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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Persistent and responsive collective motion with 
adaptive time delay

Zhihan Chen1 and Yuebing Zheng1,2
*

It is beneficial for collective structures to simultaneously have high persistence to environmental noise and high 
responsivity to nontrivial external stimuli. However, without the ability to differentiate useful information from 
noise, there is always a tradeoff between persistence and responsivity within the collective structures. To address 
this, we propose adaptive time delay inspired by the adaptive behavior observed in the school of fish. This strat-
egy is tested using particles powered by optothermal fields coupled with an optical feedback- control system. By 
applying the adaptive time delay with a proper threshold, we experimentally observe the responsivity of the col-
lective structures enhanced by approximately 1.6 times without sacrificing persistence. Furthermore, we integrate 
adaptive time delay with long- distance transportation and obstacle- avoidance capabilities to prototype adaptive 
swarm microrobots. This research demonstrates the potential of adaptive time delay to address the persistence- 
responsivity tradeoff and lays the foundation for intelligent swarm micro/nanorobots operating in complex 
environments.

INTRODUCTION

Collective motion refers to the spontaneous emergence of coordi-
nated behaviors among multiple interactive agents (1, 2), observed 
in various natural systems such as bird flocks (3), fish schools (4), 
and locust swarms (5). Robotic systems also leverage collective mo-
tion to achieve complex tasks (6, 7). Numerous factors influence the 
dynamics of collective motion, including density (8), perturbation 
(9), velocity (10), boundary (11), time delay (12–20), etc. Time delay 
is particularly important due to its intrinsic presence in every sys-
tem, resulting from the finite information transmission speed among 
agents and the necessary information processing and execution time 
within each agent (21–28). Previous studies revealed that introduc-
tion of the fixed time delay led to interesting phenomena such as 
multistability, instabilities, and oscillations in collective motion (29–
32), which provide an alternative explanation for observed collective 
behaviors in nature (31) and support advancements in swarm robot-
ics (33). Notably, by incorporating proper time delay, the collective 
structures can have high persistence to maintain their movement in 
noisy environments (30, 34). However, since most of the agents can-
not efficiently distinguish nontrivial information (e.g., food sources 
and predators) from noise, the fixed time delay can also reduce the 
responsivity of collective structures, which slows down their global 
response to nontrivial external stimuli (35). Consequently, the fixed 
time delay in collective motion inherently leads to tradeoff between 
persistence and responsivity (36).

In this study, we propose adaptive time delay to effectively manage 
this persistence- responsivity tradeoff in collective motion. Adaptivi-
ty, which involves the ability to adapt to changes in external condi-
tions, has been observed in diverse domains such as biology, physics, 
and social science (37). For the collective motion in nature, it has 
been found that fish groups can fine- tune their critical point in re-
sponse to environmental risk and noise levels (38, 39). Similarly, 
swarm robots can dynamically modulate their interaction strength in 
accordance with environmental cues for better stability and efficiency 

in their collective motion (36, 40). Given the advantages of adaptivity 
in collective motion and that time delay is inherent in nearly all living 
and robotic systems, we hypothesize that the adaptive time delay, 
which merges adaptivity and time delay, could play a critical role in 
the adaptive behaviors observed in living species and offer a powerful 
approach to enhancing performance of swarm robots.

To validate the effectiveness of adaptive time delay in enhancing 
collective motion, we exploit both simulations and an optical feedback- 
control experimental platform to comparatively study the collective 
motion under the conditions of no time delay, fixed time delay, and 
adaptive time delay. Specifically, our experimental setup enables syn-
chronous and flexible navigation of particles at an individual level, 
which can closely resemble the motion of living species through feed-
back control (41–47). This allows us to investigate how different time- 
delay conditions influence the collective motion in the real world. To 
better quantify the persistence of collective structures in experiments, 
we introduce a method called “active perturbation.” Accordingly, by 
manipulating particle- particle interactions based on the time- delay 
Vicsek model (12, 30, 31, 35), our experimental observations quantita-
tively confirm that a fixed time delay can enhance the persistence of 
collective structures against perturbations while diminishing their re-
sponsivity. However, when the time delay of each particle adapts to its 
surrounding environment, the collective structure can maintain its 
persistence while experiencing an approximate 1.6- fold increase in re-
sponsivity, implying a time saving of ~38% for the structure to reach 
the steady state. Furthermore, we demonstrate the advantage of adap-
tive time delay in improving the long- distance transportation and ob-
stacle avoidance of collective structures in complex environments. 
These findings lay the groundwork for adaptive swarm micro/nanoro-
botics and showcase the potential of our platform in elucidating the 
role of adaptive time delay in the collective motion of living species.

RESULTS

Experimental setup and working principle
We begin by introducing our experimental platform, which enables 
feedback control of multiple particles based on programmable 
nonphysical interaction rules (Fig. 1A and fig. S1). Each particle’s 
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directional motion is driven by an individual laser beam (48), which 
can be instantaneously reoriented by adjusting the relative position 
between the beam center and the particle center (49). However, be-
cause of Brownian motion, the actual movement direction of the 
particle deviates from the ideal direction determined by the beam’s 
position. In addition, variations in particle size result in different 
average speeds among the particles (fig. S2). Thus, our particle sys-
tem can effectively mimic the behavior of living species or robots, 
which also move in noisy environments and exhibit heterogeneity 
among agents.

To enable time- delay interaction for each particle, real- time imag-
es are captured and stored in a sequential manner within the control 
program. This allows us to have a time- sequence history of each par-
ticle’s positions, which is essential for implementing the nonphysical 
interaction between particles based on the time- delay Vicsek model 
(12, 30, 31, 35). Specifically, the original Vicsek model posits that each 
particle determines its new direction by averaging the current veloci-
ties of itself and its neighbors, incorporating some random perturba-
tion. This mechanism can give rise to ordered moving patterns, 
particularly at high particle density and low noise levels (8). In our 

adaptation, we maintain the velocity- alignment rule applied to all par-
ticles like the original Vicsek model. However, a departure from the 
original Vicsek model lies in the nonconstant magnitude of the veloc-
ity, and the noise term follows a Gaussian distribution owing to the 
nature of Brownian motion. Additional quantitative analysis support-
ing these modifications can be found in text S1. To introduce time 
delays into the Vicsek model, we assume that particles can calculate 
their new directions based on the past velocities of themselves and 
their neighbors. Time delays can be classified into two categories: 
transmission time delay, resulting from the finite speed of information 
transmission among agents, and response time delay, arising from the 
finite speed of information processing and execution within each 
agent (31). Mathematical descriptions of these time delays and their 
integration into the model can be found in Materials and Methods. In 
addition, we incorporate volume exclusion and reflective boundary 
into our feedback control program (Materials and Methods) to pre-
vent particle collisions and maintain cohesion of collective structures, 
respectively. For enhanced clarity, the definitions of existing variables 
and the parametric conditions for each experimental or simulated 
implementation in the study are available in tables S1 and S2.

