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ABSTRACT: Parkinson’s disease (PD) is an idiopathic neuro- : =
degenerative disorder with the second-highest prevalence rate | gy o -
behind Alzheimer’s disease. The pathophysiological hallmarks of
PD are both degeneration of dopaminergic neurons in the
substantia nigra pars compacta and the inclusion of misfolded a-
synuclein (a-syn) aggregates known as Lewy bodies. Despite
decades of research for potential PD treatments, none have been
developed, and developing new therapeutic agents is a time-
consuming and expensive process. Computational methods can be
used to investigate the properties of drug candidates currently
undergoing clinical trials to determine their theoretical efficiency at
targeting a-syn. Monoclonal antibodies (mAbs) are biological
drugs with high specificity, and Prasinezumab (PRX002) is an
mAD currently in Phase II, which targets the C-terminus (AA 118—126) of a-syn. We utilized BioLuminate and PyMol for the
structure prediction and preparation of the fragment antigen-binding (Fab) region of PRX002 and 34 different conformations of a-
syn. Protein—protein docking simulations were performed using PIPER, and 3 of the docking poses were selected based on the best
fit. Molecular dynamics simulations were conducted on the docked protein structures in triplicate for 1000 ns, and hydrogen bonds
and electrostatic and hydrophobic interactions were analyzed using MDAnalysis to determine which residues were interacting and
how often. Hydrogen bonds were shown to form frequently between the HCDR2 region of PRX002 and a-syn. Free energy was
calculated to determine the binding affinity. The predicted binding affinity shows a strong antibody—antigen attraction between
PRX002 and a-syn. RMSD was calculated to determine the conformational change of these regions throughout the simulation. The
mADb’s developability was determined using computational screening methods. Our results demonstrate the efficiency and
developability of this therapeutic agent.
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1. INTRODUCTION be applied for the accurate identification of PD patients and
those at high risk for PD.”

The discovery, development, and manufacturing of new drug
candidates is a long, laborious, and expensive process, with the
average cost for research and development of a single drug
candidate at $1.1 billion.® In the last 30 years, monoclonal
antibodies (mAbs) have come into the biopharmaceutical
landscape as therapeutic agents rather than tools for scientific
analysis.” These medications are highly specific, as they are
designed for a specific epitope and have several different routes
' MAbs have been developed to treat

Parkinson’s disease (PD) is an idiopathic neurodegenerative
disease that affects 2—3% of the population over 65." The
pathophysiological hallmarks of PD are the degeneration of
dopaminergic neurons in the substantia nigra pars compacta
(SNpc), as well as the inclusion of cytotoxic Lewy bodies.” The
primary constituent of Lewy bodies is misfolded aggregates of
alpha-synuclein (@-syn),” consisting of 140 amino acid residues
encoded by the synuclein alpha (SNCA) gene, which upon
mutation, causes familial PD.* The loss of dopaminergic
neurons in the SNpc causes a decrease in dopamine (DA)
levels in the corpus striatum, generating deregulation of the

for administration.

basal ganglia systems, leading to motor symptoms such as Received:  August 5, 2024
resting tremor, rigidity, bradykinesia, and loss of static Revised:  August 29, 2024
stability.” Depletion of DA levels can reach 80% before any Accepted:  August 30, 2024

changes in tonic DA can be measured,6 showing the need to Published: September 9, 2024

identify PD before the disease has caused irreparable damage.
Siderowf et al. showed that a-syn seed amplification assays can
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oncological, cardiovascular, kidney, and neurological dis-
eases.'" The biggest challenge with developing mAbs for
central nervous system disorders is the large size of biological
drugs'® attempting to pass through the blood-brain barrier
(BBB)."” Recent successes in the development of mAbs for
Alzheimer’s disease (AD) show the promise of targeting and
lowering the number of protein aggregates in the brain. *'®

