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Neural Stein Critics With Staged L2-Regularization
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Abstract— Learning to differentiate model distributions from
observed data is a fundamental problem in statistics and machine
learning, and high-dimensional data remains a challenging set-
ting for such problems. Metrics that quantify the disparity in
probability distributions, such as the Stein discrepancy, play
an important role in high-dimensional statistical testing. In this
paper, we investigate the role of L

2 regularization in training
a neural network Stein critic so as to distinguish between data
sampled from an unknown probability distribution and a nominal
model distribution. Making a connection to the Neural Tangent
Kernel (NTK) theory, we develop a novel staging procedure
for the weight of regularization over training time, which
leverages the advantages of highly-regularized training at early
times. Theoretically, we prove the approximation of the training
dynamic by the kernel optimization, namely the “lazy training”,
when the L

2 regularization weight is large, and training on n

samples converge at a rate of O(n�1/2) up to a log factor. The
result guarantees learning the optimal critic assuming sufficient
alignment with the leading eigen-modes of the zero-time NTK.
The benefit of the staged L

2 regularization is demonstrated on
simulated high dimensional data and an application to evaluating
generative models of image data.

Index Terms— Stein discrepancy, goodness-of-fit test, neural
tangent kernel, lazy training, generative models.

I. INTRODUCTION

UNDERSTANDING the discrepancy between probability
distributions is a central problem in machine learning and

statistics. In training generative models, learning to minimize
such a discrepancy can be used to construct a probability
density model given observed data, such as in the case of
generative adversarial networks (GANs) trained to minimize
f -divergences [1], Wasserstein GANs [2], and score matching
techniques [3], [4]. Generally, GANs and other generative
models require discriminative critics to distinguish between
data and a distribution [5]; such critics have the ability to
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tell the location where the model and data distributions differ
as well as the magnitude of departure. Recent developments
in the training of generative models have facilitated advance-
ments in out-of-distribution detection [6], in which such
models learn to predict the higher likelihood for in-distribution
samples. There exists a wide array of integral probability
metrics that quantify distances on probability distributions [7],
including the Stein discrepancy [8]. In particular, the com-
putation of the Stein discrepancy only requires knowledge
of the score function (the gradient of the log density) of
the model distribution. Thus, it avoids the need to integrate
the normalizing constant in high dimensions. This makes the
Stein discrepancy useful for evaluating some deep models like
energy-based models.

Implicit in the minimization of the discrepancy between
a model distribution and observed data is the concept of
goodness-of-fit (GoF). In the GoF problem and the closely
related two-sample test problem, the goal of the analysis
is to approximate and estimate the discrepancy between
two probability distributions. Integral probability metrics are
widely used for such problems. For example, Reproducing
Kernel Hilbert space (RKHS) Maximum Mean Discrepancy
(MMD) [9], a kernel-based approach, is used for two-sample
testing among other testing tasks. Kernels parameterized by
deep neural networks have been adopted recently in [10] to
improve the testing power. For GoF tests, where the task
is to detect the departure of an unknown distribution of
observed data from a model distribution, methods using the
Stein discrepancy metrics have been developed. The Stein
discrepancy is also calculated using kernel methods [11],
[12], [13] and more recently using deep neural network-aided
techniques [14]. We provide more background information
related to the Stein discrepancy and its role in GoF testing in
Section II.

In machine learning, a wide array of modern generative
model architectures exist. Energy-based models (EBMs) are a
particularly useful subset of generative models. Such models
can be described by an energy function which describes a
probability density up to a normalizing constant [15]. While
such models provide flexibility in representing a probability
density, the normalizing constant (which requires an inte-
gration over the energy function to compute) is required to
compute the likelihood of data given the model. The Stein
discrepancy provides a metric for evaluating EBMs without
knowledge of this normalization constant [14]. Another pop-
ular class of generative models is flow-based models [16],
[17]. Flow-based modeling approaches, such as RealNVP
and Glow [18], provide reversible and efficient transfor-
mations representing complex distributions, yielding simple
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log-likelihood computation. In Section V-B, we outline our
approach for evaluating generative EBM models using neural
Stein critics.

In this paper, we introduce a method for learning the
Stein discrepancy via a novel staged regularization strat-
egy when training neural network Stein critics. We con-
sider the L2-regularization of the neural Stein critic,
which has been adopted in past studies of neural network
Stein discrepancy [14], [19]. Another motivation to use
L2-regularization is due to the fact that the (population) objec-
tive of the L2-regularized Stein discrepancy is equivalent to the
mean-squared error between the trained network critic and the
optimal one (up to an additive constant); see (11). It has also
been shown previously that the Stein discrepancy evaluated at
the optimal critic under L2 regularization reveals the Fisher
divergence [19]. We analyze the role of the regularization
strength parameter in L2 neural Stein methods, emphasizing its
impact on neural network optimization, which was overlooked
in previous studies. On the practical side, our study shows
the benefit of softening the impact of this regularization over
the course of training, yielding critics which fit more quickly
at early times, followed by stable convergence with weaker
regularization. An example is shown in Figure 1: (A)-(C)
illustrate that the target critic changes in magnitude throughout
training as the weight of regularization is decreased, and
(D)-(F) shows the rough approximation to the optimum at
early times followed by more nuanced changes in the later
stages of training.

The proposed staging of L2-regularization is closely con-
nected to the so-called “lazy training” phenomenon of neural
networks [20], which approximately solves a kernel regres-
sion problem corresponding to the Neural Tangent Ker-
nel (NTK) [21] at the early training times. Theoretically,
we prove the kernel learning dynamic of L2 neural Stein
methods when the regularization weight is large - the main
observation is that the role played by the regularization weight
parameter is equivalent to a scaling of the neural network
function, which itself leads to kernel learning in the case
of strong regularization. This theoretical result motivates the
usage of a large penalty weight in the beginning phase of
training before decreasing it to a smaller value later.

For GoF problems, the trained neural Stein critic provides
model comparison capabilities that assess the accuracy of a
model’s approximation of the true distribution, allowing for
identifying the locations of distribution departure in observed
data. This naturally leads to applications for GoF testing and
evaluation of generative models. In summary, the contributions
of the current work are as follows:

1) We introduce a new method for training neural Stein
critics, which incorporates a staging of the weight of
the L2 regularization over the process of mini-batch
training.

2) We prove the NTK kernel learning (lazy-training
dynamic) of neural Stein critic training with large
L2 regularization weight, providing a theoretical justi-
fication of the benefit of using strong L2 regularization
in the early training phase. The analysis reveals a
convergence at the rate of O(n�1/2) up to a log factor,

n being the sample size, when training with finite-
sample empirical loss.

3) The advantage of the proposed neural Stein method is
demonstrated in experiments, exhibiting improvements
over fixed-regularization neural Stein critics and the
kernelized Stein discrepancy on simulated data. The
neural Stein critic is applied to evaluating generative
models of image data.

A. Related Works
The Stein discrepancy has been widely used in various prob-

lems in machine learning, including measuring the quality of
sampling algorithms [8], evaluating generative models by dif-
fusion kernel Stein discrepancy which unifies score matching
with minimum Stein discrepancy estimators [22], GoF testing,
among others. For GoF testing, a kernel Stein discrepancy
(KSD) approach has allowed for closed-form computation of
the discrepancy metric [11], [13]. Similar metrics have been
used in the GoF setting, such as the finite set Stein discrepancy
(FSSD), which behaves as the KSD but can be computed in
linear time [23]. Our work leverages neural networks, which
potentially have large expressiveness, to parameterize the critic
function space and studies the influence of L2 regularization
from a training dynamic point of view.

Recent studies have developed alternatives to kernelized
approaches to computing the Stein discrepancy. Using neu-
ral networks to learn Stein critic functions, [19] applied
neural Stein in the training of high-quality samplers from un-
normalized densities. The neural network Stein critic has also
been applied to the GoF hypothesis test settings to evaluate
EBMs [14]. These methods impose a boundedness constraint
on the L2 norm of the functions represented by the neural
network using a regularization term added to the training
objective. The optimal critic associated with this method yields
a Stein discrepancy equivalent to the Fisher divergence and
provides an additional benefit in that the critic can be used
as a diagnostic tool to identify regions of poor fit [19]. The
staging scheme we introduce in this work is motivated by
the observed connection between large L2 penalty and lazy
training. In practice, it yields an improvement upon past
techniques used to learn the L2-penalized critic.

Many methods have been developed to train and evaluate
generative models without knowledge of the likelihood of a
model. Early works used the method of Score Matching, which
minimizes the difference in score function between the data
and model distributions using a proxy objective [3]. Methods
building on this approach are known as score-based methods.
Score-based methods include approaches that can estimate the
normalizing constant for computation of likelihoods, as in the
case of Noise-Contrastive Estimation [24], and can conduct
score matching using deep networks with robust samplers,
as in the case of Noise Conditional Score Networks with
Langevin sampling [4]. Our approach potentially provides
a more efficient training scheme to obtain discriminative
Stein discrepancy critics, leading to a metric representing
the discrepancy between distributions. We also experimentally
observe that the trained Stein critic function indicates the
differential regions between distributions of high dimensional
data.
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The Stein divergence can be interpreted as a divergence to
measure the discrepancy between two distributions. The esti-
mation error analysis of neural network function class-based
divergence measure has been studied in [25], [26], and [27],
where the global optimizer within the neural network function
class on the empirical loss is assumed without addressing
the optimization guarantee. To incorporate the analysis of
neural network training dynamics, the current paper utilizes
theoretical understandings developed by the NTK theory [21],
[28], [29]. Particularly, we utilize ideas surrounding the “lazy
training” phenomenon of neural networks, suggesting the loss
through training decays rapidly with a relatively small change
to the parameters of the network model, which results in
a kernel regression optimization dynamic [20]. For neural
network hypothesis testing, the NTK learning was used in
computing neural network MMD for two-sample testing [30].
As for when neural network training falls under the lazy
training regime, [20] showed that it depends on a choice of
scaling of the network mapping. In this paper, we adopt a
staging of the weight of L2 regularization, which can utilize
the NTK kernel learning regime at early periods of training,
and also, in practice, go beyond kernel learning at later phases.

B. Notation

Notations in this paper are mostly standard, with a few
clarifications as follows: We use @x with subscript x to denote
partial derivative, e.g., @✓f(x, ✓) means @

@✓ f(x, ✓). We use
Ex⇠p to denote integral over the measure p(x)dx, that is,
Ex⇠pf(x) =

R
X f(x)p(x)dx. We may omit the variable as

a short-hand notation of integrals, that is, we write
R
X f

for
R
X f(x)dx. The symbol · stands for vector-vector inner-

product (also used in the divergence operator r·), and � stands
for matrix-vector multiplication.

II. BACKGROUND

We begin by providing necessary preliminaries of the Stein
Discrepancy, L2 Stein critics, and GoF testing.

A. Stein Discrepancy

The recent works on Stein discrepancy in machine learning
are grounded in the theory of Stein’s operator, the study of
which dates back to statistical literature of the 1970s [31]. Let
X be a domain in Rd, and we consider probability densities
on X . Given a density q on X , for a sufficiently regular vector
field f : X ! Rd, the Stein operator Tq [31], [32] applied to
f is defined as

Tqf(x) := sq(x) · f(x) +r · f(x), (1)

where sq is the score function of q, defined as

sq := rq/q = r log q. (2)

Note that the divergence of f , denoted by r · f(x), is the same
as the trace of the Jacobian of f evaluated at x, and throughout
this paper · stands for vector inner-product.

Given another probability density p on X and a bounded
function class F of sufficient regularity, the Stein discrep-
ancy [8] which measures the difference between p and q is
defined as

SDF (p, q) := sup
f2F

SD[f ], SD[f ] := Ex⇠pTqf(x). (3)

In this paper, we call f the “critic”, and we call SD[f ] the
Stein discrepancy evaluated at the critic f . We further consider
the class of f that satisfy a mild boundary condition, namely
F0(p) := {f , pf |@X = 0}. (When X is unbounded, |@X is
understood as the infinity boundary condition. When X is
bounded, sufficient regularity of @X is assumed so that the
divergence theorem can apply). When p = q, one can verify
that for any f 2 F0(p) and sufficiently regular, SD[f ] = 0,
which is known as the Stein’s identity. The other direction,
namely for some F ⇢ F0(p), SDF (p, q) = 0 ) p = q, is also
established under certain conditions [33]. This explains the
name “critic” because the f which makes SD[f ] significantly
large can be viewed as a test function (vector field) that
indicates the difference between p and q.

To proceed, we introduce the following assumption on the
densities p and q:

Assumption 1: The two densities p and q are supported
and non-vanishing on X (vanishing at the boundary of X ),
differentiable on X , and the score functions sp and sq are in
F0(p).

When the function class F is set to be the unit ball
in an RKHS, the definition (3) yields the kernelized Stein
discrepancy (KSD) [11], [13]. A possible limitation of the
KSD approach is the sampling complexity and computational
scalability in high dimension. In this work, we consider critics
of regularized L2 norm to be parametrized by neural networks
as previously studied in [19] and [14], which have potential
advantages in model expressiveness and computation.

B. L2 Stein Critic
This paper focuses on when the critic f in Stein dis-

crepancy (3) is at least squared integrable on (X , p(x)dx).
Consider the critic function f : X ! Rd, and the d coordinates
of f are denoted as f(x) = (f1(x), · · · , fd(x))T . We first
introduce notations of the L2 space of vector fields. Define the
inner-product and L2-norm of vector fields on (X , p(x)dx) as
the following: for v,w : X ! Rd, let

hv,wip :=
Z

X
v(x) ·w(x)p(x)dx, (4)

and then the L2 norm is defined as

kvk2p := hv,vip. (5)

We stress that, throughout this paper, subscript p in the norm
means 2-norm weighted by the measure p(x)dx. We denote
all critics f : X ! Rd such that kfk2p < 1 the space of
L2(p) := L2(X , p(x)dx).

The Stein discrepancy over the class of L2 critics with
bounded L2 norm is defined, for some r > 0, as

SDr(p, q) = sup
f2F0(p), kfkpr

SD[f ], (6)
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where SD[f ] is defined as in (3). Define

f⇤ := sq � sp, (7)

the following lemma characterizes the solution of (6), and the
proof (left to Appendix A) also derives a useful equality when
f and f⇤ are in L2(p)\F0(p), see also e.g. [11, Lemma 2.3]:

SD[f ] = Ex⇠pTqf(x) = hf⇤, fip. (8)

Lemma 2.1: For any r > 0, suppose sq and sp are in L2(p)
and F0(p), then SDr(p, q) = rkf⇤kp < 1 and, if kf⇤kp > 0,
the supremum of (6) is achieved at f = (r/kf⇤kp)f⇤.

Lemma 2.1 implies that if kf⇤kp = 0, then SDr(p, q) =
0. Thus, we take the following assumption, which restricts
the case where the L2 Stein critic can achieve a positive
discrepancy when q 6= p.

Assumption 2: The score functions sp and sq are in L2(p),
and when q 6= p, ksq � spkp > 0.

C. Goodness-of-Fit Tests
In GoF testing, we are presented with samples X = {xi}i

drawn from an unknown distribution p, and we wish to assess
whether this sample is likely to have come from the model
distribution q. That is, we may define the null and alternative
hypotheses as follows:

H0 : p = q, H1 : p 6= q. (9)

A GoF test is conducted using a test statistic T̂ = T̂ (X)
computed using observed samples in X . After specifying a
number tthresh, which is called the “test threshold”, the null
hypothesis is rejected if T̂ > tthresh. There are different
approaches to specifying a test threshold, for example, if prior
knowledge of the distribution of T̂ under H0 is available, it can
be used to choose tthresh. In the experiments of this work,
we compute tthresh using a bootstrap strategy from samples
from the model distribution q.

The selection of tthresh is to control the Type-I error,
defined as Pr[T̂ > tthresh] under H0. The randomness of
Pr is with respect to data X . The goal is to guarantee that
Pr[T̂ > tthresh]  ↵, which is called the the “significance
level” (typically, ↵ = 0.05). The Type-II error measures the
probability that the null hypothesis is improperly accepted
as true, that is, Pr[T̂  tthresh] under H1. Finally, the “test
power” is defined as one minus the Type-II error. For the appli-
cation to GoF testing, the current work develops a test statistic
computed using a Stein critic parameterized and learned by a
neural network, computed from a training-testing split of the
dataset. More details will be introduced in Section V-A.

III. METHOD

A. Neural L2 Stein Critic
Replacing the L2-norm constraint in (6) to be a regulariza-

tion term leads to the following minimization over a certain
class of f (inside L2(p) \ F0(p)) as

L�[f ] := �SD[f ] +
�

2
kfk2p

= Ex⇠p

✓
�Tqf(x) +

�

2
kf(x)k2

◆
, (10)

where � > 0 is the penalty weight of the L2 regularization.
Under Assumption 1-2, the equality (8) gives that

L�[f ] = �hf⇤, fip +
�

2
hf , fip

=
1
2�

(k�f � f⇤k2p � kf⇤k2p). (11)

Since kf⇤k2p is a constant independent of f , (11) immediately
gives that L�[f ] is minimized at

f⇤� :=
f⇤

�
=

1
�

(sq � sp), (12)

see also Theorem 4.6 of [19]. The expression (12) reveals an
apparent issue: if one only considers global functional mini-
mization, then the choice of � plays no role but contributes a
scalar normalization of the optimal critic, and consequently
does not affect the learned Stein critic in practice, e.g.,
in computing test statistics. A central observation of the current
paper is that the choice of � plays a role in optimization,
specifically, in training neural network parameterized Stein
critics.

Following [14] and [19], we parameterize the critic by
a neural network mapping f(x, ✓) parameterized by ✓, and
we assume that f(·, ✓) 2 L2(p) for any ✓ being considered.
We denote this f(·, ✓) the “neural Stein critic”. The population
loss of ✓ follows from (10) as

L�(✓) = L�[f(·, ✓)]. (13)

The neural Stein critic is trained by minimizing the empirical
version of L�(✓) computed from finite i.i.d. samples xi ⇠ p,
i.e., given ntr training samples, the empirical loss is defined
as

L̂�(✓) :=
1

ntr

ntrX

i=1

(�Tqf(xi, ✓) +
�

2
kf(xi, ✓)k2).

Remark 3.1 (� as Scaling Parameter): We note a
“�-scaling” view of the L2-regularized objective L�(✓),
namely, it is equivalent to a scaling of the parameterized
function f(x, ✓) by �. Specifically, consider L1[f ] as the
“scaling-free” (�-agnostic) functional minimizing objective,
then by definition, we have that

L�[f ] =
1
�
L1[�f ]. (14)

This �-scaling view of the L2 Stein discrepancy allows us to
connect to the lazy training of neural networks [20], which
indicates that, with large values of �, the early stage of
the training of the network approximates the optimization of
a kernel solution. We detail the theoretical proof of such
an approximation in Section IV. This view motivates our
proposed usage of large � in early training, which will be
detailed in Section III-B.

