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ARTICLE INFO ABSTRACT
Keywords: Faults, such as malfunctioning sensors, equipment, and control systems, significantly affect a building’s per-
Causal learning formance. Automatic fault detection and diagnosis (AFDD) tools have shown great potential in improving

Information entropy

" building performances, including both energy efficiency and indoor environment quality. Since modern buildings
Bayesian network

Crosslevel fault have integrated systems where multiple subsystems and equipment are coupled, many faults in a building are

Root cause fault diagnosis cross-level faults, i.e., faults occurring in one component that trigger operational abnormalities in other sub-

Building HVAC system systems. Compared with non-cross-level faults, it is more challenging to isolate the root cause of a cross-level
faults due to the system coupling effects. Bayesian networks (BNs) have been studied for the root cause isola-
tion for building faults. While promising, existing BN-based diagnosis methods highly rely on expert domain
knowledge, which is time-consuming and labor expensive, especially for cross-level faults. To address this
challenge, we propose an entropy-based causality learning framework, termed Eigen-Entropy Causal Learning
(EECL), to learn BN structures. The proposed method is data-driven without the use of expert domain knowledge;
it utilizes causal inference to determine the causal mechanisms between faults status and symptoms to construct
the BN model. To demonstrate the effectiveness of the proposed framework, three fault test cases are used for
evaluation in this study. Experimental results show that the BN constructed by the proposed framework is able to
conduct building cross-level faults diagnosis with a comparable isolation accuracy to those by domain knowledge
while maintaining less complexed BN structure.

achieve up to 20 % building energy savings [6,7] but also improve
equipment lifecycles and indoor comforts [8-10].

Modern building HVAC systems typically include a set of multiple,
highly coupled subsystems such as cooling/heating plant, primary air
distribution, and terminal air distribution subsystems. Due to the
coupling effect among building components, a fault occurring in one
equipment or subsystem may propagate and influence other equipment
or subsystems [11,12]. Hence, component-level AFDD methods may not
be efficient and suitable solutions to the root cause analysis for cross-
level faults, i.e., faults causing adverse effects across multiple compo-
nents and subsystems [13]. Chen et al. [13] has provided an example of
a chiller supply water temperature sensor bias fault (e.g., sensor reading
higher than actual temperature) in the chiller plant which would cause
the cooling valve open position in a downstream air handling unit

1. Introduction

Building Heating, Ventilation and Air conditioning (HVAC) systems
are complex with a variety of sensors, subsystems and automatically
controlled components. According to the United Nations Environment
Programme, approximately 135 EJ operational energy demand and 10
Gt energy-related carbon dioxide emission were attributed to the
building systems in 2021 [1]. It is also reported that 30 % of this energy
usage [2] was wasted due to malfunctioning sensors and components in
the HVAC systems [3,4]. Automatic fault detection and diagnosis
(AFDD) technologies thus are vital to ensure satisfactory building per-
formances, especially from the aspect of energy efficiency [5]. Field
studies and practices indicate that AFDD technologies cannot only
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Nomenclature
AFDD  Automatic fault detection and diagnosis

AHU Air handling unit

AJA Average isolation accuracy

BAS Building automation system

BN Bayesian network

CL Causal learning

EE Eigen-Entropy

EECL Eigen-Entropy-based causality learning

HVAC  Heating, ventilation and air conditioning
1A Isolation accuracy

PN Probability of necessity

SIA Sufficient isolation accuracy

VAV Variable air volume

(AHU) to be lower than normal. In this case, a component-level AFDD
tool that only monitors the AHU might result in false alarms such as a
cooling coil valve fault or a supply air temperature sensor fault. Hence, a
root cause analysis is necessary to ensure the correct diagnosis of cross-
level faults.

Compared with fault detection studies, much fewer fault diagnosis/
root cause analysis studies exist [14]. A root cause analysis has shown its
importance to improve quality assurance, reliability and performance in
many fields, such as power systems [15], manufacturing [16], just to
name a few. Bayesian networks (BNs) have been extensively studied as a
root cause analysis technique. For example, Wang et al. [15] conducted
an analysis on root causes of occurring alarms in thermal power plants
based on posterior probability from BN. In their research, the BN was
constructed by one child node and multiple parent nodes that describe
the relationship between an alarm variable and root-cause variables
using the process knowledge. Lokrantz et al. [16] proposed a BN-based
graphic probabilistic models using the expert knowledge to identify the
causality of failure and quality deviation among multiple manufacturing
stages, where network parameters were trained by historical data, and
root cause was inferred according to defect types and measurements. Liu
et al. [17] developed a strong relevant mechanism BN combining pro-
cess mechanism analysis with historical data mining for unmonitored
root cause variables in chemical plants fault diagnosis, which showed
great practicability and satisfactory performances in fault propagation
recognitions. Amin et al. [18] presented a hybrid data-driven method
integrating principal component analysis with the Bayesian networks for
fault detection and diagnosis in process plants, which demonstrated a
strong efficacy of diagnosis performance while maintaining lesser false
diagnosis. In [19], the same authors developed a dynamic Bayesian
network-based fault detection and root cause diagnosis, which had an
ability to convert the continuous process data into meaningful evidence
instead of a probabilistic domain. There are also some BN studies
emphasizing cross-level fault diagnosis in an HVAC system from the
data-driven perspective. For example, Wang et al. [20] introduced a
practical, efficient discretized BN-based diagnosis method for chiller
faults; Chen et al. [21] proposed a whole building fault diagnosis
method based on Discrete BN to isolate faults causing significant ab-
normalities in multiple subsystems/equipment during system operation,
and further designed a weather and schedule-based pattern matching
Discrete BN to diagnose cross-level faults in building HVAC systems for
real-time fault diagnosis and isolations [13]. Wang et al. [22] combined
a reference model-based approach using normal data with a BN-based
approach using faulty data to improve the effectiveness of fault diag-
nosis. Taal and Itard [23] proposed an automated fault identification
(AFI) process for HVAC systems using a diagnostic BN, successfully
isolating control faults in a thermal energy plant. Pradhan et al. [24]
developed a dynamic BN-based approach that incorporated the
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temporal dependencies of fault nodes between time steps using temporal
conditional probabilities to improve accuracy for a whole building level
fault diagnosis.

The aforementioned BN-based diagnosis methods highly rely on
heuristics processes to learn causal relationships among fault status and
symptoms, and their causal mechanism is primarily determined by the
expert knowledge. While promising, heuristics processes by the domain
knowledge may not be adequate and effective for the fault diagnosis in
more complex buildings, especially those with multiple coupled sub-
systems. Other than being labor intensive, these approaches may not
discover underlying coupling effects among the subsystems compre-
hensively. This motivates us to take a data-driven approach to interro-
gate the fault-symptom causalities to construct the BN structure. A
notable emerging field is causal learning (CL) which uses the observa-
tional data to learn causality and we believe CL presents new opportu-
nities to address domain specific challenges [25]. In general, CL research
focuses on two categories [26]: (1) causal effects estimation; and (2)
causal structure learning. Causal effects estimation is to investigate how
much changing one variable will influence another given a causal
structure assumption between these two variables. This can be done by
the counterfactual inference [27,28] which assesses the strength of
causality between two events by inferring the likelihood of one event not
occurring when another is absent. Causal structure learning, on the
other hand, is to induce the structure describing the causal relationships
from variables to others, and BN is one of the prevailing causal structure
learning tools as it has shown the ability to represent the probabilisti-
cally conditional independence in a graph model, providing an efficient
and expressive way for knowledge representations and acquirements
[29,30].