Prasinezumab (PRX002) is a mAb developed by Roche and
Prothena that targets the C-terminus (AA 118—126) of a-
syn.'®'7 PRX002 is currently in clinical trial stage 2b after a
promising phase Ib trial, which showed its high afhinity for
peripheral a-syn as well as no fatalities, severe adverse effects,
or anti-PRX002 antibodies formed. However, the drug was
further studied during a phase II trial, and no meaningful effect
was observed from PRX002 administration when compared to
placebo.'® The therapeutic is currently undergoing a phase IIb
trial titled PADOVA for further analysis of PRX002’s ability to
slow the })rogression of motor dysfunction in early-stage PD
patients.'” Another anti-a-syn mAb, Cinpanemab, has also
undergone clinical trials but targets a different region of the a-
syn, the N-terminus. When compared to PRX002, Cinpane-
mab only binds to aggregated a-syn and does not recognize
monomeric or oligomeric forms.”” The Cinpanemab phase II
trial ended after there was no meaningful benefit compared to
the placebo, so PRX002 is currently the only mAb still in
clinical trials for PD.

In the past three decades, computer-aided drug discovery
methods have been extremely influential in the biopharma-
ceutical industry.”’ The ability to speed up and reduce the
price of developing therapeutics is an extremely attractive
characteristic of utilizing computational tools in research and
development settings. Of these technologies, molecular
dynamics (MD) and machine learning (ML) have had the
highest influence. MD can be used to simulate interactions
between proteins and ligands,22 antibody—antigen binding,23
as well as discovering novel binding sites.”* ML has great
applications for utilizing the physicochemical properties of
drug-like compounds to predict if a projected drug will be a
successful candidate in both clinical trials and mass
production.”>*® These tools have been extremely valuable in
the search for a cure for challenging diseases, including
neurological conditions such as PD*’~*" and AD.*

The administration of mAbs presents a challenge for PD
patients, as the cognitive and motor symptoms of the disease
greatly affect driving ability and safety,’’ leading to increased
dependency on a caregiver for transportation. Subcutaneous
(SC) administration of PRX002 would allow PD patients to
safely administer this medication from their homes, potentially
increasing safety and adherence. The challenge with SC
administration is the high concentration of mAbs, which can
lead to aggregation and elevated viscosity.”

In this paper, we utilize computational methods to model
the interactions between the fragment antigen binding (Fab)
region of PRX002 with a-syn in silico, simulate binding
between these two proteins, perform MD simulations to
analyze intermolecular forces taking place at the binding site,
calculate the binding free energy of the antibody and antigen,
determine the conformational changes of the complementarity
determining regions (CDR) of the variable region (Fv) on
both the heavy and light chains (Vy; and Vy, respectively), as
well as test the potential for developability and similarity to
clinical-stage therapeutics. This mechanistic study will help
evaluate the effectiveness of PRX002 and provide a workflow
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to optimize future drug discovery and development, reducing
experimental costs and leading to more effective and tailored
therapies.

2. MATERIALS AND METHODS

2.1. Generation of Docked PRX002-a-syn Complex.
The sequence data for PRX002 was obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG),” and
Schrédinger software BioLuminate’*™** and PyMol® were
used to predict the protein structure of the Fab region of the
mAb, with Chothia numbering used to annotate the final
models. An ensemble of thirty-four different confirmations of
a-syn was obtained from the Protein Data Bank (PDB ID
2KKW),* gathered by nuclear magnetic resonance (NMR)
and electron paramagnetic resonance (EPR) spectroscopy.
This ensemble was chosen to have a different conformation of
the intrinsically disordered region of a-syn in protein docking.
Both proteins were prepared by removing water and adding
missing side chain atoms using the Protein Preparation
Wizard,"" and structure reliability reports were completed
using BioLuminate. PIPER**** was used to perform protein—
protein docking on PRX002 and all 34 variations of a-syn. The
conformations of 2KKW were rotated to form several different
static orientations with respect to PRX002, and each
orientation was translated to find the best docking score.
The top 1000 rotations are clustered using the RMSD distance
between matching atoms. The final structures were those from
each cluster with the most neighbors. Refinement was
performed on the side chains postprotein docking to reduce
steric clashes and optimize interactions.

