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A B S T R A C T   

Faults, such as malfunctioning sensors, equipment, and control systems, significantly affect a building’s per
formance. Automatic fault detection and diagnosis (AFDD) tools have shown great potential in improving 
building performances, including both energy efficiency and indoor environment quality. Since modern buildings 
have integrated systems where multiple subsystems and equipment are coupled, many faults in a building are 
cross-level faults, i.e., faults occurring in one component that trigger operational abnormalities in other sub
systems. Compared with non-cross-level faults, it is more challenging to isolate the root cause of a cross-level 
faults due to the system coupling effects. Bayesian networks (BNs) have been studied for the root cause isola
tion for building faults. While promising, existing BN-based diagnosis methods highly rely on expert domain 
knowledge, which is time-consuming and labor expensive, especially for cross-level faults. To address this 
challenge, we propose an entropy-based causality learning framework, termed Eigen-Entropy Causal Learning 
(EECL), to learn BN structures. The proposed method is data-driven without the use of expert domain knowledge; 
it utilizes causal inference to determine the causal mechanisms between faults status and symptoms to construct 
the BN model. To demonstrate the effectiveness of the proposed framework, three fault test cases are used for 
evaluation in this study. Experimental results show that the BN constructed by the proposed framework is able to 
conduct building cross-level faults diagnosis with a comparable isolation accuracy to those by domain knowledge 
while maintaining less complexed BN structure.   

1. Introduction 

Building Heating, Ventilation and Air conditioning (HVAC) systems 
are complex with a variety of sensors, subsystems and automatically 
controlled components. According to the United Nations Environment 
Programme, approximately 135 EJ operational energy demand and 10 
Gt energy-related carbon dioxide emission were attributed to the 
building systems in 2021 [1]. It is also reported that 30 % of this energy 
usage [2] was wasted due to malfunctioning sensors and components in 
the HVAC systems [3,4]. Automatic fault detection and diagnosis 
(AFDD) technologies thus are vital to ensure satisfactory building per
formances, especially from the aspect of energy efficiency [5]. Field 
studies and practices indicate that AFDD technologies cannot only 

achieve up to 20 % building energy savings [6,7] but also improve 
equipment lifecycles and indoor comforts [8–10]. 

Modern building HVAC systems typically include a set of multiple, 
highly coupled subsystems such as cooling/heating plant, primary air 
distribution, and terminal air distribution subsystems. Due to the 
coupling effect among building components, a fault occurring in one 
equipment or subsystem may propagate and influence other equipment 
or subsystems [11,12]. Hence, component-level AFDD methods may not 
be efficient and suitable solutions to the root cause analysis for cross- 
level faults, i.e., faults causing adverse effects across multiple compo
nents and subsystems [13]. Chen et al. [13] has provided an example of 
a chiller supply water temperature sensor bias fault (e.g., sensor reading 
higher than actual temperature) in the chiller plant which would cause 
the cooling valve open position in a downstream air handling unit 
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(AHU) to be lower than normal. In this case, a component-level AFDD 
tool that only monitors the AHU might result in false alarms such as a 
cooling coil valve fault or a supply air temperature sensor fault. Hence, a 
root cause analysis is necessary to ensure the correct diagnosis of cross- 
level faults. 

Compared with fault detection studies, much fewer fault diagnosis/ 
root cause analysis studies exist [14]. A root cause analysis has shown its 
importance to improve quality assurance, reliability and performance in 
many fields, such as power systems [15], manufacturing [16], just to 
name a few. Bayesian networks (BNs) have been extensively studied as a 
root cause analysis technique. For example, Wang et al. [15] conducted 
an analysis on root causes of occurring alarms in thermal power plants 
based on posterior probability from BN. In their research, the BN was 
constructed by one child node and multiple parent nodes that describe 
the relationship between an alarm variable and root-cause variables 
using the process knowledge. Lokrantz et al. [16] proposed a BN-based 
graphic probabilistic models using the expert knowledge to identify the 
causality of failure and quality deviation among multiple manufacturing 
stages, where network parameters were trained by historical data, and 
root cause was inferred according to defect types and measurements. Liu 
et al. [17] developed a strong relevant mechanism BN combining pro
cess mechanism analysis with historical data mining for unmonitored 
root cause variables in chemical plants fault diagnosis, which showed 
great practicability and satisfactory performances in fault propagation 
recognitions. Amin et al. [18] presented a hybrid data-driven method 
integrating principal component analysis with the Bayesian networks for 
fault detection and diagnosis in process plants, which demonstrated a 
strong efficacy of diagnosis performance while maintaining lesser false 
diagnosis. In [19], the same authors developed a dynamic Bayesian 
network-based fault detection and root cause diagnosis, which had an 
ability to convert the continuous process data into meaningful evidence 
instead of a probabilistic domain. There are also some BN studies 
emphasizing cross-level fault diagnosis in an HVAC system from the 
data-driven perspective. For example, Wang et al. [20] introduced a 
practical, efficient discretized BN-based diagnosis method for chiller 
faults; Chen et al. [21] proposed a whole building fault diagnosis 
method based on Discrete BN to isolate faults causing significant ab
normalities in multiple subsystems/equipment during system operation, 
and further designed a weather and schedule-based pattern matching 
Discrete BN to diagnose cross-level faults in building HVAC systems for 
real-time fault diagnosis and isolations [13]. Wang et al. [22] combined 
a reference model-based approach using normal data with a BN-based 
approach using faulty data to improve the effectiveness of fault diag
nosis. Taal and Itard [23] proposed an automated fault identification 
(AFI) process for HVAC systems using a diagnostic BN, successfully 
isolating control faults in a thermal energy plant. Pradhan et al. [24] 
developed a dynamic BN-based approach that incorporated the 

temporal dependencies of fault nodes between time steps using temporal 
conditional probabilities to improve accuracy for a whole building level 
fault diagnosis. 

The aforementioned BN-based diagnosis methods highly rely on 
heuristics processes to learn causal relationships among fault status and 
symptoms, and their causal mechanism is primarily determined by the 
expert knowledge. While promising, heuristics processes by the domain 
knowledge may not be adequate and effective for the fault diagnosis in 
more complex buildings, especially those with multiple coupled sub
systems. Other than being labor intensive, these approaches may not 
discover underlying coupling effects among the subsystems compre
hensively. This motivates us to take a data-driven approach to interro
gate the fault-symptom causalities to construct the BN structure. A 
notable emerging field is causal learning (CL) which uses the observa
tional data to learn causality and we believe CL presents new opportu
nities to address domain specific challenges [25]. In general, CL research 
focuses on two categories [26]: (1) causal effects estimation; and (2) 
causal structure learning. Causal effects estimation is to investigate how 
much changing one variable will influence another given a causal 
structure assumption between these two variables. This can be done by 
the counterfactual inference [27,28] which assesses the strength of 
causality between two events by inferring the likelihood of one event not 
occurring when another is absent. Causal structure learning, on the 
other hand, is to induce the structure describing the causal relationships 
from variables to others, and BN is one of the prevailing causal structure 
learning tools as it has shown the ability to represent the probabilisti
cally conditional independence in a graph model, providing an efficient 
and expressive way for knowledge representations and acquirements 
[29,30]. 

