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Abstract

We establish various properties of the p-adic algebraic K-theory of smooth algebras
over perfectoid rings living over perfectoid valuation rings. In particular, the p-adic
K-theory of such rings is homotopy invariant, and coincides with the p-adic K-theory of
the p-adic generic fibre in high degrees. In the case of smooth algebras over perfectoid
valuation rings of mixed characteristic the latter isomorphism holds in all degrees and
generalises a result of Nizioł.

1 Introduction
In this note, we record some results concerning the p-adic K-theory of certain p-adic rings.
Our starting point is the following result.

Theorem 1.1 (Quillen, Hiller [Hil81], Kratzer [Kra80]). If A is a perfect Fp-algebra, then
Ki(A) is a Z[1/p]-module for all i > 0.

Theorem 1.1 is proved using the action of the Adams operations on K-theory. In particular,
one shows that ψp is given by the Frobenius, and therefore is an isomorphism. The mixed
characteristic analog of a perfect Fp-algebra is a perfectoid ring, and many foundational
results for perfect Fp-algebras can be generalised to perfectoid rings. We begin by giving the
following generalisation of Theorem 1.1 to mixed characteristic. In the statement, K(−;Fp)
denotes the cofiber K(−)/p of multiplication by p on non-connective K-theory K(−).

Theorem 1.2 (Theorem 5.10). If O is a perfectoid valuation ring and A is a perfectoid
O-algebra,1 then the map K(A;Fp)→ K(A[1/p];Fp) is 0-truncated.2

Theorem 1.2 holds more generally for any ring A whose derived p-completion satisfies the
hypotheses of the theorem, as the conclusion of the theorem is insensitive to replacing A by
its derived p-completion. In the case where A is the absolute integral closure of a complete
discrete valuation ring of mixed characteristic, Theorem 1.2 is proved by different methods in
[Niz98] and [Hes06]. In fact, the result in [Niz98] works more generally for smooth algebras,

1For us, a “perfectoid valuation ring” is a valuation ring O which is simultaneously a perfectoid ring in
the sense of [BMS18, Def. 3.5]: O is p-adically complete, there is an element $ in O such that $p divides p,
the Frobenius map on O/p is surjective, and the kernel of θ : Ainf (O)→ O is principal; such a valuation ring
is p-adically complete and separated. Equivalently, it is either a perfect valuation ring of characteristic p,
or its field of fractions is a perfectoid field of characteristic 0 having ring of integers O√

pO
. A “perfectoid

O-algebra” is a perfectoid ring A equipped with the structure of a O-algebra.
2Recall that a map f : M → N of spectra is d-truncated if the fiber fib(f) satisfies πifib(f) = 0 for i > d.

Equivalently, πif : πiX → πiY is an isomorphism for i > d+ 1 and an injection for i = d+ 1.
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and plays a crucial role in the approach to the crystalline conjecture of p-adic Hodge theory
in op. cit.

Theorem 1.3 (Nizioł [Niz98, Lem. 3.1]). Let OK be a complete discrete valuation ring with
field of fractions K; let K be an algebraic closure of K, and OK the integral closure of OK
in K. For any smooth OK-algebra R, the canonical map K(R)→ K(R⊗OK

K) becomes an
equivalence after profinite completion.

Theorem 1.3 is proved using localisation sequences in K-theory after descending R to the
integral closure of OK in a finite extension of K; more generally, one can replace OK by any
absolutely integrally closed valuation ring (Corollary 3.3). Combining this argument with
the tilting correspondence [Sch12] to reduce to characteristic p and the inseparable local
uniformisation of Temkin [Tem13, Tem17], we give the following generalisation of (the p-adic
case of) Theorem 1.3 as well as of Theorem 1.2. We remark that the theorem holds more
generally for algebras which are p-completely smooth in a suitable sense (see Corollary 3.10
and Remark 5.13).

Theorem 1.4 (Theorem 3.9 and Theorem 5.10). Let O be a perfectoid valuation ring.

1. If p 6= 0 in O, then for any smooth O-algebra R, the canonical map K(R;Fp) →
K(R[1/p];Fp) is an equivalence.

2. For any perfectoid O-algebra A and smooth A-algebra R of relative dimension ≤ d, the
canonical map K(R;Fp)→ K(R[1/p];Fp) is d-truncated.

For any ring R, the canonical map K(R) → K(R[1/p]) becomes an equivalence after
K(1)-localisation [BCM20, LMMT20], but in general the conclusion that they agree in
sufficiently high degrees requires further assumptions. The proof deduces part 2 from part 1
using cdh-descent and separate arguments in the case of valuation rings. These arguments
also lead to the following result comparing algebraic and homotopy K-theory for perfectoid
rings; since the comparison between K and KH of a noetherian ring is known to be related to
singularities, the following result gives a sense in which perfectoid rings behave like regular
ones.

Theorem 1.5 (Proposition 5.1, Corollary 5.6, and Theorem 5.12). Let R be a smooth algebra
over either

1. a perfect Fp-algebra; or

2. W (A) where A is a perfect Fp-algebra; or

3. a perfectoid ring which is an algebra over some perfectoid valuation ring.

Then the map K(R;Fp)→ KH(R;Fp) is an equivalence (in case 1, even K(R)→ KH(R) is
an equivalence).

Notation
We let Catperf∞ denote the ∞-category of small, stable idempotent-complete ∞-categories,
and exact functors between them. We denote by K the nonconnective K-theory functor,
defined on Catperf∞ as in [BGT13] and taking values in spectra. Similarly, we denote by KH
the homotopy K-theory of [Wei89], defined more generally on Z-linear ∞-categories [Tab15].
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Throughout, we let K(−;Zp) and KH(−;Zp) denote the p-completions of K-theory and
homotopy invariant K-theory. Similarly, we denote by K(−;Fp) and KH(−;Fp) their mod p
reductions.

All rings in this paper will be commutative. Given a ring R, we let D(R) denote its
derived ∞-category. Given a ring R (or more generally an E∞-ring) and an ideal I ⊂ R, we
let Perf(R on I) denote the ∞-category of perfect R-module spectra M which are I-power
torsion: in other words, for any x ∈ I, M [x−1] = 0. We will only use this definition when
I is the radical of a finitely generated ideal J , in which case Perf(R on I) is the kernel
of Perf(Spec(R)) → Perf(Spec(R) \ V (J)). Given a localizing invariant E (cf. [BGT13,
Def. 8.1]), we write E(R on I) = E(Perf(R on I)). Given a map of pairs (R, I) → (S, J)
such that rad(IS) = J , base-change induces a functor Perf(R on I)→ Perf(S on J) and a
consequent map in any localizing invariant.

We adopt the convention in this paper that localizing invariants commute with filtered
colimits.
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2 Localisation sequences

In this section, we review some basic properties of coherent rings and their K-theory, in
particular proving the localisation results Proposition 2.5 and Proposition 2.6. All of these
are direct analogs of standard properties [Qui73] of the K-theory and G-theory of noetherian
schemes; we will need to apply them to valuation rings. In Appendix A, we indicate how to
prove these results and some generalisations using dévissage results about the K-theory of
stable ∞-categories (which will not be used in the rest of the paper); in this section we only
use classical dévissage theorems.

A ring is said to be coherent if every finitely generated ideal is finitely presented, cf. [Sta18,
Tag 05CU], which implies that the category of finitely presented modules is abelian. We
will say that a coherent ring R is weakly regular if R has finite flat (or weak) dimension.
Equivalently, by [Gla89, Cor. 2.5.6], the projective dimensions of finitely presented R-modules
are uniformly bounded (necessarily by the flat dimension). A ring R is said to be stably
coherent if every finitely presented R-algebra is coherent. It is sufficient to check coherence
of finitely generated polynomial algebras over R. The class of stably coherent rings is closed
under localisations, quotients by finitely generated ideals, and finitely presented extensions
[Gla89, Thms. 2.4.1 & 2.4.2]. We will primarily be interested in weakly regular stably
coherent rings; this includes all regular3 rings of finite Krull dimension, but also valuation
rings by the following results.

3Throughout the article, we adopt the convention that regular rings are assumed to be Noetherian.
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Proposition 2.1. Any valuation ring is stably coherent and of flat dimension 6 1.

Proof. The stable coherence is [Gla89, Th. 7.3.3]. Every torsion-free module over a valuation
ring is flat [Sta18, Tag 0549], whence the second claim.

Proposition 2.2. Let A be a stably coherent ring with flat dimension d0, and let R be a
smooth algebra of relative dimension4 ≤ d over A. Then R has flat dimension 6 d+ d0; in
particular, R is weakly regular.