2.2. Simulation Preparation. Using Visual Molecular
Dynamics (VMD, version 1.9.3),** the heavy chain and light
chains of PRX002 and a-syn were separated, renumbered, and
patches were used between cysteine residues on the Fab region
to define the disulfide bridges. The VMD plugin psfgen was
then used to create a simulation-ready protein atom coordinate
file (pdb) and protein structure file (psf). This structure then
underwent minimization for 5000 steps using Nanoscale
Molecular Dynamics (NAMD, version 2.14).** Solvation and
ionization were performed utilizing the solvate and autoionized
VMD plugins using a PDB file generated by the minimization
step, with one sodium atom added to neutralize the system,
embedding the structure in a solvate box extending 10 A from
the protein boundary (Figure 1). The CHARMM36m force
field was utilized in the simulation along the three-point water
model (TIP3P) and CHARMM parametrization for water and
ions formatted for NAMD.***/

2.3. Molecular Dynamics. All simulations were performed
using VMD and NAMD (versions 2.14 and 3.0alpha).
Simulations were run using an A100 GPU on the Anvil high-
performance computing cluster. Results from the ionization
steps were minimized, heat prepared, and brought to
equilibrium before production runs were performed. Simu-
lations were performed at 300 K, kept constant by Langevin
dynamics, and pressure at 1.01325 bar, kept constant by a
Langevin piston. After energy minimization was performed, the
system was heated from 100 to 300 K over 5 K intervals for
200 ps. The integration time step of the simulation was 2 fs per
step, with the position coordinates saved every 200 ps in a
DCD file. Particle Mesh Ewald (PME)** was used for long-
range electrostatic interactions, and a smooth cutoff was
implemented for van der Waals forces (10—12 A). Each system
was simulated in triplicate for 1 us.

https://doi.org/10.1021/acs.molpharmaceut.4c00879
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Figure 1. PRX002 and a-syn in a solvated and ionized system. The
water and ion boxes extend 10 A past the edge of the protein
boundary. PRX002 = multicolor cartoon, a@-syn = green cartoon.

2.4. MDAnalysis. Topology and coordinate files from the
MD simulations were exported for descriptive data analysis of
hydrogen bonds formed during the simulation. MDAnaly-
sis*”*" was used to convert the coordinate files into NumPy’
arrays and calculate the atoms on specific residues that were
forming hydrogen bonds between the heavy and light chains of
the PRX002 Fab and C-terminus of a-syn (AA 100—140),
frames at which the h-bonds formed, and the donor, hydrogen,
and acceptor atom ID number. The number of h-bonds per
time step was calculated using the average bonds formed in
each frame plotted using Matplotlib.”> A reverse lookup
function was utilized to list the residues forming hydrogen
bonds, the chains where these residues were located, and the
frequency of this unique bond’s appearance across all frames.
To prevent percent occupancy values from exceeding 100%, a
residue that forms more than one bond per frame was counted
only once. PyMol was used to generate visualizations of the
hydrogen bonds formed between residues.

2.5. RMSD Analysis. To analyze the conformational
changes in the Vi and Vi CDR regions, the root-mean-square
deviation (RMSD) was calculated. VMD’s RMSD analysis
class was used to compute the difference between all frames of
the simulation and the first frame. The PBC wrap function was
used to ensure that the structure was centered in the
simulation box before the RMSD calculation to prevent any
periodic boundary condition-related errors. To assess how
PRX002 changed over the course of each independent
simulation, cluster analysis was performed with the initial
frame of each system, and the final frame from each
independent simulation.