Despite the extensive research conducted on BN, there have been
limited investigations into the causal structure construction from the
causal effect estimation perspective using observation data, especially
the BN construction for building fault diagnosis. As reviewed earlier,
most building research using BN has heavily relied on the domain ex-
perts’ knowledge. Additionally, the existing research on BN-based fault
diagnosis primarily relied on the assumption of the symptom indepen-
dence [13,31,32], which may not always be valid. In this research, we
hypothesize that the building is an interconnected system comprising
multiple subsystems, and when a fault occurs, co-evolving of multiple
symptoms may present some unique patterns. Motivated by this idea, we
introduce a new concept termed “synchronicity” to describe the co-
evolving patterns, and propose a CL-based framework to induce the
BN structures. Specifically, Eigen-Entropy (EE) [33], a metric derived
from multi-variate time series is employed to characterize the “syn-
chronicity”. Next, causal inference is used for causation measurements
between the fault status and symptoms to decide what symptoms should
be included in the BN structure model. Finally, the performance of our
proposed framework is validated by three fault test cases.

The paper is organized as follows. Background and methodology are
detailed in sections 2 and 3. Experiments are summarized in section 4,
followed by discussion in section 5. Finally, conclusion and future work
is drawn in section 6.

2. Background

In this section, we review BN model for building fault diagnosis, and
introduce the Pearl Causality, a commonly used causal effect estimation
approach that can support the BN structure construction.

2.1. BN model for building system fault diagnosis

Bayesian Network (BN) is a probabilistic graphical model repre-
senting a set of variables and their conditional dependencies via a
directed acyclic graph, which can be used to reveal causal relationships
between faults and symptoms. Fig. 1. below illustrates an example of a
BN model for fault diagnosis in the building systems.
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Fig. 1. A BN model for fault diagnosis.

In this BN model, F1 and F2 are fault nodes that represent two
distinct faults, while E1, E2 and E3 are evidence nodes that are in-
dicatives (symptoms) of the presence of a fault. Arcs from the fault nodes
to the evidence nodes demonstrate the direct causation that a fault has
on the occurrence of the evidence. By Bayes theorem [34], posterior
probabilities of faults (F1 and F2) given these evidence nodes (E1, E2,
and E3) can be calculated to infer which fault is more likely to affect the
system. For instance, if the posterior probability of F1 is greater than
that of F2, the fault is said to be F1.

Clearly, the link between faults and evidence nodes plays a crucial
role in facilitating fault diagnosis in building systems based on BN. Pearl
Causality, a method for estimating causal effects in fault-symptom re-
lationships, is often employed to support the inference of BN structure.
We provide a review of Pearl Causality basic in the next section.

2.2. Pearl causality

Pearl Causality [27], also known as counterfactual inference, as-
sesses the likelihood that one event is the cause of another, which is
usually evaluated by the probability of necessity. Given two binary-
valued events, X and Y, let x and y stand for the propositions X = 1
and Y =1, respectively, X' and y’ stand for their complements (X = 0 and
Y = 0). The probability of necessity (PN) is then defined as:

PN =P(Yyo=0[X=1,Y =1) = P(y,|x,y) M

Consequently, PN stands for the probability that event y would not have
occurred in the absence of event x (¥,), given that x and y did actually
occur.
Supposing the frequencies of X and Y are as shown in Table 1, the PN
can be calculated as [35]:
Ply) — Plylx) _®5 — g

PN = P(y;(, ‘xv}’) = P(x,y) = iy @

where n = ny; + nyg + ng1 + ngo. When PN > 0.5, the causal relation-
ship from x to y is confirmed [36].

In this study, event X serves as an indication of the fault status in the
building systems. Specifically, when X = 1, it signifies the occurrence of
a fault, indicating fault conditions. On the other hand, when X = 0, it
represents normal operations, indicating fault-free conditions. Addi-
tionally, event Y = 1 is another indicator that describes specific prop-

Table 1
Frequency data of events X and Y.
X=1 X=0
Y= nin no1
1
Y = nio ngo
0

erties related to multiple symptoms, referred to as synchronicity, and
Y =0 is referred to as the complement to synchronicity (asyn-
chronicity).

To illustrate this idea, we consider AHU Cooling Coil Valve Stuck
Fully Open (CoolCoiValStuck_0) as the example fault with two evidence
nodes, AHU Cooling Coil Discharge Air Temperature (CC-DA-TEMP) and
AHU Cooling Coil Valve Control Signal (CC-VLV). Therefore, X =1 in-
dicates the occurrence of CoolCoiValStuck 0, X = 0 indicates the
nonoccurrence of CoolCoiValStuck 0 (fault-free condition); Y =1 in-
dicates the synchronicity exist between CC-DA-TEMP and CC-VLV, and
Y = 0 is asynchronicity. Supposen;; = 16 (the frequency of synchro-
nicity under this fault) andny; = 14 (the frequency of asynchronicity
under this fault); njo = 484 (the frequency of synchronicity under fault-
free condition) and ngy = 986 (the frequency of asynchronicity under
fault-free condition). Given these values, we obtain PN = 0.54 by Eq (2),
which is greater than 0.5. We conclude that the synchronicity between
CC-DA-TEMP and CC-VLV is attributed to CoolCoiValStuck_0.

Consequently, in the methodology section, we will provide a
comprehensive explanation of this term and elucidate how we employ
Pearl Causality to ascertain the BN structure. This BN structure will then
be utilized to facilitate fault diagnosis in the building systems.

3. Methodology

To begin with, we introduce a new concept, “synchronicity”, to
describe interactions among multiple time series in general. Next, we
introduce details about our proposed entropy-based causal learning
framework, termed Eigen-Entropy-based Causality Learning (EECL), for
the BN construction to support fault diagnosis in building systems.

3.1. Information entropy and time series synchronicity

Information entropy [37] is to quantify the averaged information
inherent to a random variable. Given a single variate with N possible
values, its information entropy (H) is defined as

N
H= - pilogp; ()
i=1

where p; is the probability of this single variate taking the value i, and
Z?Llpi =1

Eigen-Entropy (EE) is an entropy for multivariate data derived on
eigenvalues extracted from the correlation magnitude matrix [33].
Given a dataset X with n samples and m features, EE is defined as

= Yk log% )

m
- m

i

where /; is the eigenvalue corresponding to the correlation magnitude
matrix on the feature space.
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The EE method has been used to quantify the homogeneity (or het-
erogeneity) of a tabular dataset [33] to support sampling decisions. One
use case of EE is to construct baseline for AFDD as demonstrated in
[38,39]. The interest of this research is on multiple time-series, and here
we introduce “synchronicity” to describe the multi-time series dataset
property which can be measured by EE.

Definition 1. Multiple time series collected from the system may
present some co-evolving patterns. If the trend of movements aligns over
time (that is, the time series may increase, decrease or remain constant
together with respect to time), we define this pattern as synchronicity.

Without loss of generality, let us consider two time series, X; and X,
where X; = [x11,X12,**,X1n), X2 = [X21,X22,"*+,X2q], and x;; refers the time
point j of time series i. At time ¢, cosine similarity between X, and Xy, is
defined as:
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cos < Xy, Xor >=

)

The corresponding cosine similarity magnitude matrix on X;, and Xy, is

. 1
C =

t

Cha ©)

t
cy 1

where ¢!, is the magnitude of cosine similarity between X;, and Xy,
(¢}, =|cos < X1, X2 > |) and cb; = c!,. We derive eigenvalues 14 and 25
from C, to obtain EE (see Eq (4)). Please note for multiple time-series,
the dimension of the cosine similarity magnitude matrix increases
accordingly.