Despite the extensive research conducted on BN, there have been 
limited investigations into the causal structure construction from the 
causal effect estimation perspective using observation data, especially 
the BN construction for building fault diagnosis. As reviewed earlier, 
most building research using BN has heavily relied on the domain ex
perts’ knowledge. Additionally, the existing research on BN-based fault 
diagnosis primarily relied on the assumption of the symptom indepen
dence [13,31,32], which may not always be valid. In this research, we 
hypothesize that the building is an interconnected system comprising 
multiple subsystems, and when a fault occurs, co-evolving of multiple 
symptoms may present some unique patterns. Motivated by this idea, we 
introduce a new concept termed “synchronicity” to describe the co- 
evolving patterns, and propose a CL-based framework to induce the 
BN structures. Specifically, Eigen-Entropy (EE) [33], a metric derived 
from multi-variate time series is employed to characterize the “syn
chronicity”. Next, causal inference is used for causation measurements 
between the fault status and symptoms to decide what symptoms should 
be included in the BN structure model. Finally, the performance of our 
proposed framework is validated by three fault test cases. 

The paper is organized as follows. Background and methodology are 
detailed in sections 2 and 3. Experiments are summarized in section 4, 
followed by discussion in section 5. Finally, conclusion and future work 
is drawn in section 6. 

2. Background 

In this section, we review BN model for building fault diagnosis, and 
introduce the Pearl Causality, a commonly used causal effect estimation 
approach that can support the BN structure construction. 

2.1. BN model for building system fault diagnosis 

Bayesian Network (BN) is a probabilistic graphical model repre
senting a set of variables and their conditional dependencies via a 
directed acyclic graph, which can be used to reveal causal relationships 
between faults and symptoms. Fig. 1. below illustrates an example of a 
BN model for fault diagnosis in the building systems. 

Nomenclature 

AFDD Automatic fault detection and diagnosis 
AHU Air handling unit 
AIA Average isolation accuracy 
BAS Building automation system 
BN Bayesian network 
CL Causal learning 
EE Eigen-Entropy 
EECL Eigen-Entropy-based causality learning 
HVAC Heating, ventilation and air conditioning 
IA Isolation accuracy 
PN Probability of necessity 
SIA Sufficient isolation accuracy 
VAV Variable air volume  
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In this BN model, F1 and F2 are fault nodes that represent two 
distinct faults, while E1, E2 and E3 are evidence nodes that are in
dicatives (symptoms) of the presence of a fault. Arcs from the fault nodes 
to the evidence nodes demonstrate the direct causation that a fault has 
on the occurrence of the evidence. By Bayes theorem [34], posterior 
probabilities of faults (F1 and F2) given these evidence nodes (E1, E2, 
and E3) can be calculated to infer which fault is more likely to affect the 
system. For instance, if the posterior probability of F1 is greater than 
that of F2, the fault is said to be F1. 

Clearly, the link between faults and evidence nodes plays a crucial 
role in facilitating fault diagnosis in building systems based on BN. Pearl 
Causality, a method for estimating causal effects in fault-symptom re
lationships, is often employed to support the inference of BN structure. 
We provide a review of Pearl Causality basic in the next section. 

2.2. Pearl causality 

Pearl Causality [27], also known as counterfactual inference, as
sesses the likelihood that one event is the cause of another, which is 
usually evaluated by the probability of necessity. Given two binary- 
valued events, X and Y, let x and y stand for the propositions X = 1 
and Y = 1, respectively, x́  and ý  stand for their complements (X = 0 and 
Y = 0). The probability of necessity (PN) is then defined as: 

PN = P(YX=0 = 0|X = 1, Y = 1) = P
(
yʹ

xʹ
⃒
⃒x, y

)
(1)  

Consequently, PN stands for the probability that event y would not have 
occurred in the absence of event x (ýxʹ), given that x and y did actually 
occur. 

Supposing the frequencies of X and Y are as shown in Table 1, the PN 
can be calculated as [35]: 

PN = P
(
yʹ

xʹ|x, y
)

=
P(y) − P(y|xʹ)

P(x, y)
=

n11+n01
n − n01

n01+n00
n11
n

(2)  

where n = n11 + n10 + n01 + n00. When PN ≥ 0.5, the causal relation
ship from x to y is confirmed [36]. 

In this study, event X serves as an indication of the fault status in the 
building systems. Specifically, when X = 1, it signifies the occurrence of 
a fault, indicating fault conditions. On the other hand, when X = 0, it 
represents normal operations, indicating fault-free conditions. Addi
tionally, event Y = 1 is another indicator that describes specific prop

erties related to multiple symptoms, referred to as synchronicity, and 
Y = 0 is referred to as the complement to synchronicity (asyn
chronicity). 

To illustrate this idea, we consider AHU Cooling Coil Valve Stuck 
Fully Open (CoolCoiValStuck_0) as the example fault with two evidence 
nodes, AHU Cooling Coil Discharge Air Temperature (CC-DA-TEMP) and 
AHU Cooling Coil Valve Control Signal (CC-VLV). Therefore, X = 1 in
dicates the occurrence of CoolCoiValStuck_0, X = 0 indicates the 
nonoccurrence of CoolCoiValStuck_0 (fault-free condition); Y = 1 in
dicates the synchronicity exist between CC-DA-TEMP and CC-VLV, and 
Y = 0 is asynchronicity. Supposen11 = 16 (the frequency of synchro
nicity under this fault) andn01 = 14 (the frequency of asynchronicity 
under this fault); n10 = 484 (the frequency of synchronicity under fault- 
free condition) and n00 = 986 (the frequency of asynchronicity under 
fault-free condition). Given these values, we obtain PN = 0.54 by Eq (2), 
which is greater than 0.5. We conclude that the synchronicity between 
CC-DA-TEMP and CC-VLV is attributed to CoolCoiValStuck_0. 

Consequently, in the methodology section, we will provide a 
comprehensive explanation of this term and elucidate how we employ 
Pearl Causality to ascertain the BN structure. This BN structure will then 
be utilized to facilitate fault diagnosis in the building systems. 

3. Methodology 

To begin with, we introduce a new concept, “synchronicity”, to 
describe interactions among multiple time series in general. Next, we 
introduce details about our proposed entropy-based causal learning 
framework, termed Eigen-Entropy-based Causality Learning (EECL), for 
the BN construction to support fault diagnosis in building systems. 

3.1. Information entropy and time series synchronicity 

Information entropy [37] is to quantify the averaged information 
inherent to a random variable. Given a single variate with N possible 
values, its information entropy (H) is defined as 

H = −
∑N

i=1
pilogpi (3)  

where pi is the probability of this single variate taking the value i, and 
∑N

i=1pi = 1. 
Eigen-Entropy (EE) is an entropy for multivariate data derived on 

eigenvalues extracted from the correlation magnitude matrix [33]. 
Given a dataset X with n samples and m features, EE is defined as 

EE = −
∑m

i=1

λi

m
log

λi

m
(4)  

where λi is the eigenvalue corresponding to the correlation magnitude 
matrix on the feature space. 

Fig. 1. A BN model for fault diagnosis.  

Table 1 
Frequency data of events X and Y.

X = 1 X = 0 

Y =

1 
n11 n01 

Y =

0 
n10 n00  
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The EE method has been used to quantify the homogeneity (or het
erogeneity) of a tabular dataset [33] to support sampling decisions. One 
use case of EE is to construct baseline for AFDD as demonstrated in 
[38,39]. The interest of this research is on multiple time-series, and here 
we introduce “synchronicity” to describe the multi-time series dataset 
property which can be measured by EE. 

Definition 1. Multiple time series collected from the system may 
present some co-evolving patterns. If the trend of movements aligns over 
time (that is, the time series may increase, decrease or remain constant 
together with respect to time), we define this pattern as synchronicity. 