Proof. Let M be a finitely presented R-module. It suffices to show that if M is flat as an
A-module, then M has projective dimension 6 d as an R-module. By [Gla89, Cor. 2.5.10],
it suffices to show that for every maximal ideal m of R, one has Tord+1

R (M,R/m) = 0. Now
R/m pulls back to a prime ideal p ⊂ A with residue field κ(p). Since M is flat over A,
we have Tord+1

R (M,R/m) = Tord+1
R⊗Aκ(p)

(M ⊗A κ(p), R/m). However, this vanishes since
R⊗A κ(p) is a smooth algebra over the field κ(p) of dimension ≤ d and consequently it has
global dimension ≤ d.

Corollary 2.3. Any smooth algebra over a valuation ring is weakly regular stably coherent.

The K-theory of weakly regular stably coherent rings behaves in a similar way to that of
regular Noetherian rings, as exemplified by the following result. Given a coherent ring R, we
define the G-theory G(R) to be the connective K-theory of the abelian category of finitely
presented R-modules. The first two parts of the next result appear as [Wei89, Ex. 1.4];
compare also [AGH19, Th. 3.33] and [KM21, Th. 3.3] for treatments, and [BS22] for some
similar results mainly in the case of rings of weak global dimension at most one.

Proposition 2.4. If R is a weakly regular stably coherent ring, then

1. K−i(R) = 0 for i > 0; that is, the canonical map K≥0(R) → K(R) from connective
K-theory to K-theory is an equivalence;

2. the canonical map K(R)→ KH(R) is an equivalence;

3. the canonical map K≥0(R)→ G(R) is an equivalence.

Proof. We have already explained that the first two parts may be found in [Wei89, Ex. 1.4],
where we implicitly use Proposition 2.2. They are also special cases of Theorem A.1 and
Corollary A.2.

The third part follows from Quillen’s dévissage theorem, as the hypotheses imply that
any object in the abelian category of finitely presented R-modules admits a finite length
resolution by finite projective modules. Alternatively it is a special case of Theorem A.1.

We may now present the localisation sequences which will be required later.

Proposition 2.5. Let R be a weakly regular stably coherent ring and let I ⊂ R a finitely
generated ideal. Then there is a natural fiber sequence G(R/I)→ K(R)→ K(Spec(R)\V (I)).

Proof. We write G(Spec(R) \ V (I)) for the connective K-theory of the abelian category of
finitely presented quasi-coherent sheaves on Spec(R)\V (I). This abelian category is the Serre
quotient of the abelian category of finitely presented R-modules by the subcategory of those

4We say that a smooth A-algebra R has relative dimension ≤ d if all fibers R⊗A κ(p), where κ(p) runs
over the residue fields of A, have Krull dimension ≤ d.
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objects which are I-power torsion; see in particular [Sta18, Tag 01PD] for the result that
finitely presented quasi-coherent sheaves can be extended so that K0(R)→ K0(Spec(R)\V (I))
is surjective.

The classical localisation and dévissage theorems [Qui73, Thms. 4 and 5] therefore provide
a fiber sequence G(R/I)→ G(R)→ G(SpecR \ V (I)). Finally, Proposition 2.4 implies that
G(R) ' K(R) and that G(Spec(R) \ V (I)) ' K(Spec(R) \ V (I)) (in the latter case use
induction on the s of a finite affine open cover of Spec(R) \ V (I), again using [Sta18, Tag
01PD] to eliminate any possible problem with failure of surjectivity on K0).

Proposition 2.6. If R is a ring and t ∈ R is a nonzerodivisor such that R/t is weakly
regular stably coherent, then there are natural fiber sequences K(R/t)→ K(R)→ K(R[1/t])
and KH(R/t)→ KH(R)→ KH(R[1/t]). Consequently, we have a pullback square

K(R)

��

// K(R[1/t])

��
KH(R) // KH(R[1/t]).

(1)

Proof. Note first that R/tn is stably coherent for each n > 1 by [BMS18, Lem. 3.26]. By
the localisation theorem of [Gra76], the connective cover of the fiber of K(R)→ K(R[1/t])
(i.e., the connective cover of K(R on tR)) is the K-theory of the exact category E of finitely
presented R-modules M such that M [1/t] = 0 and such that M has Tor-dimension 6 1.

Consider the category A of all finitely presented R-modules which are t-power torsion.
In other words, A is the union of the categories of finitely presented R/tn-modules over all
n > 0. Our coherence hypotheses thus show that A is an abelian category, and A contains E
as an exact subcategory.

We observe that every object in A has finite Tor-dimension as an R-module. Indeed,
suppose M ∈ A is a finitely presented R-module with M [1/t] = 0. We may assume tM = 0.
Then our weak regularity hypothesis implies that M has finite Tor-dimension as an R/t-
module, and hence as an R-module. Using this, we can show that every object in A admits
a finite resolution by objects in E. If M ∈ A has Tor-dimension > 2, then we can choose a
surjection (R/ti)n �M (for appropriate i, n� 0); the kernel K will belong to A and have
Tor-dimension at least one less, whence the claim by induction.

Thus we can apply the dévissage theorem in the form of [Qui73, Sec. 4] to see that K(E)
∼−→

K(A). By dévissage again, we have K(A) = G(R/t), which is K(R/t) by Proposition 2.4
because R/t is stably coherent and weakly regular. In conclusion, we have shown that the
canonical map K(R/t)→ K(R on tR) identifies the left side with the connective cover of the
right side.

To obtain the result in nonconnective degrees, and so complete the proof, we claim that
the canonical map Ki(R/t)→ Ki(R on tR) is an isomorphism for all i ≤ 0. The case i = 0
has already been proved, so we proceed inductively by Bass delooping via the fundamental
theorem of K-theory [TT90, Thm. 6.1]; this gives exact sequences

Ki(A[u])⊕Ki(A[u−1])→ Ki(A[u±1])→ Ki−1(A)→ 0

for any ring A, and more generally

Ki(A[u] on IA[u])⊕Ki(A[u−1] on IA[u−1])→ Ki(A[u±1] on IA[u±1])→ Ki−1(A on I)→ 0
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for any finitely generated ideal I ⊆ A. Assuming that the claim has been proved in
any fixed degree i ≤ 0 (for all pairs R, t as in the statement of the proposition), one
immediately obtains the claim in degree i− 1 by comparing the Bass exact sequences for
K(R/t) and K(R on tR), noting that the inductive hypothesis for the pair R[u], t implies that
Ki(R[u]/t)→ Ki(R[u] on tR[u]) is an isomorphism, and similarly for R[u−1] and R[u±1].

3 Smooth algebras over valuation rings
In this section we study the K-theory of smooth algebras over valuation rings, and in
particular prove Theorem 1.4(1).

The proof of the following lemma is close to that of [Niz98, Lem. 3.1]:

Lemma 3.1. Let (A1,m1)→ (A2,m2) be a finite flat map of regular local rings; let R1 be a
smooth A1-algebra and set R2 = R1 ⊗A1

A2. Then the canonical map (given by extension of
scalars) K(R1 on m1R1)→ K(R2 on m2R2) is divisible by the integer d = lenA2(A2/m1A2).

Proof. Consider the functor of stable ∞-categories

F : Perf(R1/m1R1)→ Perf(R1 on m1R1)
(−)⊗A1

A2−−−−−−−→ Perf(R2 on m2R2).

By dévissage, the first map induces an equivalence on K-theory. The composite functor
F : Perf(R1/m1) → Perf(R2 on m2R2) is equivalently given by the tensor product functor
(−)⊗A1/m1

A2/m1A2. We need to show that F induces a map on K-theory which is divisible
by d; it suffices to show that in K0(Fun(Perf(R1/m1),Perf(R2 on m2R2))), the class [F ] is
divisible by d.

Any finite length A2/m1A2-module M induces a functor (−)⊗A1/m1
M : Perf(R1/m1)→

Perf(R2 on m2R2), from which we obtain a class in K0(Fun(Perf(R1/m1),Perf(R2 on m2R2)));
moreover, this process takes short exact sequences of modules to sums in the K0-group. Since
A2/m1A2 has a finite filtration with associated graded given by d copies of A2/m2, it follows
that [F ] is equal to d times the class of the functor (−)⊗A1/m1

A2/m2.

An ind-regular local ring is a local ring which is a filtered colimit of regular rings
(without loss of generality, one can take a filtered colimit of regular local rings under local
homomorphisms).