(A) X; and X3 both increase

(A1) Two time series

X ((nAZ) Magnitude of cosine similarity between X, and x;o

(A3) Eigen-Entropy on X; and X
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Fig. 2. Trend of movement, cosine similarity and EE between two time series X; and X, over time when (A) X; and X, both increase; (B) X; decreases and X,
increases; (C) X; remains constant and X5 increases. As shown in (A1), two time-series show the exactly same trend of movements (perfectly aligned movement), the
corresponding magnitude of cosine similarity increases (A2) and EE decreases over the time (A3); As shown in (B1), two time-series show the different trend of
movements, the corresponding magnitude of cosine similarity becomes decreasing (B2) and EE becomes increasing over the time (B3); As shown in (C1), two time-
series show the exactly opposite trend of movements, the corresponding magnitude of cosine similarity becomes decreasing significantly (C2) and EE becomes
increasing drastically over the time (C3). This indicates that EE can measure the degree of aligned movements between two time-series over the time.
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Given the magnitude of cosine similarity between X, and X5, we can
further obtain corresponding Eigen-Entropy by Eq (4). Let EE;; be the
Eigen-Entropy calculated for X; and X, at time point t; (X1, and Xa,)
and EE,, is the Eigen-Entropy calculated for X; and X, at time point ¢,
(X1, and Xy, ), where t; < tp. If EE;» < EE;;, we assume that the trends of
the time series have become more synchronous or aligning between time
points t; and t;, and vice versa.

Therefore, the value of EE indicates the degree of alignment between
the movements of these time-series, or their synchronicity. If the time-
series movements are well aligned or highly positively correlated, the
value of EE would be zero or close to zero. As the movements become
less aligned, the value of EE increases, reaching its maximum when the
movements are completely misaligned or highly negatively correlated.

To illustrate this concept, we present a simple example in Fig. 2,
which shows the relationships among the movement trends, cosine
similarities, and EEs for these two time-series under different scenarios:
(1) both X; and X, increase over time; (2) X; remains constant while X5
increases over time; and (3) X; decreases while X, increases over time.
In Fig. 2 (A), where X; and X, exhibit perfectly aligned movements over
time (scenario (1)), indicating a strong positive correlation, the cosine
similarity between X; and X, increases, and the corresponding EE de-
creases. In Fig. 2 (B), as X; and X, show divergent movements (scenario
(2)), the cosine similarity between X; and X, decreases, and the corre-
sponding EE increases. In Fig. 2 (C), X; and X» exhibit movements in
completely opposite directions (scenario (3)), depicting a strong nega-
tive correlation, the cosine similarity decreases significantly, and the EE
increases markedly over time.

Note that the patterns for cases where both X; and X, decrease, X;
increases while X, decreases, and X; remains constant while X, de-
creases, are similar to Fig. 2 (A), (B), and (C) respectively. Therefore, we
conclude that EE can be used as a metric to measure the synchronicity,
describing the phenomenon of multiple time series showing trends of
aligned movements over time.

3.2. Eigen-Entropy-based causality learning (EECL) for HVAC AFDD

In this research, we focus on the building HVAC fault diagnosis/root
cause isolation. This involves the use of evidence nodes, which are
comprised of sensor readings obtained from the building system over a
specific time frame. These evidence nodes can be regarded as multiple
time series. Upon analyzing the data, we have observed that when a
system contains fault(s), the evidence nodes exhibit synchronicity. This
has led to our assumption that the synchronicity among evidence nodes
is attributed to the system fault(s). As a result, we have employed this
causal assumption to identify evidence nodes for constructing BNs. That
is, we need to decide which evidence nodes are associated with which
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fault.

Given k fault nodes (a.k.a., fault test cases), each fault node including
one fault dataset (i.e., data from the system that contain fault(s)) and
corresponding baseline dataset, each dataset consisting of d days’ data,
each day’s data with t time points (t samples), and m evidence nodes (m
symptoms), Algorithm 1 presents the EECL method to determine the
evidence nodes for each fault node so as to construct a BN for fault
diagnosis. These include two parts: initialization and evidence node
selection stages.

At the initialization stage, we need to identify a set of critical evi-
dence nodes for each fault node as candidates to support the BN con-
struction. This involves four main steps.

e We obtain feature importance score of each evidence node by
training a machine learning model (e.g., random forest classifier)
using all k fault datasets, and then select those evidence nodes whose
importance scores are greater than a set value through sensitivity
analysis (e.g., in this study, 0.05). This forms a set of critical evidence
nodes that can differentiate all k fault datasets, say Ey (line 1).

e We follow a similar procedure to obtain multiple sets of evidence
nodes, E;;’s (i # j), each set containing critical evidence nodes that
can distinguish its fault dataset from any other fault datasets for any
individual test case i (e.g., F; vs. F;) (lines 2-3). We need to identify a
set of critical evidence nodes that can differentiate between its fault
dataset and baseline, saying E; (line 4). Hence, we form a set of
critical evidence nodes for the test case by taking the union of Eg,
multiple E;;’s and E;, saying E;, which contains critical evidence
nodes from previous steps.

o Next is to assign a score to each evidence node in E; by taking the
maximum value of its importance among Eqy, E;;’s and E; (lines 5-6).

Finally, we rank all evidence nodes in E; in a descending order by
their importance score to obtain a set of ranked, critical evidence
nodes, ﬁi (line 7).

Fig. 3 illustrate an example given the scenario of three fault node, F;,
F, and F3, one baseline node, B, and four evidence nodes, E;, E>, E3, and
E,. Using a machine learning model (e.g., random forest), the important
scores for E;,E2,E3, and E4 that can distinguish three fault nodes
(F1vs.Fovs. F3) are all 0.2; Next let us focus on the F;, and assess these
evidence nodes by distinguishing pairwise fault nodes (F; vs.Fz; F;vs.F3):
the scores for E1, Eo, E3, and E4 are 0.15, 0.25, 0.20, and 0.05 for F;vs.Fs,
and 0.23, 0.24, 0.36, 0.17 for F,vs.Fs respectively; we obtain the scores
for Fyvs.B are 0.05, 0.62, 0.00 and 0.33. Therefore, from these scoring
results, we rank evidence nodes according to their max score in a

Fyvs. Fyvs. Fy Fyvs.Fy
Fault node_s Evidence Score Evidence Score
F F Ey 0.20 Ey 0.15 Ranking evidence nodes for Fy
j 3 E, 0.20 E, 0.25
E, 0.20 E, 0.20 Rank | Evidence | Max Score
Baseline node Es 020 Eq 0.05 1 E; 0.62
—@ » — e M 2 [ s [ om
Evidence | Score Evidence | Score 3 Es 0.33
. E, 0.05 E, 0.23 4 E, 0.23
Evidence nodes Es 0.62 Es 0.2
@ @ @ Q E, 0.00 Ey 0.36
E,
E, 0.33 E, 0.17

(1) (2)

3)

Fig. 3. An illustrative example of procedures of obtaining the set of ranked critical evidence nodes for one fault node. (1) 3 fault nodes and one baseline with 4
evidence nodes; (2) For one fault node, F;, obtain (importance) scores for each evidence node under different comparison scenarios: (3) Rank evidence nodes by max

score for Fj.
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descending order (scores: E; > E3> E4 > Ej).
Algorithm 1: BN construction by EECL for fault diagnosis

