State

K, , =1287x1012h”"
E, ,/R=97583K

K, =4032.0kJ/h-m? - K

K,, = 9.043% 10°I/molA - h
E, /R =8560.0K

AH}P = 4.2kJ/molA AHPEC = -11.0kJ/molB T, =339.1K

AHAP = —41.85kJ/molA  p =0.9342kg/!I T, = 334.0K

C, =3.01kJ/kg - K C,. = 2.0kJ/kg - K F, =2.1371/h

Ap =0.215m? Ve = 10.01 | Oy, = —4394.1kJ/h
m, = 5.0kg T,, = 403.15K Co =5.1mol/I

C,,, = 3.712mol/I
Cp,, = 0.60 mol/I

sets (2) in this case are defined as follows

06 O 0 0

0 06 O 0 .
Xo=30o o0 339 o |§ 18le=Tr.
0 0 0 334
W= {EeR : |Ello <1},
vV = {[0,0]"}.

The state constraints are X = R*, the inputs must satisfy
U = {ueR?: |ull, <1}, and the input cost function
is J(@iy_y) = |lty_qll,- We assume a horizon of N = 5.
In addition to the nominal system model described above,
we consider four fault models: (i) fault resulting in loss of
ability to manipulate inlet flow such that F = F; + 0 - u;
(i1) fault resulting in loss of ability to control cooling rate
such that Q; = Qy s + 0 - uy; (iii) high feed concentration
with C 4o = 5.7 mol/l; and (iv) low feed concentration with
C 40 = 4.5 mol/l.

Similarly to the previous example, the highly nonlinear
structure of the dynamics in (13) means that no existing
method can be provide an exact solution to (4) so we use
the CORA toolbox [2] to identify relatively tight outer-
approximation of these reachable sets, as described in Sec-
tion 3.3. The cost of the best found separating input for our
proposed method, traditional active learning, and passive
learning as a function of the number of learning iterations
is shown in Figure 10. We only ran a single replicate due to
the cost of running the different methods. As in the previ-
ous cases, our method significantly outperforms traditional
passive and active learning, achieving a more than a 2x
reduction in input cost within only ~ 10 iterations. We also
plot the final states of CORA-computed output reachable
sets and 100,000 Monte Carlo samples of the outputs for
each learning method in Figure 11. We see that the proposed
method results in much less deviation from the normal
operating conditions for all possible models. The resulting
input sequence could then be used to obtain a complete,
high-quality fault diagnosis with minimal disruption to the
plant operation.

5. Conclusions

This paper presents a novel approach for near-optimal
guaranteed active fault diagnosis of constrained nonlinear
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Figure 10: Performance of our proposed algorithm versus
traditional active and passive learning on the industrially-
relevant CSTR case study. All algorithms were ran a single
time from the same random seed.

systems subject to bounded time-invariant and time-varying
uncertainty. The main assumption about the system dynam-
ics is that we are able to query an oracle that determines if
the reachable output sets do not overlap for all fault models
and the reachable state sets do not intersect with any unsafe
regions of the state space. Even though such an oracle is
not always directly available, we describe how upper and
lower bounds on this oracle can be computed using state-
of-the-art reachability algorithms. Since the oracle can be
computationally expensive to evaluate, we propose an active
learning approach for sequentially identifying the most infor-
mative input sequences to query. These inputs are designed
in a way to tradeoff exploration and exploitation, so that we
efficiently learn minimally invasive inputs that guarantee a
safe fault diagnosis is achieved over a finite time horizon.
We demonstrate the power of our approach on three case
studies including an industrially-relevant nonlinear contin-
uously stirred tank reactor system. Our results show that our
approach can consistently identify high-quality separating
input sequences given a limited computational budget.
There are several promising directions for future work.
First, conducting a theoretical analysis of the method could
provide a deeper understanding of its convergence prop-
erties, offering guidance on optimizing parameters such
as batch size. Another important direction is the explicit
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integration of this method with digital twins (high-fidelity
plant emulators), enabling more comprehensive exploratory
analyses of large sets of fault scenarios. Finally, while our ap-
proach currently focuses on either outer- or inner-reachable
set approximations, a potential improvement would be to
incorporate both sources of information into the active learn-
ing process, which could reduce performance gaps and en-
hance applicability in certain contexts.