Proposition 3.2. Let A be an ind-regular local ring with maximal ideal mA, and let d ≥ 1;
assume that mA is the radical of a finitely generated ideal in A, and that every element
of mA is a dth power. Then K(R on mAR)/d = 0 for every smooth A-algebra R, i.e.,
K(R)/d

∼→ K(Spec(R) \ V (mAR))/d.

Proof. Let x be a class in πn(K(R on mAR)/d) for some integer n; we need to show that x
vanishes. By assumption A is a filtered colimit of regular local rings, so there exists a regular
local ring (A0,m0), a map of local rings (A0,m0)→ (A,mA), a smooth A0-algebra R0 with
R0 ⊗A0

A ' R, and a class x0 ∈ πn(K(R0 on m0R0)/d) such that x0 is carried to x under
the canonical map

K(R0 on m0R0)/d→ K(R on mAR)/d. (2)

As mA is the radical of a finitely generated ideal, we may further assume that rad(m0A) = mA.
If A0 is a field then we automatically have x = 0, so suppose dim(A0) > 1. Let

α ∈ m0 \ m2
0, and define the local ring (A1,m1) via A1 = A0[t]/(td

2 − α). Note that A1 is
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a regular local ring (with t part of a system of parameters), and that A0 → A1 is finite
flat with d2 = len(A1/m0A1). Our assumptions imply that the map (A0,m0) → (A,mA)
factors over the inclusion (A0,m0)→ (A1,m1). Therefore, the map (2) factors over the map
K(R0 on m0R0)/d → K(R1 on m1R1)/d, where R1 = R0 ⊗A0

A1. But this map is zero by
Lemma 3.1.

Consequently we recover [Niz98, Lem. 3.1], generald to arbitrary absolutely integrally
closed valuation rings.

Corollary 3.3. Let V be an absolutely integrally closed valuation ring, and let R be a
smooth V -algebra. Then the canonical map K(R) → K(R ⊗V Frac(V )) is an equivalence
after profinite completion.

Proof. Writing V as a filtered colimit of finite rank absolutely integrally closed valuation
rings, we may assume that V has finite rank. In particular, in this case the maximal ideal
mV ⊂ V is the radical of (t), for any t ∈ mV which does not belong to a smaller prime ideal.
Using induction on the rank of the valuation (note by elementary properties of valuation rings
that V [1/t] is a valuation ring of rank one lower than V , unless V is a field in which case we
are done), we are therefore reduced to showing that K(R on mVR) = fib(K(R)→ K(R[1/t]))
vanishes after profinite completion. But V is ind-regular by a result of Temkin [Tem17] as
observed by Elmanto and Hoyois (see [AD21, Cor. 4.2.4] for a discussion), so Proposition 3.2
applies for all d > 1 to complete the proof.

Corollary 3.4. Let V be a perfect valuation ring of characteristic p, and let R be a smooth
V -algebra. Then K(R;Zp)→ K(R⊗V Frac(V );Zp) is an equivalence.

Proof. This is proved exactly as in Corollary 3.3, where we use Proposition 3.2 with d = p.
Here we use purely inseparable local uniformisation [Tem13] to see that V is ind-smooth
over Fp.

Remark 3.5 (Motivic refinements). Let X be a qcqs scheme over Fp, and suppose that X
is the filtered limit of a diagram of smooth Fp-schemes along affine transition maps. Then,
defining motivic cohomology Z(i)mot(X) as the filtered colimit of the motivic cohomologies of
the smooth Fp-schemes, we see from [FS02] and [Lev08] (again by taking the filtered colimit),
that K(X) admits a “motivic filtration” whose graded pieces griK(X) are Z(i)mot(X)[2i]
for i ≥ 0. When K-theory admits such a motivic filtration it is natural to ask whether our
results can be upgraded to filtered equivalences. For example, for R a smooth algebra over a
perfect valuation ring V of characteristic p, the motivic refinement of Corollary 3.4 states
that Z(i)mot(R)/p

∼−→ Z(i)mot(R⊗V Frac(V ))/p for all i ≥ 0; in this remark we show that
this is indeed true.

Repeating the proof of Corollary 3.4, it is enough to establish the following motivic
variant of Proposition 3.2 (in the characteristic p context): let A be an ind-smooth local
Fp-algebra, such that A is perfect and its maximal ideal mA is the radical of a finitely
generated ideal. Then, for any smooth (or ind-smooth) A-algebra R, the canonical maps
Z(i)mot(R)/p→ Z(i)mot(Spec(R) \ V (mAR))/p are equivalences for all i ≥ 0.

To prove this, we can assume that R is local and essentially smooth over A. Then, by
the Geisser–Levine theorem [GL00], the motivic filtration on K(R;Fp) is just the Postnikov
filtration. Since we already know that K(R;Fp)

∼−→ K(Spec(R) \ V (mAR);Fp) by Propo-
sition 3.2, it remains to to show that the motivic filtration on K(Spec(R) \ V (mAR);Fp)
is also the Postnikov filtration, or in other words that Z(i)mot(Spec(R) \ V (mAR))/p is
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concentrated in cohomological degree i. In one direction, we know (again by [GL00]) that
Z(i)mot(Spec(R) \ V (mAR))/p is concentrated in cohomological degrees > i; it remains to
prove the bound in the other direction. Now we can write the pair (A,mA) as a filtered
colimit of of essentially smooth, local Fp-algebras (A0,mA0

) with maps (A0,mA0
)→ (A,mA)

such that mA0
generates mA up to radical; we similarly write R as a filtered colimit of

algebras R0 which are essentially smooth and local over such A0. Then the Gysin sequence
in motivic cohomology (see [MVW06, Thm. 15.15])

Z(i− d)mot(R0/mA0
)[−d]/p→ Z(i)mot(R0)/p→ Z(i)mot(Spec(R0) \ V (mA0

R0))/p

(where d = dim(A0)) shows that Z(i)mot(Spec(R0) \ V (mA0
R0))/p is concentrated in coho-

mological degrees ≤ i. Passing to the limit yields the same bound for Z(i)mot(Spec(R) \
V (mAR))/p and so completes the proof.

Although we will not need it, we record a final corollary of Proposition 3.2 which extends
Corollary 3.4 to smooth algebras over arbitrary ind-smooth perfect domains. To bridge the
gap between the punctured spectrum of Proposition 3.2 and the full field of fractions we
must first prove the next lemma. For a noetherian spectral space X of finite Krull dimension
and x ∈ X, we let Xx denote the space of all generisations of x, i.e., the intersection of
all open subsets containing x; note that Xx is itself a noetherian spectral space with the
subspace topology. We recall also if X is irreducible, then constant sheaves on X have no
higher cohomology [Sta18, Tag 02UU], so constant sheaves and presheaves of spectra are the
same, and constant sheaves are pushed forward from the generic point.

Lemma 3.6. Let X be an irreducible, noetherian spectral space of finite Krull dimension.
Let G be a sheaf of spectra on X; we extend G by continuity to all pro-open subsets of X.
Suppose that for each x ∈ X, we have G(Xx)

∼−→ G(Xx \ {x}). Then G is constant. That is,
for every nonempty open subset U ⊂ X, we have G(X)

∼−→ G(U).

Proof. Let η be the generic point of X, and let Gη denote the stalk of G at the generic
point. We claim that G is the constant sheaf (or presheaf) with value Gη. Note also that
equivalences of sheaves of spectra can be detected on stalks by our assumptions and [Lur09,
Cor. 7.2.4.20].

To prove the claim, we induct on the Krull dimension of X. For each x ∈ X with x 6= η,
we need to see that the generisation map Gx = G(Xx) → Gη is an equivalence. However,
by induction on the dimension of X, we find that G defines the constant presheaf on the
pro-open subset Xx \ {x} ⊂ X, which is an irreducible, noetherian spectral space of smaller
Krull dimension.5 Therefore, by induction, Gx

∼−→ G(Xx \ {x})
∼−→ Gη as desired.

Corollary 3.7. Let A be a perfect integral domain which is ind-smooth over Fp, and let R
be a smooth A-algebra. Then K(R;Zp)→ K(R⊗A Frac(A);Zp) is an equivalence.

Proof. Equivalently, the assertion is that K(R;Fp)
∼−→ K(R[1/t];Fp) for any nonzero t ∈ A.

As such, we may reduce to the case where A is the perfection of a smooth domain over
Fp. Then Spec(A) is a noetherian, irreducible spectral space of finite Krull dimension.
We have a sheaf of spectra F on Spec(A) which sends an open subset U ⊂ Spec(A) to
F(U) = K(Spec(R)×Spec(A) U ;Fp). Proposition 3.2 (with d = p) and Lemma 3.6 imply that
F is a constant presheaf.