Fig. 1. Collective motion of light- powered particles with adaptive time delay investigated by an optical feedback- control platform. (A) Schematic of the feedback 

control setup. independent laser beams power the particles, and their real- time images are captured and stored. the program calculates the next moving directions of 

each particle based on the time- delay vicsek model, and the updated hologram is transferred to the spatial light modulator (SlM) to control the target laser beams. the 

numbers “1” to “4” on the arrows represent the steps of optical imaging capture, imaging analysis, SlM control, and optical manipulation, respectively. in the schematic 

depicting two types of time delay, the solid circles represent the target particles, while the dashed circles represent the neighboring particles. the symbol “P” indicates the 

moving states of the particles. the mathematical definitions of response and transmission time delays can be found in eqs. 3 and 4. (B) Optical images of the collective 

motion without time delay (top) or with fixed (transmission/response) time delay (bottom). Scale bar, 5 μm. (C) ∣ΟR∣ versus time for different time- delay conditions. the 

blue curves are smoothed using an average with a span of 20 timesteps. the green segments highlight the oscillation phenomena, while the red dashed lines represent 

the speed at which the system reaches the steady states. (D) Schematic of the working principle of adaptive time delay. the arrows show the moving directions of the 

agents. the fixed transmission/response time delay used in (B), [C(b)], and [C(c)] is denoted as 1.0τ*. the adaptive response time delay in [C(d)] involves long τ = 1.0τ*, 

short τ = 0.1τ*, and �local,∗

P
= 0.6 . td, time delay.
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To assess the impact of time delay on collective motion within per-
turbed real environments, we performed experiments involving 25 

particles within a circular domain with a radius (rb) of 20.0 μm. The 

chosen time delay value (τ) is set at τ = τ∗ ≅
r0

∣vavg∣
 (30), where r0 repre-

sents the radius of velocity alignment, which is set as 7.75 μm if with-
out further clarification. The term ∣vavg∣ denotes the average particle 
velocity under specific laser power and laser- particle distance condi-
tions, whose value is set as 1.16 μm/s here (text S1). In experiments, 
each loop is subject to an execution time derived from various instru-
ments, designated as ∆t = 0.132 s. Consequently, we establish τ in our 
experiments by setting τ = n

τ
∗Δt , where nτ is adjustable as any posi-

tive integer. The spatiotemporal patterns observed in experiments, i.e., 
rotating collective structures around the center of the confined circular 
geometry, indicate that both transmission and response time delays 
promote more persistent and ordered collective motion compared to 
motion without time delay (Fig. 1B and movie S1). To quantitatively 
assess the impact of time delay on collective motion, we use the rota-
tion order parameter, �R =

1

N

∑N

i=1
v̂
i
× r̂

i−b (50), where N denotes 
the total number of particles, and r̂

i−b represents the unit vector from 
the center of the particle to the center of the confined geometry. The 
absolute value of ΟR ranges from 0 to 1, indicating the group’s degree 
of rotation. By performing parametric sweeping of the fixed τ, our ex-
perimental observations reproduce two distinctive features of time- 
delay collective motion, which are consistent with the predictions by 
several previous simulation studies (12, 30, 35). First, the time- averaged 
∣ΟR∣ (〈∣ΟR∣〉) initially increases and then decreases as τ increases 
(figs. S3 and S4A). This behavior is attributed to the fact that time delay 
initially helps collective structures resist noise at small τ values but hin-
ders particle alignment at large τ values (12). Second, the observed 
oscillations in ∣ΟR∣ arise from the echoing of information due to de-
layed interactions, a characteristic feature of delay dynamical systems 
(12, 51). Their periodicity (figs.  S3 and S4B) can be accurately de-
scribed by the linear function periodicity = τ + ∆t (12, 35).

Upon further examining ∣ΟR∣ over time under different time- delay 
conditions, we observe some distinct behaviors. Without time delay, 
∣ΟR∣ exhibits strong fluctuations due to Brownian motion (Fig. 1C, a), 
which indicates that the collective structure is noisy and at the dy-
namic phase transition (fig. S5). In contrast, collective motion with a 
fixed time delay demonstrates a persistent rotation around the center 
of the confined geometry once it reaches a steady state (Fig. 1C, b and 
c). An induction period observed previously (30) is also found here, 
arising from the slow velocity alignment induced by the long fixed 
time delay. To confirm that the observed persistent motion is indeed 
due to the introduction of time delay, we dynamically vary τ within 
the same experimental realization and observe the corresponding 
changes in ∣ΟR∣ (movie S2). The switch between fluctuation and a 
stable rotation of the same collective structure under different τ values 
validate that persistent collective motion directly results from the in-
troduction of time delay (fig. S6). In addition, as the responsivity of a 
collective structure reflects the rate at which it responds to the pertur-
bation and approaches the presumed steady state (35, 36), we adopt 
the straightforward definition of  d∣ΟR∣/dt to quantify the collective 
structures’ global response speed, i.e., their responsivity, in this study. 
An R- fold increase in responsivity implies that the collective structure 
can reach the steady state R− 1

R
∗ 100% faster. Because of the tradeoff 

between persistence and responsivity, d∣ΟR∣/dt decreases substantially 
as τ increases (red dashed lines in Fig. 1C).

In natural systems, fish schools have been observed to adjust their 
distance to criticality to manage the persistence- responsivity tradeoff 
(38, 39). One hypothesis suggests that fish starts to startle when the 
accumulated stochastic activation cues from their neighbors exceed a 
certain threshold (39). This implies that fish can adjust their “sensi-
tivity” to their local environment, ensuring that the school of fish 
adapts its movements only in response to sufficiently strong cues. In-
spired by this concept, we introduce the concept of sensitivity to time 
delays, which is common in both living and artificial systems, to pro-
pose an adaptive time- delay strategy that enhances the responsivity 
of collective structures while maintaining high persistence. The time 
delay of collective structures can be made adaptive through different 
mathematical definitions. In accordance with Ockham’s Razor, we 
propose a straightforward approach where a threshold of the local 
polarization order parameter ( �local,∗

P
 ) is used to determine the tran-

sition between short τ and long τ for individual particles (Fig. 1D). 
The value of τ at time t is determined by

Ci represents the circular neighborhood around particle i, exclud-
ing particle i itself. For simplicity, we let it have the same radius as the 
velocity- alignment zone (i.e., r0). Nlocal is the total number of neigh-
boring particles plus particle i itself. Here, ΟR is not used because 
agents, such as living species or robots, may not have access to global 
information like the center of the confined geometry. However, they 
can continuously assess the translational motion of their neighbors. 
When the �local

P
 of an agent exceeds a predefined threshold �local,∗

P
 , it 

indicates well- aligned velocities of the surrounding agents, repre-
senting an ordered local environment. In this case, the agent adopts a 
large τ. Conversely, when 𝑂local

P
< 𝑂

local,∗

P
 , the agent experiences a 

relatively disordered local environment, leading to a short τ. It should 
be noted that the adaptive time delay is based on the response time 
delay, as the transmission time delay typically depends on environ-
mental conditions, such as the speed of light, sound, or chemical dif-
fusion, which cannot be actively tuned by the agents. Therefore, our 
discussion about adaptive time delay focuses on modulating the re-
sponse time delay, which is likely to be controlled internally by living 
species or robots. Besides, the value of short τ, long τ, and �local,∗

P
 in 

Eqs. 1 and 2 can be specific to every system and might be varied for 
different collective structures. By implementing the adaptive time de-
lay in our experimental platform with an appropriate �local,∗

P
 , the col-

lective structure can resist the influence of particle motion fluctuations 
as those with a fixed time delay while also having higher d∣ΟR∣/dt 
(Fig. 1C, b and d). This initial finding suggests that the introduction 
of adaptive time delay has the potential to generate collective motions 
that are both persistent and responsive.

