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We present a study of a kernel-based two-sample test statistic related to the Maximum Mean Discrepancy (MMD)
in the manifold data setting, assuming that high-dimensional observations are close to a low-dimensional manifold.
We characterize the test level and power in relation to the kernel bandwidth, the number of samples, and the in-
trinsic dimensionality of the manifold. Specifically, when data densities p and ¢ are supported on a d-dimensional
sub-manifold M embedded in an m-dimensional space and are Holder with order 8 (up to 2) on M, we prove a
guarantee of the test power for finite sample size n that exceeds a threshold depending on d, 8, and A, the squared
Lz—divergence between p and ¢ on the manifold, and with a properly chosen kernel bandwidth y. For small density
departures, we show that with large n they can be detected by the kernel test when A, is greater than n~2B/(d+4p)
up to a certain constant and y scales as n~1/(d+4B) The analysis extends to cases where the manifold has a bound-
ary and the data samples contain high-dimensional additive noise. Our results indicate that the kernel two-sample
test has no curse-of-dimensionality when the data lie on or near a low-dimensional manifold. We validate our
theory and the properties of the kernel test for manifold data through a series of numerical experiments.
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1. Introduction

Two-sample testing aims to determine whether two sets of samples are drawn from the same distribu-
tion. In the classical setting, given two independent sets of data in R,

xi~pi=1,---,nx,iid, yj~q j=1,---,ny,iid, (D)

the two-sample problem seeks to accept or reject the null hypothesis Hy : p = g. Here, we assume the
data follow distributions with densities p and g, respectively. It is also of practical interest to identify
where p # g when the two distributions differ. The problem is fundamental in statistics and signal
processing with broad applications in scientific discovery and machine learning. Exemplar applications
include anomaly detection (Bhuyan, Bhattacharyya and Kalita, 2013, Chandola, Banerjee and Kumar,
2009, 2010), change-point detection (Cao et al., 2018, Xie and Siegmund, 2013, Xie and Xie, 2021),
differential analysis of single-cell data (Zhao et al., 2021), model criticism (Binkowski et al., 2018,
Chwialkowski, Strathmann and Gretton, 2016, Lloyd and Ghahramani, 2015), general data analysis of
biomedical data, audio and imaging data (Borgwardt et al., 2006, Cheng, Cloninger and Coifman, 2020,
Chwialkowski et al., 2015, Jitkrittum et al., 2016), and machine learning applications (Chwialkowski,
Strathmann and Gretton, 2016, Jitkrittum et al., 2017, Li et al., 2017, Lloyd and Ghahramani, 2015,
Lopez-Paz and Oquab, 2017, Sutherland et al., 2017).

As an example of application in machine learning, suppose we are interested in performing an out-of-
distribution (OOD) test (Ren et al., 2019) to determine whether or not the new incoming testing batch
of data samples follows the same distribution as the training samples. If the distribution is significantly
different, re-training the model to adapt to the new data distribution may be required, or the batch will
be labeled as OOD. In performing such a task, we are to compare the two sets of samples from training
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and the new arrival batch and determine whether (and how) their distributions differ. When data have
low-dimensional structures, it is important to consider the data geometry in the OOD test.

In many applications, high-dimensional real data have intrinsically low-dimensional structures such
as manifolds. For example, it is known that patches of natural images lie on sub-manifolds in the pixel
space (Buades, Coll and Morel, 2005, Peyré, 2009), and so do image features extracted by deep neural
networks (Sandler et al., 2018, Zhu et al., 2018). Another example is the single-cell RNA sequencing
data where measurements lie near to curve-like structures due to the time development of cells, known
as the “cell trajectory” (Saelens et al., 2019, Van den Berge et al., 2020). For natural images, a simple
dataset is the MNIST hand-written digits (illustrated in Example 3.1 and Figure 2), which is one of
the most commonly used datasets in statistics and machine learning research. Although the original
MNIST data is not exactly on the manifold, they can be viewed as having approximately manifold-
like structures. In Example 3.1, we provide a case where high dimensional image data lie exactly on a
smooth manifold by simulating rotated copies of the same digit image for illustrative purposes. In this
work, we consider the manifold data setting where distributions p and g are supported on (or near to) a
d-dimensional manifold M embedded in R™, with d < m. We refer to R"" as the ambient space and d
as the intrinsic dimensionality of the manifold data.

Traditional statistical methods for two-sample testing have focused on parametric or low-dimensional
testing scenarios, such as Hotelling’s two-sample test (Hotelling, 1931) and Student’s t-test (Pfanzagl
and Sheynin, 1996). When it is challenging to specify the exact parametric form of the distributions,
non-parametric two-sample tests are more suitable. Earlier works on one-dimensional non-parametric
two-sample tests are based on the Kolmogorov-Smirnov distance (Massey, 1951, Pratt and Gibbons,
1981), the total variation distance (Gyorfi and van der Meulen, 1991), among others. Extending these
tests to high-dimensional data is non-trivial.

Modern non-parametric tests for high-dimensional data have been developed, many based on integral
probability metrics (Sriperumbudur et al., 2012). A notable contribution is the Reproducing Kernel
Hilbert Space (RKHS) kernel Maximum Mean Discrepancy (MMD) two-sample test (Gretton et al.
2009, 2012), which is related to U-statistics (Serfling, 2009). The asymptotic optimality of kernel MMD
tests was recently studied in Balasubramanian, Li and Yuan (2021), Li and Yuan (2019). Wasserstein
distance two-sample tests have been considered in del Barrio et al. (1999), Ramdas, Garcia Trillos
and Cuturi (2017), and graph-based statistics have been proposed for distribution-free tests in high
dimensions (Bhattacharya, 2020, Chen and Friedman, 2017).

However, it is known that non-parametric two-sample tests face difficulties with high-dimensional
data. For instance, Ramdas et al. (2015) provided a negative result for kernel MMD in high dimension
that the test power decreases may decrease polynomially with increasing data dimension when applied
to detect the mean shift of Gaussian distributions. However, the argument therein does not consider
possible intrinsically low-dimensional structures of high-dimensional data. Furthermore, we also ob-
serve that the roles of the kernel bandwidth and the data dimensionality were not explicitly specified
in the original kernel MMD test paper Gretton et al. (2012), both of which may play a crucial role in
determining the performance of the kernel test in practice.

In this paper, we aim to answer the following fundamental questions about kernel tests applied to
high-dimensional data with intrinsically low-dimensional structure:

Question 1. Will a decrease in test power be observed as data dimension increases when the data has
intrinsic low-dimensionality such as lying on sub-manifolds?

Question 2. When using kernel tests on manifold data, how should one select the kernel bandwidth,
given that it often significantly impacts the performance of kernel methods?
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We provide a positive answer to Question 1 by providing a non-asymptotic result. Theoretically,
we show that when data densities are supported on a d-dimensional sub-manifold M embedded in
R™ (clean manifold data with no noise), the kernel two-sample test achieves a positive test power (at
the specified test level) when the number of samples n exceeds a certain threshold depending on the
manifold dimension d, the squared L2-divergence A>(p,q) between the two distributions on M, the
Holder regularity S8 of densities defined with respect to the intrinsic manifold distance, among other
intrinsically defined quantities and with a properly chosen kernel bandwidth y (Theorem 3.4). This
finite-sample result gives that, with large n, a small departure of g from p can be detected by the kernel
test when A, exceeds n~28/(4+45) up to a certain constant (Corollary 3.5). In addition, to achieve test
consistency under this regime, the kernel bandwidth y needs to scale as n='/(@*46)_ This provides a
theoretical answer to Question 2 for detecting a possibly small density departure given finite samples.

The above result holds for densities p and ¢ in the Holder class HP (M), 0 < 8 < 2. When higher
order regularity of p and g presents, it no longer improves the theoretical rate (see Remark 3.3). Our
finite-sample analysis shows that the properties of the kernel test are only affected by the intrinsic di-
mensionality d rather than the ambient dimensionality m. In our result, the definitions of the quantities
d, A, and B are all intrinsic to the manifold geometry (see more in Section 2.3), while any characteri-
zation through kernel spectrum would be non-intrinsic at finite kernel bandwidth.