5Geometrically, X = Spec(A) for some domain A, in which case A, in which case Xx \ {x} corresponds to
Spec(Ap) \ {p} for some p ∈ Spec(A).
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We now return to smooth algebras over valuation rings and prove the main results of the
section.

Proposition 3.8. Let V be a perfect valuation ring of characteristic p, let t ∈ V be nonzero,
and let R be a smooth V/t-algebra. Then G(R;Zp) = 0.

Proof. We can lift R to a smooth V -algebra R by [Sta18, Tag 07M8]. The V -algebra R is
weakly regular stably coherent (Corollary 2.3). By Proposition 2.5 we have a localisation
sequence G(R)→ K(R)→ K(R[1/t]), and the result now follows from Corollary 3.4 (for the
valuation rings V and V [1/t]) which shows K(R;Zp)

∼−→ K(R[1/t];Zp).

The next result establishes Theorem 1.4(1).

Theorem 3.9. Let O be a perfectoid valuation ring and let R be a smooth O-algebra. Then
the map K(R;Zp)→ K(R⊗O Frac(O);Zp) is an equivalence.

Proof. We may assume that O is of mixed characteristic, since the positive characteristic case
has already been handled in Corollary 3.4. Let t = up ∈ O be a unit multiple of p admitting a
compatible sequence of p-power roots (see [BMS18, Lem. 3.9]) and let t[ = (t, t1/p, t1/p

2

, . . . )
be the corresponding element of the tilt O[. Note that Frac(O) = O[1/p] = O[1/t]. Then O[

is a perfect valuation ring of characteristic p and the multiplicative untilting map #: O[ → O

induces an isomorphism of rings O[/t[O[ ∼= O/pO [ČS19, (2.1.2.2)]. So we may view
R/tR ∼= R/pR as a smooth O[/t[O[-algebra, whence G(R/tR;Zp) = 0 by Proposition 3.8.
Then the localisation sequence of Proposition 2.5 completes the proof.

We also record the following strengthening of Theorem 3.9.

Corollary 3.10. Let O be a perfectoid valuation ring, t ∈ O a nonzero element, and R
a t-torsion-free O-algebra such that O/tO → R/tR is smooth. Then the map K(R;Zp) →
K(R[1/t];Zp) is an equivalence.

Proof. We may lift R/tR to a smooth O-algebra R′ by [Sta18, Tag 07M8]. Then, by the
infinitesimal lifting criterion for smoothness, we may lift the identification R′/tR′ = R/tR

to a morphism R′ → R̂ where the hat denotes t-adic completion. This in turn induces a
morphism R̂′ → R̂, which is an isomorphism since both sides are t-torsion-free and it is an
isomorphism modulo t. Considering the following diagram in which the outer two squares

K(R′) //

��

K(R̂′)

��

K(R̂)

��

K(R)oo

��
K(R′[1/t]) // K(R̂′[1/t]) K(R̂[1/t]) K(R[1/t])oo

are cartesian, the problem reduces to showing that K(R′;Zp)
∼−→ K(R′[1/t];Zp). If O

has positive characteristic then this follows from Corollary 3.4 for both O and O[1/t]. If
O[1/t] = O[1/p] then this follows from Theorem 3.9. It remains to treat the case that O is
of mixed characteristic and that t 6∈

√
pO. In this case, pO ⊆ pO[1/t] ⊆ O, whence O[1/t]

is p-adically complete and separated and thus is a perfectoid valuation ring. Therefore we
conclude in this case by applying Theorem 3.9 to both O and O[1/t].

9
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4 Cdh sheaves on perfect schemes

In this section we present some cdh-descent properties for localizing invariants on perfect
schemes and on their Witt vectors. We first recall the definition of the cdh-topology in the
non-noetherian setting. Throughout, we will use the Nisnevich topology in the non-noetherian
setting, cf. [Lur18, Sec. 3.7].

Definition 4.1 (The cdh-topology). An abstract blow-up square of schemes

Y ′

��

// X ′

f

��
Y

i
// X

(3)

is a cartesian square where i is a finitely presented closed embedding and f is a proper
finitely presented morphism inducing an isomorphism X ′ \ Y ′ ∼→ X \ Y . The cdh topology on
the category Schqcqs of qcqs schemes is the topology generated by the Nisnevich topology
and by {Y → X, X ′ → X} as one runs over all abstract blow-up squares of qcqs schemes.
We will also work with the restriction of these topologies to Schqcqs

A , the category of qcqs
schemes over a base ring A.

Proposition 4.2. Let A be a base ring and let D be a complete∞-category. If E : Schqcqs,op
A →

D is a Nisnevich sheaf, then the following are equivalent:

1. E is a cdh sheaf;

2. E sends all abstract blow-up squares in Schqcqs
A to cartesian squares of D;

Proof. Since we are already assuming that E is a Nisnevich sheaf, the equivalence of (1) and
(2) is a result of Voevodsky about cd-structures [Voe10, Cor. 5.10]. We refer to [AHW17,
Thm. 3.2.5] for a modern treatment.

The cdh sheaves of interest to us will satisfy the following excision property.

Definition 4.3 (Excision). Given a base ring A and a functor F from the category of
A-algebras to some stable ∞-category D, we say that F satisfies excision if the following
holds. For every map of pairs f : (B, I) → (C, J), where B, C are A-algebras and I ⊂ B,
J ⊂ C are ideals such that f carries I isomorphically onto J , then F carries the square
(usually called a Milnor square)

B

��

// C

��
B/I // C/J,

to a cartesian square in D.

Given a ring A (commutative as always), we will study certain localizing invariants
ModPerf(A)(Catperf∞ ) → D, where D is a stable ∞-category and ModPerf(A)(Catperf∞ ) is the
∞-category of A-linear stable∞-categories, i.e., modules over the stably symmetric monoidal
∞-category Perf(A) viewed as an algebra object of Catperf∞ . See, for example, [LT19, Rmk. 1.7]
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or [CMNN20, Sec. 3.2] for further details. In this section we will be interested in the case
where A is a perfect ring or its ring of Witt vectors.

Recall that an Fp-scheme X is called perfect if the absolute Frobenius ϕ : X → X is an
isomorphism. Given an arbitrary Fp-scheme X, its perfection is the scheme Xperf := lim←−ϕX.
See [BS17, Sec. 3] for an account of the theory of perfect schemes.

Here is the main theorem of this section, showing that localizing invariants of perfections
are cdh sheaves.

Theorem 4.4. Let A be a perfect Fp-algebra, C a W (A)-linear stable ∞-category such that
C[ 1p ] ' 0, and E : ModPerf(W (A))(Catperf∞ )→ D a localizing invariant of W (A)-linear stable
∞-categories valued in a stable ∞-category D. Then there is a cdh sheaf F : Schqcqs,op

A → D

characterised by
F(SpecB) = E(C⊗Perf(W (A)) Perf(W (Bperf)))

for all A-algebras B; moreover, F satisfies excision.

Proof. Firstly, by writing C as a colimit as in [BCM20, Prop. 2.15], we can assume that C is
a Wn(A)-linear ∞-category for some n � 0; here we implicitly use that a filtered colimit
of cdh sheaves is a cdh sheaf, which follows from Proposition 4.2 as cartesian squares are
preserved under filtered colimits, and since Nisnevich descent can be tested via Nisnevich
excision [Lur18, Th. 3.7.5.1]. The goal is to construct a cdh sheaf given on affines by
SpecB 7→ E(C⊗Perf(Wn(A)) Perf(Wn(Bperf))); this has the advantage that it extends to qcqs
A-schemes X by replacing Wn(Bperf) by the scheme Wn(Xperf).

We may moreover replace E by E(C⊗Perf(Wn(A))−) so that E is now a localizing invariant
of Perf(Wn(A))-linear ∞-categories and our goal is to show simply that the functor

Schqcqs
A → D, X 7→ E(Wn(Xperf)) := E(Perf(Wn(Xperf)))

is a cdh sheaf which satisfies excision.
The construction X 7→ E(Wn(Xperf)) satisfies Nisnevich descent by a result of Thomason–

Trobaugh [TT90], cf. [CMNN20, App. A]. To verify cdh-descent, we need to show that any
abstract blow-up square (3) is carried to a cartesian square in D.