Active perturbation for persistence characterization
To quantitatively analyze how adaptive time delay manages the 
persistence- responsivity tradeoff in collective motion, we first in-
troduce an active perturbation method to assess the persistence of 
collective motion, similar to d∣ΟR∣/dt for the responsivity. Persistence 

τ(t) =

{

short τ,𝑂local
P

(t−Δt)<𝑂
local,∗
P

long τ, 𝑂local
P

(t−Δt)≥𝑂
local,∗
P

(1)

�
local

P
=

1

Nlocal

∣v̂i +
∑

j∈Ci

v̂j∣ (2)
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measures the collective structure’s ability to maintain its original 
motion in the face of stimuli. Ideally, the collective structures 
should be able to withstand trivial perturbations, such as environ-
mental noise (line “1” in Fig. 2A) while also adapting their motion 
in a controlled manner without collapsing when encountering non-
trivial perturbations, such as predators or food sources (lines “2” 
and “3” in Fig. 2A). Moreover, the response represented by line 2 is 
superior to that of line 3 as it demonstrates faster adaptation to 
nontrivial stimuli. For microparticles in a fluidic environment, it is 
essential to attenuate their inherent Brownian motion for persis-
tent collective motion. Experimental measurements demonstrate 
that the influence of Brownian motion decreases rapidly as the ob-
servation time increases due to its stochastic nature (Fig. 2B and 
text S1). Therefore, if we consider Brownian motion as a type of 
perturbation with the observation time being ∆tob ( Δtob = nob ∗ Δt 
with nob being any positive integer), then its influence can be min-
imized by increasing ∆tob (Fig. 2B). Meanwhile, as shown in Fig. 1 
and fig. S4, a properly long τ in the collective structure can effec-
tively eliminate the influence of Brownian motion, leading to much 
more persistent collective motion. On the basis of this observation, 
we assume that, when τ is comparable with or larger than the 
perturbation’s duration time, the impact of this perturbation can 
be eliminated.

For the active perturbation method, it allows us to activate vari-
ous types of perturbations with arbitrary duration times (∆TP) dur-
ing the ongoing collective motion. Different active perturbations 
can be achieved in our platform by emulating scenarios that occur 
in living or robotic systems, such as certain particle(s) having ab-
normally higher velocity, suddenly losing navigation ability or mov-
ing in specific directions like the living species finding food or 
predators (text S3 and movie S3). To better quantify the persistence 
of collective structures while avoiding any particle collision, we de-
sign an active perturbation where a particle is directed toward the 
center of the confined geometry within certain ∆TP (Fig. 2C). This 
perturbation aims to reduce the value of ∣ΟR∣, as indicated by the 
expression of ΟR. As particles are programmed to align their veloci-
ties with their neighbors, the maximum reduction in ∣ΟR∣ (∆∣ΟR∣max) 
can serve as a metric to quantify the total impact of this active per-
turbation and characterize the persistence of the collective struc-
tures (Fig. 2D) (36). Specifically, ∆∣ΟR∣max represents the difference 
between ∣ΟR∣ at the onset of the active perturbation and the mini-
mum ∣ΟR∣ observed during the effective time period of the pertur-
bation. A higher ∆∣ΟR∣max  indicates a lower level of persistence in 
the collective structure.

In the experiments, we exploit the active perturbation method 
with different ∆TP values in collective structures that have τ values 

Fig. 2. Investigation on the time- delay–enhanced persistence using the active perturbation method. (A) Schematic demonstrating four possible conditions when 

collective motion encounters a perturbation with duration time ∆TP . (B) the Sd of the angle deviation (σθ) of a single particle’s motion perturbed by Brownian motion 

versus the observation time (∆tob) normalized by τ*. ∆tob can be equal to the perturbation duration time ∆TP . the bottom- left inset shows that the Brownian motion will 

deviate the particle’s moving direction by an angle θ within certain ∆tob. the top- right inset indicates that θ can be fitted by the normal distribution. (C) time- sequence 

optical images showing the execution of an active perturbation, where one particle is forced to move toward the center of the circular confined geometry. After ∆TP , the 

perturbed particle recovers its interaction with the neighboring particles. Scale bar, 5 μm. (D) the change of ∣ΟR∣ with a fixed response time delay τ = 1.0τ* when an active 

perturbation with ∆TP = 4.0τ* is implemented. the curves are smoothed by using an average with a span of 200 timesteps. (E) ∆∣ΟR∣max versus ∆TP/τ* for collective struc-

tures with fixed response time delay τ = 0.5τ* (left) and τ = 1.0τ* (right). the active perturbation types in (d) and (e) are the same as that shown in (C). All the error bars 

indicate the Sd.
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of 0.5τ* and 1.0τ*, respectively (Fig. 2E). The simulations were also 
carried out using agent- based modeling. The parameters governing 
the agents’ movement, such as Brownian motion, velocity, particle 
heterogeneity, and long- range physical interactions (texts S1 and 
S2), were quantified through experimental data and subsequently 
incorporated into the simulations. Thus, our simulations encompass 
velocity alignment, noise, heterogeneity, and optothermal- induced 
long- range physical interactions (Materials and Methods) while ex-
cluding considerations of hydrodynamic coupling and complex 
concentration profiles of solutes (text S4). Both the simulations and 
experiments consistently show that as the τ value increases, the ob-
served ∆∣ΟR∣max decreases under the same ∆TP, suggesting a posi-
tive correlation between τ and the persistence of collective structures 
(fig. S7A). This correlation can be attributed to the fact that the time 
delay hinders information propagation among particles (12, 35), re-
ducing the influence of any perturbation on the collective structure. 
As a result, the global change (e.g., ∆∣ΟR∣max in our current system) 
in the collective structure becomes smaller. In addition, we observe 
a saturation of ∆∣ΟR∣max  as ∆TP increases. This saturation occurs 
because when ∆TP is sufficiently long, the perturbed particle reach-
es the vicinity of the center of the confined geometry. In this region, 
the perturbed particle becomes less correlated with the rest of the 
particles (Fig. 2C), limiting its influence on the collective motion. 
Accordingly, we can explain our assumption that the effect of 
Brownian motion on collective motion can be reduced by the time 
delay. If Brownian motion is treated as a perturbation with a short 
∆TP, then its capacity to induce disorder in the collective structures 
is high (Fig. 2B). However, the impact of this perturbation with a 
short ∆TP is minimized when the collective structure has an appro-
priately long- time delay (Fig. 2E and fig. S7B). In contrast, if Brown-
ian motion is considered as a perturbation with a long ∆TP, although 
its influence will not be easily mitigated by the time delay this time, 
then its impact is substantially reduced at longer ∆TP (Fig.  2B), 
which still cannot influence the collective motion much. Thus, the 
application of a suitable time delay to the collective structure leads 
to a reduction in the influence of Brownian motion (30, 35).