Our result indicates that kernel tests can avoid the curse of dimensionality for manifold data, which
is consistent with a similar result for kernel density estimation in Ozakin and Gray (2009). When
the kernel is positive semi-definite (PSD), the kernel test we study equals the RKHS kernel MMD
statistic Gretton et al. (2012). However, our analysis also covers non-PSD kernels, where the technical
requirement for the kernel function is regularity, decay, and positivity, as stated in Assumption 3. Our
theory suggests that a larger class of kernel tests that is MMD-like but more general than MMD can
have test power. This opens the possibility of constructing more general kernels for testing problems
in practice. In Section 5.3, we provide experimental evidence demonstrating the testing power with
non-PSD kernels.

Our result can also be connected to two-sample tests for Functional Data Analysis (Horvath and
Kokoszka, 2012) where data samples are (discretized) functions. In fact, our Example 3.1 of image data
lying on a manifold also happens to be a case of vector data having underlying functional limits (the
image dimensionality increases with finer resolution). It was shown in Wynne and Duncan (2022) that
when the kernel bandwidth is properly scaled, kernel MMD tests for functional data can retain power
on high dimensional data by converging to a limiting kernel test over functions. This leads to the same
positive answer of kernel tests in high dimension with our result but is from a different perspective.
The underlying functional limit can be interpreted as effectively a low dimensionality of the data and
a special case of data lying on (hidden) manifolds. The Riemannian manifold data considered in this
work is a more general framework for the intrinsic low-dimensionality of vector data (for cases beyond
those like Example 3.1), and the functional data setting extends to broader cases of non-vector data,
e.g., functions evaluated on un-shared meshes. Notably, our result also indicates that a proper choice
of kernel bandwidth is important for testing performance, where the optimal choice is not always the
median distance heuristic.

We begin by proving the consistency of the kernel test when the data densities lie on a smooth
manifold without a boundary. We then extend the theory to submanifolds with a smooth boundary. The
manifold with boundary setting includes, as a special case, the Euclidean data case, where p and ¢ are
supported on a compact domain in R"”* with a smooth boundary, and d = m. The theory also extends to
the case where manifold data are corrupted by additive Gaussian noise in the ambient space R™. We
show, theoretically, that as long as the coordinate-wise Gaussian noise level o is less than y/+/m up to
an absolute constant (y being the kernel bandwidth parameter), the kernel tests computed from noisy
data have the same theoretical consistency rate as clean data lying on the manifold. In this case, the test
consistency is determined only by the pair of two densities of the clean manifold data.
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Our experiments demonstrate that the test power can be maintained (for fixed test level) as the am-
bient dimensionality m increases for low-dimensional manifold data embedded in high-dimensional
space. Specifically, we construct an example of group-transformed images with increasingly refined
resolution (i.e., increasing image size). We also conduct experiments on noise-corrupted data. In the
theoretical regime of small additive noise, the performance of kernel tests on noisy data is similar to
that on clean data, as predicted by the theory. Next, we apply kernel tests to the more complicated
hand-written digits data set, which no longer lies exactly on manifolds. We demonstrate that kernel
bandwidth much smaller than the median distance bandwidth can provide better performance. Finally,
we numerically show that non-PSD kernels that may or may not satisfy the proposed theoretical con-
ditions can provide a kernel test with power.

Our work adopts analytical techniques from the geometrical data analysis and manifold learning lit-
erature, particularly the analysis of local kernels on manifolds from Coifman and Lafon (2006). As a
quick recap of related works: seminal works such as Belkin and Niyogi (2003, 2007), Coifman and La-
fon (2006), Hein, Audibert and von Luxburg (2005) have demonstrated that the graph diffusion process
on a kernelized affinity graph constructed from high-dimensional data vectors converges to a continu-
ous diffusion process on the manifold as the sample size increases to infinity and the kernel bandwidth
decreases to zero. The results in Singer (2006) and subsequent works demonstrate the approximation
error to the manifold diffusion operator at a finite sample size, where the sample complexity only in-
volves the intrinsic dimensionality. Another line of related works concerns the spectral convergence of
kernel matrices constructed from manifold data. Note that the kernel function itself is computed from
Euclidean coordinates of data in R™ and thus extrinsic. Therefore, any theoretical properties involving
the kernel spectrum are also non-intrinsic to the manifold. In the limit of kernel bandwidth going to
zero, the spectrum of kernelized graph Laplacian matrices has been shown to converge to that of the
manifold Laplacian operator (Calder and Garcia Trillos, 2022, Cheng and Wu, 2022b, Dunson, Wu and
Wu, 2021, Garcia Trillos et al., 2020). However, bounding the difference between the extrinsic kernel
spectrum to the intrinsic limiting spectrum incurs more complicated analysis under additional assump-
tions. Our work addresses this limit by revealing the limiting population kernel MMD-like statistic as
the squared L? divergence up to a constant scaling factor (Lemma 3.2), which is a simpler analysis.

In the rest of the paper, the necessary preliminaries and notations are provided in Section 2. In
Section 3, we present the theory for kernel tests on manifold data and establish the consistency and
power of the test. We then extend this theory to cover the case of a manifold with boundary and data
containing high-dimensional noise in Section 4. Numerical experiments are presented in Section 5,
and we discuss potential future research directions in Section 6. All proofs are provided in Section A
of Cheng and Xie (2024).

2. Preliminaries
Following the setup in (1), we define n := nx + ny. We also assume that nx and ny are proportional,

that is, as n increases, ny /n approaches a constant px € (0,1). As our non-asymptotic analysis will
consider a finite n, the constant proportion will be reflected in a “balancing” condition, see (11).

2.1. Classical RKHS kernel MMD statistic

The (biased) empirical estimate for the squared kernel MMD statistic Gretton et al. (2012) is defined as

nx ny

n2 Z K’)’('xlaxl )+ Z K’y()’j,)’j 'y(xz’)’] 2)

X i,i’=1 Y]]’l ll]
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where K, (x,y) is a PSD kernel with a user-specified bandwidth parameter y > 0. The corresponding
population statistic 7 will be given in (7) below.
‘We consider a kernel with a fixed bandwidth, that is,

2
Ky(x,y)zh(”xy—zyn), h: [0,00) > R, 3)

where h usually is some non-negative function. A standard example is the Gaussian radial basis func-
tion (RBF) kernel, defined by A(r) = exp(—r/2). The classical theory of kernel MMD tests requires the
kernel to be characteristic, ensuring that the MMD distance is a metric between distributions (Gretton
et al., 2012). However, in this paper, we relax this assumption and only require % to be a non-negative,
C! function that decays, which does not necessarily lead to a positive semi-definite (PSD) kernel K,.
Please refer to Assumption 3 and the subsequent comments for further discussion.

The unbiased estimator of the kernel MMD removes the diagonal entries K(x;,x;) and K(y;,y;) in
the summation in (2), and has a slightly different normalization (by 1/(N(N — 1)) rather than 1/N2,
where N = nx and ny respectively). Since diagonal entries always equal /(0), which is a constant, the
biased and unbiased estimators give the same behavior in our setting qualitatively. In this paper, we
focus on the biased estimator (2), and the analysis can be extended to the unbiased estimator.

2.2. Test level and power

We adopt the standard statistical definitions (Gretton et al., 2012) for the test level ey and testing
power. In the two-sample test setting, one computes the kernel test statistic T from datasets X and Y
and chooses a threshold fyes. If T> tihres, the test rejects the null hypothesis Hy.

The “level” of a test, denoted by ajevel, is the target Type-I error. A test achieves a level @jeye if

P[T > tihres | Ho] < @evel, 4)

where 0 < ajeve] < 1 is typically set to a small constant, such as @jeve] = 0.05. To control the Type-I
error (4), the threshold #yes needs to exceed the (1 — @jever)-quantile of the distribution of T under
Hy. Typical asymptotic theory determines #y.s by the limiting distribution of the detection statistic T
under Hy, which is a y? distribution in many cases. However, the distribution of T may significantly
differ from the limiting distribution at a finite sample size. In practice, fires 1S usually estimated using
a standard bootstrap procedure (Gretton et al., 2012, Higgins, 2004).

The Type-II error of the statistic T and the threshold tthres 1S given by P[? < tinres|H1] under the
alternative hypothesis. The festing power (at level @jeye]) corresponds to one minus the Type-II error.
The test is said to be asymptotically consistent if the testing power can approach 1 as the sample size n
increases. In this work, we will characterize the testing power of the kernel test at a finite sample size.