We prove this using Bhatt–Scholze’s v-descent for quasi-coherent complexes on perfect
schemes [BS17, Cor. 11.28]. Since Y → X and X ′ → X are finitely presented, loc. cit.
implies that the square

QCoh(Wn(Xperf))

��

// QCoh(Wn(X ′perf))

j∗

��
QCoh(Wn(Yperf)) // QCoh(Wn(Y ′perf))

is a pullback of ∞-categories, where j∗ is pullback along Y ′perf → X ′perf. Furthermore, the
right adjoint j∗ of j∗ is fully faithful: indeed, j∗j∗ ' id since C ⊗LB C ' C for any surjection
of perfect rings B → C [BS17, Lem 3.16]. That is, the square

Perf(Wn(Xperf))

��

// Perf(Wn(X ′perf))

��
Perf(Wn(Yperf)) // Perf(Wn(Y ′perf))

11
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in ModPerf(Wn(A))(Catperf∞ ) is excisive in the sense of [Tam18, Def. 14] (note that all our
schemes are qcqs, so Ind(Perf(−)) = QCoh(−)), and so Tamme’s excision criterion [Tam18,
Thm. 18] shows that

E(Wn(Xperf))

��

// E(Wn(X ′perf))

��
E(Wn(Yperf)) // E(Wn(Y ′perf))

is indeed cartesian, as required to complete the proof of cdh-descent.
Given an excision situation of A-algebras, (B, I)→ (C, J), then (Bperf, I

′ :=
√
IBperf)→

(Cperf, J
′ :=

√
JCperf) is an excision situation (note that the radical I ′ is precisely the

kernel of Bperf → (B/I)perf, and similarly for J ′), and then so is (Wn(Bperf),Wn(I ′)) →
(Wn(Cperf),Wn(J ′)). We claim that Wn(Bperf) → Wn(Bperf)/Wn(I ′) = Wn((B/I)perf) is
Tor-unital in the sense of [Tam18, Def. 21]. Indeed, to show that the canonical map
Wn((B/I)perf) ⊗LWn(Bperf)

Wn((B/I)perf) → Wn((B/I)perf) is an equivalence it is enough
to check after base change along Z/pn → Z/p, as which point we obtain the equivalence
(B/I)perf ⊗LBperf

(B/I)perf ' (B/I)perf of [BS17, Lem 3.16]. It now follows from Tamme’s
excision condition [Tam18, Thm. 28] that

E(Wn(Bperf)) //

��

E(Wn(Cperf))

��
E(Wn((B/I)perf)) // E(Wn((C/J)perf))

is indeed cartesian, as desired.

Question 4.5. Given an abstract blow-up square of qcqs Fp-schemes as in Definition 4.1
but without the assumption that f : X ′ → X is finitely presented, is it true that applying
QCoh(−perf) gives a pullback square of ∞-categories? Under the additional assumption that
f : X ′ → X is finitely presented this is precisely [BS17, Cor. 11.28], which was used above.

The above result will be useful in reducing questions to henselian valuation rings in light
of the next result, which we quote for convenience. We refer to [EHIK21, Sec. 2.3] for an
introduction to Jaffard’s notion of valuative dimension; note that the perfection of any finitely
generated Fp-algebra has finite valuative dimension, given by its Krull dimension (indeed,
there is a one-to-one correspondence between the valuation subrings of a field of characteristic
p and of its perfection, or else more generally we could apply [Jaf60, Prop. 4, p. 54]). A
cdh-sheaf on Schqcqs

A is said to be finitary if it preserves filtered colimits of A-algebras.

Proposition 4.6 ([EHIK21, Cor. 2.4.19]). If A is an Fp-algebra of finite valuative dimension,
then a map of finitary cdh-sheaves Schqcqs,op

A → S (for S the ∞-category of spaces) which is
an equivalence on henselian valuation rings is an equivalence.

5 Applications

In this section, we complete the proofs of our main theorems concerning algebraic K-theory.

12
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5.1 Characteristic p

We begin with two propositions about the K-theory of perfect schemes; the results in mixed
characteristic will then follow by an elaboration of the arguments.

Proposition 5.1. Let R be a smooth algebra over a perfect Fp-algebra A. Then the canonical
map K(R)→ KH(R) is an equivalence.

Proof. Taking a filtered colimit, it suffices to prove the result when A is the perfection of a
finitely generated Fp-algebra. Theorem 4.4, with C = Perf(R) and Perf(R[T ]) respectively,
implies that the functors X 7→ K(Xperf ⊗A R) and X 7→ K(Xperf ⊗A R[T ]), from finitely pre-
sented A-schemes to spectra, are cdh sheaves; recall here that Perf(Xperf)⊗Perf(A) Perf(R) '
Perf(Xperf ⊗A R) and similarly for R[T ], by e.g., [Lur17, Th. 4.8.4.6]. To check that the
canonical map K(R)→ K(R[T ]) is an equivalence, we therefore reduce by Proposition 4.6 to
proving that K(Vperf ⊗A R)

∼−→ K(Vperf ⊗A R[T ]) for all henselian valuation rings V under A;
but that is a special case of Proposition 2.4(2) since Vperf is a valuation ring.

Question 5.2 (Cartier smooth algebras). Can Proposition 5.1 be extended to those Fp-
algebras R which are Cartier smooth in the sense of [KM21], i.e., those for which the
cotangent complex LR/Fp

is a flat R-module and the Cartier isomorphism for de Rham
cohomology holds?

Question 5.3 (Motivic refinement). Let R be as in Proposition 5.1, or more generally
Cartier smooth as in the previous question. Then the Geisser–Levine theorem [GL00] holds
Zariski locally on SpecR by [KM21], and so the Zariski local Postnikov filtration on K(R;Fp)

deserves to be termed the “motivic filtration”. Does the equivalence K(R;Fp)
∼→ K(R[T ];Fp)

(following from Proposition 5.1) upgrade to a filtered equivalence, i.e., are the canonical maps
RΓZar(SpecR,Ωilog)→ RΓZar(SpecR[T ],Ωilog) equivalences? When A is a perfect valuation
ring, the answer is ‘yes’: perfect valuation rings are ind-smooth [Tem13], so the motivic
filtration defined at the top of Remark 3.5 is A1-invariant.

Regarding the K-theory of perfect schemes themselves (rather than smooth schemes over
them), we record the following calculation since it has not explicitly appeared previously;
the cdarc topology, which is a completely decomposed analogue of the arc topology [BM21],
is defined in [EHIK21].

Corollary 5.4. 1. For any perfect qcqs Fp-scheme X, there is a natural equivalence
K(X;Z/pr) ' RΓcdh(X,Z/pr), where the right side denotes cdh cohomology on Schqcqs

X

of the constant sheaf Z/pr.

2. The presheaf X 7→ K(Xperf;Z/p
r) on Schqcqs,op

Fp
satisfies cdarc descent.

Proof. Theorem 4.4 implies that K((−)perf;Z/p
r) is a cdh sheaf on Schqcqs,op

Fp
. For any qcqs

Fp-scheme X there is a map Z/pr = K(Fp;Z/p
r)→ K(Xperf;Z/p

r), which induces a map
RΓcdh(−,Z/pr)→ K((−)perf;Z/p

r) of cdh sheaves.
Note that both these sheaves commute with filtered colimits of rings, the latter because

K-theory is finitary and the former by [Sta18, Tag 0737]; furthermore, both these sheaves take
values in D(Z/pr)60, the latter by Theorem 1.1. Since both these cdh sheaves satisfy Milnor
excision (the latter by Theorem 4.4), “(1) implies (3)” of the main theorem of [EHIK21]
therefore implies that they are both in fact cdarc sheaves. This completes the proof of part
(2).
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We have also reduced part (1) to the case that X = SpecA is the spectrum of a perfect
Fp-algebra; writing A as a filtered colimit of perfections of finite type Fp-algebras then allows
us to even assume that A has finite valuative dimension. Then viewing RΓcdh(−,Z/pr)→
K((−)perf;Z/p

r) as a map of cdh sheaves on Schqcqs
A , Proposition 4.6 reduces the problem

to checking that Z/pr → K(Vperf;Z/p
r) is an equivalence for all henselian valuation rings

V under A. But Vperf is again a valuation ring, hence weakly regular stably coherent by
Proposition 2.1 and so has no negative K-groups by Proposition 2.4; then Theorem 1.1 shows
that indeed Z/pr

'→ K(Vperf;Z/p
r), as desired.

In [BS17, Corollary 5.6], Bhatt and Scholze prove that if A is the perfection of a regular
Fp-algebra, then there is a localisation fiber sequence

K(A)→ K(W (A))→ K(W (A)[1/p]).