In summary, by having an appropriate time delay, collective 
structures can exhibit high persistence, preventing the system from 
being overly sensitive to environmental noise. However, since the 
particles cannot differentiate the nontrivial information from noise, 
this increase in persistence comes at the cost of reduced responsivi-
ty, as the time delay not only filters out noise but also hinders the 
alignment among particles.

Characterization and management of 
persistence- responsivity tradeoff
The intrinsic tradeoff between persistence and responsivity in col-
lective motion can be managed through the bio- inspired adaptive 
time- delay strategy (Fig. 1D). By measuring ∆∣ΟR∣max and d∣ΟR∣/dt 
under different fixed response time delays, we first confirm the exis-
tence of the persistence- responsivity tradeoff (Fig. 3A, a and b). It is 
important to note that ∆∣ΟR∣max cannot be accurately measured if 
the fixed time delay is too short or too long. When τ is too short, the 
influence of particle motion fluctuation is not substantially reduced, 
and it overlaps with the effect of active perturbation, thereby dis-
turbing the measurement of ∆∣ΟR∣max (fig. S7B). Conversely, when τ 
is too long, it removes the influence of both particle motion fluctua-
tion and active perturbation with certain ∆TP, resulting in no 
change observed in ∆∣ΟR∣max (fig. S7B).

To assess the effectiveness of the adaptive time- delay strategy in 
our current system, we conduct a parametric study to identify a suit-
able �local,∗

P
 , at which the persistence is ensured to remain intact 

while a considerable enhancement in responsivity can be achieved. 
Here, the long and short τ are fixed at 1.0τ* and 0.1τ*, respectively. 
The long τ is chosen according to fig. S4A, at which the motion fluc-
tuation of individual particles is attenuated but the velocity align-
ment is not substantially hindered. The short τ is not set to zero here 
in consideration that the response time delay cannot be eliminated 
in living species and robots. The experimental results in Fig. 3A(c) 
show that ∆∣ΟR∣max remains constant until �local,∗

P
 reaches a value of 

approximately 0.4, after which it shows the rising trend. This obser-
vation can be explained by considering the number of particles in 
the collective structures that have short τ (Fig.  3B). Even at the 
steady state, because of motion fluctuations and the curvature of the 
circular boundary, �local

P
 of each particle cannot reach 1. Therefore, 

when �local,∗

P
 is set too high, many particles constantly have short τ at 

the steady state even if there is no nontrivial information (Fig. 3C). 
These particles facilitate the transmission of various types of infor-
mation, including motion fluctuations, thereby reducing the persis-
tence of the collective structures. In contrast, regarding the 
relationship between responsivity and �local,∗

P
 , Fig.  3A(d) demon-

strates that d∣ΟR∣/dt monotonically increases as �local,∗

P
 increases 

from 0 to 1. This is because higher values of �local,∗

P
 result in a greater 

number of particles with short τ in both transient and steady states 
(Fig. 3B). Consequently, information can spread more rapidly with-
in the collective structures, leading to faster global shifts in response 
to external changes. Accordingly, the suitable �local,∗

P
 in experiments 

is 0.4, where the persistence is ensured to be maintained while the 
responsivity is enhanced by approximately 1.6 times (i.e., saving 
~38% time to reach the steady state).

The simulations closely align with the experiments, which show 
approximately 1.4- times improvement in responsivity (i.e., saving 
~29% time to reach the steady state) without sacrificing persistence. 
Moreover, simulations also display the trend that the persistence 
starts to decrease when the set �local,∗

P
 exceeds a critical value where 

the average number of particles with short τ starts growing fast 
(Fig. 3C). However, there exists a numeric variance in the suitable 
value of �local,∗

P
 , represented by two different stars in Fig. 3 [A(c) and 

C]. In Fig.  3C, “simulation condition 2” introduces the laser- 
positioning error, while “simulation condition 3,” based on simula-
tion condition 2, adds the detection error (text S4). These three 
simulated curves illustrate that, as the simulations incorporate a 
broader array of factors present in actual experiments, the simulated 
results more closely approximate the experimental measurements. 
Despite a thorough consideration of numerous factors, there remain 
several inherently challenging elements that cannot be integrated 
into the simulations, as detailed in text S4. Consequently, this inher-
ent complexity leads to a persistent numeric mismatch in Fig. 3C. In 
addition, the numeric deviation observed in Fig. 3A(d) can be di-
rectly traced back to the distinctions highlighted in Fig. 3C, as il-
lustrated in fig. S8.

Combining experimental and simulated results, we reveal a gen-
eral protocol to find a suitable �local,∗

P
 for certain collective struc-

tures, which will measure the average number of particles with short 
τ under different �local,∗

P
 and then identify the value where this aver-

age approaches 1 as closely as possible. Specifically, the adaptive 
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time- delay strategy uses long τ to eliminate noise and short τ for a 
fast response to nontrivial information. Excessive �local,∗

P
 can result 

in some particles constantly having short τ, even in noisy environ-
ments without any nontrivial events, facilitating noise transmission 
and lowering persistence. Conversely, if �local,∗

P
 is too low, then par-

ticles become too inert to respond to nontrivial information. There-
fore, for different collective structures, we aim to find �local,∗

P
 where 

the average number of particles with short τ approaches 1 as closely 
as possible. Notably, experimental results suggest that �local,∗

P
 ex-

ceeding the value determined by this protocol can sometimes result 
in better performance (Fig. 3C). Nevertheless, this protocol remains 
effective, which consistently ensures that persistence is never com-
promised while responsivity, although not optimized, can still be 
improved. For example, if we strictly follow this protocol, then 
�

local,∗

P
 should be 0.2 for experimental results, where the responsivity 

can still be enhanced by about 1.3 times. Furthermore, although di-
rectly characterizing persistence and responsivity provides a more 
precise determination of �local,∗

P
 , the definitions of these parameters 

can vary among different collective structures (36). In contrast, 
measuring the average number of particles with short τ is more ac-
cessible and general, requiring only the agents’ temporal velocities 
to determine their time- delay status based on Eqs.  1 and 2. In 

practice, we can initially determine �local,∗

P
 using the proposed “one- 

agent- with- short- τ” rule. If necessary, we can then define and quan-
tify persistence and responsivity to further refine �local,∗

P
 for different 

collective structures.
To validate the effectiveness and universality of the adaptive time- 

delay strategy and the corresponding protocol to determine �local,∗

P
 , we 

conducted diverse simulations and experiments under varying interac-
tion radii, boundary sizes, particle numbers, and different moving pat-
terns. First, the adaptive time- delay strategy proves effective when the 
interaction radius (r0) and boundary size (rb) vary (Fig. 4, A to C). Re-
sponsivity increases as �local,∗

P
 grows (Fig. 4B), and the group’s persis-

tence remains stable until �local,∗

P
  exceeds the critical value (Fig. 4A) 

where the average number of particles with short τ is around 1 
(Fig. 4C). Simulations with different particle densities exhibit the simi-
lar trend (fig. S9). Notably, the strategy is ineffective at low particle den-
sities (e.g., N < 15 with rb = 20.0 μm), as sparse velocity alignment 
among particles fundamentally impedes the formation of ordered col-
lective structures. Experiments under different particle numbers (mov-
ie S4) and a complex boundary shape (movie S5) further validate the 
effectiveness of the adaptive time- delay strategy (fig. S10).