2.3. Riemannian manifold and intrinsic geometry

The differential geometric notations employed in this paper are standard and can be found in, for ex-
ample, do Carmo (1992). We consider a smooth connected manifold M of dimension d equipped with
a Riemannian metric tensor g p(. The manifold M is isometrically embedded in the Euclidean space
R™, where m is the ambient dimension and can be much larger than the intrinsic dimension d. Let
t: M — R be the C* isometric embedding, and let ¢(x) € R™ denote the extrinsic coordinates. In this
paper, we use the same notation x to represent both a point x € M and its image ¢(x) € R™, provided
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that there is no ambiguity. Note that different embeddings in different spaces can be associated with
the same Riemannian manifold (M, g »(). A quantity is called intrinsic if it solely depends on g 5 and
is independent of the embedding or extrinsic coordinates.

Given the Riemannian metric g z(, the geodesic distance can be defined at least locally. We assume
that the geodesic distance d p((x, y) is globally defined on M and induces a metric on M. The Euclidean
distance in R" is denoted by ||x — y||. The manifold differential operators are defined intrinsically with
respect to g 5. For instance, for a C! function f on M, V 5 f(x) denotes the manifold gradient of f at
point x, which consists of partial derivatives with respect to the normal coordinates. The Holder class
HP(M) is defined with respect to manifold geodesic distance, and in this work, we consider 0 < 8 < 2.
Specifically,

(i) When g8 < 1,
HE(M)={f € COM), 3L > 0, | f(x) = F)| < Ldp(x,y), ¥x,y € M},

and we define the Holder constant of f as L 1= sup .y m Lf(x) = FO)N/dpm(x, y)P.
(i) When1 <B<2,

HE(M)={f € C'(M), 3L > 0, [V pf(x) = Vs f DIl < Ldpi(x,y)P7", Vo y € MY,

and then we define Ly := ||V 1 flloo + SUP sy e pt IV A0S () = VA S DI/ d (2, y P71

Our notion of the Holder constant Ly removes the €% norm || f]le from the usual definition of the
Holder norm. When =1, Ly is the Lipschitz constant of f (with respect to the manifold distance).

The Riemannian geometry also induces an intrinsic measure on M. Let dV be the volume element
on M associated with the local Riemann volume form. Then (M,dV) is a measure space. For any
distribution dP(x) on M, it may have a density with respect to dV, that is, dP(x) = p(x)dV(x), where
p is the density function. In this paper, we consider densities that are Holder continuous with respect
to the metric d 5 and square-integrable on (M, dV). Because d p( is intrinsic, the Holder constants are
intrinsically defined. Moreover, since the measure dV is intrinsic, dV-integrals such as the squared L>
divergence f M (p(x) — g(x))>dV(x) between two distributions with densities p and g are also intrinsi-
cally defined.

2.4. Notations

Table 1 lists the default notations used in this paper. We may use abbreviated notation to omit the
variable in an integral, e.g., f fdv = f f(x)dV(x). The notation A stands for the minimum of two
numbers, i.e., a A b = min{a, b}. The paper considers the joint limiting process of sample size n — o
and kernel bandwidth y — 0, but the main result is non-asymptotic and holds for finite sample size n
which is sufficiently large.

With respect to a limiting process, e.g., ¥ — 0, the default asymptotic notations are as follows:
f = 0O(|g|) means that there is constant C such that | f| < C|g| eventually (meaning that there exists vy
s.t. when y < yq then |g| > C|g|). We use Ox(-) to denote big-O notation with the constant depending
on object x. In this work, we consider constants that depend on the manifold M and kernel function
h as absolute ones and mainly focus on the constant dependence on data densities p and ¢g. We will
specify the constant dependence in the text, and we will also clarify the needed largeness of n or the
smallness of y for the bounds to hold. Additionally, f ~ g means that f, g > 0 and there exist constants
C1,Cy > O such that C g < f < Cpg eventually; f 2 g means that f > C) g eventually for some C; > 0;
and f > g means that for f,g >0, f/g — oo in the limit.
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Table 1. List of default notations

m dimensionality of the ambient B Holder class HP (M)

space Ly Upper bound of Holder constants (defined in Sec-
d intrinsic dimensionality of the tion 3.1) of p and g on M

manifold Pmax Uniform upper bound of p and ¢ on M
M d-dimensional manifold in R Y kernel bandwidth parameter

2

dv volume form on M ) Ky kernel applied to data, Ky (x,y) = h (M)
dpq(x,y)  manifold geodesic distance Y
[|x =yl Euclidean distance in R™ h C!and decay function on [0,00), 4 > 0
D, q data sampling densities on M mg mglh] = fRd h(ju|®)du
ny, ny number of samples in two-sample

datasets X and Y tivel . .

atasets 4 an b respectively Asymptotic Notations

n n=nyx +ny
px nx /fl —Px o o() f = O(g): there exists C > 0 such that when |g| is
T empirical kernel statistic (2) sufficiently small, | ] < C|g|.
T population kernel statistic (7) Ox(-)  declaring the constant dependence on x.

3. Theoretical properties of kernel tests on manifold data

In this section, we study the property of the kernel MMD-like statistic in (2) for manifold data. Note
that the kernel statistic T can be computed from any two datasets {x,—}:’:x] and {y; j":Y] as long as the
bandwidth parameter vy is specified, and there is no need to estimate the intrinsic dimension d as an
input parameter. The theory in this section studies the properties of the kernel test and the theoretical
choice of y when manifold structure is present in the high dimensional data. We begin by formulating

the problem, introducing the local kernel, and stating the main result regarding the test size and power.

3.1. Manifold data in high-dimensional space

We state the necessary assumptions on the manifold data and sampling densities. An example of high
dimensional image data satisfying our assumption is provided in Example 3.1, see Figure 2. In this
section, we consider a compact manifold without a boundary:

Assumption 1 (Data manifold). M is a d-dimensional compact connected C* manifold isometrically
embedded in R™ without boundary.

An illustration of when d = 1 and m = 3 is shown in Figure 1(Left). Our theory extends when the
manifold has a smooth boundary, which will be discussed in Section 4.1. This section assumes that the
data densities p and g are supported on M. In Section 4.2, we will discuss the extension of our analysis
to the case where the data lie near the manifold and contain a certain type of additive Gaussian noise.

We introduce the following assumption on the Holder regularity and boundedness of the data densi-
ties p and ¢. Recall the definition of H# (M) in Section 2.3.

Assumption 2 (Data density). Data densities p and g are in HB(M), 0 < 8 < 2, and the Holder
constants of p and g are bounded by L,, namely L, = max{L,,L,}. Since Holder continuity implies
continuity, due to compactness of M, both densities are uniformly bounded, that is, there is constant
Pmax such that

0 < p(x), g(x) < pmax, Yx€M.
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N
N

Figure 1. (Left) A one-dimensional manifold with no boundary (a closed curve) embedded in R3, and an Euclidean
ball centered at a point x on the manifold. (Right) Illustration of a two-dimensional manifold with boundary,
showing the near-boundary set Py (gray belt), and two Euclidean balls centered at a point away from the boundary
and another point on the boundary, respectively.

To illustrate that the manifold structure naturally arises in real-world data, we provide an example of
high-dimensional data lying on intrinsically low-dimensional manifolds. In this example, the change in
data densities g from p is induced by the change in densities on a latent manifold independent of the
ambient space R™.

Example 3.1 (Manifold data with increasing m). Consider data samples in the form of images I;
that have W x W pixels and thus can be represented as vectors in R”, where m = W2. The image I; is
generated by evaluating a continuous function on an image grid given a latent variable z;. Specifically,
Ii(1,j2) = F ((%%) ;zi) 1< jLh<W,

where F(u;z;) is a smooth mapping from u € [0,1] x [0,1] to R that depends on a latent variable
z; € M. For instance, suppose M; is a d-dimensional rotation group SO(2), and the mapping F(-; z)
corresponds to applying the rotation action z € SO(2) to the image, as illustrated in Figure 2. Under
generic assumptions on F, the continuous functions F(-; z) for all z lie on a d-dimensional manifold in
the function space. This construction defines the embedding map ¢ from the manifold M, to RY*W In
this example, when W increases, namely as the discretization gets finer, the image manifold in RW>*W
(up to a scalar normalization) also approaches a continuous limit determined by the latent manifold
M, (the rotation angle) and the mapping F on [0,1]*> x M.