Without loss of generality, let us consider two time series, X1 and X2, 
where X1 = [x11,x12,⋯,x1n], X2 = [x21,x22,⋯,x2n], and xij refers the time 
point j of time series i. At time t, cosine similarity between X1t and X2t, is 
defined as: 

cos < X1t , X2t >=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑t

i=1
x1ix2i

√

̅̅̅̅̅̅̅̅̅̅̅̅
∑t

i=1
x2

1i

√ ̅̅̅̅̅̅̅̅̅̅̅̅
∑t

i=1
x2

2i

√ (5)  

The corresponding cosine similarity magnitude matrix on X1t and X2t is 

C*
t =

(
1 ct

12

ct
21 1

)

(6)  

where ct
12 is the magnitude of cosine similarity between X1t and X2t , 

(ct
12 = |cos < X1t , X2t > |) and ct

21 = ct
12. We derive eigenvalues λt

1 and λt
2 

from C*
t to obtain EE (see Eq (4)). Please note for multiple time-series, 

the dimension of the cosine similarity magnitude matrix increases 
accordingly. 

Fig. 2. Trend of movement, cosine similarity and EE between two time series X1 and X2 over time when (A) X1 and X2 both increase; (B) X1 decreases and X2 

increases; (C) X1 remains constant and X2 increases. As shown in (A1), two time-series show the exactly same trend of movements (perfectly aligned movement), the 
corresponding magnitude of cosine similarity increases (A2) and EE decreases over the time (A3); As shown in (B1), two time-series show the different trend of 
movements, the corresponding magnitude of cosine similarity becomes decreasing (B2) and EE becomes increasing over the time (B3); As shown in (C1), two time- 
series show the exactly opposite trend of movements, the corresponding magnitude of cosine similarity becomes decreasing significantly (C2) and EE becomes 
increasing drastically over the time (C3). This indicates that EE can measure the degree of aligned movements between two time-series over the time. 
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Given the magnitude of cosine similarity between X1t and X2t , we can 
further obtain corresponding Eigen-Entropy by Eq (4). Let EEt1 be the 
Eigen-Entropy calculated for X1 and X2 at time point t1 (X1t1 and X2t1 ) 
and EEt2 is the Eigen-Entropy calculated for X1 and X2 at time point t2 
(X1t2 and X2t2 ), where t1 < t2. If EEt2 < EEt1, we assume that the trends of 
the time series have become more synchronous or aligning between time 
points t1 and t2, and vice versa. 

Therefore, the value of EE indicates the degree of alignment between 
the movements of these time-series, or their synchronicity. If the time- 
series movements are well aligned or highly positively correlated, the 
value of EE would be zero or close to zero. As the movements become 
less aligned, the value of EE increases, reaching its maximum when the 
movements are completely misaligned or highly negatively correlated. 

To illustrate this concept, we present a simple example in Fig. 2, 
which shows the relationships among the movement trends, cosine 
similarities, and EEs for these two time-series under different scenarios: 
(1) both X1 and X2 increase over time; (2) X1 remains constant while X2 
increases over time; and (3) X1 decreases while X2 increases over time. 
In Fig. 2 (A), where X1 and X2 exhibit perfectly aligned movements over 
time (scenario (1)), indicating a strong positive correlation, the cosine 
similarity between X1 and X2 increases, and the corresponding EE de
creases. In Fig. 2 (B), as X1 and X2 show divergent movements (scenario 
(2)), the cosine similarity between X1 and X2 decreases, and the corre
sponding EE increases. In Fig. 2 (C), X1 and X2 exhibit movements in 
completely opposite directions (scenario (3)), depicting a strong nega
tive correlation, the cosine similarity decreases significantly, and the EE 
increases markedly over time. 

Note that the patterns for cases where both X1 and X2 decrease, X1 
increases while X2 decreases, and X1 remains constant while X2 de
creases, are similar to Fig. 2 (A), (B), and (C) respectively. Therefore, we 
conclude that EE can be used as a metric to measure the synchronicity, 
describing the phenomenon of multiple time series showing trends of 
aligned movements over time. 

3.2. Eigen-Entropy-based causality learning (EECL) for HVAC AFDD 

In this research, we focus on the building HVAC fault diagnosis/root 
cause isolation. This involves the use of evidence nodes, which are 
comprised of sensor readings obtained from the building system over a 
specific time frame. These evidence nodes can be regarded as multiple 
time series. Upon analyzing the data, we have observed that when a 
system contains fault(s), the evidence nodes exhibit synchronicity. This 
has led to our assumption that the synchronicity among evidence nodes 
is attributed to the system fault(s). As a result, we have employed this 
causal assumption to identify evidence nodes for constructing BNs. That 
is, we need to decide which evidence nodes are associated with which 

fault. 
Given k fault nodes (a.k.a., fault test cases), each fault node including 

one fault dataset (i.e., data from the system that contain fault(s)) and 
corresponding baseline dataset, each dataset consisting of d days’ data, 
each day’s data with t time points (t samples), and m evidence nodes (m 
symptoms), Algorithm 1 presents the EECL method to determine the 
evidence nodes for each fault node so as to construct a BN for fault 
diagnosis. These include two parts: initialization and evidence node 
selection stages. 

At the initialization stage, we need to identify a set of critical evi
dence nodes for each fault node as candidates to support the BN con
struction. This involves four main steps.  

• We obtain feature importance score of each evidence node by 
training a machine learning model (e.g., random forest classifier) 
using all k fault datasets, and then select those evidence nodes whose 
importance scores are greater than a set value through sensitivity 
analysis (e.g., in this study, 0.05). This forms a set of critical evidence 
nodes that can differentiate all k fault datasets, say Eall (line 1).  

• We follow a similar procedure to obtain multiple sets of evidence 
nodes, Ei,j’s (i ∕= j), each set containing critical evidence nodes that 
can distinguish its fault dataset from any other fault datasets for any 
individual test case i (e.g., Fi vs. Fj) (lines 2–3). We need to identify a 
set of critical evidence nodes that can differentiate between its fault 
dataset and baseline, saying Ei (line 4). Hence, we form a set of 
critical evidence nodes for the test case by taking the union of Eall, 
multiple Ei,j’s and Ei, saying Eʹ

i, which contains critical evidence 
nodes from previous steps.  

• Next is to assign a score to each evidence node in Eʹ
i by taking the 

maximum value of its importance among Eall, Ei,j’s and Ei (lines 5–6).  
• Finally, we rank all evidence nodes in Eʹ

i in a descending order by 
their importance score to obtain a set of ranked, critical evidence 
nodes, Êi (line 7). 

Fig. 3 illustrate an example given the scenario of three fault node, F1,

F2 and F3, one baseline node, B, and four evidence nodes, E1, E2, E3, and 
E4. Using a machine learning model (e.g., random forest), the important 
scores for E1, E2, E3, and E4 that can distinguish three fault nodes 
(F1vs.F2vs. F3) are all 0.2; Next let us focus on the F1, and assess these 
evidence nodes by distinguishing pairwise fault nodes (F1vs.F2; F1vs.F3): 
the scores for E1, E2, E3, and E4 are 0.15, 0.25, 0.20, and 0.05 for F1vs.F2, 
and 0.23, 0.24, 0.36, 0.17 for F1vs.F3 respectively; we obtain the scores 
for F1vs.B are 0.05, 0.62, 0.00 and 0.33. Therefore, from these scoring 
results, we rank evidence nodes according to their max score in a 

Fig. 3. An illustrative example of procedures of obtaining the set of ranked critical evidence nodes for one fault node. (1) 3 fault nodes and one baseline with 4 
evidence nodes; (2) For one fault node, F1, obtain (importance) scores for each evidence node under different comparison scenarios: (3) Rank evidence nodes by max 
score for F1. 
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descending order (scores: E2 > E3> E4 > E1).  
Algorithm 1: BN construction by EECL for fault diagnosis 