Furthermore, our simulation results underscore the effectiveness of 
the adaptive time- delay strategy within the context of two- dimensional 

Fig. 3. Enhancing responsivity of collective structures without sacrificing persistence by the adaptive time- delay strategy. (A) experimental and simulated results 

showing the persistence- responsivity tradeoff under the fixed responsive time delay (a and b) and the improvement made by the adaptive time- delay strategy (c and d). 

∆TP is set to be 2.0τ* for all the measurements in (a) and (c). the two shadow regions in (a) imply that ∆∣ΟR∣max cannot be measured either because the time delay is too 

short (left region), which fails to eliminate the influence of particle motion fluctuation, or too large (right region), where the effect of active perturbations with a fixed ∆TP = 

2.0τ* cannot be observed. the suitable �local,∗

P
 values are determined for both the experiments (red star) and simulations (yellow star). (B) number of particles with short 

τ as a function of execution time. the two dashed lines represent experimental realizations with �local,∗

P
= 0.4 (blue) and �local,∗

P
= 0.8 (green), respectively. the correspond-

ing simulated results are shown as two gray solid lines. the curves are smoothed using an average with a span of 20 timesteps. (C) Average number of particles with short 

τ plotted against �local,∗

P
 . the values are obtained by averaging the number of particles with short τ at the steady state of collective motion, i.e., the data after 200 s in (B). 

the red and yellow stars in (C) indicate the same �local,∗

P
 as those shown in [A(c)]. Simulation condition 1 includes the particle’s motion fluctuation and heterogeneity. 

Condition 2 incorporates additional laser- positioning deviation into the simulations, while condition 3 further increases the particle’s motion fluctuation by 1.5 times 

compared to the condition 2. the simulations in (A) are based on the simulation condition 1. the error bars indicate the Sd.

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 o
n
 D

ecem
b
er 3

0
, 2

0
2
4



Chen and Zheng , Sci. Adv. 10, eadk3914 (2024)     3 April 2024

S C i e n C e  A d v A n C e S  |  R e S e A R C h  A R t i C l e

7 of 13

translational collective motion in open space, as demonstrated in Fig. 4 
(D to F) and movie S6. The traditional Vicsek model without any time- 
delay mechanism rapidly forms ordered configurations yet struggles 
with maintaining consistent directionality owing to perturbations from 
Brownian motion (fig. S11). Alternatively, implementing a fixed time 
delay counters the effects of Brownian motion but at the expense of di-
minished group velocity due to reduced responsivity. The integration of 
an adaptive time delay presents a substantial improvement, enabling 
the collective structure to preserve its moving direction while achieving 
a group velocity that is triple that of the fixed time- delay scenario (mov-
ie S6 and Fig. 4, D and E). Notably, the enhanced �local,∗

P
 persists at the 

value where the average number of particles with short τ is around 1 
(Fig. 4F), supporting our proposed one- agent- with- short- τ rule.

To conclude, the adaptive time- delay strategy and the method to 
determine suitable �local,∗

P
 exhibit broad applicability. However, it is 

essential to note that the absolute value of �local,∗

P
 may vary substan-

tially due to diverse parameters of collective structures such as den-
sity, interaction radius, boundary size, etc. Thus, this value needs to 
be specifically determined for different collective structures.

Demonstration of adaptive optical swarm microrobots
Last, the adaptive time- delay strategy enables the persistent and re-
sponsive transportation of collective structures in complex environ-
ments (Fig. 5A). The manipulation of the motorized stage is added 

to the automated feedback control program, enabling the precise 
delivery of collective structures in two dimensions over long dis-
tances. In addition, an algorithm is developed to effectively guide 
the particles to bypass encountered obstacles (text S5). To demon-
strate the transportation capability, a collective structure is sequen-
tially guided through three sets of obstacles with different sizes and 
distributions (Fig.  5B and movie S7). Notably, these obstacles are 
defined by the program, allowing for arbitrary adjustment of their 
properties and facilitating rapid prototyping of collective motion in 
diverse complex environments. On the basis of this, we conduct 
experiments where the collective structures are directed to pass 
through three obstacles arranged in a triangular configuration un-
der different time- delay conditions (Fig. 5C and movie S8). Here, we 
set �local,∗

P
= 0.4 for the adaptive time- delay condition, as deter-

mined in Fig. 3. Moreover, this value can consistently be used for 
arbitrary obstacle configurations as the choice of �local,∗

P
 is proved to 

be independent of the sizes or morphologies of the obstacles (text 
S5). The ∣ΟR∣ versus time curves are plotted (Fig. 5D) and show that 
the collective structure with adaptive time delay displays quick re-
sponses to the obstacles while maintaining persistent motion when 
not interacting with the obstacles. Moreover, after passing the ob-
stacles, the collective structure with the adaptive time delay reaches 
the steady state faster compared to those with fixed time delays or 
no time delay. Therefore, the adaptive time- delay strategy allows for 

Fig. 4. Efficacy of the adaptive time- delay strategy in variable conditions. (A) the simulated persistence (∆∣ΟR∣max), (B) responsivity (d∣ΟR∣/dt), and (C) average number 

of particles with short τ versus different �local,∗

P
 when the adaptive time- delay strategy is implemented under different interaction radii (r0) and boundary sizes (rb). the 

“Reference” and “different interaction radius” conditions feature only one perturbed particle during active perturbation, while the “different boundary size” condition in-

cludes two perturbed particles to achieve a larger �local,∗

P
 and minimize numeric errors. (D) the simulated indicator of persistence [〈(Δϕ)2〉], (E) group velocity Vg, and 

(F) average number of particles with short τ versus different �local,∗

P
 when the adaptive time- delay strategy is implemented under the translational collective motion in 

open space. ∆ϕ represents the angle deviation between the initial and subsequent directions of the collective structure after certain intervals (fig. S11B). the numeric 

parameters in this figure are listed in table S2, while the simulation details for translational collective motions are provided in Materials and Methods.
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the achievement of responsive and persistent optical microrobots 
capable of operating in complex environments.