We close the current subsection by introducing a few
notations to clarify the �-scaling indicated by (12). Suppose
the neural Stein critic f(·, ✓) trained by minimizing L̂�(✓)
approximates the minimizer of L�, namely the “optimal critic”
f⇤� , then both f(·, ✓) and the value of SD[f(·, ✓)] would scale
like 1/�. We call f⇤ defined in (7) the “scaleless optimal critic
function”. The expression (12) also suggests that, if the neural
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Stein critic successfully approximates the optimal, we would
expect

�f(·, ✓) ⇡ f⇤,

which will be confirmed by the theory in Section IV. We thus
call �f(·, ✓) the “scaleless neural Stein critic”.

B. Staged-� Regularization in Training
In practice, the neural network is optimized via the

�-dependent loss L�. We propose a staging of the regular-
ization weight � that begins with a large value followed by
a gradual decrease until some terminal value. Specifically,
we adopt a log-linear staged regularization scheme by which
we decrease � via the application of a multiplicative factor
� < 1 after a certain interval of training time measured by the
number of batches Bw. In addition to Bw, this staging scheme
uses three parameters: the initial weight �init, the decay factor
� 2 (0, 1), and the terminal weight �term (at which point
the decay ceases). We denote the discrete-time regularization
staging with these parameters as ⇤(Bi;�init, �term, �), where
Bi = i ·Bw stands for the i-th interval of batches, i 2 N, and
� will be set to the value on the i-th interval. i = 0 refers to
the period before training has begun such that ⇤(B0) = �init

and, for i > 0,

⇤ (Bi;�init, �term, �) = max
�
�init · �i, �term

 
. (15)

That is, when i increments of Bw number of batches have
occurred, �init is annealed by a factor of �i. � can be any
positive number in (0, 1) and we typically choose � to be
about 0.7⇠ 0.9.

The beginning of the training with a large � is motivated
by the analysis in Section IV, which suggests that with large
� at early times of training, the training of the neural Stein
critic can be approximately understood from the perspective
of kernel regression optimization, rapidly reaching its best
approximation in ⇠ 1/� time (up to a log factor), see
Theorem 4.6 (and Theorem 4.10 for the analysis with finite-
sample loss). In many cases, the kernel learning solution may
not be sufficient to approximate the optimal critic f⇤, and this
calls for going beyond the NTK kernel learning in training
neural networks, which remains a theoretically challenging
problem. On the other hand, the proper regularization strength
�, depending on the problem (the distributions p and q and
the sample size), may be much smaller than the initial large
�, which we set to be �term. We empirically observed that
gradually reducing the � in later training phases will allow
the neural Stein critic to progressively fit to f⇤, as illustrated
in Figure 1. Meanwhile, we also observed that using large �
at the beginning phase of training and then gradually tuning
down to small � performs better than using small and fixed
� throughout, see Section VI. These empirical results suggest
the benefit of fully exploiting the kernel learning (by using
large �) in the early training phase and annealing to small �
in the later phase of training.

To further study other possible staging methods, we investi-
gated an adaptive scheme of annealing � over training time by
monitoring the validation error, and the details are provided
in Appendix B-E. On simulated high dimensional Gaussian
mixture data, the adaptive staging gives performance similar

to the scheme (15), and the resulting trajectory of � also
resembles the exponential decay as in (15), see Figure 12.
Thus we think the scheme (15) can be a typical heuristic
choice of the staging, and other choices of annealing � are also
possible.

C. Evaluation and Validation Metrics

We introduce the mean-squared error metric to quantita-
tively evaluate how the learned neural Stein critic f(x, ✓)
approximates the optimal critic. In our experiments on syn-
thetic data, we can use the knowledge of f⇤ (which requires
knowledge of sp) and compute an estimator of MSEq :=
Ex⇠q k�f(x, ✓)� f⇤(x)k2 by the sample average on a set of
nte test samples xi ⇠ q, that is,

[MSEq[f(·, ✓)] =
1

nte

nteX

i=1

k�f(xi, ✓)� f⇤(xi)k2 . (16)

Similarly, if additional testing or validation samples from data
distribution p are available, we can compute an estimator of
MSEp := Ex⇠p k�f(x, ✓)� f⇤(x)k2 by the sample average
denoted as [MSEp.

We note that the relationship between MSEp and L�[f(·, ✓)]
as in (11) leads to an estimator of MSEp (up to a con-
stant) that can be computed without the knowledge of f⇤
as follows. Define MSE(m)

p [f(·, ✓)] := 2�L�[f(·, ✓)] =
2�Ex⇠p

�
�Tqf(x, ✓) + �

2 kf(x, ✓)k2
�
, and (11) gives that

2�L�[f(·, ✓)] = MSEp[f(·, ✓)]� kf⇤k2p. Thus, we can use the
sample-average estimator of MSE(m)

p to estimate MSEp up
to the unknown constant kf⇤k2p. That is, given nval validation
samples xi ⇠ p, the estimator can be computed as

[MSE
(m)

p [f(·, ✓)] :=
2�

nval

nvalX

i=1

✓
�Tqf(xi, ✓) +

�

2
kf(xi, ✓)k2

◆
.

(17)

The superscript (m) stands for “monitor”, and in experiments
we will use [MSE

(m)

p to monitor the training progress of neural
Stein critic by a stand-alone validation set.

IV. THEORY OF LAZY TRAINING

In this section, we show the theoretical connection between
choosing large L2-regularization weight � at the beginning
of training and “lazy learning” - referring to when the train-
ing dynamic resembles a kernel learning determined by the
model initialization [20]. The main result, Theorem 4.6 (for
population loss training) and Theorem 4.10 (for empirical loss
training), prove the kernel learning of neural Stein critic at
large � and theoretically support the benefit of using large �
in the beginning phase of training.

To recall the setup, we assume the score function of model
distribution sq is accessible, and the score of data distribution
sp is unknown. We aim to train a neural network critic to
infer the unknown scaleless optimal critic f⇤ from data. All
the proofs are in Section VIII and Appendix A.
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Fig. 1. Visualization of staged L
2 regularization throughout training. The two distributions p and q are Gaussian mixtures in 1D, and the scaleless optimal

critic f⇤ has explicit expression (A.5), see the details of the distributions and optimization in Appendix B-B. In (A)-(C), the trained neural Stein critic f(·, ✓)
is compared to the optimal critic f⇤� defined in (12). The optimal critic function changes scale through training as the weight of regularization is decreased.
In (D)-(F), the scaleless neural Stein critic �f(·, ✓) is compared to the scaleless optimal critic f⇤ defined in (7). The neural Stein critic roughly approximates
the optimal critic at early times, followed by fine-tuned changes in the later epochs of training.

A. Evolution of Network Critic Under Gradient Descent

Throughout this section, we derive the continuous-time opti-
mization dynamics of gradient descent (GD). The continuous-
time GD dynamic reveals the small learning rate limit of
the discrete-time GD, and the analysis may be extended
to minibatch-based Stochastic Gradient Descent (SGD)
method [34] used in practice. We start from training with the
population loss, and the finite-sample analysis will be given
in Section IV-D.

Consider a neural Stein critic f(·, ✓) parameterized by ✓
which maps from X ⇢ Rd to Rd. We assume ✓ 2 ⇥,
which is some bounded set in RM⇥ , where M⇥ is the total
number of trainable parameters. The notation h·, ·i⇥ stands
for the inner-product in RM⇥ , and k · k⇥ the Euclidean
norm. The subscript ⇥ may be omitted when there is no
confusion.

Assumption 3: The network function f(x, ✓) is differen-
tiable on X ⇥⇥, and for any ✓ 2 ⇥, f(·, ✓) 2 L2(p)\F0(p).

The boundedness of ⇥ is valid in most applications, and our
theory will restrict ✓ inside a Euclidean ball in RM⇥ , see more
in Assumption 4. Recall that for regularization weight � > 0,
the training objective L�(✓) is defined as in (13). Suppose
the neural network parameter ✓ evolving over training time is
denoted as ✓(t) for t > 0. The GD dynamic is defined by the

ordinary differential equation

✓̇(t) = �@✓L�(✓(t)), (18)

starting from some initial value of ✓(0). The following lemma
gives the expression of (18).

Lemma 4.1: For � > 0, the GD dynamic of ✓(t) of
minimizing L�(✓) can be written as

✓̇(t) = �Ex⇠p@✓f(x, ✓(t)) ·
�
�f(x, ✓(t))� f⇤(x)

�
. (19)

Next, we derive the evolution of the network critic over
time. We start by defining

u(x, t) := f(x, ✓(t)), (20)

and by chain rule, we have that

@tu(x, t) = h@✓f(x, ✓(t)), ✓̇(t)i⇥. (21)

Combining Lemma 4.1 and (21) leads to the evolution
equation of u(x, t) to be derived in the next lemma. To pro-
ceed, we introduce the definition of the finite-time (matrix)
neural tangent kernel (NTK) Kt(x, x0) as

[Kt(x, x0)]ij = h@✓fi(x, ✓(t)), @✓fj(x0, ✓(t))i⇥, (22)

i, j = 1, · · · , d, where fi denotes the i-th coordinate of f .
With the notation of Kt(x, x0) we have the following lemma.

Authorized licensed use limited to: Duke University. Downloaded on December 31,2024 at 03:43:50 UTC from IEEE Xplore.  Restrictions apply. 



7252 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 11, NOVEMBER 2023

Lemma 4.2: The dynamic of u(x, t) follows that

@tu(x, t) = �Ex0⇠pKt(x, x0) � (�u(x0, t)� f⇤(x0)) . (23)

The evolution equation (23) is exact for u(x, t), but the
kernel Kt(x, x0) changes with t as the training progresses.
Next in Section IV-B, we will replace Kt(x, x0) with the
zero-time kernel throughout time in the evolution equation,
resulting in the more analyzable kernel learning solution.

B. Kernel Learning With Zero-Time NTK
Theoretical studies of NTK to analyze neural network

learning [21], [28], [29] typically use two approximations:
(i) zero-time approximation, namely Kt(x, x0) ⇡ K0(x, x0)
where both Kt and K0 are finite-width NTK, and (ii) infinite-
width approximation, namely at initialization, K0(x, x0) ⇡
K(1)

0 (x, x0) as the widths of hidden layers increase, where
K(1)

0 is the limiting kernel at infinite width. As has been
pointed out in [20], the reduction to kernel learning in
“lazy training” does not necessarily require model over-
parameterization - corresponding to large width (number of
neurons) in a neural network - but can be a consequence of
a scaling of the network function. Here we show the same
phenomenon where the scaling factor is the L2 regularization
parameter �, see (14). That is, we show the approximation (i)
only and prove lazy training for finite-width neural networks.

We derive the property of the zero-time NTK kernel learning
in this subsection, and prove the validity of the approximation
(i) in the next subsection. To proceed, consider the kernel
Kt(x, x0) defined in (22) at time zero, which can be written
as

[K0(x, x0)]ij = h@✓fi(x, ✓(0)), @✓fj(x0, ✓(0))i⇥, (24)

i, j = 1, · · · , d. The kernel K0(x, x0) only depends on the
initial network weights ✓(0), which is usually random and
independent from the data samples. We call K0(x, x0) the
zero-time finite-width (matrix) NTK. Following the NTK anal-
ysis of neural network training, we will show in Section IV-C
that the evolution dynamic of the network function u(x, t) can
be approximated by that of a kernel regression optimization -
the so-called “lazy-training” dynamic - which is expressed by
replacing the finite-time NTK with the zero-time NTK. For
the dynamic in (23), the lazy-training dynamic counterpart
is defined by the evolution of another solution ū(x, t) by
replacing the kernel Kt with K0 in (23) starting from the
same initial value, namely, ū(x, 0) = u(x, 0) and

@tū(x, t) = �Ex0⇠pK0(x, x0) � (�ū(x0, t)� f⇤(x0)) . (25)

For simplicity, one assumes that at initialization, the network
function is zero mapping, that is, both u(x, 0) and ū(x, 0) are
zero. The argument generalizes to when the initial network
function is small in magnitude, cf. Remark 4.1, which can
be obtained, e.g., by initializing neural network weights with
small values.

To analyze the dynamic of (25), we introduce the
eigen-decomposition of the kernel in the next lemma.

Lemma 4.3: Suppose k@✓fi(x, ✓(0))k⇥ for i = 1, · · · , d
are squared integrable on (X , p(x)dx). The kernel K0(x, x0)
on (X , p(x)dx) has a finite collection of M eigen-functions

vk : X ! Rd, k = 1, 2, · · · , associated with positive
eigenvalues, in the sense that

Z

X
K0(x, x0) � vk(x0)p(x0)dx0 = µkvk(x), (26)

where µ1 � · · · � µM > 0. The eigen-functions are
ortho-normal in L2(p), namely, hvk,vlip = �kl, and for
any v orthogonal to span{v1, · · · ,vM},

R
X K0(x, x0) �

v(x0)p(x0)dx0 = 0.
The square integrability of @✓fi(x, ✓(0)) can be guaran-

teed by certain boundedness condition on @✓f , see more in
Assumption 4 below. The finite rank of the kernel, as shown
in the proof, is due to the fact that we use a neural network
of finite width. Below, we will assume that the optimal critic
f⇤ can be efficiently expressed by the span of finitely many
leading eigen-functions vk. To show that the kernel spectrum
is expressive enough to approximate an f⇤, one may combine
our analysis with NTK approximation (ii): the expressiveness
of the limiting kernel K(1)

0 at infinite width can be the-
oretically characterized in certain settings, meaning that its
eigen-functions v(1)

k collectively can span a rich functional
space. By the approximation K0 ⇡ K(1)

0 in spectrum, the
expressiveness of the span of vk can also be shown. Such an
extension is postponed here.

By Lemma 4.3, the eigen-functions {v1, · · · ,vM} form an
ortho-normal set with respect to the inner-product h·, ·ip. Thus
for any integer m  M , the scaleless optimal critic f⇤ 2 L2(p)
(by Assumption 2) can be orthogonally decomposed into two
parts f⇤1 and f⇤2 such that

f⇤ = f⇤1 + f⇤2 ,

f⇤1 2 span{v1, · · · ,vm}, f⇤2 2 span{v1, · · · ,vm}?.

Making use of the orthogonal decomposition and by assuming
that f⇤ has a significant projection on the eigen-space of
the kernel K0(x, x0) associated with large eigenvalues, the
following proposition derives the optimization guarantee of
ū(x, t).

Proposition 4.4: Under the condition of Lemma 4.3 and
notations as therein, suppose for � > 0 and some integer
m  M , µ1 � · · · � µm � � > 0. Let f⇤ = f⇤1 + f⇤2
be the orthogonal decomposition as above. Then, for � > 0,
starting from ū(x, 0) = 0, for all t > 0,

k�ū(·, t)� f⇤kp  e�t��kf⇤1 kp + kf⇤2 kp. (27)

In particular, if for some 0 < ✏ < 1, kf⇤2 kp  ✏kf⇤kp, then we
have

k�ū(·, t)� f⇤kp  2✏kf⇤kp, when t � 1
�

log(1/✏)
�

. (28)

C. Approximation by Lazy-Training Dynamic
The network function f(x, ✓) maps from X ⇥ ⇥ to Rd,

and @✓f(x, ✓) is a d-by-M⇥ matrix. We denote by k · k the
vector 2-norm and the matrix operator norm. We denote by
Br the open Euclidean ball of radius r (centered at the origin)
in RM⇥ .

Assumption 4: Under Assumption 3, there are positive con-
stants r and L1, L2 such that Br ⇢ ⇥ and
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(C1) For any ✓ 2 Br, supx2X k@✓f(x, ✓)k  L1.
(C2) For any ✓1, ✓2 2 Br, supx2X k@✓f(x, ✓1) �

@✓f(x, ✓2)k  L2k✓1 � ✓2k.
Proposition 4.5: Under Assumptions 1-4, suppose ✓(0) 2

Br/2, and u(x, 0) = ū(x, 0) = 0, then for any � > 0,
(i) For any t � 0 such that B

r/2+
p

t/(2�)kf⇤kp
⇢ ⇥,

k✓(t)� ✓(0)k 
r

t

2�
kf⇤kp. (29)

(ii) For any t  1
2 ( r
kf⇤kp

)2� (recall that kf⇤kp > 0 by
Assumption 2),

k�u(·, t)� �ū(·, t)kp 
4
p

2
3

L1L2

p
�t3/2kf⇤k2p. (30)

While the idea of proving Proposition 4.5 largely follows
that of Theorem 2.2 in [20], we adopt a slightly improved
analysis. Specifically, when we choose t ⇠ 1/�, both bounds
in (29) and (30) reduce to O(1/�), which echoes Theorem
2.2 in [20]. (Note that our normalization of objective multiplies
another factor of �, and thus our time t corresponds to
T = t� for time T in [20].) Here we would like to derive the
approximation up to time t ⇠ log(1/✏)/�, corresponding to
time T ⇠ log(1/✏) in [20] instead of O(1) time. Technically,
our analysis also improves the bounding constant in Theorem
2.2 of [20] by removing a factor of (eCT � 1), which will
become a factor of ✏�C when T ⇠ log(1/✏). Thus our
improvement is important to apply to the case when ✏ is small.
The improvement is by the special property of mean-squared
loss, which is equivalent to the neural Stein minimizing
loss L� up to a constant, cf. (11). We include a proof in
Section VIII for completeness.

We are ready to derive the main theorem of this section by
combining Propositions 4.4 and 4.5.

Theorem 4.6: Under Assumptions 1-4, let the decomposi-
tion of f⇤ into f⇤1 and f⇤2 be as in Proposition (4.4) and
satisfy the conditions therein and for some 0 < ✏ < 1,
kf⇤2 kp  ✏kf⇤kp. Suppose ✓(0) 2 Br/2 and u(x, 0) = 0,
then when � > ( 2 log(1/✏)

� )1/2 kf⇤kp

r , for

t =
t0
�

log(1/✏)
�

, 1  t0  (
r

kf⇤kp
)2

�

2 log(1/✏)
�2, (31)

we have

k�u(·, t)� f⇤kp 
 

2✏ +
C1

�

✓
t0 log(1/✏)

�

◆3/2
!
kf⇤kp,

(32)

where C1 := 4
p

2
3 L1L2kf⇤kp is a constant determined by f⇤

and Assumption 4(C1)(C2).
The needed upper bound of t, which ⇠ � is technical (to

ensure that ✓(t) stays inside Br). The theorem suggests that
when the scaleless optimal critic f⇤ can be represented using
the leading eigen-modes of the zero-time NTK up to an O(✏)
residual, training the neural Stein critic for ⇠ log(1/✏)/�
time achieves an approximation of f⇤ with a relative error of
O(✏, 1/�) up to a factor involving log(1/✏). The theoretical
bound in Theorem 4.6 does not depend on data dimension
d or the domain X explicitly, however, such dependence are
indirect through the constants L1 and L2 in (C1)(C2). The

same applies to the finite-sample analysis in Theorem 4.10
with respect to the constants in Assumptions 4 and 5.