Input: k fault nodes, each fault node with one fault and one baseline datasets, each 
dataset consisting of d days’ data, each data with m evidence nodes and t time points 

Output: Bayesian networks for fault diagnosis,BN 
Initialization: 
1: Obtain a set of critical evidence nodes that can differentiate all k fault datasets, 

Eall, according feature importance scores from the machine learning model 
2: For fault node i, i = 1, ⋯, k 
3: Repeat Step 1 to obtain multiple sets, each set containing critical evidence 

nodes that can differentiate its fault dataset from another fault dataset of fault 
node j, Ei,j , j = 1, ⋯, k, i ∕= j 

4: Repeat Step 1 to obtain a set of critical evidence nodes that can differentiate its 
fault dataset baseline,Ei 

5: Obtain a set of critical evidence nodes by taking the union of Eall, Ei,j’s and Ei, 
Eʹ

i 
6: Assign importance score to each evidence node in Eʹ

i by taking its maximum 
value of importance scores among Eall, Ei,j’s and Ei 

7: Rank each evidence node in Eʹ
i by its importance score in a descending order to 

obtain a ranked evidence node set,Êi =
{

e(1), e(2), ⋯
}

Evidence nodes selection: 
8: For fault node i, i = 1, ⋯, k 
9: For day p, p = 1, ⋯, d 
10: Normalize each evidence node from Êi of fault data with respect to its baseline 

data in day p 
11: Calculate Eigen-Entropy (EE) by Eq (4) on Êi for each q time point on fault data 

in day p using the first qth samples,EEq, q = 2, ⋯, t 
12: Derive normalized EE for each q time point, NEEq, where NEEq = EEq/q 
13: Assign 1 for each q time point if NEEq < ε; 0 otherwise 
14: Repeat Steps 11–13 for baseline data in day p 
15: Obtain frequency table given results from Steps 11–14, and calculate PN by the 

Eq (2) 
16: If PN < 0.5, update Êi by removing the last ranked evidence node, and repeat 

Steps 11–14 
17: Otherwise, stop and output Êi 
18: Return BN by linking k fault nodes with {Ê1, ⋯, Êk}  

Next, we start selecting evidence nodes for each fault node. The evidence 
node selection stage also involves four main steps.  

• For each day in a fault node, we first normalize each evidence node in 
Êi of the fault data with respect to its corresponding baseline (line 
10). Then for both fault data and baseline, we calculate EE on Êi for 
each time point q and obtain corresponding normalized EE, NEEq. We 
assign 1 if NEEq is smaller than a certain threshold (ε), indicating the 
existence of synchronicity among evidence nodes at time point q 
(that is, evidence nodes exhibit the trend of aligned movements over 
time q); 0 otherwise (lines 11–14).  

• After going through all d days’ data, we obtain a frequency table for 
this fault node, where X = 1 indicating fault conditions, X = 0 
indicating fault-free conditions, Y = 1 indicating synchronicity, 
otherwise, Y = 0. The frequency information is used for probability 
of necessity (PN) calculations to assess the causal relationship from 
fault status to synchronicity among Êi (line 15).  

• If the PN < 0.5, it indicates the causal relationship does not hold 
between that fault condition and the synchronicity of the evidence 
nodes; thus, we remove the last ranked evidence node from Êi (note 
that in this approach we do not have any evidence node added) and 
continue the process; otherwise stop and output the final evidence 
nodes for this fault node (lines 16–17).  

• We go through the procedures for all fault nodes, and finally 
construct BN by linking all fault nodes to corresponding evidence 
nodes selected (line 18). 

4. Experiments on simulation datasets 

4.1. Experimental datasets from simulation 

A virtual HVAC system testbed developed using Modelica in Dymola 
environment [40] is used to generate experimental data in the experi
ment, and Fig. 4 shows the schematics of the HVAC system. The devel
oped HVAC system model is for a one-floor, five-zone medium-sized 
office building, which has one Air Handler Unit (AHU) connected with 
five Variable Air Volume (VAV) terminal boxes serving five zones (four 

Fig. 4. Schematic diagram of the simulated HVAC system.  
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exterior zones, and one interior zone, respectively). Heating and cooling 
are delivered by a single-duct VAV system and the reheat in the VAV 
terminals is supplied by electric resistance coils. The chilled water is 
supplied by a central chiller plant which consists of a chiller, a waterside 
economizer, a cooling tower, and one chilled water pump and one 
condenser water pump. A boiler, fed by natural gas, supplies the hot 
water to the AHU heating coil. 

Fig. 5 presents the Modelica model for the studied HVAC system, 
which was developed based on the open-source Modelica Buildings Li
brary (MBL) [41] and verified against a medium-sized office DOE pro
totype model [42] developed by Pacific Northwest National Laboratory 
in EnergyPlus [43]. Table 2 shows a peak load and sizing comparison 
between the EnergyPlus prototype medium office model with the 
Modelica model. The peak cooling load (cooling coil capacity) is similar 

between these two models. The system model consists of three compo
nents, namely an HVAC system, a building envelope model, and a model 
for air flow through building leakage and through open doors based on 
wind pressure and flow imbalance of the HVAC system. The HVAC 
system is sized for Chicago, IL, USA in climate zone 5A. The HVAC 
system control complies with American Society of Heating, Refriger
ating and Air-Conditioning Engineers (ASHRAE) standards and guide
lines or literature-reported practices. For example, the air-side control 
sequences follow ASHRAE Guideline 36 [44] and the water-side control 
sequences follow ASHRAE project RP-1711 [45]. More details of this 
HVAC system model can be found in [46–49]. 

In this study, three fault datasets and one fault-free dataset collected 
from this virtual testbed are used. Specifically, these three fault datasets 
are those collected when the virtual testbed is operated under one of the 
three different commonly-occurring physical fault conditions, namely, 
AHU Cooling Coil Valve Stuck Fully Open (CooCoiValStuck_0), AHU 
Outdoor Air Damper Stuck Fully Closed (OADamStuck_100) and Supply 
Duct Leakage at a degradation rate of 20 % (SupDucLea_20), respec
tively (see Table 3), while the fault-free dataset is collected when the 
virtual testbed is operated under normal conditions. Specifically, the 
fault-free dataset serves as the baseline for each fault node; in other 
words, the three fault nodes share the same baseline dataset. Since the 
HVAC system is sized for Chicago, IL, USA in climate zone 5A and the 
fault injection period starts at the beginning of the day on July 9 and 
continues for four weeks until August 5, the ranges of temperature and 
relative humidity are 24–29 ◦C and 50 % to 70 %. Each dataset (both 
fault and fault-free) consists of 28-days’ data, each day’s data containing 
120 time points (samples) for the entire occupied hours (unoccupied 
hours excluded); consequently, there are 3,360 samples in total for each 
fault node. In our experiment, 15 days’ data (1,800 samples) from each 
fault node are used as the training dataset while 5 days’ data (6,00 
samples) are used as the test datasets for validation, and the remaining 8 
days are excluded because these days correspond to the periods when 
the building was unoccupied. Detailed information about the training 
and testing days can be found in Appendix A. 

It is worth noticing that both fault and fault-free datasets have 132 
evidence nodes. Out of these 132 evidence nodes, 50 are related to the 
AHU or chiller. Since building faults usually occur in AHUs or chillers, 
these evidence nodes are important and thus considered as the candi
dates for the BN construction. The descriptions of these evidence nodes 

Fig. 5. Modelica implementation of the studied HVAC system for a commercial building.  

Table 2 
Comparison between the EnergyPlus prototype with the Modelica model.  