Input: k fault nodes, each fault node with one fault and one baseline datasets, each
dataset consisting of d days’ data, each data with m evidence nodes and t time points

Output: Bayesian networks for fault diagnosis,BN

Initialization:

1: Obtain a set of critical evidence nodes that can differentiate all k fault datasets,
Eqy, according feature importance scores from the machine learning model

2: For fault node i,i = 1,---,k

3: Repeat Step 1 to obtain multiple sets, each set containing critical evidence
nodes that can differentiate its fault dataset from another fault dataset of fault
node j, Ej,j =1, k,i#]j

4: Repeat Step 1 to obtain a set of critical evidence nodes that can differentiate its
fault dataset baseline,E;

5: Obtain a set of critical evidence nodes by taking the union of Eq, E;;’s and E;,
E;

6: Assign importance score to each evidence node in E; by taking its maximum

value of importance scores among Ey, E;;’s and E;

7: Rank each evidence node in E; by its importance score in a descending order to
obtain a ranked evidence node set,E; = {eq).e@), -}

Evidence nodes selection:

8: For fault node i,i = 1,---,k

9: Fordayp,p =1,--.d

10:  Normalize each evidence node from E; of fault data with respect to its baseline
data in day p

11:  calculate Eigen-Entropy (EE) by Eq (4) on E; for each q time point on fault data
in day p using the first gth samples,EE;,q = 2, -t

12:  Derive normalized EE for each q time point, NEE;, where NEE; = EE;/q

13:  Assign 1 for each g time point if NEE; < ¢; 0 otherwise

14:  Repeat Steps 11-13 for baseline data in day p

15:  Obtain frequency table given results from Steps 11-14, and calculate PN by the
Eq (2)

16:  If PN < 0.5, update E; by removing the last ranked evidence node, and repeat
Steps 11-14

17: Otherwise, stop and output E;

18: Return BN by linking k fault nodes with {EL fk}

Next, we start selecting evidence nodes for each fault node. The evidence
node selection stage also involves four main steps.
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e For each day in a fault node, we first normalize each evidence node in
E; of the fault data with respect to its corresponding baseline (line
10). Then for both fault data and baseline, we calculate EE on ﬁ,- for
each time point g and obtain corresponding normalized EE, NEE,;. We
assign 1 if NEE, is smaller than a certain threshold (¢), indicating the
existence of synchronicity among evidence nodes at time point gq
(that is, evidence nodes exhibit the trend of aligned movements over
time q); O otherwise (lines 11-14).

After going through all d days’ data, we obtain a frequency table for
this fault node, where X =1 indicating fault conditions, X =0
indicating fault-free conditions, Y =1 indicating synchronicity,
otherwise, Y = 0. The frequency information is used for probability
of necessity (PN) calculations to assess the causal relationship from

fault status to synchronicity among E; (line 15).
If the PN < 0.5, it indicates the causal relationship does not hold
between that fault condition and the synchronicity of the evidence

nodes; thus, we remove the last ranked evidence node from Ei (note
that in this approach we do not have any evidence node added) and
continue the process; otherwise stop and output the final evidence
nodes for this fault node (lines 16-17).

e We go through the procedures for all fault nodes, and finally
construct BN by linking all fault nodes to corresponding evidence
nodes selected (line 18).

4. Experiments on simulation datasets
4.1. Experimental datasets from simulation

A virtual HVAC system testbed developed using Modelica in Dymola
environment [40] is used to generate experimental data in the experi-
ment, and Fig. 4 shows the schematics of the HVAC system. The devel-
oped HVAC system model is for a one-floor, five-zone medium-sized
office building, which has one Air Handler Unit (AHU) connected with
five Variable Air Volume (VAV) terminal boxes serving five zones (four
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Fig. 4. Schematic diagram of the simulated HVAC system.
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Fig. 5. Modelica implementation of the studied HVAC system for a commercial building.

Table 2

Comparison between the EnergyPlus prototype with the Modelica model.
Item EnergyPlus Midfloor_Plenum Modelica
Area [m?] 1660.7 1662.7
AHU Fan Design Flow Rate [m3/s] 4.2 4.8
AHU Fan Head [Pa] 1389 1381
Overall Efficiency 0.6 0.49
AHU Fan Rated Electric Power [W] 9685 13,530
Cooling Coil Capacity [W] 95,438 100,711
Heating Coil Capacity [W] 34,995 40,526
Chilled Water Pump Head [W] Not applicable 255,000
Chilled Water Pump Flow [m®3/s] 0.004
Cooling Water Pump Head [W] 215,700
Cooling Water Pump Flow [m®/s] 0.0043
Hot Water Pump Head [W] 157,000
Hot Water Pump Flow [m3/s] 0.00132
Cooling Tower Fan Power [W] 4300

exterior zones, and one interior zone, respectively). Heating and cooling
are delivered by a single-duct VAV system and the reheat in the VAV
terminals is supplied by electric resistance coils. The chilled water is
supplied by a central chiller plant which consists of a chiller, a waterside
economizer, a cooling tower, and one chilled water pump and one
condenser water pump. A boiler, fed by natural gas, supplies the hot
water to the AHU heating coil.

Fig. 5 presents the Modelica model for the studied HVAC system,
which was developed based on the open-source Modelica Buildings Li-
brary (MBL) [41] and verified against a medium-sized office DOE pro-
totype model [42] developed by Pacific Northwest National Laboratory
in EnergyPlus [43]. Table 2 shows a peak load and sizing comparison
between the EnergyPlus prototype medium office model with the
Modelica model. The peak cooling load (cooling coil capacity) is similar

Table 3
Description of three fault nodes.

FaultNo.  Fault Node Name Fault Node Description

1 CoolCoiValStuck 0  AHU Cooling Coil Valve Stuck Fully Open

2 OADamStuck_100 AHU Outdoor Air Damper Stuck Fully Closed

3 SupDucLea_20 Supply Duct Leakage at a degradation rate of 20

%

between these two models. The system model consists of three compo-
nents, namely an HVAC system, a building envelope model, and a model
for air flow through building leakage and through open doors based on
wind pressure and flow imbalance of the HVAC system. The HVAC
system is sized for Chicago, IL, USA in climate zone 5A. The HVAC
system control complies with American Society of Heating, Refriger-
ating and Air-Conditioning Engineers (ASHRAE) standards and guide-
lines or literature-reported practices. For example, the air-side control
sequences follow ASHRAE Guideline 36 [44] and the water-side control
sequences follow ASHRAE project RP-1711 [45]. More details of this
HVAC system model can be found in [46-49].

In this study, three fault datasets and one fault-free dataset collected
from this virtual testbed are used. Specifically, these three fault datasets
are those collected when the virtual testbed is operated under one of the
three different commonly-occurring physical fault conditions, namely,
AHU Cooling Coil Valve Stuck Fully Open (CooCoiValStuck 0), AHU
Outdoor Air Damper Stuck Fully Closed (OADamStuck_100) and Supply
Duct Leakage at a degradation rate of 20 % (SupDucLea_20), respec-
tively (see Table 3), while the fault-free dataset is collected when the
virtual testbed is operated under normal conditions. Specifically, the
fault-free dataset serves as the baseline for each fault node; in other
words, the three fault nodes share the same baseline dataset. Since the
HVAC system is sized for Chicago, IL, USA in climate zone 5A and the
fault injection period starts at the beginning of the day on July 9 and
continues for four weeks until August 5, the ranges of temperature and
relative humidity are 24-29 °C and 50 % to 70 %. Each dataset (both
fault and fault-free) consists of 28-days’ data, each day’s data containing
120 time points (samples) for the entire occupied hours (unoccupied
hours excluded); consequently, there are 3,360 samples in total for each
fault node. In our experiment, 15 days’ data (1,800 samples) from each
fault node are used as the training dataset while 5 days’ data (6,00
samples) are used as the test datasets for validation, and the remaining 8
days are excluded because these days correspond to the periods when
the building was unoccupied. Detailed information about the training
and testing days can be found in Appendix A.