3.2. Local kernels on manifold and the population statistic

We consider local kernel K, (x,y) defined as in (3) which is computed from Euclidean distances be-
tween data samples. In the term “local kernel”, “local” means a small kernel bandwidth parameter vy,
and typically y decreases as the sample size increases. The following class of non-negative differential
kernel function h contains K, being the Gaussian RBF kernel as a special case.

Assumption 3 (Differentiable kernel). We make the following assumptions about the function A,
excluding the case where 7 = 0:
(C1) Regularity. h is continuous on [0,c0), C! on (0, ).
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Figure 2. An example showing that the increase in the ambient dimension m does not affect the intrinsic dimen-
sionality d nor the intrinsic geometry of the manifold data. An image of hand-written digit “8” is rotated by angles
z and at different image sizes. The images for changing angle z lie on a one-dimensional manifold in the ambient
space and approach a certain continuous limit as image resolution refines. The group element z has two distribu-
tions, which induce two distributions of data images in ambient space R”. When z changes from 0 to 27 the curve
is closed and the data manifold has no boundary. When z changes from O to /2 the curve has two endpoints and
the data manifold has a boundary. The two-sample test results on this data are provided in Section 5.

(C2) Decay condition. h and h’ are bounded on (0,c0) and have sub-exponential tail, specifically,
da,a; >0, s.t., |h(k)(§)| < age % forall ¢ > 0, k = 0,1. Without loss of generality, assume that ag = 1.
(C3) Non-negativity. h > 0 on [0, c0).

Similar conditions on 4 have been used in Coifman and Lafon (2006) for kernelized graph Laplacian
constructed from manifold data. For A that satisfies Assumption 3, we introduce the following moment
constant of the kernel 4,

molil:= [ P, ©

which is finite due to (C2). By (C1),(C2) and that & is not a zero function, mg[h] > 0. We note that
0 < K,(x,y) < 1 for any x,y, where K, (x,y) is induced by / as defined in (3), due to (C2) and (C3).
Note that the kernel K, (x,y) is not necessarily PSD, but the theory herein remains valid in this case.
(For the prototypical choice of the Gaussian RBF kernel, the kernel is indeed PSD.) The non-negativity
condition (C3) may be relaxed, as it is only used to guarantee that mg[h] > 0 and in the extension to the
manifold with boundary in Section 4.1. We assume (C3) for simplicity.

The following lemma establishes the approximation of a Holder function f by its kernel integral on
a manifold when 7 is small; this result is necessary for our subsequent analysis.

Lemma 3.1 (Kernel integral on manifold). Suppose M satisfies Assumption 1, h satisfies Assumption
3, and f is in HP(M), 0 < B < 2, with Holder constant Ly. Then there is 'y > 0 which depends on M
only, and constant Cy that depends on (M, h), such that when 0 <y <min{1,yg}, for any x e M,

2
‘7 / (” =i )f(Y)dV(y) mol A1 ()| < CL(LY + | fller?)- ©
M y?

Specifically, yo depends on manifold reach and curvature, and Cy > 0 depends on manifold curvature
and volume, the kernel function h (including the constants a, ay in Assumption 3(C2)), and the intrinsic
dimensionality d.
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In particular, if f is a constant function, then Ly = 0 and only the O(y?) term remains in the bound
in (6). The O(y?) error is due to that the manifold has curvature while the local kernel function only
accesses the Euclidean distance ||x — y|| in the ambient space. When f is non-constant, the O(y®) term
results from the Taylor expansion (under manifold intrinsic coordinate) of f at x, and will be the leading
term if B < 2. When S = 2, the bound in (6) becomes O(y?), which echoes the O(y?) error in Lemma
8 of Coifman and Lafon (2006) (the latter was proved for f with higher order regularity and under
different technical assumptions). The constant yg in Lemma 3.1 is for theoretical purposes, and, similar
to other constant thresholds for the smallness of y in later analysis, it is generally not to be computed
in practice. We will clarify the choice of bandwidth y in Remark 3.2. The proof of Lemma 3.1 follows
the approach in Coifman and Lafon (2006) using standard techniques of differential geometry, and is
included in Section A of Cheng and Xie (2024) for completeness.

The empirical test statistic T is defined as in (2). Define the population kernel test statistic

T:= Ex~p,y~pKy(xa y)+ Ex~q,y~qu(xa ¥) = 2Ex~p, y~qKy(x,y)

= / / Ky (x,y)(p = 9)(x)(p = q)(y)dV (x)dV (y), (7
MIM

which equals the population (squared) kernel MMD when K, is PSD. Applying Lemma 3.1 gives the
leading term in 7' as y — 0, as characterized in the following lemma. Define the squared L?-divergence
between p and g as

toi= [ (0= aPdv=2a(p.0) ®)
M
Lemma 3.2. Under Assumptions 1, 2, 3, yg and Cy as in Lemma 3.1, when 0 < y < min{1,yg},
YT =mo[h]ds +rp, 7 < Ci(Lp + prmax)VP A, )

where Ci :=2C;Vol(M)'/? is a constant depending on (M, h).

We comment on the relationship between the population kernel statistic 7 and the L2-divergence
A; between the two densities p and g. Recall that T by definition depends on the kernel bandwidth
parameter y. By definition, if A» = 0, then p = ¢ in the L? sense and this implies that T = 0 for any
y > 0; If Ay > 0, then Lemma 3.2 gives that

T = 0% (molh1AY* + 00F))

which means that the right-hand side will be strictly positive when vy is sufficiently small, and as a
result, T is also strictly positive (the magnitude is up to a scaling factor of y~¢). When 1y is not small
enough, then it is possible that 7 becomes zero even A, > 0.

3.3. Control of the deviation of T from mean

We now control the deviation of the empirical test statistic T around T, where the latter equals ET up to
an O(1/n) bias. For the sample sizes of the two sets of samples, our analysis needs nx and ny to grow
proportionally to one another, namely, for some px € (0, 1),

n=nx +ny, nx/n— px, asnx,ny — oo. (10)
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As our analysis considers sufficiently large samples, we introduce the following technical condition
based on (10) (the constant 0.9 can be changed to any positive number less than 1)

nx—l ny—l

0.9px < , 09(1-px)<
n

O0<px <1 (11)

The condition stands for the requirement of the largeness of n such that the balanced sizes of ny
and ny are achieved. We call (11) the balancing condition and assume it holds for all n. Since in our
non-asymptotic result, we will derive the needed large n to guarantee the test level and power, the
balancing condition (11) allows us to focus the characterization of the needed n on constants related to
the manifold, the two densities, and the kernel, rather than the balancing of the two-sample sizes.

Proposition 3.3 proves a sample complexity result of the statistic T, which controls the deviation
T-T using the concentration of U-statistics. This estimation bound will be applied to control the
upper tail of T under Hy and the lower tail of 7 under H, respectively, and it can also be of independent
interest. The U-statistic argument was used in (Gretton et al., 2012, Theorem 10) but the deviation
bound therein was based on the point-wise boundedness of the kernel and the influence of kernel
bandwidth was not explicit. Here we apply a Bernstein-type argument which allows to reveal the role
of the bandwidth. The proof adopts the classical decoupling technique of the U-statistics (Hoeffding,
1963) and is included in Section A of Cheng and Xie (2024) for completeness.

Proposition 3.3 (Control of IT —T|). Under Assumption 1, 2, 3, and the balancing condition (11).
Define

¢:=09min{px,1 - px}, v:=(mo[h*]+ 1)pmax. (12)

Then, there is a constant Ciz) > 0 depending on (M, h) such that when 0 <y < min{l,yo,(ciz))—l/z}’
for any 0 < A < 3yJevydn, with probability > 1 — 3¢='/3,

-~ 2 d
T<T+—=+414/22,
cn cn

and with probability > 1 — 3e"’2/8,

The constant C 52) corresponds to the constant Cy in Lemma 3.1 with the function h replaced by h>.