Remark 4.1 (Small Initialization): The result extends to
when the initial network function u(x, 0) is non-zero by
satisfying k�u(x, 0)kp  ✏kf⇤kp. By considering the evolution
of ū(x, t) starting from ū(x, 0) = u(x, 0), one can extend
Proposition 4.5 where the bounds in (29) and (30) are multi-
plied by O(1) constant factors (due to that k�u(x, 0)�f⇤kp 
(1 + ✏)kf⇤kp  2kf⇤kp when using the argument in (52)).
Proposition 4.4 also extends by considering the evolution
equation (51) from w(x, 0) = �u(x, t) � f⇤(x), and then
�u(x, t) contributes to another ✏kf⇤kp in the bound (28).

D. Training With Finite Samples
In this subsection, we extend the analysis to training using

empirical training loss L̂�(✓) with n training samples, which
can be written as

L̂�(✓) = Ex⇠p̂

✓
�Tqf(x, ✓) +

�

2
kf(x, ✓)k2

◆
, (33)

where Ex⇠p̂ denotes the sample average over i.i.d. samples
xi ⇠ p, i.e., Ex⇠p̂g(x) = 1

n

Pn
i=1 g(xi). Again, using

continuous-time evolution, the GD dynamic of ✓̂(t) is defined
by

˙̂✓(t) = �@✓L̂�(✓̂(t)), ✓̂(0) = ✓(0), (34)

where ✓(0) is some random initialization of the parameters.
We define

û(x, t) := f(x, ✓̂(t)),

assume zero-initialization û(x, 0) = 0, and similarly as in (21)
we have

@tû(x, t) = h@✓f(x, ✓̂(t)), ˙̂✓(t)i⇥. (35)

As the counterpart of (22), we introduce the finite-time empir-
ical NTK as

[K̂t(x, x0)]ij := h@✓fi(x, ✓̂(t)), @✓fj(x0, ✓̂(t))i⇥,

i, j = 1, · · · , d, which we also denote as

K̂t(x, x0) = h@✓f(x, ✓̂(t)), @✓f(x0, ✓̂(t))i⇥
= @✓f(x, ✓̂(t))@✓f(x0, ✓̂(t))T , (36)

@✓f(x, ✓) 2 Rd⇥M⇥ . Since ✓̂(0) = ✓(0), we have that

K̂0(x, x0) = K0(x, x0) = @✓f(x, ✓(0))@✓f(x0, ✓(0))T , (37)

which is a kernel matrix independent from training data, and
this fact is important for our analysis. Using the definition of
K̂t(x, x0), the dynamic (35) has the following equivalent form.

Lemma 4.7: The dynamic of û(x, t) follows that

@tû(x, t)

= �Ex0⇠p̂

⇣
K̂t(x, x0) � (�û(x0, t)� sq(x0))

�rx0 · K̂t(x, x0)
⌘

. (38)

Our analysis will compare the kernel K̂t(x, x0) to
K0(x, x0), which allows to compare û(x, t) to ū(x, t) where
we will also need to control the error by replacing Ex0⇠p
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with Ex0⇠p̂. The kernel comparison relies on showing that
k✓̂(t) � ✓(0)k is small, which we derive in the next lemma
after introducing additional technical assumptions on the score
functions sp, sq, the function f(x, ✓) and its derivatives. For a
set B 2 Rd, we denote by B̄ the closure of the set.

Assumption 5: Suppose f(x, ✓) is C2 on X ⇥ ⇥. For the
Br as in Assumption 4,

(C3) There is L3 > 0 such that, for any ✓ 2 Br,
supx2X krx · @✓f(x, ✓)k  L3.

(C4) There is L4 > 0 such that, for any ✓1, ✓2 2 Br,
supx2X krx · @✓f(x, ✓1)�rx · @✓f(x, ✓2)k  L4k✓1 � ✓2k.

(C5) There are positive constants b(0), b(1) and bp such
that, for any ✓ 2 Br, supx2X kf(x, ✓)k  b(0), supx2X |rx ·
f(x, ✓)|  b(1), and supx2X |f(x, ✓) · sp(x)|  b(0)bp. There
are positive constants CF and bF and a positive �  1/2,
such that, w.p. � 1� 2n�10,

max{ sup
✓2Br

|(Ex⇠p̂ � Ex⇠p)rx · f(x, ✓)|,

sup
✓2Br

|(Ex⇠p̂ � Ex⇠p)f(x, ✓) · sp(x)|}

 CF
n�

+ bF

r
log n

n
. (39)

(C6) There is a constant bq > 0 such that ksqkp  bq

and, for any ✓ 2 Br, supx2X |f(x, ✓) · sq(x)|  b(0)bq, and
supx2X k@✓f(x, ✓)T sq(x)k  L1bq. The random variables
ksq(x)k2 and kf⇤(x)k2 with x ⇠ p are sub-exponential.
Specifically, the constant bq and another constant b2 > 0
satisfy that, when n is large (s.t.

p
log n/n is less than a

constant possibly depending on b2 and bq), w.p. � 1� n�10,
(Ex⇠p̂�Ex⇠p)ksq(x)k2 

p
20b2

q

p
log n/n; w.p. � 1�n�10,

(Ex⇠p̂ � Ex⇠p)kf⇤(x)k2 
p

20b2

p
log n/n.

In the below, we adopt big-O notation to facilitate expo-
sition and Õ stands for the involvement of a log factor. The
constant dependence can be tracked in the proof. We derive a
non-asymptotic result which holds at a sufficiently large finite
sample size n.

Remark 4.2 (Uniform-Law and Rates): The condition (C5)
gives the standard uniform-law bounds which can be derived
by Rademacher complexity of the relevant function classes
over ✓ 2 Br, see e.g. [35], where we treat sp as a fixed
bounded function on X . The CFn�� term corresponds to
the Rademacher complexity which is bounded by the cov-
ering complexity of the function class, and the exponent �
is determined by the covering number bound that usually
involves the dimensionality of the domain and the regularity
of the function class. The constant bF corresponds to the
boundedness of the functions, namely b(1) and b(0)bp. We note
that while (C5) gives an overall Õ(n��) bound, it will only
be used in the middle-step analysis (Lemma 4.8) and our final
finite-sample bound in Theorem 4.10 achieves the parametric
rate of Õ(n�1/2).

Remark 4.3 (Boundedness Condition): In (C5)(C6), the
uniform boundedness of f(x, ✓) · sp(x), f(x, ✓) · sq(x),
and k@✓f(x, ✓)T sq(x)k on X can be fulfilled if f(x, ✓)
and @✓f(x, ✓) vanish sufficiently fast when approaching
@X , and thus allowing the score functions sp and sq to be
potentially unbounded in L1(X ). The score functions still
need to be in L2(p) and the tails cannot be too heavy to

guarantee that ksq(x)k2 and kf⇤(x)k2 are sub-exponential.
The Bernstein-type concentration bound in (C6) follows from
the standard property of sub-exponential random variable, see
e.g. [35, Ch. 2].

Lemma 4.8: Under Assumptions 1-5, suppose ✓(0) 2 Br/2,
and û(x, 0) = 0. Then for any � > 0, there is positive integer
n� s.t. when n > n�, under a good event which happens
w.p. � 1 � 3n�10, for any t � 0 s.t. kf⇤kp

p
t/�  r/2,

k✓̂(t)� ✓(0)k 
p

t/�kf⇤kp and ✓̂(t) 2 Br.
Based on the lemma, we derive the comparison of û(x, t)

with ū(x, t) in the following proposition.
Proposition 4.9: Under the same assumption as in

Lemma 4.8, û(x, 0) = ū(x, 0) = 0. For � > 0 and any
t  ( r

2kf⇤kp
)2�, when n is sufficiently large (depending

on �, t, kf⇤kp, log M⇥), under the intersection of the good
event in Lemma 4.8 and another good event which happens
w.p.� 1� 4n�10,

k�û(·, t)� �ū(·, t)kp  C2(1 + �t)
⇣
�1/2t3/2kf⇤kp+

(1 + �t)�t

r
log n + log M⇥

n

!
(40)

where
C2 is an O(1) constant bounded by a multiple of (1+ bq +

kf⇤kp) and the constant factor depends on L1, L2, L3, L4.
Remark 4.4 (Largeness of n and the relation to kf⇤kp):

The largeness requirement of n depends on
�, t, kf⇤kp, log M⇥, and specifically, n > max{n�, n5, n�,t}
which are defined in (69)(73)(91) respectively: n� depends
on �, kf⇤kp and constants b2, bq, CF , bF , and when kf⇤kp

is small it calls for larger n, specifically kf⇤k2p > �n�� as
the leading term, up to constant; n5 depends on log M⇥; n�,t

depends on �t and log M⇥. The construction of the constant
C2 can be found in the proof. The first term in the r.h.s.
of (40) is the analog of (30) in Proposition 4.5(ii). When
kf⇤kp is small, C2 stays bounded (as long as bq is bounded)
and the first term in (40) is proportional to kf⇤kp. The
second term of the order Õ(n�1/2) is due to the finite-sample
training, and when kf⇤kp is small, it suggests that larger n is
needed so as to make the second term balance with the first
term.

The main theorem for finite-sample lazy training follows by
combining Propositions 4.4 and 4.9.

Theorem 4.10: Under Assumptions 1-5, suppose the
decomposition of f⇤ satisfies the same condition as in The-
orem 4.6 with respect to 0 < ✏ < 1, ✓(0) 2 Br/2, and
û(x, 0) = 0. For � > 2( log(1/✏)

� )1/2 kf⇤kp

r , let

t =
t0
�

log(1/✏)
�

, 1  t0  (
r

kf⇤kp
)2

�

4 log(1/✏)
�2. (41)

Then, when n is sufficiently large (depending on
�, kf⇤kp, log M⇥ and t0

log(1/✏)
� ), w.p.� 1� 7n�10,

k�û(·, t)� f⇤kp 
✓

2✏ +
C2

�
1

◆
kf⇤kp

+C22

r
log n + log M⇥

n
, (42)
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Fig. 2. In (A), a scaleless neural Stein critic function �f(·, ✓) which is trained for a few epochs is compared to the scaleless optimal critic f⇤. This trained
neural critic may be further improved by more training time, as shown in Figure 1. (B) The trained critic, though not fully fitting the f⇤, still provides a
GoF test with significant power: the distribution of the T̂null under H0 is centered around zero, while the distribution of T̂ under H1 has a non-zero mean
around 5, which is significantly beyond the right 95% quantile of the T̂null distribution. The distribution of T̂null (blue) and that approximately computed
from the efficient bootstrap (green) are close. See Section V-A.1 for the details of the test statistic computation. The details of the 1D Gaussian mixture
distributions are given in Appendix B-B.

where C2 is as in Proposition 4.9 and 1, 2 are constant
factors involving powers of t0

log(1/✏)
� .

The result in Theorems 4.6 and 4.10 suggests that by using a
larger � at the beginning of the training process, the training
can achieve the NTK kernel learning solution more rapidly.
In practice, staying with large � too long would lead to the
worsening of the model, and we propose the gradual annealing
scheme of � as described in Section III-B so as to combine
the benefits of both large � in the beginning and small � in the
later phases of training. The theoretical benefit of using large �
at the beginning phase of training is supported by experiments
in Section VI.

V. APPLICATIONS TO TESTING AND MODEL EVALUATION

A. Goodness-of-Fit (GoF) Testing
In a GoF test, we are given nsample data samples xi ⇠ p and

a model distribution q, and assume we can sample from q as
well as access its score function sq. To apply the neural Stein
test, we conduct a training-test split of the samples, where
the two splits have ntr and nGoF samples respectively, and
nsample = ntr + nGoF. We first train a neural Stein critic
f(x, ✓) from the training split {xtr

i }
ntr
i=1, and then we compute

the following test statistic on the test split {xi}nGoF
i=1

T̂ =
1

nGoF

nGoFX

i=1

Tqf(xi, ✓), (43)

which can be viewed as a sample-average estimator of
SD[f(·, ✓)] as defined in (3).

To assess the null hypothesis as in (9), we will adopt a
bootstrap strategy to compute the test threshold tthresh by
drawing samples from q, to be detailed in Section V-A.1.
We also derive GoF test consistency analysis in Section V-A.2.

1) Bootstrap Strategy to Compute Test Threshold: The boot-
strap strategy draws independent samples yi ⇠ q to simulate
the distribution of the test statistic under H0. We denote the
test statistic as T̂null, which can be computed from a set of

samples {yi}nGoF
i=1 as T̂null = 1

nGoF

PnGoF
i=1 Tqf(yi, ✓). We will

set tthresh as the (1� ↵) quantile of the distribution of T̂null.
To simulate the distribution, one can compute T̂null in nboot

independent replicas, and then set tthresh to be the quantile of
the empirical distribution. This means that the T̂null in each
replica is computed from a “fresh” set of nGoF samples from
q. We call these independent copies of T̂null the “fresh null
statistics”. Note that this would require evaluating the trained
neural network on nbootnGoF many samples yi in total, which
can be significant since nboot is usually a few hundred (we use
nboot = 500 in all experiments). To accelerate computation,
we propose an “efficient” bootstrap procedure, which begins
by drawing npool samples from q, npool = rpool · nGoF. The
trained network is evaluated on the npool samples of yi to
obtain the values of Tqf(yi, ✓), and then we compute nboot

many times of the nGoF-sample average by drawing from
the pool with replacement. We call the set of values of T̂null

computed this way the “efficient null statistics”. We observed
that setting rpool = 50 is usually sufficient to render a null
statistic distribution that resembles that of the fresh statistics.
With nboot = 500, this yields about ten times speedup in the
computation of the bootstrap.

To illustrate the validity of the bootstrap strategy, we apply
the method to a critic trained on 1D Gaussian mixture data
as described in Appendix B-B. In this case, a partially trained
critic, displayed in Figure 2(A), is used to compute the test
statistics. We set nGoF = 100, and to better illustrate the
empirical distribution of the test statistics we use nboot =
10, 000 replicas. Three sets of 10,000 test statistics are com-
puted: 1) using nGoF fresh samples from p to compute each
T̂ , 2) using nGoF fresh samples from q to compute T̂null,
and 3) efficient bootstrap null statistics computed from a
pre-generated pool with rpool = 50. The empirical distri-
butions are visualized by histograms in Figure 2(B). The
plot shows a clear disparity between the distribution of test
statistics under H1 and the two distributions of test statistics
under H0, and the validity of the efficient bootstrap procedure
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is demonstrated by the similarity of the histograms of the fresh
and efficient null statistics.

2) Theoretical Guarantee of Test Power: Let the trained
neural Stein critic be f̂(x) := f(x, ✓̂(t)). We first observe
the asymptotic normality of the test statistics T̂ and T̂null:
by definition, they are sample averages over i.i.d. test samples
xi ⇠ p (yi ⇠ q) independent from the training split. Thus,
conditioning on training from ntr samples, the test statistic is
an independent sum averaged over i.i.d. random variables

⇠i := Tq f̂(xi) = sq · f̂(xi) +r · f̂(xi), i = 1, · · · , nGoF.

By Assumption 5(C5)(C6) (and that ✓̂(t) 2 Br by
Lemma 4.8), ⇠i are uniformly bounded (either evaluated on xi

or yi in X ). Thus, by Central Limit Theorem, as nGoF !1,
•
p

nGoFT̂ converges in distribution to N (µ1, �2
1) where

µ1 = Ex⇠pTq f̂(x), and �2
1 = Varx⇠p(Tq f̂(x)),

•
p

nGoFT̂null converges in distribution to N (µ0, �2
0)

where µ0 = Ey⇠qTq f̂(y) = 0, and �2
0 =

Vary⇠q(Tq f̂(y)).
The closeness to normal density is typically observed when
nGoF is a few hundred, see Figure 2(B) where nGoF = 100.
The uniform boundedness of ⇠i implies that �2

1 and �2
0 are at

most O(1) constants. This indicates that as long as the training
obtains a critic f̂(x) that makes µ1 = Ex⇠pTq f̂(x) > 0, then
the GoF test can successfully reject the null when nGoF is
large enough.

We also derive the finite-sample test power guarantee of the
neural Stein GoF test in the following corollary by incorpo-
rating the learning guarantee in Section IV, and the proof is
left to Section VIII.

Corollary 5.1: Consider a significance level ↵ and target
Type-II error �, 0 < ↵, � < 1. Suppose the conditions in
Theorem 4.10 are satisfied with ✏ < 1/2, � > 0 as required
and 2✏+C21��1 < 0.8, and ntr is large enough for the good
event (call it Etr) to hold, C22

p
(log ntr + log M⇥)/ntr <

0.1kf⇤kp, and 7n�10
tr < 0.1 min{↵,�}. Then the GoF test

using f̂(x) = f(x, ✓̂(t)) achieves a significance level ↵ and a
test power at least 1� �, if

p
2(b(0)bq + b(1))

 
1 +

r
log

1
↵

+
r

log
1
�

◆
�n�1/2

GoF < 0.1kf⇤k2p.

In particular, the test power ! 1 as ntr, nGoF !1.

B. Evaluation of EBM Generative Models

We consider the application of the Stein discrepancy in
evaluating generative models. The model evaluation problem
is to detect how the model density q (by a given generative
model) is different from the unknown data density p. While
this can be formulated as a GoF testing, in machine learning
applications it is of interest where and how much the two
densities differ rather than rejecting or accepting the null
hypothesis. To this end, we note that the trained Stein critic
can be used as an indicator to reveal where p and q locally
differ.

In the case of EBMs, the model probability density takes the
form as q(x) = exp(�E�(x))/Z, where Z is the normalizing
constant and the real-valued energy function E�(x) is parame-
terized by �, which is another model such as a neural network
(so the set of parameters � differs from the neural Stein critic
parametrization ✓). The score function of q, therefore, equals
the gradient of the energy function, i.e.,

sq = �rE�(x), (44)

which can be computed from the parameterized form of
E�(x). In the case that the energy function is represented
by a deep generative neural network, the gradient (44) can
be computed by back-propagation, which is compatible with
the auto-differentiation implementation of widely-used deep
network platforms. In practice, the evaluation metric of a
trained EBM can be computed on a holdout validation dataset.