A. Appendix: Implementation Guidelines

In this appendix, we provide implementation guidelines
for each step of our proposed approach, including our envi-
sioned problem setup, as well as how the results can be vali-
dated and deployed in practice. These guidelines are not in-
tended to be exhaustive, but rather to help readers understand
the motivation behind certain choices and facilitate building
upon the results presented in this work. Additionally, we
reiterate that the complete code for all examples is available
on GitHub: https://github.com/PaulsonLab/Guaranteed_AFD_
ADL, which we recommend referencing for a complete, line-
by-line implementation.

A.l. Problem setup

When utilizing our proposed approach, the first step is
to specify the relevant system models for the nominal and
faulty versions of the system of interest, shown mathemati-
cally in (1). This requires specifying the state transition and
output functions as well as the uncertainty sets in (2) and the
state and input constraint sets in (3). The user has complete
freedom in the choice of all of these parameters, along with
the specific fault scenarios 1 of interest (particular sequence
of model indices). A key source of motivation for efficiently
solving (4) for optimal separating inputs is that, in practice,
we imagine a user to want to solve this problem repeatedly
under different choices of these parameters. For example,
one may want to see the impact of increasing the number of
fault scenarios or relaxing the state or input constraint sets.

A.2. Oracle selection

After defining a specific problem instance, the next step
is to select an ’oracle,” as described in Section 3.3, which can
compute outer-approximated reachable sets for each model.
While our approach is agnostic to the choice of reachability
tool, we recommend using CORA [2] due to its flexibility.
However, note that this requires users to implement their
models in CORA’s language, which may involve some effort.
Additionally, there are internal hyperparameters in CORA
that users must configure, such as the time step and the
choice of set representation. In our case studies, we largely
used CORA’s default settings, but we advise users to test
a few random input sequences to ensure that the selected
parameters do not result in overly conservative approxima-
tions. If significant conservatism is observed, adjusting the
settings or exploring alternative methods may help prevent
suboptimal results.

A.3. Initialization

An important input to our overall proposed approach
(Algorithm 1) is the initial labeled training data L. Since
we do not assume any prior knowledge about how to sample
the input space Uy, we recommend starting with quasi
random (space filling) Sobol samples, typically with a num-
ber that roughly scales with D where D = n,N is the
total number of inputs over the horizon N. We have found
that max{10D, 512} works fairly well in practice. The most
critical component of L, is that it should not be too heavily
imbalanced to one class or the other (O or 1), i.e., there should
be a reasonable mix of both positive and negative classes.
If this is not the case after the first round of samples, we
recommend generating an additional set of samples of the
same size. If L has almost all O class labels still, it is likely
that Uy is too small such that we recommend doubling the
size of f]N until at least a reasonable fraction (5%-10%) is
from the +1 class.

A4. Algorithm 1

The main things to consider when implementing Algo-
rithm 1 is the choice of batch size B and the DNN architec-
ture and training procedure. We found that very small batch
sizes often do not work well as they do not fully take into
account the diversity of information provided by the DNN.
As such, we recommend batch sizes of at least 8 in all situ-
ations. However, we expect that larger batch sizes might be
needed for high-dimensional problems due to more possible
interactions. Thus, similarly to the initialization, we would
recommend a batch size that eventually scales roughly linear
in D = Nn, We did not optimize the DNN architecture
or optimization process; we found that a standard shrinking
structure with 3 hidden layers, 20 nodes in the first layer,
13 in the second layer, 7 in the third layer, and a linear
output layer (with ReLLU activation functions throughout)
consistently worked in all of our case studies. We also used
the vanilla Adam optimizer with a fairly standard learning
rate of 8 X 10™*. There are a wide-variety of opportunities
for further DNN optimization, as described in Remark 3.

A.5. Algorithm 2

The key tunable parameter in Algorithm 2 is the number
of optimization-based samples, denoted by b. As discussed
in the text, we found that setting b = 4 with corresponding
probability levels e = 0.3,e, = 0.4,e5 =0.5,and g, = 0.6
worked well across all of our examples. Our tests showed
that very small or large values of & almost always led to
reduced performance, which is intuitive — extreme values of
€ (near 1 or 0) suggest a high confidence in predicting the
true class of the input sequence, contributing little useful
information for future training steps. The choice of b = 4
was primarily due to the fact that nearby values of ¢ tend to
yield similar input values. Since increasing b further did not
significantly improve performance, we opted to fix it at 4.