Due to the fact that the proof of Proposition 3.3 reduces the concentration of the U-statistic to that
of an O(n)-term independent sum, which is the same as the linear-time statistic (see Remark 3.4), an
O(n~'/2) fluctuation of the statistics T around the mean is obtained (without considering y in the big-O
notation and up to the O(n~") bias). It is worth noting that, under Hy, the deviation is expected to scale
as O(n‘l) (Cheng, Cloninger and Coifman, 2020, Gretton et al., 2012). In Section 6, we will discuss
the possible influence on the asymptotic rate for detecting g # p. In practice, the testing threshold is
usually estimated empirically using bootstrap methods rather than chosen according to theory, because
the theoretical thresholds obtained by inequality can be over-conservative and those by approximation
can be less accurate. See Section 5 for more details about the algorithm in practice.
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3.4. Test level and power

We are ready to derive the main theorem which characterizes the kernel test’s level and power when
applied to manifold data at a finite sample size.

Theorem 3.4 (Power of kernel test). Under Assumptions 1, 2, 3, and the balancing condition (11), let
the constants yo be as in Lemma 3.1, Cy be as in Lemma 3.2, and c, v, and C 52) be as in Proposition

3.3. Define A := \/810g(3/aievel), and let the threshold for the test be tyyes == 2/(cn) + 441y vy4/(cn).
For g # p under Hy, suppose A, = fM(p —¢)?dV > 0. Then, when y is small enough such that 0 <y <

min { 1,0, (Ciz))—l/z} and

Ci(Lp + prna)?” < 0.1mo[ 1A%, (13)

and meanwhile, for some constant 1y > 0, n is large enough such that

1 (max{A,4>} 2 10 v [8(A1 + o) 2
d
> — - 14
v max{cv ( 3 T emg[h)Ay” ¢ \ mp[h)A ’ (14)
then

P[T > tihres | HOl < Xlevel, P[? < tihres|H1] < 33715/8- (15)

We give a few comments to interpret the result in Theorem 3.4. First, the choice of the test threshold
in the theorem is a theoretical one to facilitate our analysis, especially to obtain the dependence of
test power on various factors like the dimensionality of data. Second, Theorem 3.4 considers a fixed
alternative g, and the bound of testing power holds for finite samples and finite y. To obtain a test power
close to 1, namely a Type-II error in (15) as small as €, one can make A = 4/81log(3/¢€), and then the
theorem guarantees the test power when y can be chosen to satisfy (13) and (14) simultaneously, which
requires n to be large enough given A;. This also leads to an argument for, with large n, what is the
smallest A, (scales with a negative power of n) such that the H; can be correctly rejected using the
kernel tests (with probability at least 1 — €). We call this the “rate-for-detection” and it is derived in
Corollary 3.5. At last, in Theorem 3.4, only the intrinsic dimensionality d affects the testing power but
not the ambient space dimensionality m. The constants A, omax, and L, are determined by p and g as
Holder functions on (M, dV) and are intrinsically defined.

Remark 3.1 (Constant mg). The constants ng[/#%] (appearing in the definition of v) and mg[h] are
integrals of the kernel function in R? defined as in (5). The explicit values for the Gaussian RBF kernel

are as follows:

Example 3.2 (Constants for Gaussian 4). When h(r) = e™"/2,
mo[h] = f P2y = Qn)2, mo[h?] = / e P gy = 7412,
R R4

For general &, both constants depend on d.

We consider the scenario where Ay(p,q) is allowed to decrease to zero as the sample size increases.
The following corollary shows that the kernel test can achieve a positive test power (at the test level)
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as long as Ay 2 n~2B/(d+46) "and is asymptotically consistent (power approaches 1) when A, is greater
than that order.

Corollary 3.5 (Rate-for-detection). Under the same assumptions as in Theorem 3.4, suppose as n
increases, y ~ nY@+B) ihe densities p and q satisfy that their squared L?-divergence A, is positive
and is less than an O(1) constant determined by pmax, d and h, and, for 0 < € < 1, with large n,

1/2
1
A >3 (log +1log —) n~ 2B d+AB) (16)
€

Qlevel
where the constant c3 depends on constants { Ly, pmax, 0x,d, 8} and (M, h) and ajeve) < 1/2. Then, for
large enough n, the kernel test achieves a test level aieve] and a test power at least 1 — €. In particular,
the test power — 1 as n — oo if Ay > n~=28/(d+46),

Remark 3.2 (Choice of bandwidth). As shown in Corollary 3.5, when A, is small as in the regime
therein, the bandwidth needs to scale with n~1/(4+%) 5o that the test can have power. Such a kernel
bandwidth y — 0 as n increases. The analysis suggests using small-bandwidth kernels for the test to
detect small changes in distribution when large data samples are available. In contrast, the median dis-
tance choice of bandwidth Gretton et al. (2012) may lead to y of order O(1) in this case: on a manifold
of diameter O(1), suppose the data density is uniform, then the median of pairwise distance is generally
O(1). Thus the median distance y may not be optimal for high-dimensional data, for example, when
data lie on or near intrinsically low-dimensional manifolds or sub-manifolds, and there are sufficiently
many samples in the dataset to detect a small departure of the density. We show in Section 5 that high-
dimensional data kernel tests with a smaller bandwidth can outperform those with the median distance
bandwidth in experiments. Theoretically, note that for kernel tests on data in Euclidean space, the op-
timal y is shown to also scale with a negative power n to achieve minimax rate of detection (Li and
Yuan, 2019). We further discuss the rate and the relation to this work in the discussion section.

In practice, kernel bandwidth is a hyper-parameter that can be determined by some cross-validation
procedure at the cost of additional computation. The optimal choice of bandwidth depends on data
distribution and sample size and would be difficult to predict theoretically. In particular, our theory
(starting from Lemma 3.1 to Theorem 3.4) needs vy to be less than some O(1) constant, and these the-
oretical constants can be difficult to obtain in practice especially when the data manifold is unknown.
Our analysis does not suggest estimating these constants as a manner to gauge whether the kernel
bandwidth is proper or not. Instead, the interpretation of our theory should be that, under the necessary
conditions, there exists a y such that the kernel test is guaranteed to distinguish the density departure.
Such y can be found, e.g., by cross-validation in practice. Of course, this only happens with sufficient
data samples, and when the sample size is not large enough then the test power cannot be guaranteed —
the selected y in practice may still lead to a test with power that is not guaranteed by our theory here.
Our rate for detection result provides a theoretical scaling of y, which may provide guidance for the
range of the value to search for in practice. For example, if the manifold intrinsic dimension is known
a priori or can be estimated from data (Brito, Quiroz and Yukich, 2013, Farahmand, Szepesvari and
Audibert, 2007, Levina and Bickel, 2004, Mordohai and Medioni, 2010, Pettis et al., 1979), our theo-
retical scaling would suggest how the bandwidth parameter should scale as the sample size increases.
Generally, when more data samples are available, the theory suggests searching the smaller value range
from the median distance, which can improve the detection ability of the kernel test for small density
departures.

Remark 3.3 (Higher Holder regularity). As shown in the proof of Corollary 3.5, the improvement
of detection rate from higher regularity § is via analyzing how to fulfill (13) by setting y sufficiently
small. The condition (13) is based on the bound of |rr| in Lemma 3.2, and the latter is proved by
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Lemma 3.1 which gives an O(y?"?) bound in (6). This means that when 8> 2 (and ||p — ¢l|c > 0) the
bound of |rr| will remain O(y?). As a result, higher Holder regularity of the densities beyond two will
not further improve the rate under the current analysis.

Remark 3.4 (Linear-time statistic). When nx = ny = 2m, the linear-time test statistic, following
(Gretton et al., 2012, Section 6), is defined as Tlin = % 2 h(z2i-1,22i), where z; = (x;,y;) and
Wz, 2j) = Ky (xi,x5) — Ky (xi,y;) — Ky (yi, xj) + Ky (i, yj). The construction in Gretton et al. (2012)
is for kernel MMD test, but ﬁin is well-defined when the kernel K, is not PSD. The statistic ﬁin can
be computed using O(n) time and memory. The mean Eﬁin =T as has been analyzed in Lemma 3.2;
The deviation of ﬁin from mean observes bounds of the same order as in Proposition 3.3, since the
finite-sample concentration of ﬁin is that of an independent sum of nx /2 terms (technically the decou-
pling argument in the proof of Proposition 3.3 reduces the concentration of the U-statistic to that of the
(2i — 1,2i)-indexed independent sum). As a result, the same test power analysis and rate of detection as
proved in Theorem 3.4 and Corollary 3.5 hold for the linear-time statistic YA"lin.