Below we give the expression of the score func-
tion for Gaussian-Bernoulli Restricted Boltzmann Machines
(RBMs) [14], which is a specific type of EBM. The energy
of an RBM with latent Bernoulli variable h is defined as
E(x, h|B, b, c) = � 1

2xTBh� bTx� cTh + 1
2kxk

2. Therefore,
the score function has the expression sq(x) = b�x + B ·
tanh(BTx + c). In Section VI-C, we evaluate Gaussian-
Bernoulli RBMs using a Stein discrepancy test computed via
neural Stein critic functions, and we also compare neural Stein
critics trained using different regularization strategies.

VI. EXPERIMENT

In this section, we present numerical experiments applying
the proposed neural Stein method on differentiating a data
distribution p (from which we have access to a set of data
samples) and a model distribution q (of which the score
function is assumed to be known). We compare the proposed
neural Stein method with staged regularization to that with
fixed L2 regularization, as well as to a kernel Stein method
previously developed in the literature.

In Sections VI-A and VI-B, we consider a set of Gaussian
mixture models for both p and q. In Section VI-C, the data
are sampled from the MNIST handwritten digits dataset [36],
and the model distribution is a Gaussian-Bernoulli RBM
neural network model. Codes to reproduce the results
in this section can be found at the following repository:
https://github.com/mrepasky3/Staged_L2_Neural_Stein_Critics.

A. Gaussian Mixture Data
1) Simulated Datasets: We compare the performance of a

variety of neural Stein critics in the scenario in which the
distributions are bimodal, d�dimensional Gaussian mixtures,
following an example studied in [10]. The model q has
equally-weighted components with means µ1 = 0d and µ2 =
0.5⇥1d, both having identity covariance. The data distribution
p has the following form:

p =
1
2
N

0

@µ1,

2

4
1 ⇢1 0T

d�2
⇢1 1 0T

d�2
0d�2 0d�2 Id�2

3

5

1

A

+
1
2
N

0

@µ2,

2

4
!2 !⇢2 0T

d�2
!⇢2 1 0T

d�2
0d�2 0d�2 Id�2

3

5

1

A , (45)

Authorized licensed use limited to: Duke University. Downloaded on December 31,2024 at 03:43:50 UTC from IEEE Xplore.  Restrictions apply. 



REPASKY et al.: NEURAL STEIN CRITICS WITH STAGED L2-REGULARIZATION 7257

where ⇢1 = �⇢2 represents the covariance shift with respect
to the model distribution. We also introduce a parameter !,
which scales the covariance matrix of the second component
of the mixture. We examine this scenario in three settings of
increasingly high dimensions. In each setting of this section,
we fix the parameters ⇢1 = 0.5 and ! = 0.8.

2) Experimental Setup:

a) Neural network training: All neural Stein critics
trained are two-hidden-layer MLPs with Swish activation [37],
where each hidden layer includes 512 hidden units. The
weights of the linear layers of the models are initialized using
the standard PyTorch weight initialization, and the biases of
the linear layers are initialized as zero. The Adam optimizer
(using the default momentum parameters by PyTorch) was
used for network optimization. The critics are trained using
ntr = 2,000 samples from the data distribution p; the learning
rate is fixed at 10�3, and the batch size is 200 samples. All
models are trained for 60 epochs. To compute the divergence
r ·f(x, ✓) in dimension greater than two, we use Hutchinson’s
unbiased estimator of the trace Jacobian [38] following [14].
In these experiments, the staging of � according to the staged
regularization strategies occurs every Bw = 10 batches, which
is equivalent to the end of every epoch. For each choice of
regularization strategy, we train 10 neural Stein critic network
replicas. We compare the neural Stein critics trained using
fixed-� regularization vs. staged regularization schemes.

b) Computation of MSE: Having knowledge of the score
functions of both p and q, we are able to compute the
[MSEq (16) using nte = 20, 000 samples from the model q.

Over the course of training, we also computed [MSE
(m)

p (17)
using nval = 1, 000 samples from the data distribution p. This
monitor is used to select the “best” model over the course of
training, where the model with the lowest [MSE

(m)

p value is
selected.

c) Computation of test power: After a trained neural
critic is obtained, we perform the GoF hypothesis testing
as described in Section V-A, including computing the test
threshold tthresh by the efficient bootstrap strategy. We set the
significance level ↵ = 0.05, the number of bootstrap nboot =
500, and the efficient bootstrap ratio number rpool = 50.
We use nGoF specific for each data distribution example, see
below.

By definition, the test power is the probability at which the
null hypothesis H0 : p = q is correctly rejected. For each
trained neural critic from a given training split of p samples,
we estimate the test power of this critic empirically by
conducting nrun times of the GoF tests (including independent
realizations of the test split of p samples and computing the
tthresh by bootstrap) and counting the frequency when the null
hypothesis is rejected. Because the training also contributes to
the randomness of the quality of the GoF test, we repeat the
procedure for nreplica replicas (including training the model
on an independent realization of the training split in each
replica), and report the mean and standard deviation of the
estimated test power from the replicas. We use nrun = 500 and
nreplica = 10 in our experiments.

d) Setup per example: We introduce the specifics of the
experimental setup for Gaussian mixtures in 2D, 10D, and
25D below.
(a) 2-dimensional mixture. The selected fixed-� regulariza-

tion strategies in 2 dimensions are � 2 {1 ⇥ 10�3, 1 ⇥
10�2, 1⇥10�1, 1⇥100}. We compare these fixed schemes
to a few staged regularization strategies. Using the nota-
tion of Equation (15), these are the ⇤(1 ⇥ 100, 5 ⇥
10�2, 0.95) and ⇤(1 ⇥ 100, 5 ⇥ 10�2, 0.90) staged reg-
ularization schemes. In 2D, the number of test samples
for the GoF testing is nGoF = 75.

(b) 10-dimensional mixture. For this setting, we examine
fixed � 2 {2.5 ⇥ 10�4, 1 ⇥ 10�3, 4 ⇥ 10�3, 1.6 ⇥
10�2, 6.4 ⇥ 10�2, 2.56 ⇥ 10�1, 1.024 ⇥ 100}. We ana-
lyze the staging schemes ⇤(5 ⇥ 10�1, 1 ⇥ 10�3, 0.80)
and ⇤(5 ⇥ 10�1, 1 ⇥ 10�3, 0.85). For the GoF power
analysis, we use nGoF = 200 test samples from the data
distribution p.

(c) 25-dimensional mixture. The fixed regularization weights
are selected as � 2 {2.5⇥10�4, 1⇥10�3, 4⇥10�3, 1.6⇥
10�2, 6.4⇥ 10�2}. The staging schemes analyzed in this
case are ⇤(4 ⇥ 10�1, 5 ⇥ 10�4, 0.80), ⇤(4 ⇥ 10�1, 5 ⇥
10�4, 0.85), and ⇤(4 ⇥ 10�1, 5 ⇥ 10�4, 0.90). We use
nGoF = 500 test samples from the data distribution p for
the GoF tests in 25D.

3) Results:
a) 2-dimensional mixture: The value of [MSEq computed

via Equation (16) throughout training for all 2D critics can be
seen in Figure 3(A), where the mean and standard deviation
are plotted across the 10 networks for each staging strat-
egy. We begin by examining the training behavior for fixed
regularization weight �. Rapid descent in [MSEq is observed
for large � early in training while small � make slower and
steadier progress. The staged regularization strategies exploit
this rapid descent at early times, followed by steady late-
stage training. However, note that the advantage of staging
in 2 dimensions only yields a marginal benefit in MSE.
In Figure 4, we visualize the critic vector field plotted through
training for the ⇤(1 ⇥ 100, 5 ⇥ 10�2, 0.90) staging scheme.
Rapid fitting of some regions can be seen at the beginning of
training in Figure 4(A), followed by more nuanced adjustments
in Figures 4(B) and 4(C), resulting in a good fit to the
theoretically optimal critic function in Figure 4(D). Further-
more, consider the test power results displayed in Figure 5(A).
While the staged regularization cases have among the low-
est [MSEq values, similar testing power is achieved by the
fixed-� settings. For more detail regarding the 2-dimensional
experiment, see Table I in Appendix B-A, which shows the
average GoF hypothesis testing power at the approximate
“best” training epoch as chosen by finding the average lowest
monitor [MSE

(m)

p calculated using Equation (17). The table
also displays the average [MSEq as calculated by Equation (16)
at the “best” epoch for each regularization scheme.

b) 10-dimensional mixture: As in 2D, the [MSEq is
plotted for critics over the course of training in Figure 3(B).
The curves corresponding to some fixed � strategies, such as
� = 6.4 ⇥ 10�2, 2.56 ⇥ 10�1, and 1.024 ⇥ 100 are omitted
since they quickly diverge in [MSEq. In higher dimensions, the

Authorized licensed use limited to: Duke University. Downloaded on December 31,2024 at 03:43:50 UTC from IEEE Xplore.  Restrictions apply. 



7258 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 11, NOVEMBER 2023

Fig. 3. [MSEq results for the Gaussian mixture model settings in 2 dimensions (A), in 10 dimensions (B), and in 25 dimensions (C). In each case, 10 models
are trained for 60 epochs using each regularization strategy; the mean and standard deviation are visualized over these 10 models. The legends indicate the
value of � corresponding to each curve. We use ⇤(1⇥ 100

, 5⇥ 10�2
, ·) staging in 2D, ⇤(5⇥ 10�1

, 1⇥ 10�3
, ·) in 10D, and ⇤(4⇥ 10�1

, 5⇥ 10�4
, ·)

in 25D. The advantage of staged regularization becomes more pronounced with increasing dimension.

difference in using a wider range of regularization weights � is
more pronounced. Larger values result in networks that rapidly
fit a (relatively) poor representation of the optimal critic f⇤� ,
followed by dramatic overfitting. Smaller choices of fixed �
delay both phenomena, fitting to a critic which has a lower
value of [MSEq at best. The staged regularization strategies
exploit both types of training dynamic, descending in [MSEq

more rapidly than most fixed-� strategies while achieving
lower value (and hence better fit) than any fixed strategy,
on average. Examining the results in Figure 5(B), we find that
the power of the ⇤(5 ⇥ 10�1, 1 ⇥ 10�3, 0.80) regularization
strategy exceeds (on average) that of all the fixed-� strategies.
More detail related to the networks obtained via validation can
be found in Table II in Appendix B-A.

c) 25-dimensional mixture: As in the previous set-
tings, the [MSEq computed via Equation (16) is plotted in
Figure 3(C) for the 25D regularization strategies. As is the
case in 10D, the [MSEq of some regularization strategies are
relatively high and are therefore omitted from Figure 3. The
observed trend of increasing the dimension from 2 to 10 is
further exemplified by the increase to 25 dimensions. The
larger choices of fixed � result in networks that quickly obtain
a poor fit of the optimal critic, followed by overfitting. The
smaller choices of fixed � yield more stable [MSEq curves.
Combining these dynamics in our staging strategies, the [MSEq

performance gap between fixed- and staged-� regularization
dramatically increases, where the staged strategies substan-
tially outperform the fixed strategies. Figure 5(C) further
corroborates this finding. The GoF hypothesis test power of
the staged critics is dramatically higher than any fixed-�
training strategy. See Table III in Appendix B-A for more
detail pertaining to trained networks in 25D.

On the simulated Gaussian mixture data, we find that
staging the regularization of the neural Stein critic throughout
training yields greater benefit as the dimension increases
from 2 to 25. The scaleless neural Stein critic �f(·, ✓) rapidly
fits the scaleless optimal critic f⇤ (7) at early times when
� is large, followed by stable convergence to a low-[MSEq

critic throughout training. Furthermore, we find that the GoF
hypothesis testing power follows a similar trend as that of

the [MSEq, such that staging � yields an increase in power,
especially in higher-dimension.

B. Comparison to Kernel Stein Discrepancy
Using the simulated Gaussian mixture data as in

Section VI-A, we compare the testing power of the neural
Stein critic GoF hypothesis test to that of KSD. To do so,
we perform the GoF hypothesis test by computing the KSD
test statistic outlined in [11] and [13], whereby the Stein
discrepancy is computed using a critic restricted to an RKHS.
Following common practice in the literature, we construct
this RKHS to be defined by a radial basis function (RBF)
with a bandwidth equal to the median of the data Euclidean
distances in a given GoF test. We also compare our method
to a KSD test with RBF bandwidth which is selected to
maximize the power. To compute the KSD test, we adopt the
implementation of [13]. Further details of the KSD GoF test,
including selecting the most effective bandwidth, are given
in Appendix B-C, with GoF testing power for a range of
bandwidths displayed in Figure 9.

It would be natural to ask how the neural network test
compares with other traditional parametric and non-parametric
tests. There are cases where the generalized likelihood ratio
(GLR) test can be computed from parametric models and
would be the optimal test. When a parametric model is not
available, traditional non-parametric tests like Kolmogorov-
Smirnov may be restricted to low-dimensional data. We thus
focus on comparison with the KSD test which is a kernel-based
non-parametric test generally applicable to high dimensional
data.

1) Experimental Setup: Using the model distribution q and
data distribution p as defined in Section VI-A.1, we construct
a two-component Gaussian mixture in 50D to compare the
power and computation time of the neural Stein discrep-
ancy GoF hypothesis test (Section V-A) to the KSD test
(Appendix B-C). The model distribution q remains as the
isotropic, two-component Gaussian mixture, while the data
distribution p has the form of (45) with covariance shift
⇢1 = 0.5 and covariance scaling ! = 0.5.

a) Computation of test power: For all neural Stein
critic GoF tests, a total of ntr + nGoF = nsample

Authorized licensed use limited to: Duke University. Downloaded on December 31,2024 at 03:43:50 UTC from IEEE Xplore.  Restrictions apply. 



REPASKY et al.: NEURAL STEIN CRITICS WITH STAGED L2-REGULARIZATION 7259

Fig. 4. A visualization of the scaleless neural Stein critic �f(·, ✓) throughout training, where we use the ⇤(1⇥ 100
, 5⇥ 10�2

, 0.90) staging strategy on
the 2-dimensional Gaussian mixture data. In (A), the critic quickly approximates some regions in the first epoch, whereas in (B) and (C) the critic makes
smaller adjustments throughout the domain, creating an approximation of the scaleless optimal critic function f⇤ (7) pictured in (D).

Fig. 5. Testing power results for the Gaussian mixture model settings in 2 dimensions (A), in 10 dimensions (B), and in 25 dimensions (C). The mean
power for fixed-� settings is plotted with standard deviation error bars, and the highest-average-power staged setting is plotted as a (mean) line with shaded
standard deviation in each setting, where the dashed line spans the range of � for each staging strategy.

samples from p are used, where nsample takes on values in
{100, 200, 300, 500, 1000, 1500, 2500}. In each case, ntr and
nGoF are equal to nsample/2. The 50%/50% training/testing
split was chosen by comparing the testing power for var-
ious training/testing splits. Our findings indicate a range
of training/testing splits exists for which the testing power
performance is comparable. While the training duration con-
tributes most significantly to the computation time, the test
achieves high power once the training split reaches 50%
of the sample size. That is, the 50%/50% train/test split is
a generic split choice in this range of high power splits,
and therefore we use this split in the results outlined in
Section VI-B.2 and in Figure 6. The details of this find-
ing can be found in Appendix B-D, Figure 10, and an
application to a simpler setting is displayed in Figure 11.
Furthermore, the training data are partitioned into an 80%/20%
train/validation split. The testing procedure and test power
computation are as described in Section VI-A.2. Specifically,
the significance level ↵ = 0.05 in all tests, the number of
bootstraps nboot = 500, and the efficient bootstrap ratio is
rpool = 50.

The KSD tests [13] are computed over the same range of
samples size. The KSD test is conducted with an RBF kernel
using the median data distance heuristic for bandwidth, and
we also examine the selected bandwidth chosen to maximize
the test power. To compute tthresh, the KSD test uses a “wild
bootstrap” procedure [13]. We provide details of bandwidth
selection and wild bootstrap in Appendix B-C. The number of
wild bootstrap samples used for KSD is equal to the number

of bootstrap samples used for the neural Stein test, namely
nboot = 500.

The test power is computed using nrun = 400 and nreplica =
5 for each KSD and neural Stein GoF test.

b) Comparison of test time: We compare the time taken
to perform one KSD GoF test vs. training a neural Stein
critic and performing a neural GoF test. All reported times
are elapsed time on a laptop with an Intel Core i7-1165G7
processor with 16 GB of RAM. We record and report the
computation times of the tests over a range of sample sizes.

For the neural test, we measure the duration time of training
followed by the computation time of a single test statistic
and the computation time of the bootstrap, averaged over
nreplica = 5 replicas with nrun = 10 and nboot = 500.

To determine the computation time of the KSD test, we mea-
sure the duration of 10 tests using the best-selected bandwidth,
which can be broken down into the time taken to compute
an individual test statistic and the computation time of the
wild bootstrap, averaged over nreplica = 5, nrun = 10, and
nboot = 500.

c) Neural network training: The neural Stein critics are
learned using two-hidden-layer (512 nodes) MLPs with Swish
activation, initialized using PyTorch standard initialization
with biases set to 0. We use the Adam optimizer with a
learning rate set to 5⇥ 10�3, minibatch size equal to 40, and
the critics are trained for 60 epochs. The ⇤(4 ⇥ 10�1, 5 ⇥
10�4, 0.85) staging is used in the training of the neural Stein
critics, where the frequency of � staging, Bw batches, is again
chosen to be equivalent to the number of training batches per
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Fig. 6. Comparison between neural Stein critic GoF test and KSD test [13] in the 50D setting described in VI-B.1. We perform nrun = 400 number of
GoF tests to compute power with nreplica = 5 replicas. All results use nboot = 500 bootstrap samples. The KSD is computed using an RBF kernel with
median data distance heuristic bandwidth and bandwidth selected to maximize power (see Appendix B-C for details). In each plot, the x-axis indicates the
overall sample size nsample provided to each method, where the neural Stein GoF test uses half for training and a half for computation of the test statistic
(refer to Figure 10 for a comparison of neural Stein tests with other choices of train/test split), and KSD uses the entire sample for computation of the test
statistic. In (A), the average test power and its standard deviation error bar are shown, computed over the 5 models in each case. Figure (B) shows the average
duration of network training plus an individual GoF test (computation of test statistic and bootstrap) for the neural Stein test and the average duration of a
single test (test statistic and bootstrap) for the KSD test. Finally, (C) shows the breakdown between the average computation time required to compute a test
statistic (including training for the neural network test) and the time required to compute the bootstrap. See Section VI-B.1 for details of the GoF test power
and recording of computation time.

epoch. The networks are trained using ntr number of training
samples from the data distribution p, which are split into
an 80%/20% train/validation split for model selection. As in
Section VI-A.2, the networks are selected to minimize the
monitor [MSE

(m)

p of Equation (17).