2.6. Binding Free Energy Calculation. To measure the
binding affinity of PRX002 with a-syn, gmx MMPBSA was
used for a generalized Born (GB) and pairwise residue
decomposition energy calculation.>® Conversions of NAMD
protein structure files and trajectories to GROMACS®* format
were performed using ParmEd*® and MDTraj,” respectively.
The GB model was used to compute the predicted binding free
energy by the following equation:

AGbind = <Gcom > _<Grec > _<Glig>

Geomy Greo and Gy, refer to the change in free energy of the
complex, receptor, and ligand, respectively. Per-residue
decomposition with 1—4 electrostatics and van der Waals
added to each potential term for residues within six Angstroms
between PRX002 and a-syn. All 5000 frames of each 1 us
simulation were analyzed to determine their change in free
energy.

2.7. Developability Methods. To determine the potential
developability of PRX002, computational screening methods
were used to determine in vitro viscosity, aggregation, and
similarity to other clinical-stage therapeutics. DeepSCM was
used to predict the spatial charge map (SCM) for screening
potential viscosity issues. In addition, the Therapeutic
Antibody Profiler (TAP)*’ was applied to measure total
CDR length, patches of surface hydrophobicity (PSH), patches
of positive charge (PPC), patches of negative charge (PNC),
and the structural Fv charge symmetry parameter (SFvCSP).
PSH, PPC, and PNC were all calculated metrics across the
CDR vicinity. The results from TAP analysis can inform
potential development issues such as aggregation and

Figure 2. Complexes of the PRX002 Fab region docked with a-syn. The heavy chain of PRX002 is highlighted in blue, the light chain of PRX002 is
highlighted in red, and a-syn is highlighted in green. Protein—protein docking was performed by PIPER. The C-terminus (AA 118—126,
highlighted in gray) of a-syn was specified in the protein—protein docking simulation as the attraction site. (From left to right: PD-8, PD-14, and

PD-27).
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expression. Abpred was also used to predict the performance of
the mAb on 12 biophysical platforms tested by Jain et al.>>*’
These experimental platforms were hydrophobic interaction
chromatography (HIC), stand-up monolayer adsorption
chromatography (SMAC), salt-gradient affinity-capture self-
interaction nanoparticle spectroscopy (SGAC), cross-inter-
action chromatography (CIC), clone self-interaction by
biolayer interferometry (CSI), affinity-capture self-interaction
nanoparticle spectroscopy (AC), HEK cell expression titer
(HEK), polyspecificity reagent (PSR), enzyme-linked immu-
nosorbent assay (ELISA), baculovirus particle ELISA (BVP),
and differential scanning fluorimetry (DSF). These screening
methods predict whether the mAb would have elevated
viscosity in high concentration, its propensity for aggregation,
and the similarity of the therapeutic to those of other clinical-
stage mAbs.

3. RESULTS

3.1. Modeling of Antibody—Antigen Complex. Figure
2 shows the docked structures of PRX002 Fab and a-syn.
PIPER docking simulations returned 10 best pose predictions,
and the 3 outputs with the least distance between the CDR
regions of the Fab with the C-terminus of a-syn were
submitted for MD simulations. The three PRX002-a-syn
complexes selected for MD simulations were 2KKW models 8,
14, and 27. (PD-8, PD-14, and PD-27). Chothia coloring
schemes were utilized to highlight the specific CDR regions.

3.2. Hydrogen-Bond Analysis. Descriptive analysis of
protein—protein h-bonds was performed on the outputs of
each MD simulation to determine the location and frequency
of intermolecular interactions over 1 us. Table la—c displays

Table 1. Most Common H-Bonds Formed”

(a)

H-bond donor H-bond acceptor percent occupancy (%)
Ser:H:53 Asp:A:121 55.05 + 30.61
Ser:H:52 Asp:A:121 41.78 + 36.20
Tyr:H:59 Asp:A:121 30.25 + 42.46
Ser:L:62 Glu:A:110 2297 + 31.1S
Lys:L:61 Glu:A:110 21.36 + 29.76