More precisely, they show that the canonical map K(A) → K(W(A) on pW (A)) is an
equivalence; this is used to define their determinant line bundle on the Witt vector affine
Grassmannian. We will prove more generally that this assertion is true for any perfect
Fp-algebra A, and even for algebras over W (A) satisfying a “p-smoothness” condition as in
Corollary 3.10.

Proposition 5.5. Let A be any perfect Fp-algebra, and let R be a p-torsion-free W (A)-
algebra such that A→ R/pR is smooth. Then the canonical map K(R/pR)→ K(R on pR)
is an equivalence, so there is a localisation sequence K(R/pR)→ K(R)→ K(R[1/p]).

Proof. Since we can replace R by its p-completion, it suffices to assume that R is p-complete.
The functor that sends the perfect Fp-algebra A to isomorphism classes of p-complete W (A)-
algebras R with R/p smooth over A commutes with filtered colimits in A, since it is also
isomorphic to the functor of smooth A-algebras. Using this observation, and the fact that
K(R on pR) commutes with filtered colimits in p-complete R, we may reduce to the case
where A is the perfection of a finitely generated Fp-algebra.

Theorem 4.4, with C = Perf(R/pR) and Perf(R on pR) respectively, implies that
there are cdh sheaves on Schqcqs

A given on affines by SpecB 7→ K(Bperf ⊗A R/pR) and
K(W (Bperf)⊗W (A) R on p).6 To prove that the canonical map K(R/pR)→ K(R on pR) is
an equivalence, we therefore reduce by Proposition 4.6 to proving that K(Vperf⊗AR/pR)

∼−→
K(W (Vperf)⊗W (A) R on p) for all henselian valuation rings V under A. This follows from
Proposition 2.6 with t = p.

Corollary 5.6. Let A and R be as in the statement of Proposition 5.5.

1. There is a localisation sequence KH(R/pR)→ KH(R)→ KH(R[ 1p ]).

2. The canonical map K(R;Zp)→ KH(R;Zp) is an equivalence.

Proof. Part (1) follows by applying Proposition 5.5 to R[T0, . . . , Tn] for all n ≥ 0 and taking
the geometric realisation.

Part (2) then follows by comparing the localisation sequences in K(−;Zp) and KH(−;Zp).
Indeed we know that K(R/pR)

∼−→ KH(R/pR) by Proposition 5.1, while K(R[1/p];Zp)→
KH(R[1/p];Zp) is an equivalence thanks to [Wei89, Prop. 1.6].

6Here, and on occasion below, we break with our convention and replace for example K(W (Bperf)⊗W (A)

R on p(W (Bperf)⊗W (A) R)) by K(W (Bperf)⊗W (A) R on p) for readability.
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Remark 5.7. Proposition 5.1 and Proposition 5.5 belong to a general class of results: for
many purposes, perfect rings and their rings of Witt vectors behave similarly to regular rings.
For example, in [BS17, Prop. 11.31], it is shown that perfectly finitely presented perfect
Fp-algebras have finite global dimension. The above results are indications of a similar
phenomenon in algebraic K-theory. Note however that perfect rings can have nontrivial
nonconnective K-theory.

The next result refines the classical Theorem 1.1.

Proposition 5.8. Let R be a smooth algebra of relative dimension ≤ d over a perfect
Fp-algebra. Then K(R;Fp) is d-truncated.

Proof. We may assume by passage to a filtered colimit that the perfect base algebra A
is the perfection of a finitely generated Fp-algebra. In this case, the Zariski topos of
R is hypercomplete since Spec(R) has finite Krull dimension and is noetherian, [Lur09,
Cor. 7.2.4.20]. We therefore reduce to showing that K(Rp;Fp) is d-truncated for each prime
ideal p ⊂ R. This may be shown in two ways. Either one has by [KM21, Th. 2.1] the analog
of the Geisser–Levine theorem [GL00], computing the mod-p K-groups of Rp as the module
of logarithmic differential forms, i.e., Kn(Rp;Fp) ' ΩnRp,log

for n ≥ 0; but these vanish when
n > d. Alternatively, we could avoid [KM21, Th. 2.1] by instead using Theorem 4.4 and
Proposition 4.6 to reduce to the case that A is a perfect valuation ring, hence ind-smooth
[Tem13], and apply the usual Geisser–Levine theorem.

5.2 Mixed characteristic

Next we treat the mixed characteristic results. Given a perfectoid valuation ring O of mixed
characteristic we briefly recall the tilting correspondence, for which we refer to [BMS18,
Sec. 3] and [ČS19, Sec. 2.1] for further details. As in the proof of Theorem 3.9 we may
rescale p by a unit so that it admits a compatible sequence of p-power roots, and we let
t[ be the corresponding of the tilt O[ so that the untilting map induces an isomorphism
O[/t[

∼−→ O/p. For a perfect O[-algebra A, we let A] = W (A)⊗W (O[),θ O denote its untilt.
The untilt depends only on the (classical) t[-adic completion of A, and A 7→ A] establishes
an equivalence between t[-adically complete and separated perfect O[-algebras and perfectoid
O-algebras; this restricts to an equivalence between perfect O[-algebras in which t[ = 0 and
perfectoid (equivalently, perfect) O-algebras in which p = 0.

The following result exemplifies the approach through which we may study localizing
invariants over a mixed characteristic perfectoid valuation ring via the cdh topology over its
tilt.

Proposition 5.9. Let E a localizing invariant of Z-linear stable ∞-categories valued in
spectra, and fix d,m ∈ Z; make the following assumption:

For every perfectoid valuation ring V and every smooth V -algebra RV such that
V/pV → RV /pRV has relative dimension ≤ d, the spectrum E(RV on pRV ) is
m-truncated.

Then, for every perfectoid valuation ring O, every perfectoid O-algebra A, and every smooth
A-algebra R such that A/pA→ R/pR has relative dimension ≤ d, the spectrum E(R on pR)
is m-truncated.
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Proof. We treat a series of cases, culminating in a complete proof. For O, A, R as in the
statement of the proposition, Theorem 4.4 with C = Perf(R on pR) implies that there exists
a cdh sheaf FO,A,R on Schqcqs

A[ given on affines by

SpecB 7→ E(Perf(R on pR)⊗Perf(W (A[)) Perf(W (Bperf))) = E(B#
perf ⊗A R on p),

and that this sheaf satisfies excision.
Case 1: p = 0 in A, i.e., A is a perfect Fp-algebra. Replacing O by O/

√
pO we may

clearly also suppose that p = 0 in O, i.e., that O is a perfect valuation ring over Fp. The
assertion to be proved is that E(R) is m-truncated. Writing O as a filtered colimit of perfect
valuation rings Oi of finite rank, and then writing A as a filtered colimit of perfectly finitely
presented Oi-algebras for varying i, we reduce to the case that O has finite rank and A is a
perfectly finitely presented O-algebra. Therefore A has finite valuative dimension [EHIK21,
Corol. 2.3.3] and Proposition 4.6 applies to the cdh sheaf Ωm+1Ω∞FO,A,R: so the desired
m-truncatedness of E(R) follows from the assumed m-truncatedness of E(Vperf ⊗A R), as V
varies over henselian valuation rings under A.

Case 2: O is mixed characteristic of rank one, and A is p-torsion-free. Similarly to the
previous case, we begin by reducing to a finitely presented situation. Write the tilt A[ as
a filtered colimit of perfectly finitely presented O[-algebras B[i , so that A is the (classical)
p-completion of the filtered colimit colimiB

]
i of the perfectoid O-algebras B]i . Since colimiB

]
i

is p-torsion-free (otherwise its p-completion A would also contain p-torsion; this implicitly
uses that the p-power torsion in any perfectoid is killed by p, so that colimiB

]
i has bounded

p-power torsion), we may argue just as at the beginning of the proof of Corollary 3.10 to
find a smooth colimiB

]
i -algebra R

′ equipped with an isomorphism R̂′ ∼= R̂ of A-algebras,
where the hats denote p-adic completions. Since Perf(R′ on pR′) ' Perf(R̂′ on pR̂′) '
Perf(R̂ on pR̂) ' Perf(R̂ on pR̂), the first and third isomorphisms being [Bha16, Lem. 5.12],
the problem reduces to showing that E(R′ on pR′) is m-truncated. Descending R′ to a
smooth algebra over B]i for i� 0 and taking the filtered colimit, we may henceforth assume
in this case that A is the untilt of a perfectly finitely presented O[-algebra B.7 Since
O[ has finite rank (even rank one), therefore B has finite valuative dimension; then the
m-truncatedness of E(R on pR) follows as in Case 1, namely by applying Proposition 4.6
and using the hypothesis that E(V #

perf ⊗A R on p) is m-truncated as V varies over henselian
valuation rings under A.