It is worth noticing that both fault and fault-free datasets have 132
evidence nodes. Out of these 132 evidence nodes, 50 are related to the
AHU or chiller. Since building faults usually occur in AHUs or chillers,
these evidence nodes are important and thus considered as the candi-
dates for the BN construction. The descriptions of these evidence nodes
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Table 4
AHU/Chiller-related evidence nodes.

Evidence Evidence Node Evidence Node Description
No. Name
El SA-TEMP AHU Supply Air Temperature
E2 SA-TEMP-STP AHU Supply Air Temperature Set Point
E3 OA-DB-TEMP AHU Outdoor Air Dry Bulb Temperature
E4 OA-WB-TEMP AHU Outdoor Air Wet Bulb Temperature
E5 MA-TEMP AHU Mixed Air Temperature
E6 RA-TEMP AHU Return Air Temperature
E7 CC-DA-TEMP AHU Cooling Coil Discharge Air Temperature
E8 SF-SPD AHU Supply Air Fan Speed
E9 OA-DMPR AHU Outdoor Air Damper Control Signal
E10 RA-DMPR AHU Return Air Damper Control Signal
Ell EA-DMPR AHU Exhaust Air Damper Control Signal
E12 SA-CFM AHU Supply Air Mass Flow Rate
E13 OA-CFM AHU Outdoor Air Mass Flow Rate
E14 RA-CFM AHU Return Air Mass Flow Rate
E15 EA-CFM AHU Exhaust Air Mass Flow Rate
El6 CC-VLV AHU Cooling Coil Valve Control Signal
E17 HC-VLV AHU Heating Coil Valve Control Signal
E18 SAD-FLOW AHU Supply Air Duct Static Pressure
E19 SAD-FLOW-STP AHU Supply Air Duct Static Pressure Set Point
E20 CC-HTR AHU Cooling Coil Heat Transfer Rate
E21 HC-HTR AHU Heating Coil Heat Transfer Rate
E22 SF-PWR-CONS AHU Supply Air Fan Power Consumption
E23 CHWS-TEMP Chilled Water Loop: Chilled Water Supply
Temperature
E24 CHWR-TEMP Chilled Water Loop: Chilled Water Return
Temperature
E25 CWS-TEMP Condenser Water Loop: Cooling Water Supply
Temperature
E26 CWR-TEMP Condenser Water Loop: Cooling Water Return
Temperature
E27 HWS-TEMP Hot Water Loop: Hot Water Supply Temperature
E28 HWR-TEMP Hot Water Loop: Hot Water Return Temperature
E29 CHWS-TEMP- Chilled Water Loop: Supply Chilled Water
STP Temperature Set Point
E30 CHW-DIFF- Chilled Water Loop: Measured Differential
FLOW Pressure
E31 CHW-FLOW- Chilled Water Loop: Differential Pressure Setpoint
STP
E32 HWS-TEMP- Hot Water Loop: Supply Hot Water Temperature
STP Set Point
E33 HW-DIFF- Hot Water Loop: Measured Differential Pressure
FLOW
E34 HW-FLOW-STP Hot Water Loop: Differential Pressure Setpoint
E35 CHW-FLOW-CC Chilled Water Loop: Chilled Water Flow Rate into
the Cooling Coil
E36 CHL-CHW- Chiller: Chilled Water Flow Rate of the Chiller
FLOW
E37 WSE-CHW- WSE: Chilled Water Flow Rate of the WSE
FLOW
E38 CW-FLOW Condenser Water Loop: Cooling Water Flow Rate
E39 CHL-CW-FLOW Chiller: Cooling Water Flow Rate of the Chiller
E40 WSE-CW-FLOW  Cooling Water Flow Rate of the Water Side
Economizer (WSE)
E41 HW-FLOW-HC Hot Water Loop: Hot Water Loop Flow Rate into
the Heating Coil
E42 BLR-HW-FLOW Boiler: Boiler Hot Water Flow Rate
E43 HW-FLOW- Hot Water Loop: Bypass Hot Water Flow Rate
BYPS
E44 CHL-PWR Chiller Power consumption
E45 DIFF-SAT-STP AHU Supply Air Temperature and Supply Air
Temperature Setpoint Difference
E46 DIFF-OAT-MAT Difference between AHU Outdoor Air
Temperature and Mixed Air Temperature
E47 CHW-COOLING Chilled Water Cooling Capacity
E48 VAV-FLOW- Summation of VAV Flowrate
SUM
E49 MA-TEMP-1 AHU Mixed Air Temperature Curve Fit; MAT = f
(OAT, RAT, SAflow, RAflow)
E50 MA-TEMP-2 AHU Mixed Air Temperature Curve Fit; MAT = f

(OAT, RAT, SAflow, OAdmpr)
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can be found in Table 4; besides, all these 50 evidence nodes are ranked
according to its importance scores for each fault node, and the details
about the ranking method can be found in Appendix B of this paper.

4.2. Evaluation metrics

In the BN model, we assess every fault sample for each fault node by
utilizing posterior probabilities derived from prior and conditional
probabilities. Let us define s; as the i fault sample from fault node j
whose true label is Y(s;). Using BN, we can obtain k posterior proba-
bilities, P (s;) , P2(sy), -.-.Px(s;), indicating likelihoods of s; belonging
to fault nodes 1, 2, ...,k. Thus, the predicted label for s;, ?(sij), will be
based on the maximum of these posterior probabilities, saying ?(sij) =
argmax,{P(sj) }, where r € {1, --,k}. Therefore, for any s;, we have an
indicator, I(s;), such that:

I(sij) _ { 1, ?(Sij) = Y(sij) @

0, otherwise

where, I(s;) = 1 indicating that the ith fault sample from fault node j is
correctly identified by the BN; I(s;) =0 indicating this sample is
incorrectly identified. If there are n fault samples in fault node j, we
define that isolation accuracy (IA) for fault node j as:
,-17 I Sij
1A = il (sy) (8)
n

Once we have the IA for each fault node, we further define the average
isolation accuracy (AIA) over all (say k) fault nodes, as:

o ZJIF:JAJ

AIA X

9
If there are m evidence nodes in the BN, we define the sufficient isolation
accuracy (SIA) for the BN as:

AIA
SIA =— (10)
m

We expect to construct a robust BN containing as fewer evidence nodes
as possible while maintaining satisfactory isolation accuracy, which can
be measured by SIA. In other words, a robust BN has a higher SIA.