4. Theoretical extensions to manifold with boundary and noisy data

In this section, we extend the analysis in Section 3 to two important cases, namely when the data
manifold has a boundary and data has additive noise in high dimensional ambient space.

4.1. Manifold with boundary

In many scenarios the data manifold has a boundary. For instance, when the range of rotation angle in
Example 3.1 is less than [0,27] the curve in the image space is not closed, and this is an example of
manifold having boundaries, also see Figure 2. Another reason to consider boundary is the applicability
of our theory to the Euclidean case (the manifold is “flat”), where after assuming compact support of
the distributions the support domain will have a boundary, see more in Remark 4.1.

For our analysis, when a data point x approaches the manifold boundary the support of the local
kernel will also intersect with the boundary, which makes the expression of local kernel integral in
Lemma 3.1 not hold and voids the subsequent analysis. The current section is devoted to extending the
theory in Section 3 to the case of the manifold with boundary by first extending Lemma 3.1. We assume

Assumption 4. M is a d-dimensional compact C* sub-manifold isometrically embedded in R™,
where the boundary d M is also C*.

The analysis proceeds using similar techniques and is based on the local kernel integral lemma
(Lemma 4.1), which handles when x is on or near to d M. Theorem 3.4 then extends under an addi-
tional Assumption 5 and certain modifications of the constants and condition (13), see the specifics in
Theorem 4.3.

Remark 4.1 (Euclidean space). When data densities p and g are compactly supported on some do-
main Q in R and Q has a smooth boundary, this is a special case of the manifold-with-boundary
setting where d = m. Our theoretical result thus covers such cases. When m is large, there is a curse-of-
dimensionality revealed by the y< factor in the required lower bound of n in the condition (14).

We start by establishing the following lemma, which is the counterpart of Lemma 3.1.
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Lemma 4.1. Suppose M satisfies Assumption 4, h satisfies Assumption 3, and f is in HP(M), 0 <
B <2, with Holder constant Ly. Let dp(x,0 M) :=inf, cop ||x — yl|, and define 6, := , /%yz log %
Then, there is v, > 0 which depends on M only, such that when 0 <y < min{y/, 1},

(i) For any x € M such that dg(x,0 M) > 6,, (6) holds.
(ii) There is constant C| that depends on (M, h), such that for any x s.t. dg(x,0 M) < 6y, there exists

a function mm[h](x) depending ony s.t. 0 < m(w[h](x) < mg[h] for all x and

2
’y / (” bl )f(y)dV(y) m [0 ()| < ClLey" " + 11 fllwy?). (17
Mo\ P

Similarly, as in Lemma 3.1, y(’) depends on manifold reach and curvature, and the constant C { depends
on manifold curvature and volume, and the kernel function /. The lemma shows that the error bound
at x that is ¢, away from M is O(yP"?) same as before, and at x that is within 0, distance from M is
O(yP"1). This reflects the degeneracy of the kernel integral approximation at x, which is close to the
manifold boundary.

When y < min{y(’), 1}, we define Py, := {x € M, dg(x,0 M) < 6, }, which is the ¢,-near-boundary set
as shown in Figure 1(Right). To extend Lemma 3.2, we introduce the assumption that the major part of
A, is not coming from the integral on P, .

Assumption 5. For g # p, there are positive constants y;' and C3 possibly depending on M (and
independent from p and ¢), such that when y <y,

/ (p—q)*dV < C36y/ (p—q)dV.
P, M

We then extend Lemma 3.2 which bounds the error between y~4T and mg[h]A(p, ¢) in the following
lemma.

Lemma 4.2. Under Assumptions 2, 3, 4, 5, y(’) as in Lemma 4.1. Then, when 0 <y < min{l,y(’),y(’)’
we have that

YT =mo[h)dg +rp, 17| < C38ymol A + (L + pmax(C17P + CoyPM6,)AY7 (18)

where the constants C, (as in Lemma 3.2) and C’Q’ depend on (M, h) only, including manifold curvature
and volume, the regularity and volume of 0 M, and the intrinsic dimensionality d.

Next, we extend Proposition 3.3 after replacing the constant sz) with some C]' ’(2), and o with y/,

in the statement (details in the proof), and this allows extending Theorem 3.4 to a data manifold with
smooth boundary in the following theorem.

Theorem 4.3. Under Assumptions 2, 3, 4, and 5, the same bound of test power as in Theorem 3.4
holds with the following changes: (i) replacing the constant Ciz) with C]/ ‘@ and requiring 0 <y <
min{1,y,yy'}, (ii) condition (13) is replaced by

C36, < 0.05, (Lp + pmax) (c] v C*gyﬁ“ay) <0.05mo[R]AY?, (19)

where the constants Cy and C‘é are as in Lemma 4.2 and depend on (M, h) only.
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Based on (19), which is again implied by the technical bound in (18), the above theorem induces a
detection rate similar to in Corollary 3.5: Specifically, first note that ¢, ~ y+/log(1/y) which is o(1) as
v — 0, thus C36, < 0.05 is satisfied when 1 is less than some O(1) threshold. In the second equation
in (19), note that y» /\167 ~ yPMH+1 flog(1/y) which is dominated by y# (when 8 = 2, there is a factor
of +/log(1/vy)). Thus the smallness of y requirement is the same as in the proof of Corollary 3.5 (up to
a factor of y/log(1/7y)). The largeness of n requirement is the same as before. As a result, the rate of
detection for small enough A, in the order of n and the optimal scaling of y are the same as in Corollary
3.5.

In case when Assumption 5 does not hold, one can derive upper bound of |rr| using similar tech-
niques as in Lemma 4.2, and the rest of the analysis also generalizes. As the bound of |rr| will be
worsen (due to that the kernel integral approximation error degenerates near the boundary as shown in
Lemma 4.1(ii)), the resulting rate is also worse than in Theorem 4.3. Details are omitted.

In line with the theoretical results, the experiments in Section 5 are conducted on manifold data
where M has a boundary. In Section 5.1, the data manifold is a continuous curve in the ambient space
with endpoints. In Section 5.2, the original MNIST image data lie close to a collection of sub-manifolds
in the ambient space, and it is also a case of a manifold with a boundary.

4.2. Near-manifold noisy data

In applications, data points may not lie exactly on the low-dimensional manifold but only near it. Since
kernel K, (x,y) is computed from Euclidean distances among data points, one can expect that if data
samples are lying within a distance proportional to y from the manifold M, then the integration of
kernel K, (x,y) over such data distributions will preserve the magnitude to be of order v and will not
have a curse of dimensionality.

An important case is when near-manifold data are produced by adding Gaussian noise, which is
distributed as N(0, 0'21m), to data points that are lying on a manifold. In this case, to make the off-
manifold perturbation to be of length up to constant times of y (with high probability), it allows o to
be up to cy/+/m for some ¢ > 0. Here, we show that Theorem 3.4 can be extended under this noise
regime for Gaussian kernel 4. The analysis may also extend to other types of kernel functions.