Item EnergyPlus Midfloor_Plenum Modelica 

Area [m2] 1660.7 1662.7 
AHU Fan Design Flow Rate [m3/s] 4.2 4.8 
AHU Fan Head [Pa] 1389 1381 
Overall Efficiency 0.6 0.49 
AHU Fan Rated Electric Power [W] 9685 13,530 
Cooling Coil Capacity [W] 95,438 100,711 
Heating Coil Capacity [W] 34,995 40,526 
Chilled Water Pump Head [W] Not applicable 255,000 
Chilled Water Pump Flow [m3/s] 0.004 
Cooling Water Pump Head [W] 215,700 
Cooling Water Pump Flow [m3/s] 0.0043 
Hot Water Pump Head [W] 157,000 
Hot Water Pump Flow [m3/s] 0.00132 
Cooling Tower Fan Power [W] 4300  

Table 3 
Description of three fault nodes.  

Fault No. Fault Node Name Fault Node Description 

1 CoolCoiValStuck_0 AHU Cooling Coil Valve Stuck Fully Open 
2 OADamStuck_100 AHU Outdoor Air Damper Stuck Fully Closed 
3 SupDucLea_20 Supply Duct Leakage at a degradation rate of 20 

%  
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can be found in Table 4; besides, all these 50 evidence nodes are ranked 
according to its importance scores for each fault node, and the details 
about the ranking method can be found in Appendix B of this paper. 

4.2. Evaluation metrics 

In the BN model, we assess every fault sample for each fault node by 
utilizing posterior probabilities derived from prior and conditional 
probabilities. Let us define sij as the ith fault sample from fault node j 
whose true label is Y

(
sij

)
. Using BN, we can obtain k posterior proba

bilities, P1
(
sij

)
, P2

(
sij

)
, …,Pk

(
sij

)
, indicating likelihoods of sij belonging 

to fault nodes 1, 2, …,k. Thus, the predicted label for sij, Ŷ
(
sij

)
, will be 

based on the maximum of these posterior probabilities, saying Ŷ
(
sij

)
=

argmaxr
{
Pr

(
sij

)}
, where r ∈ {1,⋯,k}. Therefore, for any sij, we have an 

indicator, I
(
sij

)
, such that: 

I
(
sij

)
=

{
1, Ŷ

(
sij

)
= Y

(
sij

)

0, otherwise
(7)  

where, I
(
sij

)
= 1 indicating that the ith fault sample from fault node j is 

correctly identified by the BN; I
(
sij

)
= 0 indicating this sample is 

incorrectly identified. If there are n fault samples in fault node j, we 
define that isolation accuracy (IA) for fault node j as: 

IAj =

∑n
i=1I

(
sij

)

n
(8)  

Once we have the IA for each fault node, we further define the average 
isolation accuracy (AIA) over all (say k) fault nodes, as: 

AIA =

∑k
j=1IAj

k
(9)  

If there are m evidence nodes in the BN, we define the sufficient isolation 
accuracy (SIA) for the BN as: 

SIA =
AIA
m

(10)  

We expect to construct a robust BN containing as fewer evidence nodes 
as possible while maintaining satisfactory isolation accuracy, which can 
be measured by SIA. In other words, a robust BN has a higher SIA. 

4.3. Experimental results 

4.3.1. Sensitivity test on EECL 
As is shown in Algorithm 1, a threshold ε is needed to determine if 

there is synchronicity among evidence nodes. As there is no set rule to 
determine ε to identify significant synchronicity, we conduct experi
ments by varying ε from 0.001 to 0.005 with increments of 0.001. This is 
because when ε is greater than 0.006, the PN is less than 0.5 indicating 
that there is no causal relationship according to [36]. Through obser
vations, it is found that ε = 0.005 yields satisfactory results, as the SIA of 
the constructed BN under this threshold is 11.38 %, surpassing the re
sults obtained from other values (refer to Table 5). Moreover, observing 
from Fig. 6, normalized EE values based on selected evidence nodes 
under fault conditions are below ε = 0.005, which agrees to our 

Table 4 
AHU/Chiller-related evidence nodes.  

Evidence 
No. 

Evidence Node 
Name 

Evidence Node Description 

E1 SA-TEMP AHU Supply Air Temperature 
E2 SA-TEMP-STP AHU Supply Air Temperature Set Point 
E3 OA-DB-TEMP AHU Outdoor Air Dry Bulb Temperature 
E4 OA-WB-TEMP AHU Outdoor Air Wet Bulb Temperature 
E5 MA-TEMP AHU Mixed Air Temperature 
E6 RA-TEMP AHU Return Air Temperature 
E7 CC-DA-TEMP AHU Cooling Coil Discharge Air Temperature 
E8 SF-SPD AHU Supply Air Fan Speed 
E9 OA-DMPR AHU Outdoor Air Damper Control Signal 
E10 RA-DMPR AHU Return Air Damper Control Signal 
E11 EA-DMPR AHU Exhaust Air Damper Control Signal 
E12 SA-CFM AHU Supply Air Mass Flow Rate 
E13 OA-CFM AHU Outdoor Air Mass Flow Rate 
E14 RA-CFM AHU Return Air Mass Flow Rate 
E15 EA-CFM AHU Exhaust Air Mass Flow Rate 
E16 CC-VLV AHU Cooling Coil Valve Control Signal 
E17 HC-VLV AHU Heating Coil Valve Control Signal 
E18 SAD-FLOW AHU Supply Air Duct Static Pressure 
E19 SAD-FLOW-STP AHU Supply Air Duct Static Pressure Set Point 
E20 CC-HTR AHU Cooling Coil Heat Transfer Rate 
E21 HC-HTR AHU Heating Coil Heat Transfer Rate 
E22 SF-PWR-CONS AHU Supply Air Fan Power Consumption 
E23 CHWS-TEMP Chilled Water Loop: Chilled Water Supply 

Temperature 
E24 CHWR-TEMP Chilled Water Loop: Chilled Water Return 

Temperature 
E25 CWS-TEMP Condenser Water Loop: Cooling Water Supply 

Temperature 
E26 CWR-TEMP Condenser Water Loop: Cooling Water Return 

Temperature 
E27 HWS-TEMP Hot Water Loop: Hot Water Supply Temperature 
E28 HWR-TEMP Hot Water Loop: Hot Water Return Temperature 
E29 CHWS-TEMP- 

STP 
Chilled Water Loop: Supply Chilled Water 
Temperature Set Point 

E30 CHW-DIFF- 
FLOW 

Chilled Water Loop: Measured Differential 
Pressure 

E31 CHW-FLOW- 
STP 

Chilled Water Loop: Differential Pressure Setpoint 

E32 HWS-TEMP- 
STP 

Hot Water Loop: Supply Hot Water Temperature 
Set Point 

E33 HW-DIFF- 
FLOW 

Hot Water Loop: Measured Differential Pressure 

E34 HW-FLOW-STP Hot Water Loop: Differential Pressure Setpoint 
E35 CHW-FLOW-CC Chilled Water Loop: Chilled Water Flow Rate into 

the Cooling Coil 
E36 CHL-CHW- 

FLOW 
Chiller: Chilled Water Flow Rate of the Chiller 

E37 WSE-CHW- 
FLOW 

WSE: Chilled Water Flow Rate of the WSE 

E38 CW-FLOW Condenser Water Loop: Cooling Water Flow Rate 
E39 CHL-CW-FLOW Chiller: Cooling Water Flow Rate of the Chiller 
E40 WSE-CW-FLOW Cooling Water Flow Rate of the Water Side 

Economizer (WSE) 
E41 HW-FLOW-HC Hot Water Loop: Hot Water Loop Flow Rate into 

the Heating Coil 
E42 BLR-HW-FLOW Boiler: Boiler Hot Water Flow Rate 
E43 HW-FLOW- 

BYPS 
Hot Water Loop: Bypass Hot Water Flow Rate 

E44 CHL-PWR Chiller Power consumption 
E45 DIFF-SAT-STP AHU Supply Air Temperature and Supply Air 

Temperature Setpoint Difference 
E46 DIFF-OAT-MAT Difference between AHU Outdoor Air 

Temperature and Mixed Air Temperature 
E47 CHW-COOLING Chilled Water Cooling Capacity 
E48 VAV-FLOW- 

SUM 
Summation of VAV Flowrate 

E49 MA-TEMP-1 AHU Mixed Air Temperature Curve Fit; MAT = f 
(OAT, RAT, SAflow, RAflow)  

E50 MA-TEMP-2 AHU Mixed Air Temperature Curve Fit; MAT = f 
(OAT, RAT, SAflow, OAdmpr)   

Table 5 
Results under different ε’s (ε = 0.005 highlighted in grey).  