(b)

H-bond acceptor

H-bond donor percent occupancy (%)

Arg:H:98 Asp:A:119 26.82 + 37.93

Ser:H:52 Asp:A:11S 26.37 + 37.26

Ser:H:52 Glu:A:114 24.23 + 2898

Tyr:H:59 Asp:A:11S 23.99 + 26.77

Ser:H:53 Asp:A:11S 23.03 + 32.57
(c)

H-bond donor H-bond acceptor percent occupancy (%)
Lys:L:36 Asp:A:119 34.47 + 2927
Ser:L:62 Glu:A:114 23.45 + 31.25
Lys:L:61 Glu:A:114 20.83 + 29.45
Tyr:H:59 Glu:A:126 19.87 + 27.64
Tyr:L:38 Glu:A:123 19.51 £ 27.59

“A reverse lookup function was employed to take h-bond donor and
acceptor ID numbers to list the residues on each chain forming the
most h-bonds across each simulation. The top five unique residue
pairs forming bonds were chosen. H = PRX002 heavy chain, L =
PRX002 light chain, A = a-syn. Docked structures (a) PDS8, (b)
PD14, and (c) PD27.
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the most prevalent bonds across the frames of the simulations.
The percent occurrence of the h-bonds was calculated by
averaging the bonds formed in each independent simulation
and taking the standard deviation. The second heavy chain
CDR (HCDR2) region of PRX002 formed the most bonds
with the C-terminus of a-syn across all simulations.

3.3. Binding Affinity of Antibody—Antigen Complex.
All 5000 frames of each of the 1 ys simulations were analyzed
for free energy estimation by gmx MMPBSA. The resultant
values for binding affinity and standard deviations were
averaged across all simulations for each system. The change
in binding free energy is shown in Table 2 below.

3.4. Conformational Changes in CDR Regions during
Binding. Figure Sla,i displays the RMSD in Angstroms (A) of
each CDR region of PRX002 over the simulation frames. The
HCDRI region of the first and third independent simulations
of PD8 has the highest average fluctuation at approximately 3
A, which may be attributed to the amount of hydrogen bonds
formed between residues on this region and a-syn. The other
CDR regions across all simulations for all systems do not
exceed 2.5 A. Figure 4a—c visualizes the initial frame and final
frames for each system in a cluster analysis. PRX002 is seen to
move from its initial position, staying bound to the intrinsically
disordered tail region of @-syn throughout the 1 us simulation.
The second and third independent simulations of PD8 move
to a similar location, while the first independent structure
translates to the other side of the static representation. The
same behavior is seen in PD14, as the structures rotate with a-
syn during the simulations. Conversely, the Fab regions of
PRX002 stay in the same area in all independent simulations of
PD27, with each protein’s CDR regions facing the same
direction.

3.5. Developability for Subcutaneous Administra-
tion. To test the developability of PRX002, DeepSCM was
used to calculate the theoretical SCM score, with the mAb
scoring 695.50, predicting low viscosity in high concentrations
and low propensity for viscosity (the threshold value is 1000).
Table 3 shows the results of the TAP analysis. TAP determined
that the mADb was in range for all the measured metrics except
for SEvCSP, with it scoring —6.0, just on the boundary of the
amber region, predicting that the antibody design of PRX002 is
comparable to those of clinical-stage therapeutics. Table 4
shows the results from Abpred, which predicted that PRX002
falls in the safe threshold for all biophysical tests, showing that
the therapeutic has biophysical properties similar to those of
clinical and approved mAbs.