Case 3: O is mixed characteristic of rank one, but no conditions on A. The perfectoid
ring A fits into a Milnor square with surjective arrows

A //

��

A

��
A0

// A0

where A is a p-torsion-free perfectoid ring, and A0 and A0 are perfect Fp-algebras [ČS19,
2.1.3]; tilting each term forms a Milnor square of perfect Fp-algebras [loc. cit]. The sheaf

7A[ is not in general equal to B, but rather to its t[-adic completion in the notation of the opening
paragraph of the subsection. We also remark that by replacing A by B]

i in this fashion might mean that A is
no longer p-torsion-free, but this condition is not required in the remainder of the proof.
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FO,A,R satisfies excision, so the square

E(R on pR) //

��

E(A⊗A R on p)

��
E(A0 ⊗A R) // E(A0 ⊗A R)

is cartesian. The top right term is m-truncated by case 2, and the bottom two terms are
m-truncated by case 1. Therefore the top left term is m-truncated.

Case 4: The general case. If p = 0 in O then we may appeal to case 1. Otherwise, similarly
to case 3, we use an excision trick, this time applied to the Milnor square of valuation rings

O //

��

Op

��
O/p // k(p)

where p =
√
pO. Note that Op is a perfectoid valuation ring of mixed characteristic of rank

one (argue as at the end of Corollary 3.10 to see p-completeness), and the bottom two terms
are perfect valuation rings. Base changing along O→ A, we claim that

A //

��

A⊗O Op

��
A⊗O O/p // A⊗O k(p)

is an Milnor square of perfectoid rings. Firstly, the terms are perfectoid rings after p-adic
completion by [ČS19, Prop. 2.1.11(2)]; so the bottom two terms, which are Fp-algebras, are
perfect. But A⊗OOp is already p-adically complete since p(A⊗OOp) ⊆ A and A is p-adically
complete; so A⊗O Op is perfectoid. Secondly, the square is a Milnor square because it is a
base-change of a Milnor square and since A⊗L

O O/p is discrete.8 Tilting each term forms a
Milnor square of perfect Fp-algebras [ČS19, Prop. 2.1.4]. The sheaf FO,A,R satisfies excision,
so the square

E(R on pR) //

��

E(A⊗A R on p)

��
E(A0 ⊗A R) // E(A0 ⊗A R)

is cartesian. The top right term is m-truncated by case 2, and the bottom two terms are
m-truncated by case 1. Therefore the top left term is m-truncated.

Theorem 5.10. Let O be a perfectoid valuation ring, A a perfectoid O-algebra, and R a
smooth A-algebra such that A/pA→ R/pR has relative dimension ≤ d. Then K(R;Fp)→
K(R[1/p];Fp) is d-truncated.

8In fact, if B0, B1, B2 are perfectoid rings with maps B0 → B1, B0 → B2, the derived tensor product
B1 ⊗L

B0
B1 has discrete derived p-completion; in fact, this follows from the result for perfect Fp-algebras

[BS17, Lem. 3.16], which implies the analogous results for their Wit vectors, and [BMS18, Lem. 3.13].
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Proof. We are claiming that K(R on pR;Fp) is d-truncated. It suffices to check that the
hypothesis of Proposition 5.9 are satisfied, namely that K(RV on pRV ;Fp) is d-truncated
whenever RV is a smooth algebra over a perfectoid valuation ring V such that V/pV →
RV /pRV has relative dimension ≤ d. This follows from Theorem 3.9 (in the case of mixed
characteristic V ) and Proposition 5.8 (in the case of V of characteristic p).

Lemma 5.11. Let V be a valuation ring and R a smooth V -algebra. Then, for any t ∈ V ,
the map K(R on tR)→ KH(R on tR) is an equivalence.

Proof. By comparing R and R[1/t], we see that it suffices to prove the stronger statement
that K(R)

∼−→ KH(R) and K(R[ 1t ])
∼−→ KH(R[ 1t ]). This follows from Corollary 2.3 and

Proposition 2.4.

Theorem 5.12. Let O be a perfectoid valuation ring, A a perfectoid O-algebra, and R a
smooth A-algebra. Then the canonical map K(R;Zp)→ KH(R;Zp) is an equivalence.

Proof. We consider the spectra-valued localizing invariant NK of Z-linear stable∞-categories

NK: C 7→ hocofib(K(C;Fp)→ K(C⊗Perf(Z) Perf(Z[T ]);Fp).

Lemma 5.11 (with t = p) shows that NK(V on pV ) vanishes on any valuation ring V , whence
we may apply Proposition 5.9 with any value of m and so deduce that NK(R on pR) vanishes.
In other words, the square

K(R;Zp) //

��

K(R[T ];Zp)

��
K(R[ 1p ];Zp) // K(R[ 1p ][T ];Zp)

is cartesian. The bottom horizontal arrow is an equivalence since K(−;Zp) is homotopy
invariant on Z[ 1p ]-algebras [Wei89, Prop. 1.6], so the top horizontal arrow is also an equivalence.

Remark 5.13 (The p-smooth case). Similarly to Corollary 3.10, Theorems 5.10 and 5.12
remain true more generally if the A-algebra R is merely required to be p-smooth rather than
smooth. Here we say that an A-algebra R is p-smooth if it satisfies the following equivalent
conditions:

1. there exists a smooth A-algebra R′ such that the derived p-adic completions9 of R and
R′ are equivalent as animated A-algebras;

2. the A/pA-algebra R⊗L
A A/pA is discrete and smooth.

To obtain the stronger versions of the theorems from the smooth versions, we use
characterisation (1) and the equivalence Perf(R on pR)

∼→ Perf(R̂ on pR̂), resulting from
the equivalence R̂ ⊗L

R R/pR ' R/pR and a strong form of Thomason’s excision theorem
[Bha16, Lem. 5.12(2)] (and similarly for R′ in place of R); here hats denote derived p-adic
completions. In the case of Theorem 5.12 we also use the analogous equivalences for R[T ]
and R′[T ], as well as the fact that K(−;Zp) is homotopy invariant on Z[ 1p ]-algebras.

9For the sake of clarify, we remark that the derived p-completion of an A-module M is holimnM/Lpn

where M/Lpn := M ⊗L
Z[T ],T 7→pn

Z is the Koszul complex associated to multiplication by pn
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Lacking a simple reference, we explain why conditions (1) and (2) are indeed equivalent.10
It is clear that (1) implies (2), so suppose that R is an A-algebra satisfying condition
(2). Let R′ be any smooth A-algebra lifting the smooth A/pA-algebra R⊗L

A A/pA [Sta18,
Tag 07M8]. By derived deformation theory (cf. [Lur, Sec. 3.4]) the canonical map R′ →
R′/pR′ = R⊗L

A A/pA = R̂⊗L
A A/pA may be lifted to a morphism R′ → R̂, which induces a

morphism R̂′ → R̂. The fibre F of the latter morphism satisfies F ⊗L
A A/pA ' 0; therefore

F ⊗L
A A/

Lp ' 0 (as A/Lp is a bounded complex with cohomologies being A/pA-modules),
and so F ' 0 since it is derived p-complete.

Question 5.14. Do Theorems 5.10 and 5.12 hold for any perfectoid ring A, without assuming
that it is an algebra over a perfectoid valuation ring O? This assumption appeared in the
proof of case 2 of Proposition 5.9, where it was used to reduce to a situation of finite valuative
dimension. Indeed, the theorems therefore remain true for any perfectoid ring A which
receives a map A0 → A from another perfectoid ring A0 having the property that A[0 has
finite valuative dimension.

A Localisation sequences via t-structures
In the appendix, we explain how to deduce the dévissage results of Section 2 (and slight
generalisations) from the theorem of the heart due to Barwick [Bar15] and Antieau–Gepner–
Heller [AGH19]. Let C be a presentable stable ∞-category equipped with a t-structure that
is compatible with filtered colimits. We say that C is regular coherent if C is compactly
generated and the t-structure on C restricts to a bounded t-structure on the compact objects
Cω ⊂ C. In particular, this implies that all compact objects are truncated, and that the
truncations of a compact object remain compact. Consequently, the compact objects of the
heart C♥ form an abelian category C♥ω, and C♥ is the Ind-completion of C♥ω. For example,
if R is a weakly regular coherent ring, then the derived ∞-category D(R) of R-module
spectra with its usual t-structure is regular coherent.