ε # of evidence nodes in BN AIA SIA  

0.001 19 78 %  4.11 %  
0.002 19 78 %  4.11 %  
0.003 19 78 %  4.11 %  
0.004 19 78 %  4.11 %  
0.005 8 91% 11.38%  
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assumption that fault conditions will lead to the synchronicity among 
evidence nodes. Therefore, we report the results with ε = 0.005 and the 
corresponding BN is shown in Fig. 7. 

4.3.2. BN derived from expert knowledge 
The structure of BN developed based on expert knowledge and 

physical analysis is shown as below. The values of an evidence node 
from a fault dataset are compared with those from a baseline dataset to 

Fig. 6. Normalized EEs on selected evidence nodes over time for (A) AHU Cooling Coil Valve Stuck Fully Open; (B) AHU Outdoor Air Damper Stuck Fully Closed; and 
(C) Supply Duct Leakage at a degradation rate of 20 %. Each case shows normalized EEs under fault condition below the threshold (ε = 0.005), which agrees to our 
assumptions that fault conditions will lead to evidence synchronicity. 

Fig. 7. BN constructed by EECL under ε = 0.005.  

Fig. 8. Effects of the fault Cooling Coil Valve Stuck Fully Open on two evidence nodes: (A) DIFF-SAT-STP and (B) MA-TEMP-1.  

Fig. 9. BN constructed by expert knowledge [13].  
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observe if this evidence node demonstrates abnormality under a fault 
condition. Fig. 8 illustrates an example showing the effects of the fault: 
Cooling Coil Valve Stuck Fully Open on two evidence nodes, DIFF-SAT- 
STP (i.e., AHU Supply Air Temperature and Supply Air Temperature 
Setpoint Difference) and MA-TEMP-1 (i.e., Mixed Air Temperature). 
There are larger differences between the values of DIFF-SAT-STP under 
the fault scenario (see Fig. 8 (A) in purple) and those under baseline (see 
Fig. 8 (B) in green), while there are many overlaps between the values of 
MA-TEMP-1. Consequently, DIFF-SAT-STP rather than MA-TEMP-1 will 
be selected for the BN since this evidence node has shown significant 
abnormality under the fault condition according to the criteria described 
in [46]. Following the same procedures, nine evidence nodes are 
selected for the fault ‘CooCoiValStuck_0′, nine for the fault ‘OADam
Stuck_100, and eight for the fault ‘SupDucLea_20′. The final BN structure 
by expert knowledge is shown in Fig. 9, which includes twelve evidence 
nodes. The values of each evidence node under each fault node can be 
found in Appendix C. 

4.3.3. BN derived from MIKK2 algorithm 
The structure of BN developed based on Mutual Information- 

Krruskal-K2 (MIKK2) algorithm [50] is included as a benchmark. This 
algorithm initiates by computing the mutual information (MI) between 
variables, followed by utilizing the Kruskal algorithm from graph theory 
to develop the maximum spanning tree, thereby determining the 
maximum node in-degree. Subsequently, the maximum spanning tree 
undergoes a Depth First Search to establish the node order. Ultimately, 
the K2 algorithm utilizes both the node in-degree and the node order to 
learn and derive the optimal Bayesian Network structure. The final BN 
structure by MIKK2 is shown in Fig. 10, which includes nineteen evi
dence nodes. 

4.3.4. Comparisons among three BN construction approaches 
In this section, posterior probabilities for each fault node obtained 

using BNs by EECL, MIKK2 and expert knowledge are compared in the 
analysis. Two important parameters, prior and conditional probabilities 
predefined as in [51] are used for both faults and evidence nodes for 
posterior probability calculations. The corresponding comparison plots 
of posterior probabilities are shown in Fig. 11. The isolation accuracies 
for each individual fault using different BNs are as follows. For Coo
CoiValStuck_0, the isolation accuracy using BN by EECL is 98 %, 
significantly higher than that by MIKK2 (52 %), but slightly lower than 
that by expert knowledge (100 %); for OADamStuck_100, the isolation 
accuracy by EECL is 84 %, slightly higher than that by MIKK2 (81 %) but 
lower than that by expert knowledge (100 %); for SupDucLea_20, the 

isolation accuracy by EECL is 90 %, lower than that by MIKK2 (100 %) 
and that by expert knowledge (100 %). Observing from Fig. 12 (A) and 
(B), BN constructed by EE is with 8 evidence nodes and can achieve AIA 
of 91 %, which includes fewer evidence nodes and maintain higher AIA 
than that by MIKK2 (19 evidence nodes and AIA of 78 %); Although BN 
by expert knowledge can reach AIA of 100 %, it includes 50 % more 
evidence nodes than that by EECL. Moreover, as is observed from Fig. 12 
(C), BN constructed by EECL reaches SIA of 11.38 %, higher than those 
by Expert (8.33 %) and by MIKK2 (4.11 %) respectively. This indicates 
the efficiency of EECL for BN construction, as EECL requires 33.3 % 
fewer evidence nodes and yields a 36.6 % higher SIA compared to expert 
knowledge, and 57.9 % fewer and 1.77 times higher compared to 
MIKK2, respectively. 

As shown in Fig. 13, our constructed BN using EECL includes eight 
evidence nodes for CooCoiValStuck_0, three for OADamStuck_100, and 
four for SupDucLea_20; the numbers of evidence nodes by expert 
knowledge are nine, nine and eight, and those by MIKK2 are eleven, 
fifteen and seventeen, respectively; moreover, three evidence nodes are 
shared for CooCoiValStuck_0, one for OADamStuck_100, and two for 
SupDucLea_20 among three BNs, respectively. Therefore, our EECL 
method for BN construction is able to reach a satisfactory isolation ac
curacy for the cross-level fault diagnosis in the building systems for this 
given case study. 

5. Discussions 

In this research, the BN structure is constructed using a data-driven 
causal learning approach. To facilitate causal learning, the concept of 
“synchronicity” is introduced to describe the interactions among evi
dence nodes. The direction of causality from the fault status to the 
synchronicity is characterized by Pearl Causality. This process ulti
mately results in the construction of the BN structure that can be used to 
diagnose cross-level faults in a building HVAC system. As discussed in 
[13], automatic process of the BN structure construction is demanding 
due to the time-consuming and labor-intensive natures of determining 
BN structures by expert knowledge, and the developed EECL method has 
the potential for overcoming this deficiency since it is purely data- 
driven, and does not require any prior knowledge. Additionally, while 
expert knowledge method can determine the presence of the causal re
lationships between faults and evidence nodes, it does not provide any 
measures on the strength of these causations. In contrast, the proposed 
EECL method is able to quantify the causal relationships in terms of an 
evaluation metric (i.e., PN), which helps to reduce uncertainties of 
causality determined explicitly by expert knowledge. 