2) Results: The result of the testing power comparison on
the 50D data can be found in Figure 6. First, examining the
comparison in power between the methods in Figure 6(A),
the neural Stein critic GoF test (solid black line) remains
more powerful than the KSD GoF tests for all sample sizes.
The KSD GoF test using the median data distances heuristic
bandwidth (solid red line) does not achieve comparable power
to the staged-regularization neural Stein critic approach, even
for as many as 2500 samples. While the KSD test using
the best-selected bandwidth (dashed red line) achieves much
higher power than the heuristic approach, the power of this
method still falls below that of the neural Stein GoF test. Next,
Figure 6(B) highlights the quadratic time complexity of the
KSD GoF test, resulting in a dramatic increase in computation
time that surpasses the overall time to train a neural Stein critic
and compute a test for samples sizes larger than 1,000. Fur-
thermore, the breakdown into test statistic computation time
and bootstrap computation time in Figure 6(C) reveals that the
time to compute an individual test statistic for the neural Stein
approach becomes more time-efficient than KSD when nsample

is just larger than 1500. While the test statistic computation
and wild bootstrap of KSD contribute substantially to the
overall computation time of KSD, the neural Stein GoF test
computation time is dominated by the training period.

Our findings indicate that the neural Stein critic clearly
outperforms KSD in this setting for a larger sample size,
with higher power and lower computation time. This result
highlights the deeper expressivity of the L2 function space
compared to kernel methods in addition to the benefit of the
linear time complexity of the neural Stein critic GoF test,
as opposed to the quadratic complexity of KSD.

C. MNIST Handwritten Digits Data

The results of Section VI-A indicate that the staging of
regularization when training neural Stein critics yields greater
benefit in higher dimensions. Therefore, we extend to a
real-data example in an even higher dimension: the MNIST
handwritten digits dataset [36]. We compare the fixed and
staged regularization strategies to train critics that discriminate
between an RBM and a mixture model of MNIST digits.

1) Authentic and Synthetic MNIST Data: To construct the
model distribution q for the MNIST setting, we follow the
approach of [14]. We use a Gaussian-Bernoulli RBM that
models the MNIST data distribution, trained using a learned
neural Stein critic to minimize the Stein discrepancy between
the true MNIST density and the RBM. We declare the model
distribution q to be this 728-dimensional RBM. The data
distribution p is a mixture model composed of 97% the RBM
and 3% true digits “1” from the MNIST dataset. Therefore,
any disparity in the distributions of p and q are caused by this
infusion of digits from MNIST into p.

2) Learned Neural Stein Critics: In addition to being a real-
istic setting, training a neural Stein critic using MNIST digits
will allow us to better interpret the discrepancy. Of course,
since we do not have access to the “true” score function p,
we cannot calculate the [MSEq for the trained critics using

Equation (16). Furthermore, the computation of [MSE
(m)

p using
validation data from p via (17) becomes less accurate in high
dimension, as the method would require a large amount of val-
idation data to be an accurate representation of the population
MSEp. Therefore, we introduce an additional validation metric
to evaluate the fit of the neural Stein critic f(·, ✓). First, in the
language of the GoF test introduced in Section V-A, we denote
the quantity computed by applying the Stein operator with
respect to q on neural Stein critic f(·, ✓) evaluated at a sample
x 2 X as the “critic witness” of the sample x:

w(x, ✓) = Tqf(x, ✓). (46)
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Fig. 7. In (A), we visualize the P̂ metric from Equation (47) throughout training for various regularization strategies when training neural Stein critics using
the MNIST mixture dataset. To compute P̂ , the model is applied to a validation dataset of 1,000 samples. In each case, 10 models are trained for 25 epochs
using each regularization strategy; the mean and standard deviation are visualized over these 10 models. In (B), a distribution of null statistics (43) are plotted
alongside a statistic calculated over an nGoF = 100 sample testing set from p, computed using a ⇤(5 ⇥ 10�1

, 1 ⇥ 10�3
, 0.90) staged critic. In (C), the

Stein discrepancy evaluated at the scaleless neural Stein critic �f(·, ✓) through training is visualized, which is computed using the same validation datasets
of 1,000 samples used to compute P̂ in (A).

Intuitively, since f(·, ✓) is trained on samples from p (the
data distribution) by maximizing the Stein discrepancy, the
value of w(x, ✓) represents the magnitude of the difference
between distributions p and q at x 2 X . Evaluating the
critic witness at nGoF samples xi ⇠ q, under the central
limit theorem (CLT) assumption, random variables w(xi, ✓)
have a (centered) normal distribution with standard deviation
�(w)/

p
nGoF when nGoF is large, where �(w) is the standard

deviation of w(xi, ✓).
Note that the test statistic (43) is the mean of w(xi, ✓)

computed over testing data xi ⇠ p. As an assessment for the
GoF testing power for the neural Stein critic function f(·, ✓)
(which is expensive to compute in such a high dimension),
we may compare the mean and variance of w(·, ✓) applied to
a testing dataset sampled from p and to a “null” dataset drawn
from q, both of size nGoF:

P̂ =
w̄p

�(wp) + �(wq)
,

w̄p =
1

nGoF

nGoFX

i=1

w(xi, ✓),

�(wp) =
1

nGoF

vuut
nGoFX

i=1

(w(xi, ✓)� w̄p)2. (47)

This quantity acts to reflect the capability of the neural Stein
critic to differentiate between the distributions in the GoF
hypothesis testing setting described in Section V-A. In addition
to the P̂ metric from Equation (47), we may also apply the
Stein discrepancy evaluated at the scaleless neural Stein critic,
i.e., the SD[�f(·, ✓)] (3), to the holdout dataset from the data
distribution as an evaluation metric for the models as described
in Section V-B.

3) Experimental Setup: We again train 2-hidden-layer
MLP’s with Swish activation, where each hidden layer is com-
posed of 512 hidden units, using the default Adam optimizer
parameters by PyTorch. The critics observe 2,000 training
samples from p, training on mini-batches of size 100 with
a learning rate 10�3. Each model is trained for 25 epochs.
We consider fixed � 2 {1 ⇥ 10�3, 1 ⇥ 10�2, 1 ⇥ 10�1,

1 ⇥ 100, 2 ⇥ 100} and staging scheme ⇤(5 ⇥ 10�1, 1 ⇥
10�3, 0.90). The frequency of updates via the staging strate-
gies is Bw = 20 batches. We fit 10 critics per regularization
strategy. For each critic, we compute the validation SD and
the power metric (47) throughout training using nGoF =
1, 000 samples from p and the same number of “null” samples
from q.

In addition to assessing the proxy for the test power of
the neural Stein critic in the GoF test via Equation (47),
we examine the interpretability of the critic as a diagnostic
tool for anomalous observations. By Equation (7), the scaleless
optimal critic captures the difference in the score of the
data distribution and model distribution. Therefore, a trained
neural Stein critic can indicate which samples in a validation
dataset represent the largest departure from the distribution
q. We isolate such samples by identifying samples with high
critic witness value (46). We do so by both visualizing the
images in a holdout validation dataset sampled from p which
have a high w(·, ✓) value, in addition to plotting a heatmap of
w(·, ✓) reduced using a t-SNE embedding [39] applied to the
entire validation dataset.

4) Results: The power approximation using Equation (47)
is plotted in Figure 7(A) for each regularization strategy,
where the means and standard deviations are calculated using
the ten models for each regularization scheme. While the
staging strategy does not exhibit such an advantage as in
the high-dimension Gaussian mixture data, staging provides
a more rapid increase in the validation metric in the early
training period, yielding a final model of comparable perfor-
mance to the fixed-� strategies. In Figure 7(B), we observe
that the test statistic (43) exhibits clear separation from its
bootstrapped (nboot = 500) null distribution, even in the case
when the number of test samples is relatively small (in this
case, nGoF = 100). While Figure 7(B) shows this distribution
for the ⇤(5 ⇥ 10�1, 1 ⇥ 10�3, 0.90) staged regularization
strategy, this holds for fixed-� training as well. Finally, the
Stein discrepancy evaluated at the scaleless neural Stein critics
�f(·, ✓) applied to the holdout dataset from p is visualized
throughout training for each model in Figure 7(C). This
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result is similar to the result from Figure 7(A) in that the
staged approach performs comparably to the best fixed-�
regularization strategies.

For a more direct understanding of how the neural Stein
critics perform, consider instances of validation data sampled
from p in which the critic witness (46) value is very large.
These samples indicate the largest deviation between the
model distribution q and the data distribution p. In the staged
⇤(5 ⇥ 10�1, 1 ⇥ 10�3, 0.90) setting, we visualize the critic
witness applied to a validation set of 6,000 samples from
p by reducing the images to a two-dimensional embedding
via t-SNE. In Figure 8(A), we observe the embedding of the
validation data into this space, where the true MNIST points
are highlighted in red. In Figure 8(B), the true MNIST digits
are found to have a larger critic witness value than those of
RBM samples in the validation dataset.

Furthermore, in the ⇤(5 ⇥ 10�1, 1 ⇥ 10�3, 0.90) case,
visualizing the images in the validation set from p which have
the highest critic witness value in Figure 8(C) and those which
have the lowest critic witness value in Figure 8(D), we find that
this approach correctly identifies true digits one from MNIST
as anomalous while accepting those generated by the RBM
as normal. In the case of the fixed-� regularization strategies,
it seems that all methods do well to identify the true digits
“1” in samples from the data distribution p.

VII. DISCUSSION

We have developed a novel training approach for learning
neural Stein critics by starting with strong L2 regularization
and progressively decreasing the regularization weight over
the course of training. The advantage of staged regulariza-
tion is empirically observed in experiments, especially for
high-dimension data. In all the experiments, it is observed
that critics trained using larger regularization weights at the
beginning of training enjoy a more rapid approximation of the
target function, including in the task of detecting distribution
differences between authentic and synthetic MNIST data.
These experimental findings are consistent with the NTK
lazy-training phenomenon that happens with large regulariza-
tion strength at the beginning phase of training, which we
theoretically prove. We apply the neural Stein method to GoF
tests for which we derive a theoretical guarantee of test power.

The work can be extended in several future directions.
Theoretically, within the lazy-training framework, it would
be interesting to characterize the expressiveness of the NTK
kernel (the assumption of Proposition 4.4). One can also
explore a more advanced analysis of the neural network train-
ing dynamic, including the SGD training using mini-batches
and going beyond kernel learning. A related question is to
theoretically analyze the later training stage, for example,
to prove the convergence guarantee with decreasing �, and to
find the theoretically optimal annealing strategy of � in later
stages. A possible way is to track the change of the NTK
kernel as time evolves, which remains a challenge in studying
NTK theory. For the algorithm, one can further investigate the
optimal staging scheme and explore other types of regulariza-
tion of the neural Stein critic than the L2-regularization. For
the application to GoF testing, here we consider the typical
setting for the Goodness-of-Fit test, which is a simple null

hypothesis, i.e., we test whether or not the data follows a
particular distribution/model; a potentially interesting direction
is extending to cases where the null hypothesis is composite,
i.e., comparing the data to a set of K target distributions.
An interesting strategy would be training K neural networks
jointly with possible sharing parameters so as to reduce model
size and computation. Finally, further applications can be
conducted on other modern generative modeling approaches in
the same manner as the Gaussian-Bernoulli RBM, including
normalizing flow architectures.

VIII. PROOFS

A. Proofs in Sections IV-A-IV-C
Proof of Lemma 4.3: Introduce the notation

[K0(x, x0)]ij = K((x, i), (x0, j)),

where K(z, z0) is a positive semi-definite (PSD) kernel defined
on the space of Z = X ⇥ [d], that is,

z = (x, i), x 2 X , i 2 [d],

with dz being the induced product measure. The kernel K is
PSD due to the definition (24). One can also verify that K is
Hilbert-Schmidt because

Z

Z

Z

Z
K(z, z0)2dzdz0

=
dX

i,,j=1

Z

X

Z

X
[K0(x, x0)]2ij p(x)p(x0)dxdx0

=
dX

i,,j=1

Z

X

Z

X
h@✓fi(x, ✓(0)),

@✓fj(x0, ✓(0))i2⇥p(x)p(x0)dxdx0


 

dX

i=1

Z

X
k@✓fi(x, ✓(0))k2⇥p(x)dx

!2

< 1, (48)

where the last step is by Cauchy-Schwarz and the integrability
follows by the L2 integrability of @✓fi(x, ✓(0)) in (X , p(x)dx)
assumed in the condition of the lemma.

As a result, the spectral theorem implies that K(z, z0) has
discrete spectrum µk, k = 1, 2, · · · which decreases to 0, each
µk is associated with an eigenfunction vk(z), and {vk}1k=1
form an orthonormal basis on Z . This means that

dX

j=1

Z

X
[K0(x, x0)]ij vk(x0, j)p(x0)dx0 = µkvk(x, i),

8x 2 X , i 2 [d]. For any k, l = 1, 2, . . . ,

dX

i=1

Z

X
vk(x, i)vl(x, i)p(x)dx = �kl.

At last, because the neural network has a finite width, ⇥ is in
a finite-dimensional Euclidean space of dimensionality M⇥.
By (24), the kernel K has a finite rank at most M⇥. Let the
rank of K be M , then µ1 � · · · � µM > 0, and the other
eigenvalues are zero. Defining vk(x) by (vk(x, i))d

i=1 finishes
the proof. ⇤
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Fig. 8. Embedding via t-SNE of the critic witness function (46) scaled by the regularization weight � using a ⇤(5 ⇥ 10�1
, 1 ⇥ 10�3

, 0.90) staged,
regularized neural Stein critic applied to a validation dataset of 6,000 samples from the data distribution p used to evaluate the diagnostic capacity of the
neural Stein critic. After 25 epochs of training, the critic was selected to produce these critic witness values. In (A), the black points represent the portion
of the validation set coming from the RBM, while the red points represent the portion that is true digits 1 from MNIST. In (B), the points with high critic
witness value are more darkly colored. In (C), the 12 images in the validation set with the highest critic witness value are shown, applying the critic trained
by the staging strategy. Similarly, (D) shows the 12 images in the validation set with the lowest critic witness value.

Proof of Proposition 4.4: As shown in the proof of
Lemma 4.3, there are ortho-normal basis {vk}1k=1 of X
with respect to h·, ·ip, where the first M many consist of
eigen-functions of K0(x, x0). Using the ortho-normal basis,
f⇤ has the following expansion with coefficients ck 2 R,

f⇤ =
1X

k=1

ckvk, kf⇤k2p =
1X

k=1

c2
k < 1. (49)

The uniqueness of orthogonal decomposition gives that

f⇤1 =
mX

k=1

ckvk, f⇤2 =
1X

k=m+1

ckvk. (50)

To prove the proposition, it suffices to prove (27), and then (28)
follows by that

kf⇤1 kp  kf⇤kp

which follows from (50), and that e�t��  ✏ when t �
log(1/✏)/(��).

To prove (27): By (25), and define

w(x, t) := �ū(x, t)� f⇤(x),

we have

@tw(x, t) = ��

Z

X
K0(x, x0) �w(x0, t)p(x0)dx0, (51)

and, by that ū(x, 0) = 0, we have

w(x, 0) = �f⇤(x).

Because w(x, 0) 2 L2(p), the evolution equation (51) implies
that

w(x, t) =
1X

k=1

bk(t)vk(x),

ḃk(t) =

(
��µkbk(t), k  M

0, k > M
, bk(0) = �ck.

Using the notation µl = 0 for l > M , we have

bk(t) = �cke�t�µk , k = 1, 2, · · ·

This gives that that for any t > 0,

�w(x, t) =
1X

k=1

e�t�µkckvk(x)

=
mX

k=1

e�t�µkckvk(x) +
1X

k=m+1

e�t�µkckvk(x)

=: 1�+ 2�.

Because µk � � for k = 1, · · · , m,

k 1�k2p =
mX

k=1

e�2 t�µkc2
k  e�2 t��

mX

k=1

c2
k = e�2 t��kf⇤1 k2p,

where the last equality is by (50). In addition,

k 2�k2p =
1X

k=m+1

e�2 t�µkc2
k 

1X

k=m+1

c2
k=kf⇤2 k2p.

Putting together, this gives that

kw(x, t)kp  k 1�kp + k 2�kp  e�t��kf⇤1 kp + kf⇤2 kp,

which proves (27). ⇤
Proof of Proposition 4.5:

Proof of (i): Recall that ✓̇(t) = �@✓L�(✓(t)) as in (18), and
then by the chain rule,

d

dt
L�(✓(t)) = h@✓L�(✓(t)), ✓̇(t)i⇥ = �k@✓L�(✓(t))k2⇥  0,

which means that L�(✓(t)) is monotonically decreasing over
time. Together with (11), we have that 8t � 0,
Z t

0
k✓̇(s)k2⇥ds =

Z t

0
k@✓L�(✓(s))k2⇥ds

= L�(✓(0))� L�(✓(t))
= L�[u(·, 0)]� L�[u(·, t)]

=
1
2�

�
k�u(·, 0)� f⇤k2p � k�u(·, t)� f⇤k2p

�

 1
2�
k�u(·, 0)� f⇤k2p =

1
2�
kf⇤k2p. (52)
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In the last equality, we have used the condition that u(x, 0) =
0. (52) bounds the change of ✓(t) by Cauchy-Schwarz, that is,

k✓(t)� ✓(0)k 
Z t

0
k✓̇(s)kds


p

t

✓Z t

0
k✓̇(s)k2ds

◆1/2


p

t

✓
1
2�
kf⇤k2p

◆1/2

,

which proves (29). Finally, by that k✓(0)k < r/2, we have
k✓(t)k < r/2+

p
t/(2�)kf⇤kp, and then the upper bound of t

in the condition of (i) ensures that ✓(t) 2 ⇥. Thus, for all such
t, u(·, t) = f(·, ✓(t)) is well-defined and f(·, ✓(t)) 2 L2(p)
by Assumption 4, so that the involved integrals in the loss
L�(✓(t)) are all finite.
Proof of (ii): We first note that

✓(t) 2 Br, 80  t  1
2
(

r

kf⇤kp
)2�. (53)

This is because r/2 +
p

t/(2�)kf⇤kp  r and Br ⇢ ⇥, thus
the condition needed for t by (i) is satisfied, and then (29) gives
that k✓(t)� ✓(0)k  r/2 for the range of t being considered.
The claim (53) then follows together with the assumption that
k✓(0)k < r/2.