Speciically, It x; = x4 &1, 1)~ pyg, € ~ NO.07 ) and 3 =1 + 2. 5 < g

§§2) ~ N(0, 0'(22)1,,,), where the manifold clean data xl@ and ygc) are independent from the ambient

space Gaussian noise §l.(l) and 552) . When p 51 and g p4 satisfies Assumption 2 and % is Gaussian kernel,
Theorem 3.4 extends when, for some ¢ > 0,

2
2 2 )
CREIOE Zy . (20)

The argument is based on that the proof of Theorem 3.4 relies on the approximation of kernel integrals
Ex~p,y~pKy(x,y) and the boundedness of II-E)W,,,YNI,,K,,()C,y)2 at the order O(y%), and similarly with
Ex~p,y~q» Ex~q,y~q- Thus, when kernel % is Gaussian, and p (and g) equals p ¢ (and g ) convolved
with a Gaussian with coordinate variance < y?/m in R, these integrals can be shown to be equivalent
to those integrated over p ¢ and g4 with another Gaussian kernel having bandwidth ¥, where y/y
is bounded between 1 and the absolute constant /1 + ¢Z/m. As a result, the integrals of K, (x,y) and
Ky(x,y)2 can be computed same as before in Lemma 3.2 and Proposition 3.3, leading to a result of
Theorem 3.4 after replacing the roles of p and g with p 5 and g 4. Details are left to Section A.3 of
Cheng and Xie (2024).
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This suggests that when the coordinate-wise noise level o in R™ is bounded at the level of y/+/m,
the behavior of the two-sample test with kernel K, (x, y) applied to manifold-plus-noise data is essen-
tially close to as if applied to the clean on-manifold data, and the testing power is determined by the
on-manifold distributions p ¢ and g . Experiments of data with additive Gaussian noise are given
in Section 5, which verifies this theoretical prediction. In practice, we observe that the testing perfor-
mances on clean and noisy data will stay close for small noise level o, and start to show discrepancies
when o exceeds a certain level.

5. Numerical experiments

In this section, we present several numerical examples to demonstrate the validity of our theory. We first
study a synthetic example of image data lying on a manifold, and then a density departure example using
the MNIST dataset. The summary of the algorithm, including computation of the test threshold by
bootstrap Arcones and Giné (1992), is provided in Section B of Cheng and Xie (2024). Code available
at the public repository https://github.com/xycheng/manifold_mmd.

The notations are as follows: npy, is the number of replicas used to estimate the test power, and npoot
the number of bootstrap samples in computing the test threshold. We set the test level @jeve] = 0.05
throughout. In our experiments, we test over a range of kernel bandwidth parameters . In practice, y
can also be chosen adaptively from data, e.g., the median distance bandwidth is set to be the median
of all pairwise distances in the two sample datasets. Our theory in Section 3 suggests that the median
distance -y may not always be the optimal choice: for manifold data of intrinsically low dimensionality,
kernels with smaller bandwidth can achieve better testing power when there are sufficiently many sam-
ples. We verify this in experiments. In addition, we examine the Gaussian kernel and several possibly
non-PSD kernels, and verify that the latter can also achieve high test power as suggested by our theory.

5.1. Images with differently distributed rotation angles

5.1.1. Clean data

We construct two datasets consisting of randomly rotated copies of an image of the handwritten digit
‘8’, which are resized to be of different resolutions. The data-generating process was introduced in
Example 3.1 and illustrated in Figure 2. This experiment is designed such that we specify the true dis-
tributions on the latent manifold (rotation angles), which induces the distributions of observed manifold
data. The distributions p and g of the two datasets are induced by different rotation angle distributions,
and the densities of rotation angles (between 0 to 90 degrees) are shown in the left of Figure 2. The
image size changes from 10 x 10 to 40 x 40, and as a result, the data dimensionality increases from 100
to 1600. Note that since the rotation is only up to /2, the corresponding manifold is a 1D curve with
two endpoints, namely a manifold with a boundary.

Note that the image pixel values maintain the same magnitude as W increases, and then the value
of % oy I;(u)? approaches an O(1) limit, which is the squared integral of the underlying continuous
function on [0,1]>. This means that the image data vectors of size W x W need to divide by /m,
m =W?2, so as to obtain isometric embedding of a manifold of diameter O(1) in R™, In experiments
we use bandwidth vy to resized images, can we call y/+/m the “pixel-wise bandwidth”. The pixel-wise
bandwidth corresponds to the “y” in theory in Section 3.

In computing the Gaussian kernel test statistics, we use bandwidth parameters over 5 values such
that

11

Y 2
—— = -, =,1,2,4}, =w*, W=10,---,40, 21
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Figure 3. An example of simulated manifold data on which the kernel test power does not drop as the ambient
dimension m increases, where the intrinsic dimension d remains constant. Gaussian kernel test statistics are com-
puted on two datasets of rotated images with different distributions of rotation angles. Images are of sizes 10 x 10,
.-+, 40 x 40, and thus m increases from 100 to 1600. The test is computed with 5 values of kernel bandwidth as in
(21), and that is chosen by the median distance from the data. The test power is estimated using nyyy = 500. (Left)
Results on clean images. (Middle) Results on images with additive Gaussian noise, where the noise level is chosen
to be small and satisfies the condition in Section 4.2. (Right) Example clean and noisy images (size 30 x 30).

with yo = 20, which we call the “baseline pixel-wise bandwidth”. The median distance gives the pixel-
wise bandwidth is about 70. Since the grayscale images take pixel values between 0 and 255, the pixel-
wise bandwidth being 20 is relatively small, and is smaller than that chosen by the median distance. The
estimated two-sample testing power on clean images is shown in Figure 3 (Left), which is computed
using npoe = 400 and npy, = 500. It can be seen that all the bandwidth choices give certain test power,
which is consistent across m as m increases (showing a tendency of convergence after m exceeds 500
till 1600). The performance with pixel-wise bandwidth equal to 20 appears to be the best and is better
than the bandwidth by median distance.

5.1.2. Noisy data

We add pixel-wise Gaussian noise of standard deviation oy = 20 to the resized image data of dimension
m, that is, oy = yq the baseline pixel-wise bandwidth in the previous clean data experiment. This falls
under the scenario in Section 4.2: As was pointed out in the experiment with clean data, normalized
clean image I; /+/m lie on an O(1) manifold, where I; has size W x W, m = W2, and thus the pixel-wise
bandwidth corresponds to the “y” in the theory, If we add Gaussian noise N/(0, O'glm) to the clean

image [;, it corresponds to adding noise N (0, (0'3 /m)Iy) to I; [\/m. Thus o /y/m is the “o” in Section
4.2. The small noise regime in Section 4.2 requires “o- < c'y/+/m” for some constant ¢, and here, “y”
there is yg, and “o” there is op/+/m, thus the condition translates into o/+/m < c¢yy/+/m, which is
satisfied if we set oy = .

An example pair of clean and noise-corrupted images are shown in Figure 3 (Right). We conduct
the two-sample testing experiments in the same way as in the experiment with clean data, and the
the estimated testing power is shown in Figure 3 (Middle). The performance with the four pixel-wise
bandwidth, which is greater than (/2 are about the same as on the clean data; With the smallest pixel
bandwidth vy /4, the test power degenerates and becomes worse than the choice by median distance, and
the drop is more significant when dimensionality m is small. This suggests that this kernel bandwidth
is too small for the amount of additive noise at the values of m and sample size ny and ny.
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5.2. Density departure in MNIST dataset

In this experiment, we compute the Gaussian kernel two-sample test on the original MNIST digit image
dataset, where samples are of dimensionality 28 x 28. The data densities p and g are generated in the
following way: p is uniformly subsample from the MNIST dataset, namely p = pgata. Though we only
have finite samples (the MNIST dataset has 70000 images in 10 classes) of pgata, as we subsample
nx = 6000 from the whole dataset, it is approximate as if drawn from the population density p. g is
constructed as a mixture of g = 0.975pgata + 0.025pcohort, Where peonort 1S the distribution of a local
cohort within the samples of digit “1”, having about 1700 samples. Since ny is set to be about 6000,
and we subsample about 150 from the local cohort, the way we simulate samples in Y is approximately
as if drawn from the density g. The local cohort corresponding to peohort 18 illustrated in Figure 4
(Bottom left), indicating the place where the density g departures from p. The experiment is conducted
on one realization of dataset X and Y, where nx = 6000, ny = 5990.

We apply the kernel test with two bandwidths, one using the median distance, which gives the pixel-
wise bandwidth y/v/m = 92.9, and here m = 282; and the other takes y/+/m = 25. The test statistic T
under H; vs. the histogram under Hy computed by bootstrap with npeee = 1000 are shown in the top
panel of Figure 4. It can be seen that with the smaller bandwidth, the test statistic shows a more clear
rejection of Hy, indicating better testing power.

