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ABSTRACT: Microscale temperature sensing and control are
essential in various applications. Thermistors are widely utilized for
temperature sensing owing to their simple design and high
sensitivity. The future of thermistors lies in miniaturization and
integration in highly customizable and sustainable electronics.
Moreover, the ever-reducing size of the transistors requires the
thermistors to scale down proportionally, without any compromise
to its functionality. However, fabricating microscale thermistors
exhibiting high accuracy and repeatable measurements has been
challenging for state-of-the-art device miniaturization. Here, we
develop versatile printing of microscale thermistors from silver
fluoride solution by exploiting laser-induced opto-thermal micro-
bubbles. The microscale temperature gradients on the bubble
surface create an enhanced concentration of silver ions around the bubble to enable high-resolution printing of submicrometer
structures with low-concentration precursors and low wastage. We demonstrate the bubble printing of thermistor arrays with both
positive and negative thermal coe!cients by exploiting the size e"ect on the electrical conductivity. We further investigate the
sensing performance and long-term stability of the printed thermistors and conclude that the bubble-printed thermistors exhibit
high-resolution sensing capabilities with long-term stability, promising enhanced performance in medical and semiconductor
applications.

1. INTRODUCTION

Temperature control at the microscale plays a vital role across
various domains, including biology,1,2 agriculture,3 energy
storage,4 and microflow environments, where accurate micro-
scale sensing is crucial to monitor these changes.5−7

Commonly employed methods include thermistors,8,9 micro-
thermocouples,10,11 and optical interferometry.12,13 Thermis-
tors are popular in microscale temperature-sensing applications
as their small size, simple design, and rapid response time make
them ideal candidates for integration in a wide array of
applications where precise and localized measurements are
needed, especially in the semiconductor industry.14,15

Thermistors are traditionally categorized as either PTC
(positive thermal coe!cient) or NTC (negative thermal
coe!cient) based on the change in resistivity with temperature
change. PTC thermistors are typically composed of conductive
metals or doped ceramics, while NTC thermistors are based on
transition metal oxide ceramics that exhibit semiconducting
behavior.16 State-of-the-art thermistors are fabricated from
barium titanate (BaTiO3), which demonstrates PTC behavior
or NTC behavior depending on the nature and concentration
of the dopants.17 However, multiple challenges arise from size
e"ects that inhibit miniaturization of BaTiO3 thermistors,

including compositional inhomogeneity and reduced opera-
tional lifetimes.18 In addition, issues such as contact resistance,
inhomogeneous heating,19−21 and delamination fracture21,22

arise in practical device applications, rendering BaTiO3
unsuitable for further thermistor miniaturization.
One approach to counter this has been the development of

metallic thermistors. However, metals typically exhibit only
PTC behavior, with careful surface modifications required to
fabricate NTC thermistors.23 Fortunately, the size e"ect on the
electrical conductivity of metals o"ers a potential solution.
Factors such as grain boundary scattering can significantly
influence electrical conductivity of metals and become relevant
at the micro and nanoscale.24−26

Direct writing techniques using nanoparticle inks can
achieve versatile conduction behavior as they o"er highly
customizable microstructures of the printed materials. Such
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methods are economical,27 low-waste,28 and user-friendly29

alternatives to conventional lithography. In particular, on-
demand fabrication capabilities of direct-write technologies are
ideal for prototyping devices across various fields30 as sensor
systems31,32 and diagnostic tools.33,34 Among the direct writing
approaches, ink/nozzle-based printing techniques (i.e., inkjet
and E-Jet)35,36 have gained recognition for high-precision,
mask-free, and low-waste substance deposition on substrates.
However, they are unable to manufacture complex structures
at submicron resolution due to ink spreading,37 the co"ee-ring
e"ect,38 lengthy postprocessing times,39 and hydrodynamically
complex precursors, which can restrict the choices of printable
moieties.40 Although significant progress has been achieved in
the direct writing of microscale thermistors over the past two
decades, additional miniaturization is imperative to elicit size
e"ects and attain versatile thermistor functionality.41−44