For each connective E∞-ring S, one has the presentable stable ∞-category C ⊗ S of
S-module objects in C, which also inherits a t-structure where connectivity and coconnectivity
are checked along restriction of scalars C⊗S → C. Let S[t] denote the suspension spectrum of
the commutative monoid Z>0 and S[t1, . . . , tn] be the n-fold smash product of S[t]; similarly
we define S[t±11 , . . . , t±1n ] by inverting the generators. We say that C is stably regular coherent
if C⊗ S[t1, . . . , tn] is regular coherent for each n > 0. For example, if R is a weakly regular
stably coherent ring, then D(R) is stably regular coherent. An important example is that
there is an analog of Hilbert’s basis theorem: if C is regular coherent and C♥ω is noetherian,
then C is stably regular coherent [AGH19, Cor. 3.17].

Theorem A.1 (Barwick [Bar15] and Antieau–Gepner–Heller [AGH19]). Let C be a pre-
sentable stable∞-category equipped with a t-structure which is compatible with filtered colimits.
Suppose C is stably regular coherent. Then the canonical map identifies the (connective)
K-theory of the abelian category (C♥)ω with the K-theory of the stable ∞-category Cω. In
particular, Ki(C

ω) = 0 for i < 0.

Proof. Our assumptions yield that Cω admits a bounded t-structure with heart C♥ω. By the
connective theorem of the heart [Bar15], it follows that K(C♥ω) = K>0(Cω). It remains to

10The proof works over any base ring A, though we remark that if its p-power torsion is not bounded then
the derived p-completions appearing in (1) might not be discrete.
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show that K−i(C
ω) = 0 for i < 0. This is proved exactly as in the proof of [AGH19, Th. 3.6];

we reproduce a sketch of the argument for the convenience of the reader.
We prove Ki(C

ω) = 0 for i < 0 by induction. First, by [AGH19, Th. 2.35], it follows
that K−1(Cω) = 0. Suppose i < −1. Consider the localisation sequence in Catperf∞ given
by Perf(S[x] on 0) → Perf(S[x]) → Perf(S[x±1]). Tensoring with Cω, we obtain another
localisation sequence in Catperf∞ , leading to a fiber sequence

K(Perf(S[x] on 0)⊗ Cω)→ K(Perf(S[x])⊗ Cω)→ K(Perf(S[x±1])⊗ Cω).

As in the proof of [AGH19, Th. 3.6], it follows that K(Cω) is a retract of K(Perf(S[x] on 0)⊗
Cω) and that this summand maps to zero in K(Perf(S[x])⊗Cω). In particular, it follows that
Ki(C

ω) is a summand of a quotient of Ki+1(Perf(S[x±1])⊗ Cω). However, our hypotheses
imply that Perf(S[x±1])⊗ Cω is the subcategory of compact objects in C⊗ S[x±1], which is
stably regular coherent by assumption. Inductively, it follows Ki+1(Perf(S[x±1])⊗ Cω) = 0,
whence Ki(C

ω) = 0 as desired.

Corollary A.2. Let C be a presentable Z-linear stable ∞-category equipped with a t-structure
which is compatible with filtered colimits, and suppose C is stably regular coherent. Then
K(Cω)

∼−→ KH(Cω).

Proof. It suffices to show that K(Cω)
∼−→ K((C⊗ZZ[x])ω), and the classical proof in algebraic

K-theory works. We switch now to geometric notation (writing schemes instead of rings).
By our assumptions above, we have a fiber sequence

K(Cω)→ K(Perf(P1
Z)⊗Z Cω)→ K(Perf(A1

Z)⊗Z Cω), (4)

where the first map is obtained from the pushforward Perf(Z)→ Perf(P1
Z) at the section ∞.

Indeed, this follows from Thomason–Trobaugh localisation [TT90] and Theorem A.1, since
Perf(P1

Z on ∞)⊗Z Cω is the compact objects of the stably regular coherent ∞-category of
y-torsion objects in C⊗Z Z[y] (for y a coordinate near ∞ on P1

Z). In particular, this gives
a bounded t-structure on Perf(P1

Z on ∞)⊗Z Cω whose heart is the category of objects in
C♥ω with a nilpotent endomorphism; now use Quillen dévissage [Qui73, Sec. 5] to identify
its K-theory with that of Cω.

Now we have two maps f1, f2 : Cω → Perf(P1
Z)⊗ZC

ω given by tensoring with the structure
sheaf and given by pushing forward at ∞. By the projective bundle formula for P1

Z, these
establish an equivalence (f1, f2) : K(Cω)⊕2

∼−→ K(Cω ⊗Z Perf(P1
Z)). Combining this with (4),

we find that pullback induces an equivalence K(Cω)
∼−→ K(Cω ⊗Z Perf(A1

Z)) as desired.

Finally, we explain how to deduce Proposition 2.5 and a generalisation of Proposition 2.6.

Alternative proof of Proposition 2.5. By Thomason–Trobaugh localisation [TT90], the fiber
of K(R)→ K(SpecR \ V (I)) is given by the K-theory of the stable ∞-category Perf(R on I)
of perfect R-module spectra which are I-power torsion. These are the compact objects
in the presentable stable ∞-category D(R)I−tors ⊂ D(R) of I-power torsion objects. Our
assumption implies that the usual t-structure on D(R)I−tors is stably regular coherent
in the above sense. In particular, Perf(R on I) has a bounded t-structure with heart
given by the abelian category Modfp(R)I−tors of finitely presented R-modules which are
I-power torsion. It follows from Theorem A.1 and Quillen dévissage [Qui73, Sec. 5] that
G(R/I) ' K(Modfp(R)I−tors) ' K(Perf(R on I)).
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Proposition A.3. Let R be a ring and let I ⊂ R be a finitely generated regular ideal.
Suppose R/I is stably coherent and weakly regular. Then there is a fiber sequence of spectra

K(R/I)→ K(R)→ K(Spec(R) \ V (I)),

and similarly in KH.

Proof. We have a fiber sequence K(R on I)→ K(R)→ K(Spec(R) \ V (I)). Thus, it suffices
to show that K(R/I)

∼−→ K(R on I).
Consider the presentable stable ∞-categories D(R)I−tors of I-power torsion objects in

D(R) and D(R/I). Then Perf(R on I) is the compact objects in D(R)I−tors and Perf(R/I)
is the compact objects in D(R/I). We show that D(R)I−tors,D(R/I) (with the natural
t-structures) are stably regular coherent. For D(R/I), this is part of our assumption. Since
the hypotheses of the result apply to a polynomial ring over R, it suffices to show that
D(R)I−tors is regular coherent, i.e., that it admits a bounded t-structure.

First, since I is a regular ideal, I/I2 is a finitely generated projective R/I-module, and
Symi

R/I(I/I
2)
∼−→ Ii/Ii+1 for each i > 0. We argue that R/Ii is a coherent ring for each

i > 1 by induction. For i = 1 this is the assumption. If R/Ii is coherent, then consider
the short exact sequence 0→ Ii/Ii+1 → R/Ii+1 → R/Ii → 0. Our assumptions give that
Ii/Ii+1 is a finitely presented (indeed, finitely generated projective) R/I-module, whence a
finitely presented R/Ii-module [BMS18, Lem. 3.25(i)]. Therefore, by [BMS18, Lem. 3.26], it
follows that R/Ii+1 is coherent.

It follows that we have an abelian category A of finitely presented R-modules which
are annihilated by In for some n � 0 (it is then equivalent to assuming they are finitely
presented R/In-modules, [BMS18, Lem. 3.25(i)]). We claim that the usual t-structure on
D(R)I−tors restricts to a bounded t-structure on Perf(R on I) with heart A. We observe
that any object M ∈ A is perfect as an R-module; this reduces to the case where M is an
R/I-module, when it follows because R/I is regular coherent and is perfect as an R-module
by regularity of I. This easily implies that the homology groups of any object of Perf(R on I)
belong to Perf(R on I), whence the claim.

Thus, we have shown that D(R)I−tors,D(R/I) are stably regular coherent. The hearts
in the compact objects Perf(R on I) and Perf(R/I) are given by A and the category of
finitely presented R/I-modules respectively. Using Quillen dévissage and Theorem A.1, we
conclude.

Remark A.4. Much of the argument in the proof of Proposition A.3 can be established
instead with the recent main theorem of [BL21], which gives a criterion for when, for a
coconnective ring spectrum A, the canonical map π0(A) → A induces an equivalence on
K-theory. The hypotheses of their theorem holds in the setting of the proposition for
the canonical map R/I → RMapR(R/I,R/I), the derived endomorphism spectrum of the
R-module R/I. But, Perf(RMapR(R/I,R/I)) ' Perf(R on I) by derived Morita theory.
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