4.3. Experimental results

4.3.1. Sensitivity test on EECL

As is shown in Algorithm 1, a threshold ¢ is needed to determine if
there is synchronicity among evidence nodes. As there is no set rule to
determine ¢ to identify significant synchronicity, we conduct experi-
ments by varying ¢ from 0.001 to 0.005 with increments of 0.001. This is
because when ¢ is greater than 0.006, the PN is less than 0.5 indicating
that there is no causal relationship according to [36]. Through obser-
vations, it is found that € = 0.005 yields satisfactory results, as the SIA of
the constructed BN under this threshold is 11.38 %, surpassing the re-
sults obtained from other values (refer to Table 5). Moreover, observing
from Fig. 6, normalized EE values based on selected evidence nodes
under fault conditions are below & = 0.005, which agrees to our

Table 5
Results under different ¢’s (¢ = 0.005 highlighted in grey).
€ # of evidence nodes in BN AIA SIA
0.001 19 78 % 411 %
0.002 19 78 % 4.11 %
0.003 19 78 % 411 %
0.004 19 78 % 411 %

0.005 8 91% 11.38%
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(A) Fault: AHU Cooling Coil Valve Stuck Fully Open (B) Fault: AHU Outdoor Air Damper Stuck Fully Closed  (C) Fault: Supply Duct Leakage at a degradation rate of 20%
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Fig. 6. Normalized EEs on selected evidence nodes over time for (A) AHU Cooling Coil Valve Stuck Fully Open; (B) AHU Outdoor Air Damper Stuck Fully Closed; and
(C) Supply Duct Leakage at a degradation rate of 20 %. Each case shows normalized EEs under fault condition below the threshold (¢ = 0.005), which agrees to our
assumptions that fault conditions will lead to evidence synchronicity.

CooCoiValStuck_0 OADamStuck 100 SupDucLea_20

Fig. 7. BN constructed by EECL under ¢ = 0.005.
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Fig. 8. Effects of the fault Cooling Coil Valve Stuck Fully Open on two evidence nodes: (A) DIFF-SAT-STP and (B) MA-TEMP-1.

assumption that fault conditions will lead to the synchronicity among 4.3.2. BN derived from expert knowledge

evidence nodes. Therefore, we report the results with ¢ = 0.005 and the The structure of BN developed based on expert knowledge and

corresponding BN is shown in Fig. 7. physical analysis is shown as below. The values of an evidence node
from a fault dataset are compared with those from a baseline dataset to

Fig. 9. BN constructed by expert knowledge [13].
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observe if this evidence node demonstrates abnormality under a fault
condition. Fig. 8 illustrates an example showing the effects of the fault:
Cooling Coil Valve Stuck Fully Open on two evidence nodes, DIFF-SAT-
STP (i.e., AHU Supply Air Temperature and Supply Air Temperature
Setpoint Difference) and MA-TEMP-1 (i.e., Mixed Air Temperature).
There are larger differences between the values of DIFF-SAT-STP under
the fault scenario (see Fig. 8 (A) in purple) and those under baseline (see
Fig. 8 (B) in green), while there are many overlaps between the values of
MA-TEMP-1. Consequently, DIFF-SAT-STP rather than MA-TEMP-1 will
be selected for the BN since this evidence node has shown significant
abnormality under the fault condition according to the criteria described
in [46]. Following the same procedures, nine evidence nodes are
selected for the fault ‘CooCoiValStuck_ 0, nine for the fault ‘OADam-
Stuck_100, and eight for the fault ‘SupDucLea_20'". The final BN structure
by expert knowledge is shown in Fig. 9, which includes twelve evidence
nodes. The values of each evidence node under each fault node can be
found in Appendix C.

4.3.3. BN derived from MIKK2 algorithm

The structure of BN developed based on Mutual Information-
Krruskal-K2 (MIKK2) algorithm [50] is included as a benchmark. This
algorithm initiates by computing the mutual information (MI) between
variables, followed by utilizing the Kruskal algorithm from graph theory
to develop the maximum spanning tree, thereby determining the
maximum node in-degree. Subsequently, the maximum spanning tree
undergoes a Depth First Search to establish the node order. Ultimately,
the K2 algorithm utilizes both the node in-degree and the node order to
learn and derive the optimal Bayesian Network structure. The final BN
structure by MIKK2 is shown in Fig. 10, which includes nineteen evi-
dence nodes.

4.3.4. Comparisons among three BN construction approaches

In this section, posterior probabilities for each fault node obtained
using BNs by EECL, MIKK2 and expert knowledge are compared in the
analysis. Two important parameters, prior and conditional probabilities
predefined as in [51] are used for both faults and evidence nodes for
posterior probability calculations. The corresponding comparison plots
of posterior probabilities are shown in Fig. 11. The isolation accuracies
for each individual fault using different BNs are as follows. For Coo-
CoiValStuck 0, the isolation accuracy using BN by EECL is 98 %,
significantly higher than that by MIKK2 (52 %), but slightly lower than
that by expert knowledge (100 %); for OADamStuck_100, the isolation
accuracy by EECL is 84 %, slightly higher than that by MIKK2 (81 %) but
lower than that by expert knowledge (100 %); for SupDucLea_20, the
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isolation accuracy by EECL is 90 %, lower than that by MIKK2 (100 %)
and that by expert knowledge (100 %). Observing from Fig. 12 (A) and
(B), BN constructed by EE is with 8 evidence nodes and can achieve AIA
of 91 %, which includes fewer evidence nodes and maintain higher ATIA
than that by MIKK2 (19 evidence nodes and AIA of 78 %); Although BN
by expert knowledge can reach AIA of 100 %, it includes 50 % more
evidence nodes than that by EECL. Moreover, as is observed from Fig. 12
(C), BN constructed by EECL reaches SIA of 11.38 %, higher than those
by Expert (8.33 %) and by MIKK2 (4.11 %) respectively. This indicates
the efficiency of EECL for BN construction, as EECL requires 33.3 %
fewer evidence nodes and yields a 36.6 % higher SIA compared to expert
knowledge, and 57.9 % fewer and 1.77 times higher compared to
MIKK?2, respectively.

As shown in Fig. 13, our constructed BN using EECL includes eight
evidence nodes for CooCoiValStuck_0, three for OADamStuck_100, and
four for SupDucLea_20; the numbers of evidence nodes by expert
knowledge are nine, nine and eight, and those by MIKK2 are eleven,
fifteen and seventeen, respectively; moreover, three evidence nodes are
shared for CooCoiValStuck_0, one for OADamStuck 100, and two for
SupDucLea_20 among three BNs, respectively. Therefore, our EECL
method for BN construction is able to reach a satisfactory isolation ac-
curacy for the cross-level fault diagnosis in the building systems for this
given case study.

5. Discussions

In this research, the BN structure is constructed using a data-driven
causal learning approach. To facilitate causal learning, the concept of
“synchronicity” is introduced to describe the interactions among evi-
dence nodes. The direction of causality from the fault status to the
synchronicity is characterized by Pearl Causality. This process ulti-
mately results in the construction of the BN structure that can be used to
diagnose cross-level faults in a building HVAC system. As discussed in
[13], automatic process of the BN structure construction is demanding
due to the time-consuming and labor-intensive natures of determining
BN structures by expert knowledge, and the developed EECL method has
the potential for overcoming this deficiency since it is purely data-
driven, and does not require any prior knowledge. Additionally, while
expert knowledge method can determine the presence of the causal re-
lationships between faults and evidence nodes, it does not provide any
measures on the strength of these causations. In contrast, the proposed
EECL method is able to quantify the causal relationships in terms of an
evaluation metric (i.e., PN), which helps to reduce uncertainties of
causality determined explicitly by expert knowledge.