Fig. 10. BN constructed by MIKK2 algorithm [50].  
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Fig. 11. Posterior probability results for test datasets from three fault nodes: (A) AHU Cooling Coil Valve Stuck Fully Open; (B) AHU Outdoor Air Damper Stuck Fully 
Closed; (C) Supply Duct Leakage at a rate of 20%. The left-hand sided plots are isolations from BN by expert knowledge, the middle sided plots are by MIKK2, and the 
right-hand sided plots are by EECL. All the posterior probabilities are generated by BayesFusion software [52,53]. 

Fig. 12. Comparisons of BNs among three methods (Expert, MIKK2, EECL) in terms of (A) number of evidence nodes; (B) AIA and (C) SIA.  
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In addition to causation characterizations, the proposed EECL 
method takes full considerations on interactions among the evidence 
nodes, which is measured by EE, an information entropy used for 
multivariate time-series. These interactions may reveal important and 
interesting patterns specific to a fault, but they may be overlooked by 
expert knowledge because experts often treat evidence nodes individu
ally; This deficiency also applies in BN constructed by MIKK2 algorithm 
since evidence nodes are also treated as independent. The BN structure 
by EECL utilizes the parameter model that includes prior and conditional 
probabilities for the fault and evidence nodes determined by expert 
knowledge and is able to achieve satisfactory fault diagnosis/isolation 
accuracy (see Experiments). 

As a matter of fact, several mainstream methods, such as randomized 
controlled trials, regression analysis, propensity score matching, have 
been widely used for causal effect estimations. These methods are to 
estimate the strength of the causal effect from one variable to another 
with a causal assumption given as a prior. In contrast, Pearl causality 
utilizes probability of necessity (PN) to assess whether the causal rela
tionship is valid using frequency information. Specifically, decision 
criterion on causality (PN ≥ 0.5) is uniform; if PN is greater or equal to 

0.5, the causal assumption holds true between the two variables. Since 
the objective of the study is to learn causal structure by determining 
which evidence nodes should be connected to the fault node, Pearl 
causality is adopted in this study. 

While promising, it is worth noticing that the proposed EECL method 
like most data-driven approach is still influenced by several factors such 
as data volume, data quality, and data information. Despite the rapid 
development of data science and sensor technology, collections of a 
large amount of high-quality, information-rich data are still challenging 
with the current BAS. For example, the proposed EECL may discard a 
certain evidence node containing many missing values even though it is 
important and interpretable from a physical knowledge perspective. 
Another is that the BN by EECL still relies heavily on the expert 
knowledge to diagnose cross-level faults due to the same parameter 
model. There is a need for data-driven parameterizations (i.e., deter
mination on prior and conditional probabilities) to support the diag
nosability of BN by EECL. Moreover, Pearl causality in EECL acquires PN 
by using frequency information from binary outcomes (e.g., the outcome 
should be synchronicity/asynchronicity), which may not apply to a 
more complex scenario when outcomes are multi-class (e.g., weak, 
medium or strong synchronicity). 

6. Conclusions and future work 

This research develops an entropy-based causal learning method, 
termed eigen entropy-based causality learning (EECL), to support BN 
structure construction for fault diagnosis/isolation from the data-driven 
perspective. The proposed method includes two phases. In the first 
phase, Eigen-entropy is used for characterizing synchronicity, which 
describes the trends of movements among the evidence nodes over the 
time. In the second phase, counterfactual inference is applied to deter
mine what and how evidence nodes should be connected to each fault 
node so as to build up the BNs to support fault diagnosis, including cross- 
level faults, in the building system. Compared to the traditional expert 
knowledge-based approach, the proposed method shares the following 
contributions: (1) it is a complete data-driven approach without the use 
of expert domain knowledge; (2) a term synchronicity is defined to 
capture the interactions, i.e., the trends of aligned movements over time, 
among multiple symptoms under fault status; (3) it utilizes cause effect 
estimations (counterfactual inferences) to induce the causal structure 
between faults and synchronicity among symptoms. The BN constructed 
by the developed EECL method is evaluated against that by expert 
knowledge based method using three cross-level fault test cases simu
lated using a virtual testbed. Experimental results show that the EECL 
based BN can achieve satisfactory isolation accuracy with fewer evi
dence nodes (average isolation accuracy of 91 % with 8 evidence nodes), 
indicating the efficacy of EECL approach for fault diagnosis. 

Our current research focuses on a smaller set of fault test cases, each 
from one fault category. In the future, we are interested in investigating 
the capability of the proposed method for the fault diagnosis on multiple 
fault test cases, as well as the test cases from the same fault categories (i. 
e., various intensities under the same fault). Another interesting topic is 
to explore data-driven parameterizations for a robust diagnosability of 
BN by EECL. Finally, we use EE in conjunction with Pearl causality to 
construct BN, and there is a need to extend this EE causality framework 
to other types of causal structure learning methods such as functional 
causal models, score-based methods [25]. 
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Appendix A:. Training and testing sets for the developed model 

The HVAC system is sized for Chicago, IL, USA in climate zone 5A and the fault injection period starts at the beginning of the day on July 9 and 
continues for four weeks until August 5, the ranges of temperature and relative humidity are 24–29 ◦C and 50 % to 70 %.The data is collected at the 
sampling rate of 5 min, so 1,800 samples are used as the training set (representing 15 days with 10 h of operation each day). Also, 5 days are used for 
testing the developed BN network which has 6,00 samples (representing 5 days with 10 h of operation in each day). Table A-1 represents the same 
information (the excluded days in the table are unoccupied days that are removed from the dataset).  

Table A1 
Days considered for BN-based model training and validation.  

Datasets Occupied time 

Training Days 1–3; Days 6–10; Days 13–17; Days 20–21 
Test Days 22–24; Day 27–28  

Appendix B:. Evidence node ranking method 

In this study, we use the random forest classifier to characterize the importance score for each evidence node. Given three fault cases, CooCoi
ValStuck_0 (C), OADamStuck_100 (O), and SupDucLea_20 (S) and one baseline (B), we first identify critical evidence nodes that can differentiate all 
three fault cases (C vs. O vs. S). Next identify critical evidence nodes that can differentiate each pair of fault cases (C vs. O; C vs. S; O vs. S). Finally 
identify critical evidence nodes that can differentiate each fault case and baseline (C vs. B; S vs. B; O vs. B). The evidence nodes and corresponding 
importance scores can be referred to Table B-1.  

Table B1 
Critical evidence nodes and corresponding importance score information. Evidence nodes whose score > 0.05 are considered critical.  