A.6. Validation
To find optimal separating inputs, Algorithm 1 should
be run iteratively until either the predefined oracle sample
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budget is exhausted or progress stagnates after several itera-
tions. Upon exiting the algorithm, we recommend selecting
the best (lowest-cost) separating input for validation. One
validation approach is to apply this input sequence to all
possible fault scenarios, using a large number of Monte
Carlo samples to account for uncertainties. This helps verify
that the outputs generated by different models do not overlap.
Since this step involves simulation rather than optimization,
it can be executed much more efficiently. By running these
tests, you can quickly assess the robustness of the input
sequence across multiple scenarios, ensuring it is suitable
for deployment in real-world systems.

A.7. Deployment

The final step is to deploy the validated separating input
sequence on the real-world system when necessary, as de-
scribed in Remark 2. In practice, users would pre-generate
and store multiple low-energy separating inputs tailored to
different potential fault scenarios. These inputs would be
readily available for use in online settings. When an issue is
detected — such as through established passive fault detection
methods — a stored separating input can be applied to the
system, enhancing the diagnosability of specific faults based
on the operator’s assessment of the plant’s current status.
The exact choice of which separating input to use will vary
with each application. This proactive approach enables rapid
response to evolving system conditions, helping minimizing
downtime and ensuring continued operational safety.

B. Appendix: Illustration of Proposed Method

Here, we provide a visual illustration of our proposed
method (Algorithms 1-2) on the illustrative linear system in
Section 4.1. Figure B.1 shows the evolution of the proposed
active learning process over iterations t = 0,1...,8 with a
batch size of B = 8. The candidates selected in Algorithm
2 using the expected information gain (Line 7) and the
optimization method (Line 9) are shown with blue dots and
black dots, respectively. The inputs predicted by the DNN
model to lead and not to lead to separation of the output
reachable sets are shown in green and red, respectively.

C. Appendix: Demonstration of Method with
Safety Constraints

In this Appendix, we show results for a variation of
the larger-scale linear system introduced in Section 4.2 that
also includes safety constraints. In particular, we incorporate
constraints on the output reachable set of the form

@, (iiy,in) C Yoo Viy €1, VEKE({0,...,N},
where
Yoate = {y= 1.3 € R? : ¥ < 1},

is the set of allowable outputs, i.e., all outputs for all models
must belong to Y, despite uncertainty. The best found

feasible separating input sequence for each algorithm as a
function of learning iterations over 10 replicates is shown
in Figure C.1. Traditional passive and active learning barely
make any improvement over the starting best value, while
our proposed method reduces the input cost from ~ 1.2 to
< 0.7 on average. We also plot the output reachable sets
and 100,000 Monte Carlo samples of the outputs at the final
time N = 4 when injecting the best found separating input
under representative run of our proposed method in Figure
C.2. As expected, our method finds an input that results
in the output reachable sets for all models being disjoint
(guaranteeing a complete fault diagnosis); however, these
sets also satisfy the desired safety constraints in this case. A
significantly different input signal is needed to ensure Model
5 does not enter the unsafe zone, which is easily identified
by our approach.
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Figure 11: OQuter-approximated output reachable sets and
100,000 randomly sampled outputs from the nominal and
faulty models for the CSTR case study at the final time
step of the complex industrial CSTR case study for input
trajectories found by (a) our proposed method, (b) traditional
active learning and (c) traditional passive learning. We see our
method is able to find a much lower energy input trajectory
that still results in full separation of the reachable sets for all
models.
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Figure B.1: lllustration of the first 9 iterations (+ = 0,1, ...,8) of our proposed active learning method in Algorithms 1-2. Input
values predicted by the DNN to (not) be separating inputs are shown in (red) green. The optimal separating input values are shown
with yellow markers. The candidates selected in Algorithm 2 using the expected information gain (Line 7) and the optimization

method (Line 9) are shown with blue dots and black dots, respectively.
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Figure C.1: Performance of our proposed algorithm versus
traditional active and passive learning on 8d version of lin-
ear problem with output safety constraints incorporated. All
algorithms are repeated 10 times from different random seeds;
the solid line depicts average performance while the shaded
region corresponds to +1 standard deviation.
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Figure C.2: The final output reachable sets and 100,000
randomly sampled outputs from the nominal and faulty models
for the 8d version of the linear model case study (N = 4)
with output safety constraints incorporated. The shaded gray
region corresponds to the unsafe zone that is the complement
of safety region Y, Models 1, 2, 3, 4, and 5 correspond to

safe*
dark blue, green, light blue, yellow, and red, respectively.
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