Fig. 10. BN constructed by MIKK2 algorithm [50].
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Fig. 11. Posterior probability results for test datasets from three fault nodes: (A) AHU Cooling Coil Valve Stuck Fully Open; (B) AHU Outdoor Air Damper Stuck Fully
Closed; (C) Supply Duct Leakage at a rate of 20%. The left-hand sided plots are isolations from BN by expert knowledge, the middle sided plots are by MIKK2, and the
right-hand sided plots are by EECL. All the posterior probabilities are generated by BayesFusion software [52,53].
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Fig. 12. Comparisons of BNs among three methods (Expert, MIKK2, EECL) in terms of (A) number of evidence nodes; (B) AIA and (C) SIA.
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Fig. 13. Comparisons of BN evidence nodes by EECL, by MIKK2, and by expert
knowledge for three fault nodes (common evidence nodes between three BNs
are in the overlap of three circles).

In addition to causation characterizations, the proposed EECL
method takes full considerations on interactions among the evidence
nodes, which is measured by EE, an information entropy used for
multivariate time-series. These interactions may reveal important and
interesting patterns specific to a fault, but they may be overlooked by
expert knowledge because experts often treat evidence nodes individu-
ally; This deficiency also applies in BN constructed by MIKK2 algorithm
since evidence nodes are also treated as independent. The BN structure
by EECL utilizes the parameter model that includes prior and conditional
probabilities for the fault and evidence nodes determined by expert
knowledge and is able to achieve satisfactory fault diagnosis/isolation
accuracy (see Experiments).

As a matter of fact, several mainstream methods, such as randomized
controlled trials, regression analysis, propensity score matching, have
been widely used for causal effect estimations. These methods are to
estimate the strength of the causal effect from one variable to another
with a causal assumption given as a prior. In contrast, Pearl causality
utilizes probability of necessity (PN) to assess whether the causal rela-
tionship is valid using frequency information. Specifically, decision
criterion on causality (PN > 0.5) is uniform; if PN is greater or equal to

12
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0.5, the causal assumption holds true between the two variables. Since
the objective of the study is to learn causal structure by determining
which evidence nodes should be connected to the fault node, Pearl
causality is adopted in this study.

While promising, it is worth noticing that the proposed EECL method
like most data-driven approach is still influenced by several factors such
as data volume, data quality, and data information. Despite the rapid
development of data science and sensor technology, collections of a
large amount of high-quality, information-rich data are still challenging
with the current BAS. For example, the proposed EECL may discard a
certain evidence node containing many missing values even though it is
important and interpretable from a physical knowledge perspective.
Another is that the BN by EECL still relies heavily on the expert
knowledge to diagnose cross-level faults due to the same parameter
model. There is a need for data-driven parameterizations (i.e., deter-
mination on prior and conditional probabilities) to support the diag-
nosability of BN by EECL. Moreover, Pearl causality in EECL acquires PN
by using frequency information from binary outcomes (e.g., the outcome
should be synchronicity/asynchronicity), which may not apply to a
more complex scenario when outcomes are multi-class (e.g., weak,
medium or strong synchronicity).

6. Conclusions and future work

This research develops an entropy-based causal learning method,
termed eigen entropy-based causality learning (EECL), to support BN
structure construction for fault diagnosis/isolation from the data-driven
perspective. The proposed method includes two phases. In the first
phase, Eigen-entropy is used for characterizing synchronicity, which
describes the trends of movements among the evidence nodes over the
time. In the second phase, counterfactual inference is applied to deter-
mine what and how evidence nodes should be connected to each fault
node so as to build up the BNs to support fault diagnosis, including cross-
level faults, in the building system. Compared to the traditional expert
knowledge-based approach, the proposed method shares the following
contributions: (1) it is a complete data-driven approach without the use
of expert domain knowledge; (2) a term synchronicity is defined to
capture the interactions, i.e., the trends of aligned movements over time,
among multiple symptoms under fault status; (3) it utilizes cause effect
estimations (counterfactual inferences) to induce the causal structure
between faults and synchronicity among symptoms. The BN constructed
by the developed EECL method is evaluated against that by expert
knowledge based method using three cross-level fault test cases simu-
lated using a virtual testbed. Experimental results show that the EECL
based BN can achieve satisfactory isolation accuracy with fewer evi-
dence nodes (average isolation accuracy of 91 % with 8 evidence nodes),
indicating the efficacy of EECL approach for fault diagnosis.

Our current research focuses on a smaller set of fault test cases, each
from one fault category. In the future, we are interested in investigating
the capability of the proposed method for the fault diagnosis on multiple
fault test cases, as well as the test cases from the same fault categories (i.
e., various intensities under the same fault). Another interesting topic is
to explore data-driven parameterizations for a robust diagnosability of
BN by EECL. Finally, we use EE in conjunction with Pearl causality to
construct BN, and there is a need to extend this EE causality framework
to other types of causal structure learning methods such as functional
causal models, score-based methods [25].
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Appendix A:. Training and testing sets for the developed model

The HVAC system is sized for Chicago, IL, USA in climate zone 5A and the fault injection period starts at the beginning of the day on July 9 and
continues for four weeks until August 5, the ranges of temperature and relative humidity are 24-29 °C and 50 % to 70 %.The data is collected at the
sampling rate of 5 min, so 1,800 samples are used as the training set (representing 15 days with 10 h of operation each day). Also, 5 days are used for
testing the developed BN network which has 6,00 samples (representing 5 days with 10 h of operation in each day). Table A-1 represents the same
information (the excluded days in the table are unoccupied days that are removed from the dataset).

Table A1

Days considered for BN-based model training and validation.
Datasets Occupied time
Training Days 1-3; Days 6-10; Days 13-17; Days 20-21
Test Days 22-24; Day 27-28

Appendix B:. Evidence node ranking method

In this study, we use the random forest classifier to characterize the importance score for each evidence node. Given three fault cases, CooCoi-
ValStuck_0 (C), OADamStuck_100 (0), and SupDucLea_20 (S) and one baseline (B), we first identify critical evidence nodes that can differentiate all
three fault cases (C vs. O vs. S). Next identify critical evidence nodes that can differentiate each pair of fault cases (C vs. O; C vs. S; O vs. S). Finally
identify critical evidence nodes that can differentiate each fault case and baseline (C vs. B; S vs. B; O vs. B). The evidence nodes and corresponding
importance scores can be referred to Table B-1.

Table B1
Critical evidence nodes and corresponding importance score information. Evidence nodes whose score > 0.05 are considered critical.