In this work, we seek to overcome these challenges through
bubble-pen lithography (BPL) or bubble printing of versatile
submicron silver thermistors. BPL has emerged as a printing

technique that addresses several current challenges of the
direct writing techniques.45−48 BPL leverages Marangoni
convection to drive ions, molecules, and colloidal nanoparticles
to the solid−liquid interface of laser-induced opto-thermal
microbubbles to print a wide range of moieties onto
substrates.46,49−51 BPL facilitates nanoparticle patterning with
controllable deposition profiles, which we exploit to fabricate
versatile silver thermitors for temperature sensing. By
generating and translating opto-thermal microbubbles, we
pattern microscale silver thermistors at high throughput, high
resolution, and low wastage using economical, low-concen-
tration (0.05 M) silver fluoride (AgF) solution of low volumes
(15 μL). Through parametric studies, we have achieved the
printing of both PTC and NTC thermistor arrays by exploiting
the size-dependent electrical conductivity of silver micro-
structures. The long-term stability of the printed thermistors is
high, revealing the strong viability of the thermistors in various
applications.52

Figure 1. Overview of the thermistor fabrication process. (a) Schematic of the optical setup. The laser source, electronic shutter, and microscope
stage are connected to a control station to enable centrally controlled patterning. A charge couple device (CCD) camera is also connected to the
control station for visual observation. A close-up of the microbubble is depicted on the right. (b) SEM images of the printed lines, with an inset
zoomed-in image. (c) XPS analysis shows that the annealing causes a shift in the 3d peaks of the printed patterns from AgO toward Ag.
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2. EXPERIMENTAL METHODS

2.1. Fabrication of Silver Thermistors. 2.1.1. Substrate
and Precursor Preparation. Gold nanoislands (AuNI) were
fabricated on borosilicate glass coverslips by deposition and
subsequent annealing. A 4.5 nm Au thin film was deposited
using thermal deposition (Nano 36 thin film deposition
system, Kurt J Leskar Company), followed by thermal
annealing at 823 K for 2 h. The precursor solution was
prepared by using AgF salt (Fisher Scientific) dissolved in DI
water at a concentration of 0.05 M.
2.1.2. Optical Setup for Bubble Printing. A schematic of

the optical setup is depicted in Figure 1a. The stage, shutter,
laser, and camera are centrally controlled from a control
station. As shown in the inset, the laser-generated heat on the
AuNI leads to bubble formation, and the resulting Marangoni
convection leads to accumulation-driven printing of Ag. The
relative motion of the laser spot with the translation of the
optical stage leads to controlled Ag patterning. Further, a
shutter is employed to introduce breaks in the printed pattern,
allowing for discontinuous printing patterns. Three parallel Ag
lines (300 μm in length) were printed in a single array.

2.1.3. Annealing. After deposition, the Ag lines were
annealed in a vacuum oven (Isotemp Vacuum Oven, Model
281A, Fisher Scientific) at 453 K for 2 h. Scanning electron
microscopy (SEM) images (obtained on FEI Quanta 650
ESEM) of the printed Ag lines post annealing are shown in
Figure 1b, with a zoomed-in image inset. The e"ects of
annealing were observed through X-ray photoelectron spec-
troscopy (obtained on a PHI VersaProbe4 XPS), as depicted in
Figure 1c. Annealing converted some of the printed silver
oxide (AgO) lines to pure Ag, improving the electrical
conductivity.
2.2. Electrical Characterization. Ag electrodes (1 μm

thickness) were deposited by thermal evaporation (Nano 36
thin film deposition system, Kurt J Lesker Company) to
electrically characterize the printed thermistors. Optical fibers
(250 μm diameter) were taped across the Ag lines as a shadow
mask. Post deposition, the samples were coated in a polymer
layer (SU-8 epoxy) to protect the samples from corrosion in air
and to provide long-term stability. Characterization of the
samples was carried out using a sourcemeter (Keithley 2612B)
on a hot plate (Fisher Scientific Isotemp 11-100-49SH). The

Figure 2. Height and cross-sectional profiles of printed lines with corresponding thermistor characteristics. (a) Cross-sectional height and area
profiles with variation in laser power from 2.6 to 9 mW. (b) Variation of cross-sectional height and area of the printed lines as a function of printing
speed from 200 μm/s to 1200 μm/s. (c) The electrical resistance at 296 K in the printed lines decreases as the printing power is increased, with a
sharp change between 4.2 and 5.8 mW of laser power. (d) The resistance increases when the printing speed is increased, with a sharp increase
beyond 800 μm/s.
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temperature measured from a contact thermometer (Amprobe
TPP2-C1) was used to measure the exact surface temperature
and correlate this with the measured resistance. Resistance
measurements were carried out in the range of 296−325 K.
The performance of our printed thermistor was evaluated
against a hand-held infrared thermometer (Nubee NUB8580)
in determining the temperature of a gravity convection oven
(Fisher Scientific Isotemp Oven Model: 6905). Measurements
were carried out at 4 temperatures and averaged over multiple
measurement areas to account for hotspots.