4. DISCUSSION

Targeting aggregated a-syn has been a theorized route of
treatment for years, but no medications have been developed
to do so thus far. Prasinezumab is currently in Phase IIb and is
the most promising candidate for an mAb targeting this
pathologic protein. Understanding the mechanism by which
the mAb binds to a-syn is vital for understanding its
effectiveness and specific residues in the CDR regions that
can be used for epitope mapping of future novel therapeutics.
We simulated the three most favorable docking poses (PDS,
PD14, and PD27) in triplicate for 1 us. Our results indicate
that there exist multiple binding modes between PRX002 and
a-syn. Ser:H:53-Asp:A:121 (Figure 3a) is the most prevalent
hydrogen bond in PD-8. In addition, the neighbors Ser:H:52
and Asp:A:121 form the second prevalent hydrogen bond. In
PD14, the top S hydrogen bonds show similar percent

https://doi.org/10.1021/acs.molpharmaceut.4c00879
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Table 2. Binding Free Energy of PRX002 and @-syn”

system complex (kcal/mol) receptor (kcal/mol)
PD-8 759.3 + 95.8 1007.14 + 80.55
PD-14 740.78 + 95.96 997.69 + 80.08
PD-27 730.40 + 100.63 975.06 + 79.82

ligand (kcal/mol) delta (kcal/mol)

—228.72 + 48.52 —19.11 £ 24.92
—225.80 + 47.93 —31.12 + 30.44
—219.04 + 48.59 —25.62 + 31.66

“Analysis of predicted binding free energy estimates of PRX002 and a-syn simulations. All trajectories of systems PD8, PD14, and PD27 were

analyzed, and values for the binding affinities were averaged.

Table 3. Therapeutic Antibody Profiler Results”

metric value
total CDR length 49
CDR vicinity PSH 147.4097
CDR vicinity PPC 1.1106
CDR vicinity PNC 0
SFvCSP —6

“Developability metrics were provided from TAP analysis. CDR =
complementarity determining region, PSH = patches of surface
hydrophobicity, PPC = patches of positive charge, PNC = patches of
negative charge, and SFvCSP = structural Fv charge symmetry
parameter.

Table 4. Abpred Biophysical Property Predictions

platform regression RankingRaw ranking nexp threshold
HIC 9.943 68 S1 134 SAFE
SMAC —0.085 65 48 136 SAFE
SGAC 606.252 36 74 136 SAFE
CIC 0.305 85 63 136 SAFE
CSI —0.012 58 43 136 SAFE
AC 0.581 929 73 136 SAFE
HEK 165.256 85 38 136 SAFE
PSR 0.377 117 87 136 SAFE
ELISA 2.438 111 82 136 SAFE
BVP 4.583 104 77 136 SAFE
DSF 71.285 70 49 136 SAFE
AS 0.045 49 37 136 SAFE

occupancy. Interestingly, donors Ser:H:53 and Ser:H:52 also
appear in PD14, indicating the importance of these serine
residues in the interaction between PRX002 and a-syn.
However, the acceptors are Asp:A:115 instead of Asp:A:121
due to slightly different binding positions (Figure 4). In PD27,
the hydrogen bonds form primarily between light chain
PRX002 and a-syn. The most prevalent ones are Lys:L:36
and Asp:A:119 (Figure 3c). Because Lys and Asp have
opposite charges, they can also form a salt bridge that further
strengthens their interactions. Asp:A:119 also appears in PD14
as the most prevalent hydrogen bond (Figure 3b), showing its
importance in PRX002 and a-syn interactions.

The estimated binding free energy calculated through the
MM/PB(GB)SA calculation shows that PRX002 has a high
affinity for a-syn. Binding affinity is a fundamental metric in
drug development and discovery, and showing a strong drive
for antibody—antigen binding is vital for validating Prasinezu-
mab as a potential therapeuticc. RMSD and cluster analysis
show that PRX002 can flexibly move but maintains
intermolecular attractions with a-syn throughout the 1 us
simulation. The simulations were run in triplicate to both
verify the occurrence of intermolecular attractions with
different trajectories and to determine the ability for PRX002
to be able to maintain its bound pose with different
conformations of the C-terminus of a-syn. Since we are able
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to observe hydrogen bonds formed and consistent predicted
binding affinity, these simulations can provide insight into the
effectiveness of this mAb.