Cvs.0vs. S Cvs. O Cvs. S Ovs. S

Evidence Score Evidence Score Evidence Score Evidence Score

CC-DA-TEMP 0.1024 CC-DA-TEMP 0.1741 CC-DA-TEMP 0.1773 RA-CFM 0.1889

RA-CFM 0.0912 DIFF-SAT-STP 0.1448 DIFF-SAT-STP 0.1492 EA-CFM 0.1754

EA-CFM 0.0880 SA-TEMP 0.1007 CWR-TEMP 0.0998 OA-CFM 0.1182

DIFF-SAT-STP 0.0826 CC-VLV 0.0786 SA-TEMP 0.0858 OA-DMPR 0.1100

SA-TEMP 0.0662 RA-TEMP 0.0766 CHWS-TEMP-STP 0.0758 SA-CFM 0.0635

OA-CFM 0.0546 CWR-TEMP 0.0739 CHW-FLOW-CC 0.0601 SF-PWR-CONS 0.0594

CWR-TEMP 0.0510 CHW-FLOW-CC 0.0512 RA-TEMP 0.0509

Cvs.B Ovs.B Svs.B

Evidence Score Evidence Score Evidence Score

CC-DA-TEMP 0.1719 OA-DMPR 0.1628 EA-CFM 0.1416

DIFF-SAT-STP 0.1423 EA-CFM 0.1202 CHW-COOLING 0.1281

CC-VLV 0.1418 RA-CFM 0.1055 RA-CFM 0.0768

SA-TEMP 0.1024 OA-CFM 0.1041 CC-HTR 0.0759

RA-TEMP 0.0812 MA-TEMP-2 0.0992 CHL-PWR 0.0664

CWR-TEMP 0.0520 MA-TEMP 0.0971 SA-CFM 0.0644
MA-TEMP-2 0.0568

Given critical evidence nodes identified and corresponding importance score under different criteria, we rank these evidence nodes for each test
case according to the max importance score. Take the test case CooCoiValStuck_0 as an example (see Table B-2). Since the max value of importance
score for CC-DA-TEMP is 0.1773 while that of DIFF-SAT-STP is 0.1492, then CC-DA-TEMP ranks before DIFF-SAT-STP. Similarly, we have the evidence
nodes importance information for other two cases (see Tables B-3 & B-4). Finally, ranking information about the evidence nodes for each test cases are
summarized in Table B-5.
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Table B2
Critical evidence nodes and corresponding importance scores for CooCoiValStuck_0.
Evidence Cvs.Ovs. S Cvs. O Cvs. S Cvs.B Max Value
CC-DA-TEMP 0.1024 0.1741 0.1773 0.1719 0.1773
CC-VLV 0 0.0786 0 0.1418 0.1418
DIFF-SAT-STP 0.0826 0.1448 0.1492 0.1423 0.1492
CWR-TEMP 0.0510 0.0739 0.0998 0.0520 0.0998
RA-CFM 0.0912 0 0 0 0.0912
CHW-FLOW-CC 0 0.0512 0.0601 0 0.0601
SA-TEMP 0.0662 0.1007 0.0858 0.1024 0.1024
OA-CFM 0.0546 0 0 0 0.0546
EA-CFM 0.0880 0 0 0 0.0880
RA-TEMP 0 0.0766 0.0509 0.0812 0.0812
CHWS-TEMP-STP 0 0.0374 0.0758 0 0.0758
Table B3
Critical evidence nodes and corresponding importance scores for OADamStuck_100.
Evidence Cvs.0Ovs. S Cvs. O Ovs. S Ovs.B Max Value
OA-DMPR 0.0428 0 0.1100 0.1628 0.1628
SA-TEMP 0.0662 0.1007 0 0 0.1007
RA-TEMP 0 0.0766 0 0 0.0766
EA-CFM 0.0880 0 0.1754 0.1202 0.1754
CHW-FLOW-CC 0 0.0512 0 0 0.0512
MA-TEMP 0 0 0 0.0971 0.0971
RA-CFM 0.0912 0 0.1889 0.1055 0.1889
CWR-TEMP 0.0510 0.0739 0 0 0.0739
DIFF-SAT-STP 0.0826 0.1448 0 0 0.1448
MA-TEMP-2 0 0 0 0.0992 0.0992
OA-CFM 0.0546 0 0.1182 0.1041 0.1182
SA-CFM 0.042 0 0.0635 0 0.0635
SF-PWR-CONS 0 0 0.0594 0 0.0594
CC-DA-TEMP 0.1024 0.1741 0 0 0.1741
CC-VLV 0 0.0786 0 0 0.0786
Table B4
Critical evidence nodes and corresponding importance scores for SupDucLea_20.
Evidence Cvs.Ovs. S Cvs. S Ovs. S Svs.B Max Value
CHL-PWR 0 0.0456 0 0.0664 0.0664
OA-DMPR 0.0428 0 0.1100 0 0.1100
RA-CFM 0.0912 0 0.1889 0.0768 0.1889
DIFF-SAT-STP 0.0826 0.1492 0 0 0.1492
CHW-COOLING 0 0 0 0.1281 0.1281
OA-CFM 0.0546 0 0.1182 0 0.1182
CC-HTR 0 0 0 0.0759 0.0759
EA-CFM 0.0880 0 0.1754 0.1416 0.1754
MA-TEMP-2 0 0 0 0.0568 0.0568
CC-DA-TEMP 0.1024 0.1773 0 0 0.1773
SA-CFM 0.0424 0 0.0635 0.0644 0.0644
CWR-TEMP 0.0510 0.0998 0 0 0.0998
RA-TEMP 0 0.0509 0 0 0.0509
CHWS-TEMP-STP 0 0.0758 0 0 0.0758
SA-TEMP 0.0662 0.0858 0 0 0.0858
CHW-FLOW-CC 0 0.0601 0 0 0.0601
SF-PWR-CONS 0 0 0.0594 0 0.0594
Table B5
Ranking of critical evidence nodes for three test cases.
Rank CooCoiValStuck_0 OADamStuck_100 SupDucLea_20
Evidence Max Value Evidence Max Value Evidence Max Value
1 CC-DA-TEMP 0.1773 RA-CFM 0.1889 RA-CFM 0.1889
2 DIFF-SAT-STP 0.1492 EA-CFM 0.1754 CC-DA-TEMP 0.1773
3 CC-VLV 0.1418 CC-DA-TEMP 0.1741 EA-CFM 0.1754
4 SA-TEMP 0.1024 OA-DMPR 0.1628 DIFF-SAT-STP 0.1492
5 CWR-TEMP 0.0998 DIFF-SAT-STP 0.1448 CHW-COOLING 0.1281
6 RA-CFM 0.0912 OA-CFM 0.1182 OA-CFM 0.1182

(continued on next page)
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Table B5 (continued)
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Rank CooCoiValStuck_0 OADamStuck_100 SupDucLea_20
Evidence Max Value Evidence Max Value Evidence Max Value

7 EA-CFM 0.0880 SA-TEMP 0.1007 OA-DMPR 0.1100
8 RA-TEMP 0.0812 MA-TEMP-2 0.0992 CWR-TEMP 0.0998
9 CHWS-TEMP-STP 0.0758 MA-TEMP 0.0971 SA-TEMP 0.0858
10 CHW-FLOW-CC 0.0601 CC-VLV 0.0786 CC-HTR 0.0759
11 OA-CFM 0.0546 RA-TEMP 0.0766 CHWS-TEMP-STP 0.0758
12 CWR-TEMP 0.0739 CHL-PWR 0.0664
13 SA-CFM 0.0635 SA-CFM 0.0644
14 SF-PWR-CONS 0.0594 CHW-FLOW-CC 0.0601
15 CHW-FLOW-CC 0.0512 SF-PWR-CONS 0.0594
16 MA-TEMP-2 0.0568
17 RA-TEMP 0.0509

Appendix C:. Defining fault-evidence connections by expert knowledge

The following figures show the standardized value of evidence nodes in the BN constructed by expert knowledge for three fault nodes, ‘Cool-
CoiValStuck_0', ‘OADamStuck_100’ fault and ‘SupDucLea_20' fault respectively. Evidence nodes with “*** are those associated with the specific fault.
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Fault: AHU Outdoor Air Damper Stuck Fully Closed —— 0OADamstuck 100 —— Baseline
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Fault: Supply Duct Leakage at a degradation rate of 20% —— SupDuclea 20 —— Baseline
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