DISCUSSION

In this study, we introduce an adaptive time- delay strategy inspired by 
fish schools and use our optical feedback control experimental plat-
form to investigate its impact on the persistence- responsivity tradeoff 
in collective motion. Initially, we develop an active perturbation 
method to quantitatively assess the persistence of collective structures. 
This method allows us to program particle’s motion to replicate per-
turbations found in nature, such as searching for food sources or 
evading predators. Both experimental and simulated results demon-
strate that a fixed time delay can enhance the persistence of collective 
motion in noisy environments, and a positive correlation between the 
time delay value and the persistence is confirmed. Next, we validate 
the persistence- responsivity tradeoff through experimental measure-
ments. Furthermore, we apply an adaptive time delay with an im-
proved threshold and observe an enhancement in the responsivity of 
collective structures by approximately 1.6 times in experiments while 

maintaining persistence. This enhancement, equivalent to results seen 
in prior studies (36), has the potential to reduce the time required for 
collective structures to reach a steady state by approximately 38%. 
Further improvements are possible through alternative mathematical 
models of the adaptive time delay strategy and the optimization of all 
relevant parameters (e.g., long and short τ) via more extensive para-
metric investigations. For the automated transportation of collective 
structures in complex environments, we integrate motorized stage 
control and obstacle- avoidance algorithms into the feedback control 
program. When navigating through the same obstacles, we observe 
more persistent and responsive collective motion under adaptive time 
delay, further confirming the effectiveness of the adaptive time- 
delay strategy.

It is important to note that the current collective structure, which 
orbits around a point, is not optimized for robotic applications. To 
achieve more efficient transportation of collective structures, future 
studies can imitate the leadership and hierarchy within living systems 
(3). Furthermore, while the effectiveness of the adaptive time- delay 
strategy has been established for rotational and translational collec-
tive motions, its performance in complex domains, characterized by 

Fig. 5. Transportation of collective structures in complex environments under different time- delay conditions. (A) Schematic of the experimental setup for the 

long- distance delivery of collective structures. (B) Optical images showing the sequential passage of the collective structure through three sets of obstacles. the red arrow 

indicates the direction of movement for the entire group. Scale bar, 5 μm. (C) two sets of optical images showing the collective structure navigates through the same 

obstacles with adaptive time delay (left) and without time delay (right), respectively. the parameters for the adaptive time delay are long τ = 1.0τ*, short τ = 0.1τ*, and 

�
local,∗

P
= 0.4 . Scale bar, 5 μm. (D) the plot of ∣ΟR∣ versus time for the collective structure passing through the same obstacles shown in (C) under three different time- delay 

conditions. the parameters for the adaptive time- delay case are the same as those in (C), while the fixed time- delay case is based on the response time delay with τ = 1.0τ*.
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polygonal, elliptical, or irregular boundaries, remains uncertain. This 
uncertainty arises from the challenge of quantifying persistence and 
responsivity in such intricate spatial configurations. Addressing this 
aspect will be another key focus of future research endeavors. In con-
clusion, our proposed adaptive time delay offers an approach to ad-
dressing the inherent tradeoff between persistence and responsivity 
in collective motion. Moreover, the developed experimental platform 
enables fundamental investigations of collective motion in real- 
world settings and contributes to the advancement of swarm micro/
nanorobotics.

MATERIALS AND METHODS

Sample preparation
The particle preparation follows the method outlined in (48). Briefly, 
unmodified silica microspheres with a mean diameter of 1.97 μm (Bangs 
Laboratories, SS04002) are used. The aqueous solution consists of 
5 wt % polyethylene glycol (PEG; Sigma- Aldrich, 8.18897) and 5 wt % 
phosphate- buffered saline (PBS; Sigma- Aldrich, 806552). The substrate 
is a thermoplasmonic substrate coated with bovine serum albumin 
(BSA; Sigma- Aldrich, A8531). The process involves depositing a 5.5- nm 
gold film on a glass substrate using a thermal evaporator (Kurt J. Lesker, 
NANO 36) at a base pressure of 1 × 10−5 torr, with a deposition rate of 
0.5 Å s−1. The gold- coated substrate is then annealed at 550°C for 
2 hours, resulting in the formation of randomly distributed gold 
nanoparticles. Subsequently, the thermoplasmonic substrate is im-
mersed in 1 wt % BSA at room temperature for 1 day. Last, the solu-
tion is dropped onto the substrate and sealed with a spacer height 
of 0.12 mm.

Particles are propelled away from the laser spot along the sub-
strate surface due to the interplay between thermoelectric and de-
pletion forces. PBS provides essential ions, primarily Na+ and Cl−, 
for thermoelectric force generation (48). The differential drift rates 
of these ions (vNa

+ > vCl
−) result in an ionic redistribution around 

the laser- heated area, creating a thermoelectric field directed toward 
the hot spot. Consequently, the negatively charged SiO2 particles are 
driven radially outward from this hot spot (fig. S12D). To retain the 
particles on the substrate for consistent imaging, PEG is introduced 
into the solution, inducing a depletion force that consistently drives 
particles toward the heat source. The concentration of PEG is pre-
cisely calibrated (48), ensuring that the depletion force is robust 
enough to work with the gravity to balance the thermoelectric force 
vertically while not forbidding the horizontal movement of parti-
cles. This force combination ensures that particles are always pro-
pelled away from the laser spot along the substrate surface.

Optical setup
The optical setup used in our experiment is illustrated in fig. S1. It 
involves a red laser (660 nm, Laser Quantum, Opus 660) that is 
expanded by a factor of 5 and directed toward a liquid crystal on 
silicon–spatial light modulator (SLM; Hamamatsu, X13138- 01) 
with a resolution of 1392 × 1040 pixels. The SLM diffracts the laser 
based on holographic patterns generated by the computer. The dif-
fracted laser pattern then passes through a 4f lens setup (with 
f1/f2 = 0.75) and reaches an inverted optical microscope (Nikon, 
Ti2). The microscope objective is an oil- based lens with ×60 
magnification (Nikon, CFI Plan Fluor 60XS Oil). Optical images 
are captured using a charge- coupled device camera (Lumenera, 
INFINITY 2). In addition, a motorized stage (Prior, H117E1N5) is 

connected to the computer to enable automated long- distance 
transportation of the samples.

Feedback- control program
The control program used in our experiment is developed in LabVIEW 
(National Instruments, 2022 Q3) and serves as the central hub for con-
trolling all computer- connected hardware. The program continuously 
captures real- time images from the optical setup and processes them. In 
the initial loop, all particles within the predefined circular confined ge-
ometry are identified and assigned a specific number for labeling (e.g., 
particle 1, particle 2, particle 3, etc.). From the second loop onward, as 
the particles typically move around 0.16 μm (corresponding to approxi-
mately 16% of the particle’s radius) between two consecutive loops, all 
the particles can be steadily recognized and labeled with their initially 
assigned numbers by calculating the position difference between two 
neighboring image frames. This consistent labeling of particles is essen-
tial for calculating their real- time velocities and preserving their indi-
vidual histories for time- delay interactions. The history of each particle 
is formed by sequentially storing its real- time velocity information.

After labeling the particles and obtaining their real- time veloci-
ties, the program determines the new direction for each particle using 
Eqs.  3 or 4 without factors ℛθ and ℛα. However, in experimental 
settings, the time delay τ cannot be continuously controlled due to 
the nonnegligible time for imaging capture and data processing. In-
stead, we define τ as τ = n

τ
∗ Δt , where ∆t ≅ 0.132 s and nτ is a vari-

able set in the program to control the value of τ. At the beginning of 
each experimental realization, we disable the time- delay Vicsek mod-
el for nloop loops, during which the particles exhibit random motion. 
This allows sufficient time for each particle to accumulate enough his-
tory data for the calculation of Eqs. 3 or 4. In addition, the newly de-
termined directions can be replaced by directions determined by 
volume exclusion or boundary reflection (discussed in subsequent 
sections) to avoid particle collisions or maintain the coherence of the 
collective structures.