3. RESULTS AND DISCUSSION

3.1. Room-Temperature Characteristics. We first
evaluated the e"ect of the laser power on the patterning of
thermistors at a printing speed of 200 μm/s with 2.6 mW (1.6
mW/μm2 optical intensity) being the minimum power needed
for bubble formation in the AgF solution. We observed a sharp
increase in the average height of the printed lines upon
increasing the power from 4.2 to 5.8 mW, while there is a more
gradual change in average cross-sectional areas of the lines.

The cross-sectional areas and deposited heights of the printed
lines are influenced by the morphology of the bubbles
generated during the printing process. Higher laser power
promotes the formation of larger bubbles with increased
contact area on the substrate. The observed increase in
material deposition, particularly with larger and stable bubbles,
can be attributed to their extended contact duration with the
substrate, as indicated by the higher heights of the lines. We
employed optical profilometry to measure the cross-sectional
areas and maximum heights of the printed lines as a function of
laser power, as presented in Figure 2a.
Further, we studied the e"ects of the printing speed on the

resultant patterns. The printing speed varied from 200 to 1200
μm/s with a laser power of 7.4 mW. We observed a gradual
decrease in the areas and maximum heights of the printed lines
with an increase in the printing speed. Optical profilometry
results for variations in printing speed are presented in Figure
2b. When the printing speed is increased, it leads to a decrease
in the duration of the bubbles and their contact areas with the
substrate. As a result, the heights of the deposited lines
decrease and the widths of the printed lines become narrower.

Figure 3. Change in electrical resistance with temperature for NTC and PTC thermistors, with respective fitting equations. (a) Printed NTC
thermistors show an associated linear increase in the logarithmic resistance, when plotted against the adjusted inverse of the absolute temperature.
(b) Printed PTC thermistors show a linear increase in resistance with temperature, with higher laser power being associated with more conductive
behavior. (c) With 7.4 mW printing power, higher resistance occurs at the higher printing speeds, with a linear dependence of resistance on the
temperature. (d) Thermistors printed at 1000 and 1200 μm/s display NTC.
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This relationship between bubble morphology, printing
parameters, and deposition characteristics plays a critical role
in optimizing the printing process for the desired thermis-
tors.45

Room-temperature (296 K) electrical characterization of the
printed lines reveals a decreasing trend in measured resistance
with printing laser power, as depicted in Figure 2c. A jump in
the resistance occurs around the power range between 4.2 and
5.8 mW, corresponding to a shift from high resistance
(represented in blue) to low resistance (represented in
pink). The high resistance region and the low resistance
region are expected to display NTC and PTC behavior,
respectively. Within the presumed PTC region, the average
thermal resistance decreases as laser power increases due to a
higher deposition and subsequent enhancement of conducting
behavior. As shown in Figure 2d, as the printing speed
increases, the electrical conductance decreases. Low resistance
is observed up to 800 μm/s, while high resistance is evident at
1000 and 1200 μm/s. Higher printing speeds lead to reduced
Ag deposits, resulting in smaller grain structures. The higher
resistivity values in our printed wires are attributed to the
presence of narrower sidewalls and grain boundaries,
contributing to electronic scattering and a rise in resist-
ance.24,53

3.2. Thermistor Behavioral Characteristics. For PTC
elements, the relationship between resistance and temperature
can be approximated by a first-order equation

R R T T( )= (1)

Here, α is the temperature coe!cient of resistance and
characterizes the sensitivity of resistance to the temperature,
R(T) is the resistance at a reference temperature T, ΔR is the
change of resistance, and ΔT is the change of temperature.
The relationship between temperature and resistance for