C vs. O vs. S C vs. O C vs. S O vs. S 

Evidence Score Evidence Score Evidence Score Evidence Score 

CC-DA-TEMP  0.1024 CC-DA-TEMP  0.1741 CC-DA-TEMP  0.1773 RA-CFM  0.1889 
RA-CFM  0.0912 DIFF-SAT-STP  0.1448 DIFF-SAT-STP  0.1492 EA-CFM  0.1754 
EA-CFM  0.0880 SA-TEMP  0.1007 CWR-TEMP  0.0998 OA-CFM  0.1182 
DIFF-SAT-STP  0.0826 CC-VLV  0.0786 SA-TEMP  0.0858 OA-DMPR  0.1100 
SA-TEMP  0.0662 RA-TEMP  0.0766 CHWS-TEMP-STP  0.0758 SA-CFM  0.0635 
OA-CFM  0.0546 CWR-TEMP  0.0739 CHW-FLOW-CC  0.0601 SF-PWR-CONS  0.0594 
CWR-TEMP  0.0510 CHW-FLOW-CC  0.0512 RA-TEMP  0.0509    
C vs. B O vs. B S vs. B 

Evidence Score Evidence Score Evidence Score 

CC-DA-TEMP  0.1719 OA-DMPR  0.1628 EA-CFM  0.1416 
DIFF-SAT-STP  0.1423 EA-CFM  0.1202 CHW-COOLING  0.1281 
CC-VLV  0.1418 RA-CFM  0.1055 RA-CFM  0.0768 
SA-TEMP  0.1024 OA-CFM  0.1041 CC-HTR  0.0759 
RA-TEMP  0.0812 MA-TEMP-2  0.0992 CHL-PWR  0.0664 
CWR-TEMP  0.0520 MA-TEMP  0.0971 SA-CFM  0.0644     

MA-TEMP-2  0.0568  

Given critical evidence nodes identified and corresponding importance score under different criteria, we rank these evidence nodes for each test 
case according to the max importance score. Take the test case CooCoiValStuck_0 as an example (see Table B-2). Since the max value of importance 
score for CC-DA-TEMP is 0.1773 while that of DIFF-SAT-STP is 0.1492, then CC-DA-TEMP ranks before DIFF-SAT-STP. Similarly, we have the evidence 
nodes importance information for other two cases (see Tables B-3 & B-4). Finally, ranking information about the evidence nodes for each test cases are 
summarized in Table B-5.  
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Table B2 
Critical evidence nodes and corresponding importance scores for CooCoiValStuck_0.  

Evidence C vs. O vs. S C vs. O C vs. S C vs. B Max Value 

CC-DA-TEMP 0.1024 0.1741 0.1773 0.1719  0.1773 
CC-VLV 0 0.0786 0 0.1418  0.1418 
DIFF-SAT-STP 0.0826 0.1448 0.1492 0.1423  0.1492 
CWR-TEMP 0.0510 0.0739 0.0998 0.0520  0.0998 
RA-CFM 0.0912 0 0 0  0.0912 
CHW-FLOW-CC 0 0.0512 0.0601 0  0.0601 
SA-TEMP 0.0662 0.1007 0.0858 0.1024  0.1024 
OA-CFM 0.0546 0 0 0  0.0546 
EA-CFM 0.0880 0 0 0  0.0880 
RA-TEMP 0 0.0766 0.0509 0.0812  0.0812 
CHWS-TEMP-STP 0 0.0374 0.0758 0  0.0758   

Table B3 
Critical evidence nodes and corresponding importance scores for OADamStuck_100.  

Evidence C vs. O vs. S C vs. O O vs. S O vs. B Max Value 

OA-DMPR 0.0428 0 0.1100 0.1628  0.1628 
SA-TEMP 0.0662 0.1007 0 0  0.1007 
RA-TEMP 0 0.0766 0 0  0.0766 
EA-CFM 0.0880 0 0.1754 0.1202  0.1754 
CHW-FLOW-CC 0 0.0512 0 0  0.0512 
MA-TEMP 0 0 0 0.0971  0.0971 
RA-CFM 0.0912 0 0.1889 0.1055  0.1889 
CWR-TEMP 0.0510 0.0739 0 0  0.0739 
DIFF-SAT-STP 0.0826 0.1448 0 0  0.1448 
MA-TEMP-2 0 0 0 0.0992  0.0992 
OA-CFM 0.0546 0 0.1182 0.1041  0.1182 
SA-CFM 0.042 0 0.0635 0  0.0635 
SF-PWR-CONS 0 0 0.0594 0  0.0594 
CC-DA-TEMP 0.1024 0.1741 0 0  0.1741 
CC-VLV 0 0.0786 0 0  0.0786   

Table B4 
Critical evidence nodes and corresponding importance scores for SupDucLea_20.  

Evidence C vs. O vs. S C vs. S O vs. S S vs. B Max Value 

CHL-PWR 0 0.0456 0 0.0664  0.0664 
OA-DMPR 0.0428 0 0.1100 0  0.1100 
RA-CFM 0.0912 0 0.1889 0.0768  0.1889 
DIFF-SAT-STP 0.0826 0.1492 0 0  0.1492 
CHW-COOLING 0 0 0 0.1281  0.1281 
OA-CFM 0.0546 0 0.1182 0  0.1182 
CC-HTR 0 0 0 0.0759  0.0759 
EA-CFM 0.0880 0 0.1754 0.1416  0.1754 
MA-TEMP-2 0 0 0 0.0568  0.0568 
CC-DA-TEMP 0.1024 0.1773 0 0  0.1773 
SA-CFM 0.0424 0 0.0635 0.0644  0.0644 
CWR-TEMP 0.0510 0.0998 0 0  0.0998 
RA-TEMP 0 0.0509 0 0  0.0509 
CHWS-TEMP-STP 0 0.0758 0 0  0.0758 
SA-TEMP 0.0662 0.0858 0 0  0.0858 
CHW-FLOW-CC 0 0.0601 0 0  0.0601 
SF-PWR-CONS 0 0 0.0594 0  0.0594   

Table B5 
Ranking of critical evidence nodes for three test cases.  

Rank CooCoiValStuck_0 OADamStuck_100 SupDucLea_20 

Evidence Max Value Evidence Max Value Evidence Max Value 

1 CC-DA-TEMP  0.1773 RA-CFM  0.1889 RA-CFM  0.1889 
2 DIFF-SAT-STP  0.1492 EA-CFM  0.1754 CC-DA-TEMP  0.1773 
3 CC-VLV  0.1418 CC-DA-TEMP  0.1741 EA-CFM  0.1754 
4 SA-TEMP  0.1024 OA-DMPR  0.1628 DIFF-SAT-STP  0.1492 
5 CWR-TEMP  0.0998 DIFF-SAT-STP  0.1448 CHW-COOLING  0.1281 
6 RA-CFM  0.0912 OA-CFM  0.1182 OA-CFM  0.1182 

(continued on next page) 
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Table B5 (continued ) 

Rank CooCoiValStuck_0 OADamStuck_100 SupDucLea_20 

Evidence Max Value Evidence Max Value Evidence Max Value 

7 EA-CFM  0.0880 SA-TEMP  0.1007 OA-DMPR  0.1100 
8 RA-TEMP  0.0812 MA-TEMP-2  0.0992 CWR-TEMP  0.0998 
9 CHWS-TEMP-STP  0.0758 MA-TEMP  0.0971 SA-TEMP  0.0858 
10 CHW-FLOW-CC  0.0601 CC-VLV  0.0786 CC-HTR  0.0759 
11 OA-CFM  0.0546 RA-TEMP  0.0766 CHWS-TEMP-STP  0.0758 
12   CWR-TEMP  0.0739 CHL-PWR  0.0664 
13   SA-CFM  0.0635 SA-CFM  0.0644 
14   SF-PWR-CONS  0.0594 CHW-FLOW-CC  0.0601 
15   CHW-FLOW-CC  0.0512 SF-PWR-CONS  0.0594 
16     MA-TEMP-2  0.0568 
17     RA-TEMP  0.0509  

Appendix C:. Defining fault-evidence connections by expert knowledge 

The following figures show the standardized value of evidence nodes in the BN constructed by expert knowledge for three fault nodes, ‘Cool
CoiValStuck_0′, ‘OADamStuck_100′ fault and ‘SupDucLea_20′ fault respectively. Evidence nodes with ‘**’ are those associated with the specific fault.

Fig. C14.  
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Fig. C15.  
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Fig. C16.  
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