On the basis of the newly determined directions of the particles, 
the spatial distribution of the laser pattern is determined. The laser 
beams are positioned permanently at the circumference of the par-
ticles, with a distance of 0.93 μm from the particle’s center. The in-
formation regarding the positions of each laser is used to generate a 
hologram (52), which is then transmitted to the SLM and diffracts 
the input laser into laser patterns for controlling the collective mo-
tion of the particles.

To enable long- distance transportation, the movement of the 
motorized stage is also integrated into the control program. The 
communication between the stage and the computer is facilitated 
through the LabVIEW interface provided by the stage manufactur-
er. In the experimental setup, specific distances are programmed for 
the stage to move after a certain number of loops. For example, 
the stage can be instructed to move 0.15 μm in the X direction and 
0.2 μm in the Y direction after eight loops (~1.06 s).

The LabVIEW control program also includes the calculation of 
the rotation order parameter, ΟR. The program provides the option 
to export the calculated ΟR values directly or output experimental 
videos and use a MATLAB- based video processing program to ex-
tract the corresponding values.

Time- delay Vicsek model
The time delay can be categorized into two types: the transmission time 
delay, resulting from the finite speed of information transmission among 
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agents, and the response time delay, arising from the finite speed of in-
formation processing and execution within each agent (31). Accord-
ingly, the velocity vi of particle i can be determined using either the 
transmission time delay (Eq. 3) or the response time delay (Eq. 4) (12)

where ∆t represents the execution time of one feedback loop, ℛθ cor-
responds to a random rotation by an angle following a normal distri-
bution, with the SD denoted as σθ (Fig.  2B and text S1). In our 
experimental conditions, the particle velocities not only fluctuate due 
to Brownian motion but also vary among particles due to size hetero-
geneity (fig. S2C). ℛα represents a rotation by an angle α due to long- 
range physical interactions exerted on the particle i by neighboring 
lasers (text S2). Note that the specific form of ℛα is based on the 
manipulation technique used for the particles (48). Different manip-
ulation approaches (49, 53) can modify or eliminate the factor ℛα. 
The function Θ(v) ≡ v/∣v∣ normalizes the vector v. Ci represents the 
circular neighborhood around particle i with a radius of r0, excluding 
particle i itself. τ denotes the time delay value. If we eliminate τ and 
ℛα, then both equations reduce to the classic Vicsek model. Notably, 
in this experimental framework, ∆t remains a fixed constant, primar-
ily affecting the particle’s movement in a probabilistic manner as out-
lined in text S1. Conversely, τ is adjustable, affecting the information 
transfer and subsequent pattern formation of the particles.

Volume exclusion
In the control program, the volume exclusion algorithm is incorpo-
rated to prevent particle collisions. This algorithm is triggered when 
a particle has at least one neighboring particle within a clearance 
distance of 1.91 μm. It is crucial to note that the clearance distance 
is measured from one particle’s surface to the surface of the neigh-
boring particle, i.e., the gap distance between the two particles. The 
new direction of the particle is then determined using Eq. 5 (54)

Here, Cve

i
 represents the repelling zone of particle i, and rij(t) is the 

vector pointing from particle i to its neighbor j. Referring to the con-
cept of adaptive time delay, the particle having potentially colliding 
particle(s) around is similar to a disordered neighboring environ-
ment, both of which will make the particle alert and respond fast. As 
also mentioned in (54), the volume exclusion has a higher priority 
than the velocity alignment. Consequently, we assume that particles 
can instantly achieve volume exclusion. This implies that, aside from 
the inherent instrumental delay introduced by image capture and 
data processing, the control algorithm refrains from adding any extra 
time delay in “volume exclusion” to prevent potential collisions.

Boundary condition
The control program also incorporates a reflective boundary condition 
to ensure the coherence of the collective structure. When a particle’s 
distance to the center of the geometry (∣ri−b(t)∣) exceeds the radius of 
the circular geometry (rb), the particle is considered to interact with 

the boundary. However, since there is an execution time for each loop, 
∣ri−b(t)∣ can exceed rb between two loops. To account for this, an inter-
action thickness (∆rb) is introduced. Whenever ∣ri−b(t)∣ falls within the 
range [rb, rb + ∆rb], the boundary reflection takes effect for particle i. 
The new direction of the particle is determined using Eq. 6 (11)

rb and ∆rb are set to be 20.0 and 0.39 μm, respectively. However, 
because of the long- range laser- induced repelling forces in our cur-
rent particle manipulation technique (see text S2), the particle can 
be occasionally pushed out of the boundary, i.e., ∣ri−b(t)∣ > (rb + 
∆rb). When this situation occurs, the new direction is set to 
v̂
i
(t + Δt) = −ℛθℛα

ri−b(t)

∣ri−b(t)∣
 . Like the volume exclusion algorithm, 

besides inherent instrumental time delay, the control program does 
not introduce any extra time delay in the “boundary reflection” to 
prevent particles from escaping the boundary.

Supplementary information of adaptive time- delay strategy
As shown in Eq. 1, we assume that the current time delay is decided 
by �local

P
 of the previous execution loop. This is because, intuitively, the 

agents can decide to become calm or alerted in the future only after 
assessing the current surrounding environment. Once the time delay 
τ is resolved, the agents retrieve information from their memories 
and execute the time- delay Vicsek model as per Eq. 4. Simultaneously, 
the agents use the same information to assess their surrounding envi-
ronment and determine the value of �local

P
 at time t

In both experiments and simulations, the initial condition is de-
termined by the following rule: When 0 ≤ t ≤ long τ , all particles 
engage in random movements instead of executing the Vicsek mod-
el. This allows them to accumulate their initial “memories” of the 
system. At t = long τ + ∆t, it is assumed that every particle has a 
time delay of long τ. From this point onward, the particles autono-
mously adhere to the adaptive time- delay strategy based on Eqs. 1 
and 7 for their future movements.