NTC elements is expressed by a modified Steinhart−Hart
equation

R
T

rlog log= +
(2)

where R and T are resistance and temperature, β is the thermal

parameter, r R T e( ) T

0
/ 0

= is a modified Steinhart−Hart
constant for a given material, and T0 is a standard reference
temperature (typically 298 K).
Based on the eqs 1 and 2, we consider linear resistive

behavior between R and T to be indicative of a PTC thermistor

and a linear relationship between log R and
T

1 to be a NTC

thermistor.
The measured thermal responses of the printed thermistors

are illustrated in Figure 3. The thermistors printed at 2.6 and
4.2 mW laser power exhibit NTC behavior, displaying a linear

relationship between log R and
T

1 as plotted in Figure 3a. At

powers of 5.8−9 mW, we observed PTC behavior with a linear
increase in resistance with increase in temperature, shown in
Figure 3b. Further, we observe PTC behavior for the printed
thermistors at printing speeds from 200 to 800 μm/s, as
represented in Figure 3c. We see a transition to NTC behavior
at 1000 μm/s, as shown in Figure 3d. A more detailed
discussion on the correlation of the deposition profiles and the
electrical characterization with their corresponding electron
microscopy images can be found in the Supporting
Information file.
3.3. Temperature-Sensing Performance and Degra-

dation. To assess the temperature-sensing performance of the
printed thermistors, we performed a validation study using a
standard infrared thermometer in a dry oven. Measured
temperatures from the printed thermistors are within the error
range of the contact thermometers, as shown in Figure 4a. The
infrared thermometer displayed slightly di"erent values
compared to the contact thermometer, but within the range
of error. Further, a characterization of the degradation behavior
of the thermistors was conducted. The plotted temperatures
were linearly fitted, resulting in the fitting equations of 0.138x
+ 17.727 for the as-fabricated thermistors, 0.145x + 15.697
after 6-months and 0.1344x + 18.714 12-months postfabrica-
tion, presented in Figure 4b. The calibration curve for the
thermistors was observed to have undergone a slight shift

Figure 4. Thermistor performance evaluation. (a) Measured temperatures by a standard contact thermometer and a hand-held infrared
thermometer compared to our printed thermistor. (b) Measured temperature-dependent resistance behavior of the thermistor printed at a power of
5.8 mW and a speed of 200 μm/s, as-fabricated compared to 6- and 12-months postfabrication.
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within the temperature range of operation; however, measured
values remained in proximity to the original curve. This shift is
potentially due to the degradation of the exposed silver
electrodes, as the oxidation of silver in air is a well-known
phenomenon. However, this can be eliminated with the
appropriate circuit design and sealing, which is beyond the
scope of this work.

■ CONCLUSIONS

We demonstrated versatile bubble printing of Ag thermistor
arrays with tunable electrical behavior. By controlling the
printing speed and bubble size, we tune the deposition profiles
of the microscale thermistors and consequently their electrical
characteristics. Both PTC and NTC thermistor arrays are
achieved by simply tuning the laser power and printing speed.
The printed thermistors exhibit a consistent performance in
the sensing of surface temperatures even after 1 year of their
fabrication. Our work demonstrates the feasibility of bridging
the gap between high-throughput printing and submicron
structuring of printed materials that allow a high tunability of
the functions for their wider applicability.
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(2) Kühl, M. Optical microsensors for analysis of microbial
communities. Methods Enzymol. 2005, 397, 166−199.
(3) Yu, L.; Wang, W.; Zhang, X.; Zheng, W. In A review on leaf
temperature sensor: Measurement methods and application, Computer
and Computing Technologies in Agriculture IX: 9th IFIP WG 5.14
International Conference, CCTA 2015, Beijing, China, September
27−30, 2015, Revised Selected Papers, Part I 9; Springer, 2016; pp
216−230.
(4) Lee, C.-Y.; Shen, C.-C.; Lee, S.-J.; Chiu, C.-W.; Lin, H.-T. Real-
time microscopic monitoring of temperature and strain on the surface
of magnesium hydrogen storage tank by high temperature resistant
flexible integrated microsensor. Int. J. Hydrogen Energy 2022, 47 (25),
12815−12821.
(5) Martínez-Cisneros, C. S.; Ibáñez-García, N.; Valdés, F.; Alonso,
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