Datasets X and Y visualized in 2D Npoot = 1000, - = 92.90 Nhoot = 1000, —= = 25.00
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Figure 4. Kernel two-sample test to detect a local density departure of the MNIST image data distributions. (Top
left) Datasets X and Y are visualized in 2D by tSNE, colored by 10-digit class labels. (Top middle and right)
Kernel test statistic T (red cross) plotted against the histogram of test statistic under H computed by bootstrap
Arcones and Giné (1992) (blue bar, see more in Section B of Cheng and Xie (2024)). The middle plot is for the
Gaussian kernel test using median distance y, and the right plot is by using a smaller y. (Bottom left) The local
cohort density pcohort 1S illustrated by red dots. (Bottom middle and right) The witness function defined in (22) for
kernel using median distance y and a smaller bandwidth, respectively.
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The witness function of kernel MMD (Gretton et al., 2012) is defined as
1 nyx 1 ny
w(x)=—— ) Ky(x,x;))+— ) Ky(x,y)), (22)
i ; Y S ; y X )

and we visualize W with the Gaussian kernel as heat-map on the 2D embedding in the bottom panel
of Figure 4. The witness function indicates where the two densities differ. Compared with the ground
truth in the bottom left plot of the departure pconore, the witness function computed with the local
kernel better detects the density departure than the median distance kernel, and this is consistent with
the better test statistic separation in the top panel plots.

As a remark, unlike in Section 5.1, the MNIST image data do not lie on any constructed manifold
induced by latent group action, but only lie near certain manifold-like structures in the ambient space
— the latent manifold reveals all possible variations of images of the 10 digits, and since there are 10
classes, there are possibly 10 sub-manifolds (which may be of different intrinsic dimensionalities on
each piece), as illustrated by the 2D embedding by tSNE (t-distributed Stochastic Neighbor Embedding
(van der Maaten, 2014)) in Figure 4 (Top left). Thus, the case does not fall under the exact theoretical
assumption of manifold data in Section 3, even though manifold-like structures are likely to be present
in the dataset. The experimental results show that in this generalized case, there may still be a benefit
to testing power by using a more localized kernel with a smaller bandwidth than the median distance
bandwidth.

5.3. Two-sample tests with non-PSD kernels

Using the same data and experimental set-up as in Section 5.1, we examine different choices of the

kernel function %, which are non-Gaussian and possibly non-PSD. The indicator kernel corresponds to

the “epsilon-graph” construction frequently used in manifold learning, e.g. in ISOMAP (Tenenbaum,

de Silva and Langford, 2000). The example kernels here are mainly designed to verify the theoretical

prediction that the test with a non-PSD kernel can still have power, with no suggestion of any immediate

practical advantage of these kernels for the testing problems. Specifically, we study

exp{-10(r-2)}

T+exp{-10(r-2)}°
satisfies Assumption 3, but generally gives a non-PSD kernel Ky(x, y) for data in R™.

e Sinc kernel: A(r) = sin(5r)/(5r), which takes both positive and negative values on (0,0), and
only has 1/r decay, violating both (C2) and (C3).

e Indicator kernel: a(r) = 1|9 2)(r), which is not continuous on (0, c0), violating (C1).

e Sigmoid kernel: h(r) = which is a translated and rescaled sigmoid function and

Plots of the kernel function /(r) as univariate functions are shown in the left column of Figure 5. The
testing power for clean and noisy data over a range of kernel bandwidth, including the median distance
bandwidth, are shown in the right two columns (same plots as in Figure 3). The results show that
these kernel tests, when the kernel is non-PSD and even violates the theoretical assumption, can obtain
testing power if the kernel bandwidth is properly chosen. In addition, the optimal bandwidth may not be
the median distance: the best performance achieved by the three kernels for clean data is obtained with
Yo or 2yp in (21), which is smaller than the median distance as explained in Section 5.1. With noisy
data, the testing powers worsen, but the power achieved by the best bandwidth is again comparable to
that on the clean data for all three kernels; though the best bandwidth takes a different value from that
under the clean data (which can be anticipated based on the analysis in Section A.3 of Cheng and Xie
(2024)). Comparing the (translated and rescaled) sigmoid kernel and the indicator kernel in Figure 5,
it can be seen that the smoothness of the kernel function leads to better noise robustness; On this data,
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translated and rescaled sigmoid 1testing power, nx = ny = 200, clean data 1testing power, nx = ny = 200, noisy data
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Figure 5. Two-sample test with non-Gaussian kernels that may not be PSD. (Left column) Three choices of kernel
function £ as in Section 5.3. (Right two columns) Same plots of testing powers on clean and noisy data of rotated
images as in Figure 3, of the three kernel functions respectively.

the Gaussian kernel shows better noise robustness than the non-PSD kernels, comparing Figure 3 with
Figure 5.

In all experimental trials presented in this paper, we observe that the testing power remains constant
as the dimensionality of the data, denoted by m, increases and ultimately converges. Additionally,
our results demonstrate that the curse-of-dimensionality does not affect manifold data and support
theoretical proposals that suggest the kernel’s consistency and power in two-sample tests do not depend
on whether or not the kernel is PSD, which would result in the test statistic being an RKHS MMD.

6. Discussion

We provide a curse-of-dimensionality free result for kernel MMD-like statistics, which we expect to
be tight for the linear-time version of the kernel statistic (see Remark 3.4) but not necessarily for the
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full (quadratic-time) kernel statistic. For the full kernel statistic computed from data in d-dimensional
Euclidean space, Li and Yuan (2019) showed that the Gaussian kernel statistic achieves a detection
rate of Ay > n~*B/(d+46) which is minimax optimal against smooth alternatives (c.f. Theorem 5 of Li
and Yuan (2019), recall that A, is the squared L? divergence). One may conjecture the same minimax
rate for data with intrinsic data dimension d. This rate of n~*/(4+46) is better than our proved rate
of Ay > n~2B/(d+46) in Corollary 3.5. This gap may be due to the control of the fluctuation of the
U-statistic by Proposition 3.3 not being tight (see the comment after the proposition). Obtaining a test
power result at a finite sample size that matches the conjectured minimax rate under our manifold data
setting is left to future work. However, the picture differs when considering computational complexity.
Since the vanilla computation of the full statistic has O(n?) complexity, with the same computational
and memory cost, the linear-time statistic can process 7i ~ n> samples. According to the proved rate
by our result, it pushes the detection boundary to be A, 2 AP/ d+4B) . p=4B/(d+46) which is the
same as the conjectured optimal rate. The linear-time statistic can be computed online (Flynn and Yoo,
2019), and thus can be viewed as trading the smaller variance by revisiting all the samples for faster
computation on the fly. In summary, the statistical optimality of two-sample kernel statistics applied to
intrinsically d-dimensional data remains to be further studied. It would be interesting to design kernel
tests that achieve the theoretical detection rate with matched computational complexity.

Our work can be extended in several other directions. For instance, the current paper only considers
isotropic kernels with fixed bandwidth. It would be of interest to generalize to other types of kernels
used in practice, such as anisotropic kernels using local Mahalanobis distance, other non-Euclidean
metrics, kernels with adaptive bandwidth (Cheng and Wu, 2022a, Zelnik-Manor and Perona, 2005),
asymmetric kernels with a reference set (Cheng, Cloninger and Coifman, 2020, Jitkrittum et al., 2016),
and so on. To expand the theoretical framework, it would be interesting to go beyond the compactness
assumption of the manifold, which would allow extracting the low intrinsic dimensionality or low
complexity of high dimensional data distributions that are unbounded or have long tails. One may
extend the theory to more complicated manifold structures, like multiple sub-manifolds of different
intrinsic dimensions or with complicated boundaries. More advanced analysis of the near-manifold
setting, for example, by analyzing general high dimensional noise, would also be a useful extension.
Algorithm-wise, while the theory in this work suggests using smaller bandwidth depending on data
intrinsic dimensionality and sample size, providing a theoretical scaling of vy for large n, it remains
to further develop efficient algorithms to choose kernel bandwidth in practice. Developing efficient
kernel testing methods to reduce storage and computational costs would also be desirable. At last, it is
natural to extend to other kernel-based testing problems, such as goodness-of-fit tests (Chwialkowski,
Strathmann and Gretton, 2016, Jitkrittum, Kanagawa and Scholkopf, 2020, Shapiro, Xie and Zhang,
2021), and general hypothesis tests. Reducing sampling complexity by the intrinsic low-dimensionality
of manifold data may also be beneficial therein.
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