Modeling and simulations of collective motion
In the computational modeling, there are seven key components: 
the time- delay Vicsek model, volume exclusion, boundary reflec-
tion, long- range physical interaction, Brownian motion, particle 
heterogeneity, and laser- positioning deviation. In each simulation 
loop, the ideal moving direction of each particle is determined by 
the time- delay Vicsek model (Eqs. 3 and 4 without considering ℛθ 
and ℛα). In addition, the potential volume exclusion effect is con-
sidered (Eq. 5 without considering ℛθ and ℛα), as well as the poten-
tial boundary reflection (Eq.  6 without considering ℛθ and ℛα). 
These factors collectively determine the ideal movement direction 
of each particle at the beginning of the simulation loop. Once the 
ideal movement direction is determined, the laser position for each 

v̂i(t+Δt)=ℛθℛαΘ

[

v̂i(t)+
∑

j∈Ci(t−τ)
v̂j(t−τ)

]

(3)

v̂i(t+Δt)=ℛθℛαΘ

[

v̂i(t−τ)+
∑

j∈Ci(t−τ)
v̂j(t−τ)

]

(4)

v̂i(t+Δt)= −ℛθℛαarg

(

∑i≠j

j∈Cve
i

rij(t)

∣rij(t)∣

)

(5)

v̂
i
(t+Δt)=ℛθℛαΘ

[

v̂
i
(t)−2

(

v̂
i
(t) ∙

r
i−b(t)

∣r
i−b(t)∣

)

r
i−b(t)

∣r
i−b(t)∣

]

(6)

(7)
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particle is accurately resolved, resulting in the determination of 
θi,laser(t) for each particle.

In the context of collective motion in the real world, the move-
ment of each particle is also influenced by three factors: Brownian 
motion (text S1), particle heterogeneity (fig.  S2), and long- range 
physical interaction (text S2). These factors can be incorporated into 
the computational modeling using the following Langevin equations

Here, vi(t) is decomposed based on the direction of θi,laser_tot(t) to ob-
tain vi,∥(t) and vi,⊥(t), where vi,∥(t) is parallel to the direction of θi,laser_tot(t). 
The parameter δ is used in Eqs. 8 and 9 to account for the influence of 
Brownian motion and is independent of θi,laser_tot(t). Di represents the 
diffusion coefficient of particle i, which varies among different particles 
due to particle heterogeneity (fig. S2B). The characterization of δ and D 
can be found in text S1. In addition, the total velocity induced by the 
laser, including the laser following particle i and the neighboring lasers 
due to the long- range physical interactions, can be expressed as

vi,laser is the velocity induced by the laser placed at the circumfer-
ence of the particle i, which varies among particles due to the parti-
cle heterogeneity (fig.  S2C). vj−i,laser(t) is the additional velocity 
induced by the neighboring lasers. The magnitude and direction of 
vj−i,laser(t) can be determined by the following equations

The Eq. 11 is modified based on eq. S5 in text S2, where the fitting 
parameter C = 1.74 μm/s, the radius of the particle R = 0.985 μm, 
and the average velocity of the particle ∣vavg,laser∣ = 1.16 μm/s when 

the laser- particle distance d = 0.93 μm. 
∣vi,laser∣

∣vavg,laser∣
 serves as a normaliza-

tion factor that adjusts the laser influence on the particle i based on 
particle heterogeneity. The distance between the center of the parti-
cle i and the neighboring laser that follows particle j [i.e., dj−i(t)] can 
be expressed as

Here, dj−i,center(t) is the distance between the geometric center of 
particle i and the geometric center of particle j, which can be easily 
determined in simulations.

Moreover, the laser- positioning deviation can also be integrated 
into the simulations by modifying Eqs. 12 and 13

∆x and ∆y is the laser- positioning deviation in the x and y direc-
tions defined in the imaging plane.

In simulation condition 2, ∆x = ∆y = 0.0775 μm is set, which 
is equal to the one- pixel deviation in two directions, respectively. 
In simulation condition 3, σδ is increased from 0.24 to 0.36 μm/s, 
determined by the fitting in fig. S4A. A larger σδ leads to a more 
disordered collective pattern, which deviates from experimental 
observations.

For each simulation data point, averaging is performed over at 
least 20 realizations with different initial states. A single realization 
consists of 12,000 timesteps, and the last 6000 data points are aver-
aged to obtain 〈∣ΟR∣〉, ensuring that 〈∣ΟR∣〉 is obtained at the steady 
state. The active perturbation is activated at the 8000th timestep, oc-
curring after the collective structure reaches its steady state. For ex-
periments, each data point shown with SD is averaged over at least 
eight realizations.

To model the two- dimensional translational collective motion in 
open space, we remain the components of the time- delay Vicsek 
model, volume exclusion, Brownian motion, and particle heteroge-
neity, as previously outlined in Eqs. 1 to 9. In addition, we incorpo-
rate an attraction force within Eq. 4 to ensure the collective structure’s 
cohesion, detailed in (54, 55)

Here, γ denotes the strength of attraction, which is set at 0.1 for our 
simulations. The attraction zone for particle i, Cattract

i
(t − τ) , is concep-

tualized as a ring domain where rij ∈ [r0,2r0]. The unit vector from 

particle i to particle j at time t − τ, nij(t − τ), is given by 
rij(t −τ)

∣rij(t −τ)∣
 . Ac-

cording to (36), we quantify the persistence of the collective structure 
in open space by the average angular deviation (〈(Δϕ)2〉) from its ini-
tial to subsequent movement directions, gauging its directional stabil-
ity against trivial perturbations (e.g., Brownian motion). In each 
simulation, ∆ϕ is calculated by comparing the collective’s average 
movement direction during the time intervals 7950 to 8000 with that 
from 950 to 1000. We determine the group velocity, Vg, by dividing the 
net distance traveled from timestep 1 to 8000 by the elapsed time. Con-
sequently, in Fig. 4E, data points for 𝑂local,∗

P
> 0.8 are absent due to the 

collective structure’s diminished directionality above this threshold, 
where the net distance may approach zero under certain extreme 

∣v
i,∥(t)∣ =∣v

i,laser_tot(t)∣ cosδ+
√

2D
i
ξ∥(t) (8)

∣v
i,∥(t)∣ =∣v

i,laser_tot(t)∣ cosδ+
√

2D
i
ξ∥(t) (9)

vi,laser_tot(t) = vi,laser +

∑

vj−i,laser(t) (10)

∣vj−i,laser(t)∣ =
Cdj−i(t)

[dj−i(t)]
2 + R2

∣vi,laser∣

∣vavg,laser∣
(11)

θj−i,laser(t) = θi,laser(t) + asin

{

R

dj−i(t)
sin[θi,laser(t) − θj,laser(t)]

}

(12)

dj−i(t)=
√

R2+ [dj−i,center (t)]2−2Rdj−i,center (t)cos[θi,laser(t)−θj,laser(t)]
(13)

Xj−i,laser(t) = dj−i(t) ∙ cosθj−i,laser(t) + Δx (14)

Yj−i,laser(t) = dj−i(t) ∙ sinθj−i,laser(t) + Δy (15)

d
�

j−i
(t) =

√

Xj−i,laser(t)
2 + Yj−i,laser(t)

2 (16)

θ
�

j−i,laser
(t)= atan2[Yj−i,laser(t),Xj−i,laser(t)] (17)

v̂i(t+Δt)=ℛθℛαΘ

[

v̂i(t−τ)+
∑

j∈Ci(t−τ)
v̂j(t−τ)

+γ
∑

j∈Cattract
i

(t−τ)
nji(t−τ)

]

(18)
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conditions. For each simulation data point in Fig. 4 (D to F), averaging 
is performed over at 200 realizations with different initial states.

Supplementary Materials
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Supplementary text S1 to S5

Figs. S1 to S14

tables S1 and S2

legends for movies S1 to S9
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