The procedures indicated in this paper provide a streamlined
approach to assess the theoretical intermolecular attractions
and binding affinity of a potential antibody therapeutic from
sequence information alone, allowing for powerful insights
early in the development process. The ability to screen mAb
candidates for potential viscosity, aggregation, and other
biophysical issues allows for the removal of candidates with
undesirable properties, saving time and resources in the drug
discovery process. Further experimental analysis to validate the
intermolecular interactions between mAb and a-syn would
provide more evidence to support the ongoing clinical trial of
Prasinezumab.

Several different tools were used for protein—protein
docking of PRX002 and a-syn. ZDock,”® HDock,' and
PIPER were the rigid docking algorithm-based methods used
to simulate the antibody—antigen interaction, with PIPER
yielding the best results across all 34 variations of a-syn. PIPER
being implemented in the BioLuminate platform also allows
for easy preparation of proteins before simulation with other
features as well as assigning attraction and repulsion
parameters for the docking algorithm. Generating structural
fingerprints from the resultant protein—protein structure is also
extremely valuable for feature generation, which can be
implemented in ML algorithms.

The search to cure PD has spanned decades thus far, and
targeting a-syn has shown the greatest results both in the a-
syn-preformed fibril model and human clinical trials. However,
medications in the drug development pipeline have a high
attrition rate, leading to millions of dollars put toward a
medication that is either ineffective or undevelopable.
Implementing computational tools such as MD for investigat-
ing the intermolecular forces, or lack thereof, will allow for
quicker validation of a therapeutic agent or archiving of an
ineffectual candidate.

5. CONCLUSIONS

Residues on the HCDR2 and LCDR2 of PRX002 form h-
bonds with the C-terminus of a-syn throughout the MD
simulations performed, and PRX002 has a strong predicted
affinity for a-syn. Our results show theoretically solid evidence
of the binding capability of PRX002. PRX002 was also shown
to not undergo drastic conformational changes after binding to
a-syn and to maintain intermolecular forces with the
intrinsically disordered C-terminus, showing the strong lock-
and-key recognition of this protein—protein complex. We
propose that our method of calculating these intermolecular
forces from the simulation will prove to be useful to future
research of biopharmaceutical candidates for PD and beyond.
In addition, we anticipate the use of this methodology in early
stage development to determine the binding capabilities of
biological drugs quickly.
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Figure 3. a—c: H-bonds formed between the variable region of PRX002, and a-syn. (a) Visualization of the h-bonds formed between serine on the
PRX002 HCDR2 region and aspartic acid on a-syn for system PD8. The NH1 and OG groups on serine are the donor atoms forming the bond
with an OC group on aspartic acid. The most prevalent of these two interactions is Ser:NH1-Asp:OD1. (b) Visualization of the h-bonds formed
between arginine on PRX002 HCDR3 region and aspartic acid on a-syn for system PD14. Two NH2 groups on arginine are the donor atoms
forming a bond with OD1 and OD2 groups on glutamic acid. The most prevalent of these two interactions is Arg:NH2-Asp:OD1. (c) Visualization
of the h-bonds formed between lysine on the PRX002 LCDRI region and aspartic acid on a-syn for PD27. The NH3 group on lysine is the donor
forming the bond with the OC group on aspartic acid. H = heavy chain, L = light chain, A = a-syn, green = carbon, red = oxygen, blue = nitrogen,
and white = hydrogen.
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Figure 4. a—c: Cluster analysis was performed on each system with
the initial frame of each system and the final frames of each
independent simulation. Structures of a-syn for the final frames of
each independent simulation are not shown for clarity. (a) PDS, (b)
PD14, and (c) PD27. Green = a-syn, multicolor protein = initial
frame of PRX002, orange = final frame of independent simulation #1,
purple = final frame of independent simulation #2, and light blue =
final frame of independent simulation #3.
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