In the below, we may omit the dependence on t in notation
when there is no confusion, e.g., we write �u(x0, t)� f⇤(x0)
as (�u� f⇤)(x0). To prove (30), recall the evolution equations
of u and ū as in (23) and (25),
8
><

>:

@tu(x, t) = �Ex0⇠pKt(x, x0) � (�u� f⇤) (x0)
@tū(x, t) = �Ex0⇠pK0(x, x0) � (�ū� f⇤) (x0)
u(x, 0) = ū(x, 0) = 0

(54)

which gives that (u� ū)|t=0 = 0 and

@t(u� ū) =� Ex0⇠p(Kt �K0)(x, x0) � (�u� f⇤) (x0)
� �Ex0⇠pK0(x, x0) � (u� ū) (x0). (55)

By taking h·, ·ip inner-product with u� ū on both sides, and
that K0 has the expression (24) and thus is PSD, we have that

d

dt

1
2
ku� ūk2p

 hu� ū,�Ex0⇠p(Kt �K0)(·, x0) � (�u� f⇤) (x0)ip
 ku� ūkpkKt �K0kpk�u� f⇤kp, (56)

where kKt�K0kp stands for the operator norm of the kernel
integral operator in L2(p). We claim that

(Claim 1) k�u(·, t)� f⇤kp  kf⇤kp, 8t � 0, (57)

(Claim 2) kKt �K0kp  L1L2

r
2 t

�
kf⇤kp,

8t  1
2
(

r

kf⇤kp
)2�. (58)

If both claims hold, then (56) continues as

d

dt

1
2
ku� ūk2p  L1L2

r
2 t

�
kf⇤k2pku� ūkp

8t  1
2
(

r

kf⇤kp
)2�. (59)

We define

�(t) := k�u(·, t)� �ū(·, t)kp � 0, �(0) = 0,

and �(t) is continuous. For fixed t  1
2 ( r
kf⇤kp

)2�, suppose

sup
s2[0,t]

�(s) = �(t⇤), for some t⇤  t,

then by (59),

1
2
�(t⇤)2 = �2

Z t⇤

0
(

d

dt

1
2
k(u� ū)(·, s)k2p)ds

 �

Z t⇤

0
L1L2

r
2 s

�
kf⇤k2p�(s)ds

 L1L2

p
2�kf⇤k2p�(t⇤)

Z t⇤

0

p
sds

this gives that

�(t⇤)  4
p

2
3

L1L2

p
�kf⇤k2p(t⇤)3/2,

which proves (ii) by that �(t)  �(t⇤) and t⇤  t.
To finish the proof, it remains to show (57) and (58).

Proof of (57): Define w(x, t) := �u(x, t)� f⇤(x), By (54),

@tw(x, t) = ��Ex0⇠pKt(x, x0) �w(x0),

and thus
d

dt

1
2
kw(·, t)k2p = ��hw, Ex0⇠pKt(·, x0) �w(x0)ip.

Denoting the i-th entry of w as wi, by (22), one can verify
that

hw, Ex0⇠pKt(·, x0) �w(x0)ip

= Ex⇠pEx0⇠p

dX

i,j=1

h@✓fi(x, ✓(t)),

@✓fj(x0, ✓(t))i⇥wi(x)wj(x0)

=

*
dX

i=1

Ex⇠p@✓fi(x, ✓(t))wi(x) ,

dX

j=1

Ex0⇠p@✓fj(x0, ✓(t))wj(x0)

+

⇥

= kEx⇠p@✓f(x, ✓(t)) ·w(x)k2⇥. (60)

This shows that d
dt

1
2kw(·, t)k2p  0, that is, kw(·, t)k2p mono-

tonically decreases over time. Thus for any t � 0,

k�u(·, t)� f⇤k2p = kw(·, t)k2p  kw(·, 0)k2p = kf⇤k2p,

due to that u(x, 0) = 0.
Proof of (58): It suffices to show that for any v 2 L2(p),

hv, Ex0⇠p(Kt �K0)(·, x0) � v(x0)ip
 L1L2

q
2 t
� kf

⇤kpkvk2p. (61)

Denote the i-th entry of v as vi, and, similarly as in (60)
and by (22) and (24), one has

hv, Ex0⇠pKt(·, x0) � v(x0)ip = kEx⇠p@✓f(x, ✓(t)) · v(x)k2⇥,

hv, Ex0⇠pK0(·, x0) � v(x0)ip = kEx⇠p@✓f(x, ✓(0)) · v(x)k2⇥.
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Subtracting the two gives that

hv, Ex0⇠p(Kt �K0)(·, x0) � v(x0)ip
= kEx⇠p@✓f(x, ✓(t)) · v(x)k2⇥
� kEx⇠p@✓f(x, ✓(0)) · v(x)k2⇥

= (kEx⇠p@✓f(x, ✓(t)) · v(x)k⇥
+ kEx⇠p@✓f(x, ✓(0)) · v(x)k⇥)
(kEx⇠p@✓f(x, ✓(t)) · v(x)k⇥
� kEx⇠p@✓f(x, ✓(0)) · v(x)k⇥). (62)

Because ✓(t) 2 Br, cf. (53),

kEx⇠p@✓f(x, ✓(t)) · v(x)k
 Ex⇠pk@✓f(x, ✓(t))kkv(x)k
 L1Ex⇠pkv(x)k
 L1kvkp,

where the second inequality is by (C1). We have the same
upper bound of kEx⇠p@✓f(x, ✓(0)) · v(x)k⇥ because ✓(0) 2
Br. Meanwhile, triangle inequality gives that

kEx⇠p@✓f(x, ✓(t)) · v(x)k⇥ � kEx⇠p@✓f(x, ✓(0)) · v(x)k⇥
 kEx⇠p(@✓f(x, ✓(t))� @✓f(x, ✓(0))) · v(x)k
 Ex⇠pk@✓f(x, ✓(t))� @✓f(x, ✓(0))kkv(x)k
 L2k✓(t)� ✓(0)kEx⇠pkv(x)k
 L2k✓(t)� ✓(0)kkvkp. (63)

The second-to-last line is by (C2) and both ✓(t) and ✓(0) are in
Br. By (i) which is proved, the r.h.s. of (63) is upper-bounded
by L2

p
t/(2�)kf⇤kpkvkp. Putting back to (62), we have

(r.h.s. of (62))  2L1L2

p
t/(2�)kf⇤kpkvk2p

which proves (61). ⇤
Proof of Theorem 4.6: The condition on the largeness

of � guarantees that the range of t0 in (31) is non-empty,
and (31) ensures that log(1/✏)

�
1
�  t  1

2 ( r
kf⇤kp

)2�. For this
range of t, Proposition 4.5 applies to give (30). Meanwhile,
Proposition 4.4 requires that @✓f(·, ✓(0)) are in L2(p), which
follows from the uniform boundedness of @✓f(·, ✓(0)) on X
by Assumption 4(C1) due to that ✓(0) 2 Br. The condition
t � log(1/✏)

�
1
� allows Proposition 4.4 to apply to bound

k�ū(·, t)�f⇤kp as in (28) for the range of t being considered.
Putting together (30) and (28), by triangle inequality, we have

k�u(x, t)� f⇤kp  2✏kf⇤kp +
4
p

2
3

L1L2

p
�t3/2kf⇤k2p

and by definition
p

�t3/2 = ��1(t0log(1/✏)/�)3/2, which
proves (32). ⇤

B. Proofs in Section IV-D

Proof of Lemma 4.8: Similarly as in the proof of Proposi-
tion 4.5(i), we have

d

dt
L̂�(✓̂(t)) = h@✓L̂�(✓̂(t)), ˙̂✓(t)i⇥ = �k@✓L̂�(✓̂(t))k2⇥  0,

and for any t � 0,

Z t

0
k ˙̂✓(s)k2⇥ds =

Z t

0
k@✓L̂�(✓̂(s))k2⇥ds

= L̂�(✓(0))� L̂�(✓̂(t)). (64)

By the definition (33), because f(x, ✓(0)) = û(x, 0) = 0,
L̂�(✓(0)) = 0; Meanwhile, let f̂(x) := f(x, ✓̂(t)),

L̂�(✓̂(t)) =Ex⇠p̂

✓
�

2
kf̂(x)k2 � sq(x) · f̂(x)

◆

�Ex⇠p̂rx · f̂(x).
(65)

If the last term is with Ex⇠p, we have that (by that f̂(x) is in
L2(p) \ F0(p) by Assumption 3)

�Ex⇠prx · f̂(x) = Ex⇠pf̂(x) · sp(x)

= Ex⇠p̂f̂ · sp � (Ex⇠p̂ � Ex⇠p)f̂ · sp,

and thus

�Ex⇠p̂rx · f̂(x) = �Ex⇠prx · f̂(x)

� (Ex⇠p̂ � Ex⇠p)rx · f̂(x)

= Ex⇠p̂f̂ · sp � (Ex⇠p̂ � Ex⇠p)f̂ · sp

� (Ex⇠p̂ � Ex⇠p)rx · f̂(x)

= Ex⇠p̂f̂ · sp � 1�� 2�, (66)

where
1� := (Ex⇠p̂ � Ex⇠p)f(x, ✓̂(t)) · sp(x),

2� := (Ex⇠p̂ � Ex⇠p)rx · f(x, ✓̂(t)).

We then have, recalling that f⇤ = sq � sp,

�L̂�(✓̂(t)) = �Ex⇠p̂

✓
�

2
kf̂k2 � sq · f̂ + sp · f̂

◆
+ 1�+ 2�

= �Ex⇠p̂

 
k�f̂ � f⇤k2

2�
� kf⇤k2

2�

!
+ 1�+ 2�

 Ex⇠p̂kf⇤k2

2�
+ 1�+ 2�

=
kf⇤k2p
2�

+ 3�+ 1�+ 2�,

3� :=
(Ex⇠p̂ � Ex⇠p)kf⇤(x)k2

2�
. (67)

The difference (Ex⇠p̂ � Ex⇠p)kf⇤(x)k2 is the deviation of
an independent sum sample average from its expectation. By
Assumption 5(C6), there is an integer n6 (possibly depending
on constants b2, bq) s.t. when n > n6, under a good event
E1 which happens w.p. � 1� n�10,

(Ex⇠p̂ � Ex⇠p)kf⇤(x)k2 
p

20b2

r
log n

n
.

As a result, 3� 
p

20b2
2�

q
log n

n . As for 1� and 2�, we know
that if ✓̂(t) 2 Br, then under the good event in (C5), called
E2,

max{| 1�|, | 2�|}  CF
n�

+ bF

r
log n

n
. (68)
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However, we have not shown ✓̂(t) 2 Br yet. We now let n�

such that when n > n�,

n > n6,
p

20b2

r
log n

n
+ 4�(

CF
n�

+ bF

r
log n

n
) < kf⇤k2p.

(69)

Since kf⇤k2p > 0 (by Assumption 2) is a fixed constant, for
any � > 0,

the l.h.s. is Õ(n�1/2) + �Õ(n��) and thus will be less
than the r.h.s. when n is large enough. We also let tmax be
defined s.t. kf⇤kp

p
tmax/� = r/2. Consider being under the

intersection of good events E1 and E2 which happens w.p.
� 1� 3n�10, we claim that, for any t  tmax, ✓̂(t) 2 Br.

We prove this by contradiction. If not, then by the continuity
of ✓̂(t) over time, there must be a 0 < t1  tmax s.t. k✓̂(t1)k =
r. By that k✓(0)k < r/2, we have

k✓̂(t1)� ✓(0)k > r/2. (70)

Meanwhile, by (64)(67),
Z t1

0
k ˙̂✓(s)k2⇥ds = �L̂�(✓̂(t1)) 

kf⇤k2p
2�

+ 1�+ 2�+ 3�

where 1� and 2� are taking value at t = t1. Under E1,
we already have 3� 

p
20b2
2�

q
log n

n ; now ✓̂(t1) 2 Br,
applying (C5) we know that under E2 the bound (68) holds.
By the definition of n� in (69), we have that

1�+ 2�+ 3� <
kf⇤k2p
2�

,

and as a result,
Z t1

0
k ˙̂✓(s)k2⇥ds <

kf⇤k2p
�

.

Then, by Cauchy-Schwarz,

k✓̂(t1)� ✓(0)k 
Z t1

0
k ˙̂✓(s)k⇥ds


p

t1(
Z t1

0
k ˙̂✓(s)k2⇥ds)1/2

<

r
t1
�
kf⇤kp


r

tmax

�
kf⇤kp =

r

2
,

which means that k✓̂(t1) � ✓(0)k < r/2 and this contradicts
with (70).

Now we have shown that for ✓̂(t) 2 Br for any t  tmax.
Applying the same argument to bound

R t
0 k

˙̂✓(s)k2⇥ds for any
such t, and in particular the upper bound of 1� + 2� + 3� <
kf⇤k2p

2� holds, one can verify that

k✓̂(t)� ✓(0)k 
r

t

�
kf⇤kp

and this finishes the proof of the lemma. ⇤
Proof of Proposition 4.9: Recall the evolution equation of

ū(x, t) in (25), which can be written as

@tū(x, t) =� Ex0⇠pK0(x, x0) � (�ū(x0, t)� sq(x0))

� Ex0⇠pK0(x, x0) � sp(x0).

Because k@✓f(x, ✓)k is uniformly bounded by L1 by Assump-
tion 4(C1), each column of the d-by-M⇥ matrix @✓f(x, ✓(0)),
which can be viewed as a vector field on X , is uniformly
bounded and thus in L2(p) \ F0(p), and then

Ex0⇠p@✓f(x0, ✓(0)) · sp(x0) = �Ex0⇠prx0 · @✓f(x0, ✓(0)).

As a result, we have

Ex0⇠pK0(x, x0) � sp(x0) = �Ex0⇠prx0 ·K0(x, x0).

By comparing to (38), we have

@t(û� ū)(x, t) =� Ex0⇠p̂K̂t(x, x0) � (�û(x0, t)� sq(x0))
+ Ex0⇠pK0(x, x0) � (�ū(x0, t)� sq(x0))

+ Ex0⇠p̂rx0 · K̂t(x, x0)
� Ex0⇠prx0 ·K0(x, x0),
= 1�+ 2�+ 3�+ 4�+ 5�, (71)

where

1� := �Ex0⇠p̂K̂t(x, x0) � (�û(x0, t)� �ū(x0, t))
2� := �Ex0⇠p̂(K̂t(x, x0)�K0(x, x0)) � (�ū(x0, t)� sq(x0))
3� := �(Ex0⇠p̂ � Ex0⇠p)K0(x, x0) � (�ū(x0, t)� sq(x0))
4� := Ex0⇠p̂(rx0 · K̂t(x, x0)�rx0 ·K0(x, x0))
5� := (Ex0⇠p̂ � Ex0⇠p)rx0 ·K0(x, x0).

We will analyze each of the five terms respectively toward
deriving a bound of k�(û � ū)(·, t)kp as has been done in
the proof of Proposition 4.5(ii). We restrict to when t 
( r
2kf⇤kp

)2� by default, and consider being under the good
event in Lemma 4.8 assuming that n > n� (by (69), this
ensures that n is greater than the large n threshold integer
n6 required by (C6)), where we have ✓̂(t) 2 Br and

k✓̂(t)� ✓(0)k 
r

t

�
kf⇤kp. (72)

In the below, we may omit the dependence on t in notation
when there is no confusion, e.g., we write �û(x0, t)� sq(x0)
as (�û� sq)(x0).

Bound of k 5�k: By definition, 5� =
h@✓f(x, ✓(0)), (Ex0⇠p̂�Ex0⇠p)rx0 ·@✓f(x0, ✓(0))i⇥, and thus

k 5�k  k@✓f(x, ✓(0))kk(Ex0⇠p̂ � Ex0⇠p)rx0 · @✓f(x0, ✓(0))k.

By (C1), k@✓f(x, ✓(0))k  L1; To bound k(Ex⇠p̂�Ex⇠p)rx ·
@✓f(x, ✓(0))k, we utilize the matrix Bernstein inequality (see,
e.g., [40, Th. 6.1.1], reproduced as Lemma 1.2): The matrix
rx · @✓f(xi, ✓(0)) is of size 1-by-M⇥, and the operator norm
is bounded by L3 by Assumption 5(C3). By Lemma 1.2, let
n5 > 2 be an integer s.t. n > n5 implies

(10 log n + log(2M⇥))/n < (3/2)2, (73)

then when n > n5, there is a good event E5 that happens
w.p. � 1� n�10 under which

k(Ex⇠p̂ � Ex⇠p)rx · @✓f(x, ✓(0))k

 4
p

11L3

r
log n + log M⇥

n
.
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As a result, when n > n5 and under E5,

k 5�k  4
p

11L1L3

r
log n + log M⇥

n
. (74)

Bound of k 4�k: By definition,

rx0 · K̂t(x, x0)�rx0 ·K0(x, x0)

= h@✓f(x, ✓̂(t)),rx0 · @✓f(x0, ✓̂(t))i⇥
� h@✓f(x, ✓(0)),rx0 · @✓f(x0, ✓(0))i⇥

= h@✓f(x, ✓̂(t))� @✓f(x, ✓(0)),rx0 · @✓f(x0, ✓̂(t))i⇥
+ h@✓f(x, ✓(0)),rx0 · @✓f(x0, ✓̂(t))
�rx0 · @✓f(x0, ✓(0))i⇥.

By that ✓̂(0), ✓̂(t) 2 Br and (C1)(C2)(C3)(C4),

krx0 · K̂t(x, x0)�rx0 ·K0(x, x0)k

 (L2L3 + L1L4)k✓̂(t)� ✓(0)k.

Together with (72), we have that

k 4�k  (L2L3 + L1L4)
p

t/�kf⇤kp. (75)

Bound of k 3�k: By definition, 3� =
�h@✓f(x, ✓(0)), (Ex0⇠p̂ � Ex0⇠p)@✓f(x0, ✓(0))T (�ū(x0, t) �
sq(x0))i⇥, thus

k 3�k  k@✓f(x, ✓(0))k
k(Ex0⇠p̂ � Ex0⇠p)@✓f(x0, ✓(0))T

(�ū(x0, t)� sq(x0))k
 L1k a�3 � b�3k,

where

a�3 := (Ex0⇠p̂ � Ex0⇠p)@✓f(x0, ✓(0))T �ū(x0, t),
b�3 := (Ex0⇠p̂ � Ex0⇠p)@✓f(x0, ✓(0))T sq(x0).

For b�3, we need to bound k(Ex⇠p̂ �
Ex⇠p)sq(x)T @✓f(x, ✓(0))k. At each x, sq(x)T @✓f(x, ✓(0)) is
a 1-by-M⇥ vector, and the norm is bounded by L1bq uniformly
on X by (C6). Applying Lemma 1.2 and consider when
n > n5 which implies (10 log n + log(1 + M⇥))/n < (3/2)2,
there is a good event Eb that happens w.p. � 1� n�10 under
which

k(Ex⇠p̂ � Ex⇠p)sq(x)T @✓f(x, ✓(0))k

< 2
p

11L1bq

r
log n + log M⇥

n
.

(76)

This shows that when n > n5 and under Eb, k b�3k is bounded
by the r.h.s. of (76).

For a�3, we will bound the deviation to be Õ(n�1/2) uni-
formly for all t. The observation is that though ū(x, t) changes
over t, the concentration argument of the sample average only
involves the kernel K0(x, x0). Specifically, by definition,

�ū(x, t) = ��

Z t

0
Ey⇠p[K0(x, y)](�ū(y, s)� f⇤(y))ds,

(77)

and then

a�3 = ��

Z t

0

h
(Ex0⇠p̂ � Ex0⇠p)@✓f(x0, ✓(0))T @✓f(x0, ✓(0))

i

· Ey⇠p@✓f(y, ✓(0))T (�ū(y, s)� f⇤(y))ds.

Note that kEy⇠p@✓f(y, ✓(0))T (�ū(y, s) � f⇤(y))k 
L1Ey⇠pk�ū(y, s) � f⇤(y)k by (C1), and Ey⇠pk�ū(y, s) �
f⇤(y)k  k�ū(·, s) � f⇤kp. The latter can be bounded by
kf⇤kp using the same argument as in (Claim 1) (57) proved
in the proof of Proposition 4.5, that is, for any t � 0,

k�ū(·, t)� f⇤kp  k�ū(·, 0)� f⇤kp = kf⇤kp. (78)

Putting together, this implies that

k a�3k  �L1

Z t

0

���(Ex0⇠p̂ � Ex0⇠p)@✓f(x0, ✓(0))T

@✓f(x0, ✓(0))
���Ey⇠pk�ū(y, s)� f⇤(y)kds

 �tL1kf⇤kp

���(Ex0⇠p̂ � Ex0⇠p)@✓f(x0, ✓(0))T

@✓f(x0, ✓(0))
���.

Next, we bound k(Ex⇠p̂ � Ex⇠p)@✓f(x, ✓(0))T @✓f(x, ✓(0))k
by matrix Bernstein inequality Lemma 1.2: The matrix
@✓f(x, ✓(0))T @✓f(x, ✓(0)) is of size M⇥-by-M⇥, and its oper-
ator norm is bounded by L2

1 by (C1). When n > n5 as defined
by (73), Lemma 1.2 gives that w.p. � 1� n�10,

k(Ex⇠p̂ � Ex⇠p)@✓f(x, ✓(0))T @✓f(x, ✓(0))k

 2L2
1

r
10 log n + log(2M⇥)

n

< 2
p

11L2
1

r
log n + log M⇥

n
.

(79)

We call the above good event Ea. Thus, when n > n5 and
under Ea,

k a�3k  2
p

11(�t)L3
1kf⇤kp

r
log n + log M⇥

n
.

Putting together, we have that when n > n5 and under Ea\Eb,

k 3�k  L1(k a�3k+ k b�3k)

 2
p

11L2
1((�t)L2

1kf⇤kp + bq)
r

log n + log M⇥

n
.

(80)

Bound of k 2�k: By definition,

K̂t(x, x0)�K0(x, x0) = @✓f(x, ✓̂(t))@✓f(x0, ✓̂(t))T

� @✓f(x, ✓(0))@✓f(x0, ✓(0))T .

Since ✓(0), ✓̂(t) 2 Br, by (C1)(C2), 8x, x0 2 X ,

kK̂t(x, x0)�K0(x, x0)k
 k@✓f(x, ✓̂(t))kk@✓f(x0, ✓̂(t))� @✓f(x0, ✓(0))k

+ k@✓f(x, ✓̂(t))� @✓f(x, ✓(0))kk@✓f(x0, ✓(0))k
 2L1L2k✓̂(t)� ✓(0)k

 2L1L2

r
t

�
kf⇤kp,

where we used (72) in the last inequality. This gives that

k 2�k  2L1L2

r
t

�
kf⇤kpEx0⇠p̂k�ū(x0, t)� sq(x0))k. (81)

Authorized licensed use limited to: Duke University. Downloaded on December 31,2024 at 03:43:50 UTC from IEEE Xplore.  Restrictions apply. 



7268 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 11, NOVEMBER 2023

We will bound Ex0⇠p̂k�ū(x0, t)� sq(x0))k to be O(1). First,
note that we have

k�ū(·, t)� sqkp  k�ū(·, t)� (sq � sp)kp + kspkp

 kf⇤kp + kspkp (by (78))
 2kf⇤kp + bq, (82)

where the last line is by the fact that kspkp  kf⇤kp + ksqkp

and (C6). We claim that when n is large enough and under a
high probability good event, to be specified below,

(Claim) (Ex⇠p̂ � Ex⇠p)k�ū(x, t)� sq(x)k2


�
L2

1kf⇤kp + bq

�2
.

(83)

Together with (82), this will imply that

Ex⇠p̂k�ū(x, t)� sq(x))k
 (Ex⇠p̂k�ū(x, t)� sq(x)k2)1/2

 (2 + L2
1)kf⇤kp + 2 bq := C2,2. (84)

Then (81) gives

k 2�k  2L1L2C2,2

p
t/�kf⇤kp. (85)

To prove the claim (83), we will bound (Ex⇠p̂ �
Ex⇠p)k�ū(x, t)� sq(x)k2 to be Õ(n�1/2) uniformly for all t
similarly as in the analysis of a�3 above, where we leverage
the expression (77) of ū(x, t) via K0(x, x0). Based on the
expression, we have

k�ū(x, t)k2

= �2

Z t

0

Z t

0
Ex0

1⇠pEx0
2⇠p(�ū(x01, s1)� f⇤(x01))

T

[K0(x, x01)
T K0(x, x02)](�ū(x02, s2)� f⇤(x02))ds1ds2.

Meanwhile, k�ū(x, t) � sq(x)k2 = k�ū(x, t)k2 � 2sq(x) ·
�ū(x, t) + ksq(x)k2, and then

(Ex⇠p̂ � Ex⇠p)k�ū(x, t)� sq(x)k2 = a�2 � 2 b�2 + c�2,

where

a�2 := �2

Z t

0

Z t

0
Ex0

1⇠pEx0
2⇠p(�ū(x01, s1)� f⇤(x01))

T

h
(Ex⇠p̂ � Ex⇠p)K0(x, x01)

T K0(x, x02)
i

(�ū(x02, s2)� f⇤(x02))ds1ds2

= �2

Z t

0

Z t

0
Ex0

1⇠pEx0
2⇠p(�ū(x01, s1)� f⇤(x01))

T

@✓f(x01, ✓(0))
h
(Ex⇠p̂ � Ex⇠p)@✓f(x, ✓(0))T

@✓f(x, ✓(0))
i
@✓f(x02, ✓(0))T (�ū(x02, s2)

� f⇤(x02))ds1ds2,

and, (C1) implies that k@✓f(x01, ✓(0))k, k@✓f(x02, ✓(0))k  L1,

| a�2|  �2L2
1

���(Ex⇠p̂ � Ex⇠p)@✓f(x, ✓(0))T @✓f(x, ✓(0))
���

·
✓Z t

0
Ex0

1⇠pk�ū(x01, s1)� f⇤(x01)kds1

◆2

 (�t)2L2
1kf⇤k2p

·
���(Ex⇠p̂ � Ex⇠p)@✓f(x, ✓(0))T @✓f(x, ✓(0))

���, (86)

where the last inequality used that Ex⇠pk�ū(x, s)� f⇤(x)k 
k�ū(·, s)� f⇤kp  kf⇤kp by (78); Meanwhile,

b�2 := ��

Z t

0
Ex0⇠p

h
(Ex⇠p̂ � Ex⇠p)sq(x)T K0(x, x0)

i

(�ū(x0, s)� f⇤(x0))ds

= ��

Z t

0
Ex0⇠p

h
(Ex⇠p̂ � Ex⇠p)sq(x)T @✓f(x, ✓(0))

i

@✓f(x0, ✓(0))T (�ū(x0, s)� f⇤(x0))ds,

and, similarly,

| b�2|  �L1

���(Ex⇠p̂ � Ex⇠p)sq(x)T @✓f(x, ✓(0))
���

Z t

0
Ex0⇠pk�ū(x0, s)� f⇤(x0)kds

 (�t)L1kf⇤kp���(Ex⇠p̂ � Ex⇠p)sq(x)T @✓f(x, ✓(0))
���; (87)

Finally,
c�2 := (Ex⇠p̂ � Ex⇠p)ksq(x)k2.

To bound | a�2|, | b�2|, and c�2, we use the concentration
argument respectively.

For a�2, recall that we have bounded k(Ex⇠p̂ �
Ex⇠p)@✓f(x, ✓(0))T @✓f(x, ✓(0))k in (79). This means that
when n > n5 and under Ea,

| a�2|  2
p

11(�t)2L4
1kf⇤k2p

r
log n + log M⇥

n
. (88)

For b�2, we have bounded k(Ex⇠p̂ �
Ex⇠p)sq(x)T @✓f(x, ✓(0))k in (76). Thus, when n > n5 and
under Eb, (87) gives that

| b�2|  2
p

11(�t)L2
1kf⇤kpbq

r
log n + log M⇥

n
. (89)

For c�2, by Assumption 5(C6) and that n > n� ensures
n > n6, there is a good event Ec that happens w.p. � 1�n�10

under which

c�2 
p

20b2
q

r
log n

n
. (90)

Putting together (88)(89)(90), when n > max{n�, n5} and
under the intersection of Ea, Eb and Ec, we have

(Ex⇠p̂ � Ex⇠p)k�ū(x, t)� sq(x)k2  | a�2|+ 2| b�2|+ c�2

 2
p

11
�
(�t)L2

1kf⇤kp + bq

�2
r

log n + log M⇥

n
.

Let n�,t be the integer s.t. when n > n�,t,

2
p

11 max{(�t)2, 1}
r

log n + log M⇥

n
< 1, (91)

then we have shown that the claim (83) holds when n >
max{n�, n5, n�,t} and under Ea \ Eb \ Ec.

Analysis of (71): We handle 1� based on the proved bounds
of the other four terms in (71). Define II�(x, t) := 2� +
3�+ 4�+ 5�. Collecting (74)(75)(80)(85), we have that when
n > max{n�, n5, n�,t} and under the intersection (of the good
event in Lemma 4.8 and) Ea \ Eb \ Ec \ E5,

k II�(x, t)k  (2L1L2C2,2 + L2L3 + L1L4)
p

t/�kf⇤kp
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+ 2
p

11(�tL4
1kf⇤kp + L2

1bq + 2L1L3)
r

log n + log M⇥

n

 C2,1

 
p

t/�kf⇤kp + (�t + 1)
r

log n + log M⇥

n

!

=: g(t), (92)

where

C2,1 := max{2L1L2C2,2 + L2L3 + L1L4,

2
p

11L4
1kf⇤kp,

2
p

11(L2
1bq + 2L1L3)}, (93)

and C2,2 is defined as in (84). Back to (71), we have

@t(û� ū)(x, t) = 1�+ II�(x, t)
= �Ex0⇠p̂K̂t(x, x0) � �(û� ū)(x0, t) + II�(x, t). (94)

We first derive a bound of

k�(û� ū)(·, t)kp̂ := (Ex⇠p̂k�(û� ū)(x, t)k2)1/2,

namely the mean squared error on training samples. By (94),

d

dt

1
2
k�(û� ū)(·, t)k2p̂ = �2Ex⇠p̂(û� ū)(x, t)T

@t(û� ū)(x, t)
 �2Ex⇠p̂(û� ū)(x, t)T II�(x, t)
 �2Ex⇠p̂k(û� ū)(x, t)kk II�(x, t)k
 �2g(t)Ex⇠p̂k(û� ū)(x, t)k
 �g(t)k�(û� ū)(·, t)kp̂,

where in the first inequality we used that

Ex⇠p̂(û� ū)(x, t)T 1�

= ��Ex⇠p̂Ex0⇠p̂(û� ū)(x, t)T [K̂t(x, x0)](û� ū)(x0, t)  0.

Using the same argument as in the proof of Proposition 4.5(ii)
based on (59), we have that for any t being considered,

k�(û� ū)(·, t)kp̂  2�

Z t

0
g(s)ds

 2�

Z t

0
g(t)ds (g(t) is monotone in t)

= 2�tg(t). (95)

Next, we use (95) to bound k�(û�ū)(·, t)kp. Again from (94),
we have
d

dt

1
2
k�(û� ū)(·, t)k2p

= �2Ex⇠p(û� ū)(x, t)T @t(û� ū)(x, t)

= ��2Ex⇠pEx0⇠p̂(û� ū)(x, t)T [K̂t(x, x0)]�(û� ū)(x0, t)
+ �2Ex⇠p(û� ū)(x, t)T II�(x, t)

 �L2
1Ex⇠pk�(û� ū)(x, t)kEx0⇠p̂k�(û� ū)(x0, t)k

+ �Ex⇠pk�(û� ū)(x, t)kk II�(x, t)k
 �L2

1k�(û� ū)(·, t)kpk�(û� ū)(·, t)kp̂

+ �g(t)k�(û� ū)(·, t)kp

 �(L2
12�t + 1)g(t)k�(û� ū)(·, t)kp (by (95))

where in the first inequality we used the upper bound
kK̂t(x, x0)k = k@✓f(x, ✓̂(t))@✓f(x, ✓̂(t))T k  L2

1 by (C1).
Using the argument by integrating over t again, we have

k�(û� ū)(·, t)kp  2�

Z t

0
(2L2

1�s + 1)g(s)ds

 2�t(2L2
1�t + 1)g(t).

((2L2
1�t+1)g(t) is monotone in t). Inserting the definition of

g(t) in (92), we have

k�(û� ū)(·, t)kp  2C2,1(1 + 2L2
1�t)

 
�1/2t3/2kf⇤kp + (�t + 1)�t

r
log n + log M⇥

n

!
,

which proves (40) by defining C2 := 2C2,1 max{1, 2L2
1}.

By the definition of C2,1 in (93) and C2,2 in (84),

C2  c(L1, · · · , L4)(1 + bq + kf⇤kp),

where c(L1, · · · , L4) an O(1) constant determined by
L1, L2, L3, L4. ⇤

Proof of Theorem 4.10: Similarly as in the proof of Theo-
rem 4.6, the required largeness of � guarantees that the range
of t0 in (41) is non-empty. Proposition 4.4 applies same as
before, and t0 � 1 ensures that the bound of k�ū(·, t)� f⇤kp

as in (28) holds.
The upper bound of t0 in (41) ensures that t falls in the

needed range by Proposition 4.9; We consider large n as
required by Proposition 4.9, and, by Remark 4.4, the three
thresholds n�, n5, n�,t are determined by �, kf⇤kp, log M⇥

and �t = t0
log(1/✏)

� . We also consider being under the
intersection of the good events in Proposition 4.9, which
happens w.p. � 1� 7n�10, then (40) holds.

Putting together (28) and (40), by triangle inequality,
we have

k�û(x, t)� f⇤kp  2✏kf⇤kp

+C2(1 + �t)
⇣
�1/2t3/2kf⇤kp

+(1 + �t)�t

r
log n + log M⇥

n

!
.

Then (42) follows by the equality �t = t0
log(1/✏)

� and defining

1 := (1 + t0
log(1/✏)

�
)
✓

t0
log(1/✏)

�

◆3/2

,

2 := (1 + t0
log(1/✏)

�
)2t0

log(1/✏)
�

.

⇤

C. Proof in Section V-A
Proof of Corollary 5.1: Applying Theorem 4.10 gives that,

under Etr, k�f̂ � f⇤kp is upper bounded by the r.h.s. of (42)
where setting n = ntr. The condition of the corollary further
implies that

k�f̂ � f⇤kp < 0.9kf⇤kp.

Then,

h�f̂ , f⇤i � kf⇤k2p = h�f̂ � f⇤, f⇤i
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� �k�f̂ � f⇤kpkf⇤kp

> �0.9kf⇤k2p,

which gives that h�f̂ , f⇤i > 0.1kf⇤k2p. Meanwhile, by that
f̂ 2 F0(p) \ L2(p) (Assumption 3), (8) gives that

Ex⇠pTq f̂(x) = hf⇤, f̂ip >
0.1
�
kf⇤k2p. (96)

Next, we bound the deviation of T̂ and T̂null by concentra-
tion. By definition,

T̂ = Ex⇠p̂Tq f̂(x), p̂ :=
1

nGoF

nGoFX

i=1

�xi .

Recall that ✓̂(t) 2 Br by Lemma 4.8, then, by Assump-
tion 5(C5)(C6),

|Tq f̂(xi)|  |sq · f̂(xi)|+ |r · f̂(xi)|  b(0)bq + b(1) =: b.

By the Hoeffding’s inequality, Lemma 1.1, for any t > 0,
denote nGoF by n,

Pr[Ex⇠p̂Tq f̂(x)� Ex⇠pTq f̂(x)  �t|Etr]  exp{� nt2

2 b2
}.

By union bound, and the condition that 7n�10
tr <

0.1 min{↵,�},

Pr[Ex⇠p̂Tq f̂(x)�Ex⇠pTq f̂(x)  �t]  exp{� nt2

2 b2
}+7n�10

tr

< exp{� nt2

2 b2
}+ 0.1�.

This gives that w.p. � 1� �,

T̂ � Ex⇠pTq f̂(x)� t1, t1 :=
p

2b

s
log 1

0.9�

nGoF
.

Similarly,

T̂null = Ey⇠q̂Tq f̂(y), q̂ :=
1

nGoF

nGoFX

i=1

�yi ,

and w.p. � 1� ↵,

T̂null  t2, t2 :=
p

2b

s
log 1

0.9↵

nGoF
.

We set t2 to be the test threshold, combined with (96),
we know that the target significance level and power can
be achieved if t1 + t2  0.1

� kf
⇤k2p. Together with thatq

log 1
0.9↵  0.5 +

q
log 1

↵ and similarly for
q

log 1
0.9� , this

proves the corollary. ⇤

APPENDIX A
ADDITIONAL TECHNICAL LEMMAS AND PROOFS

A. Proofs of Technical Lemmas
Proof of Lemma 2.1: For any f 2 F0(p), because pf |@X =

0, we have Z

X
pr · f = �

Z

X
rp · f

Then for any f 2 L2(p) \ F0(p),

Ex⇠pTqf(x) =
Z

X
p(sq · f +r · f) =

Z

X
psq · f �

Z

X
rp · f

=
Z

X
p(sq � sp) · f = Ex⇠pf⇤ · f = hf⇤, fip.

(A.1)

Note that the integrals are well-defined because both sp and
sq are in L2(p). By (A.1), whenever kfkp  r,

Ex⇠pTqf(x)  kf⇤kpkfkp  rkf⇤kp, (A.2)

where kf⇤kp < 1 because sq and sp are in L2(p). This proves
that SDr(p, q) is upper bounded by rkf⇤kp and thus is finite.
To show that SDr(p, q) = rkf⇤kp, first when f⇤ = 0 in L2(p)
then SDr(p, q) = 0 by (A.2). If kf⇤kp > 0, by property of the
inner product, the f that is a positive multiple of f⇤ and has
kfkp = r achieves the supremum of value rkf⇤kp. Because
f⇤ 2 F0(p), this maximizer f = (r/kf⇤kp)f⇤ is also in F0(p).
⇤

Proof of Lemma 4.1: By the definition of L� in (13)
and (11), the latter applies to f = f(·, ✓) because f(·, ✓) is
in L2(p) \ F0(p) by Assumption 3,

L�(✓) = �hf⇤, f(·, ✓)ip +
�

2
kf(·, ✓)k2p

= Ex⇠p

✓
�f⇤(x) · f(x, ✓) +

�

2
kf(x, ✓)k2

◆
.

Then we have that
@

@✓
L�(✓) = Ex⇠p

�
� f⇤(x) · @✓f(x, ✓) + �f(x, ✓) · @✓f(x, ✓)

�

= Ex⇠p@✓f(x, ✓) ·
�
�f(x, ✓)� f⇤(x)

�
.

This proves (19) according to the GD dynamic defined in (18).
⇤

Proof of Lemma 4.2: Inserting (19) to (21) gives that
@

@t
u(x, t) = �h@✓f(x, ✓(t)),

Ex0⇠p@✓f(x0, ✓(t)) ·
�
�u(x0, t)� f⇤(x0)

�
i⇥,

(A.3)

where we used the definition (20). The lemma then follows by
the definition (22) and the linearity of inner-product h·, ·i⇥. ⇤

Proof of Lemma 4.7: By (33),

@✓L̂�(✓) = Ex⇠p̂ (@✓f(x, ✓)
·(�f(x, ✓)� sq(x))�rx · @✓f(x, ✓)) ,

(A.4)

and combined with (34)(35), we have

@tû(x, t)

= �h@✓f(x, ✓̂(t)), @✓L̂�(✓̂(t))i⇥
= �

D
@✓f(x, ✓̂(t)),

Ex0⇠p̂

⇣
@✓f(x0, ✓̂(t)) · (�û(x0, t)� sq(x0))

�rx0 · @✓f(x0, ✓̂(t))
⌘E

⇥

= �Ex0⇠p̂

⇣
h@✓f(x, ✓̂(t)), @✓f(x0, ✓̂(t))i⇥

� (�û(x0, t)� sq(x0))

�h@✓f(x, ✓̂(t)),rx0 · @✓f(x0, ✓̂(t))i⇥
⌘

.
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TABLE I

FOR THE MIXTURE DATA IN 2D AS IN (45) OF SECTION VI-A.2, WE CONSIDER THE APPROXIMATE EPOCH AT WHICH THE MONITOR [MSE
(m)
p (17)

IS MINIMIZED. AT THIS EPOCH OF TRAINING, WE DISPLAY THE AVERAGE GOF TESTING POWER (nGoF = 75) AND [MSEq (16)
OVER nreplica = 10 MODELS FOR EACH REGULARIZATION STRATEGY

This proves the lemma by the definition of K̂t(x, x0)
in (36). ⇤

B. Concentration Lemmas
The following lemma can be derived from Classical Hoeffd-

ing’s inequality.
Lemma 1.1 (Hoeffding): Suppose X1, · · · , Xn are inde-

pendent random variables, |Xi|  L. Then for any t � 0,

Pr[
1
n

nX

i=1

(Xi � EXi) � t], Pr[
1
n

nX

i=1

(Xi � EXi)  �t],

 exp{� nt2

2L2
}.

The following lemma can be directly derived from
[40, Th. 6.1.1].

Lemma 1.2 (Matrix Bernstein [40]): Let Xi be a sequence
of n independent, random, real-valued matrices of size
d1-by-d2. Assume that EXi = 0 and kXik  L for each
i, and ⌫ > 0 be such that

k 1
n

nX

i=1

EXiX
T
i k, k

1
n

nX

i=1

EXT
i Xik  ⌫.

Then, for any t � 0,

Pr[k 1
n

nX

i=1

Xik � t]  (d1 + d2) exp{� nt2

2(⌫ + Lt/3)
}.

APPENDIX B
ADDITIONAL EXPERIMENTS

A. Supplementary Tables
B. 1D Gaussian Mixture

Consider a setting in which q is a 1-dimensional Gaussian
mixture of two equally-weighted, unit variance components
at positions -1 and 1. Let p be a similar mixture, however
at positions -0.8 and 1, and the component at 1 has variance
0.25. Therefore, the score of q has the form:

sq(x) = rq(x)/q(x) =
✓

1p
2⇡

exp
✓
� (x + 1)2

2

◆

+
1p
2⇡

exp
✓
� (x� 1)2

2

◆◆�1

⇥
✓
�x + 1p

2⇡
exp

✓
� (x + 1)2

2

◆

�x� 1p
2⇡

exp
✓
� (x� 1)2

2

◆◆
,

where sp has similar form. Therefore, the scaleless optimal
critic f⇤ = sq � sp (7) has analytical form:

f⇤(x) =
✓

1p
2⇡

exp
✓
� (x + 1)2

2

◆

+
1p
2⇡

exp
✓
� (x� 1)2

2

◆◆�1

⇥
✓
�x + 1p

2⇡
exp

✓
� (x + 1)2

2

◆

�x� 1p
2⇡

exp
✓
� (x� 1)2

2

◆◆

�
✓

1p
2⇡

exp
✓
� (x + 0.8)2

2

◆

+
1

(0.5)
p

2⇡
exp

✓
� (x� 1)2

2⇥ (0.5)2

◆◆�1

⇥
✓
�x + 1p

2⇡
exp

✓
� (x + 0.8)2

2

◆

� x� 1
(0.5)3

p
2⇡

exp
✓
� (x� 1)2

2⇥ (0.5)2

◆◆
, (A.5)

which can be computed in a similar analytical manner in
higher dimension given distributions of the form (45).

A neural Stein critic (MLP of 2 hidden layers with 512-node
width) is trained using staged ⇤(1, 10�3, 0.9) regularization in
this setting given 1,000 training samples from q with batch size
200, learning rate 10�3, and Bw = 5.

C. Kernel Stein Discrepancy Goodness-of-Fit Test
As in Section V-A, consider the setting in which we are

provided with probability distribution q supported on X ⇢ Rd

from which we can sample, and consider the scenario wherein
we are provided with a finite sample of data xi ⇠ p of
nGoF samples. As an alternative to learning the Stein critic
function using a neural network for estimation of the test
statistic in (43), one may define the function space F to be
an RKHS defined by a kernel denoted k(·, ·). In this case,
the KSD admits computation in closed form by the following
relation:

KSD = Ex,x0⇠p[uq(x, x0)], (A.6)

where

uq(x, x0) = sq(x)Tk(x, x0)sq(x0) + sq(x)Trx0k(x, x0)
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TABLE II

FOR THE MIXTURE DATA IN 10D AS IN (45), WE CONSIDER THE EPOCH THAT MINIMIZES MONITOR [MSE
(m)
p , AT WHICH POINT WE DISPLAY THE

AVERAGE TESTING POWER (nGoF = 200) AND [MSEq OVER nreplica = 10 MODELS FOR EACH REGULARIZATION STRATEGY

TABLE III

FOR THE MIXTURE DATA IN 25D AS IN (45), WE CONSIDER THE EPOCH THAT MINIMIZES MONITOR [MSE
(m)
p , AT WHICH POINT WE DISPLAY THE

AVERAGE TESTING POWER (nGoF = 500) AND [MSEq OVER nreplica = 10 MODELS FOR EACH REGULARIZATION STRATEGY

Fig. 9. Comparison between the testing power of the KSD GoF test in the
50D setting described in Section VI-B.1 for a range of bandwidth choices with
nsample = 1500. The horizontal axis indicates the scaling factor � of the
kernel bandwidth (see Appendix B-C) and the vertical axis displays the test
power. The red line and error bars display the mean and standard deviation of
the testing power for each choice of kernel bandwidth, and the black line and
shaded region indicate the mean and standard deviation of the testing power
of the neural Stein GoF test in this setting.

+rxk(x, x0)Tsq(x0) + tr(rx,x0k(x, x0)). (A.7)

Using this formulation, [13] defines a quadratic-time V -
statistic which estimates the KSD as follows:

V̂q =
1

n2
GoF

nGoFX

i,j=1

uq(xi, xj). (A.8)

Given the test statistic (A.8), a “wild bootstrap” is used to
approximate the distribution of the test statistic under the
null hypothesis, which is outlined in [13]. Given the test

set of nGoF samples xi ⇠ p, the null hypothesis may be
rejected if (A.8) computed using these xi exceeds the (1�↵)
quantile of the wild bootstrapped distribution under the null
hypothesis (where, again, ↵ is selected to tune the Type-I
error). The power is then estimated using nrun number of such
GoF tests.

Following the approaches of [11] and [13], we use an RBF
kernel to define the RKHS used for KSD in our experiments.
This kernel has the following form:

k(x, x0) = exp
✓
�kx� x0k22

2�2

◆

= exp
�
��kx� x0k22

�
,

(A.9)

where � is the kernel bandwidth and � = 1/(2�2). A stan-
dard heuristic we employ is the choice of the median
Euclidean distance between the data considered as the band-
width � of this kernel. However, we also conduct an
experiment to select a bandwidth which has the capacity
to achieve higher testing power when used in the KSD
GoF test. We consider bandwidths which are scaled versions
of the median data distances heuristic bandwidth. That is,
we compute the testing power for bandwidth factors � 2
{2�6, 2�5, 2�4, 2�3, 2�2, 2�1, 20, 21, 22}, where the scaling
follows �0 = 1/(2��2) for � equal to the median Euclidean
distance between data samples. To do so, we consider the same
model and data distributions as in Section VI-B.1. We then
fix nsample = 1500, and compute the KSD test power from
nrun = 400 GoF tests using nboot = 500 bootstrapped sam-
ples in each test. This is conducted using nreplica = 5 replicas
to generate a mean and standard deviation of power computed
for each choice of bandwidth. Finally, we compare this to
the GoF testing power computed from nreplica = 5 neural
Stein critics trained using nsample = 1500 samples split into
a 50%/50% train/test split (where 20% of the train split is
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Fig. 10. Comparison between neural Stein critic GoF test in the 50D setting described in Appendix B-D for various proportions of training/testing split, where
the testing procedure and power/time computation is otherwise the same as that in Section VI-B.1. In all cases, the total number of points is nsample = 500.
The power and duration of the KSD test using the selected bandwidth according to Appendix B-C for nsample = 500 is shown in red in each figure. The
x-axis of each plot refers to the percentage of these points which are allocated to training for the neural network test. The remainder are used for computation
of the neural Stein test statistic. The y-axes of (A), (B), and (C) correspond to those of Figure 6.

Fig. 11. Comparison between neural Stein critic GoF test and KSD test
in the 50D setting described in Appendix B-D. Other than the change
in distribution perturbation parameters, the experiment is identical to the
experiments described in Section VI-B.1. The sample size nsample provided
to each method is indicated on the x axis. The neural method uses half of these
data for training and the other half for testing, and the KSD uses all nsample
samples for test statistic computation. The mean and standard deviation of the
testing power are plotted in each case, which is computed over 5 replicas.

used for validation). The result can be seen in Figure 9. This
shows that the factor of � = 2�4 maximizes power in this case.
Therefore, this factor is chosen to create the “best” selected
bandwidth for the experiments in Section VI-B.1. This figure
also displays that the KSD GoF test power is still less than
that of the neural Stein GoF test, despite better choices of
bandwidth.

D. Comparison Over Different Training-Test Splits
In Section VI-B.1, we outline a procedure for comparing

the neural Stein test to the KSD GoF test by considering
varying overall sample size nsample, training the neural net-
work using half of these samples and conducting tests using
the other half. This section analyzes the power and running
time of the neural Stein GoF hypothesis testing procedure as
outlined in Section V-A for a variety of training/testing splits.

Using the notation of Section VI-A.1 for the model and data
distributions, let the model distribution q be an isotropic, two-
component Gaussian mixture in R50 with means µ1 = 0d and
µ2 = 0.5 ⇥ 1d, and let the data distribution p have the form
of (45) with covariance shift ⇢1 = 0.99 and scale ! = 0.05.
In this section, we fix nsample = 500 and consider other
choices of training/testing split, comparing to the KSD with
“best” selected bandwidth (see Appendix B-C) for nsample =
500. That is, we partition the 500 points into splits whereby
the number of training samples takes on a proportion in the
range of {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}
of nsample. The testing procedure is otherwise identical to
that of Section VI-B.1. The result can be seen in Figure 10.
Figure 10(A) shows that there exists a range of splits for which
the power is nearly one and that since the computation time is
dominated by the training, as seen in Figures 10(B) and (C), a
50%/50% split is a good generic choice of the split. Therefore,
this split is used in the experiments outlined in Section VI-B.1
and displayed in Figure 6.

We also consider the comparison of testing power in this
case for the neural Stein critic GoF test and the KSD test with
the median data distances heuristic RBF kernel bandwidth and
the KSD with bandwidth selected to maximize power accord-
ing to the result outlined in Appendix B-C. The methodology
for comparing the power between these tests is identical to that
of Section VI-B.1. That is, for each sample size, the train/test
split is 50%/50%, with 20% of the training partition dedicated
to validation. The power is then computed in each case using
nrun = 400 GoF tests, nboot = 500 bootstrapped samples
in each individual test, efficient bootstrap ratio rpool = 50,
and nreplica = 5. The result can be found in Figure 11,
which shows that the power of the neural Stein critic GoF test
dominates that of both KSD test methods initially. However,
the neural Stein test achieves near unit power by the time
nsample = 500, and the KSD with selected bandwidth achieves
unit power by the time nsample = 1, 000. This increase in
power compared to Figure 6(A) is due to the fact that the
perturbation between the model and data distribution in this
scenario is larger in this setting than in the setting outlined in
Section VI-B.1.
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Fig. 12. The [MSEp (A) and [MSEq (B) of adaptive staged regularization strategies ⇤a and ⇤̃a compared to that of nonadaptive staged regularization ⇤
and fixed-� strategies. The trajectories of � over the course of training in the staged regularization strategies is depicted in (C). See Appendix B-E for a
description of the experiment setup, which is largely the same as the experiments described in Section VI-A.2. The mean MSE over 10 models is represented
as a solid line for each regularization strategy, while the standard deviation is represented as the shaded region. Similarly, for the adaptive staging strategies,
the mean value of � for each stage is represented by the solid line, while the standard deviation is reflected by the shaded region.

E. Adaptive Staging

In Section III-B, we specify a method for staging the weight
of regularization � via an exponential decay over the course of
optimization. Here, we develop an adaptive procedure which
stages � according to the monitor [MSE

(m)

p (17), and compare
with the non-adaptive staging in (15).

The adaptive staging method decides to stage the weight
of regularization down to a smaller value when the monitored
[MSE

(m)

p is observed to increase. Specifically, we examine two
adaptive staging approaches

• The strategy, denoted as ⇤a(�init, �term, �), begins with
� = �init. Over the course of training, [MSE

(m)

p is com-
puted after every Bw = 10 mini-batches of updates given
nval samples from p (in these examples, the validation
samples are re-drawn from p for each computation). If
[MSE

(m)

p is at any observation greater than the previous
observation, the weight of regularization � is multiplied
by the factor � < 1. This process is repeated until
� = �term, at which point � is fixed for the remainder
of training. We require that [MSE

(m)

p decrease at least
once with each stage of �, so that � may not stage
down until first an improvement followed by a decrease
in performance in MSE is observed.

• The staging, denoted by ⇤̃a, uses [MSEp instead of
[MSE

(m)

p as the monitor function to determine the staging.
For simulated high dimensional Gaussian mixture data,
the computation of [MSEp uses the prior information of
the scaleless optimal critic f⇤.

To assess the performance of the adaptive staging strategy,
we conduct an experiment using the Gaussian mixture data
of Section VI-A.1 in 25D with ! = 0.8 and ⇢1 = 0.5.
The neural Stein critic architecture and initialization are as
in Section VI-A.2. We again use the Adam optimizer with
default parameters, with learning rate 10�3 and batch size
200 samples. In this setting, the networks are trained using
4,000 samples from p for 60 epochs each. For each staging
strategy, 10 critics are trained. The [MSE

(m)

p and [MSEp are

computed each using nval = 20, 000 samples from p and
the [MSEq is computed using nte = 20, 000 samples from q.
We compare the staging to fixed regularization strategies with
� 2 {1⇥ 10�3, 4⇥ 10�3, 1.6⇥ 10�2}. The staging strategies
used are ⇤(3 ⇥ 10�1, 5 ⇥ 10�4, 0.85), ⇤a(3 ⇥ 10�1, 5 ⇥
10�4, 0.70), and ⇤̃a(3⇥10�1, 5⇥10�4, 0.70), where an update
is made according to the nonadaptive staging strategy every
Bw = 10 batches.

The [MSEp and [MSEq in the adaptive staging comparison
experiments are shown in Figure 12(A) and (B), respectively.
As in Section VI-A.3, all staging strategies outperform the
fixed-� strategies in 25D. Furthermore, the performances
of the adaptive strategies ⇤a and ⇤̃a and the non-adaptive
strategy ⇤ are similar, with overall minimal MSE comparable
across all three staging strategies. In addition, a comparison
of the trajectory of � over the course of training via the three
staged regularization strategies is displayed in Figure 12(C),
indicating that the adaptive staging strategies exhibit a roughly
exponential annealing of � over the course of training. This
result justifies the rationale of the heuristic, nonadaptive
staging approach proposed in Section III-B, which is com-
putationally less expensive than the adaptive staging which
relies on the repetitive computation of the monitor validation
MSE.
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