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Abstract —Developing automatic algorithms for real-time 
monitoring of underwater acoustic events is essential in 
ocean acoustic applications. Most previous ocean acoustic 
ecosystem monitoring studies are non-real-time, focusing on 
data received on a single hydrophone or a specific analysis, 
such as bearing estimation or detection, without consider- 
ing the full end-to-end analysis system. Here, we develop 
a unified framework for real-time ocean acoustic data anal- 
ysis including beamforming, detection, bearing estimation, 
and classification of transient underwater acoustic events. 
To detect sound sources, thresholding on computed mel- 
scale per-channel energy normalization (PCEN) is applied, 
followed by morphological image opening to extract pixels 
with significant intensities. Next, connected component analysis is applied for grouping pixel detections. The bearing 
of signal detections is next estimated via nonmaximum suppression (NMS) of 3-D stacked beamformed spectrogram 
imageries. To classify a variety of whale species from their calls, time–frequency features are extracted from each 
detected signal’s beamformed power spectrogram. These features are next applied to train three classifiers, including 
support vector machine (SVM), neural networks, and random forest (RF), to classify six whale vocalization categories: 
Fin, Sei, Unidentified Baleen, Minke, Humpback, and general Odontocetes. Best results are obtained with the RF 
classifier, which achieved 96.7% accuracy and 87.5% F1 score. A variety of accelerating approaches and fast algorithms 
are implemented to run on GPU. During an experiment in the U.S. Northeast coast in September 2021, the software 
and hardware advances developed here were used for near real-time analysis of underwater acoustic data received by 
Northeastern University’s in-house fabricated 160-element coherent hydrophone array system. 

Index Terms— Array processing, beamforming, coherent hydrophone array, data processing acceleration, detection, 
machine learning, passive acoustic, remote sensing. 
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I. INTRODUCTION 

NDERWATER acoustic data usually contain signals from 

a myriad of sound sources including marine life such as 

marine mammals (MMs), fishes, and crustaceans; man-made 
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machinery such as ships, wind farms, and seismic airguns; and 

natural geophysical processes such as earthquake and volcanic 

eruption [1], [2], [3], [4], [5], [6], [7]. MM vocalization 

classification is a challenging problem due to the transient 

nature of their broadband calls, high variation in the calls of 

a specie (intraclass variation), and high similarity between the 

calls of some species. 

MMs are usually defined as mammals whose terrestrial 

predecessors have returned to life in the sea. The most 

important criterion is that they must get all or most of their 

food from the marine environment. MMs include at least 

129 extant species divided into four groups [8], [9]. They are 

cetaceans (whales, dolphins, and porpoises), pinnipeds (seals, 

sea lions, and walruses), sirenians (sea cows that are now 

extinct, manatees, and dugongs), and fissipeds (one bear, the 

polar bear, the sea, and marine otters). Some of these groups 

such as fissipeds are much less completely adapted to living 
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Fig. 1. Sample log-transformed beamformed power spectrograms of 
different whale vocalization categories from the GOM 2006 Experiment. 
(a) Fin whale 20-Hz pulses, (b) unidentified baleen whale downsweep 
chirp (UBDC on left) and pair of sei whale downsweep chirps (right), 
(c) minke whale buzz sequence, (d) humpback whale song sequence, 
and (e) odontocete whale click signals. 

 

in the water compared with others such as cetaceans that are 

fully adapted to live their entire lives in the water [8]. 

There are currently 86 known living species of Cetacea, 

which can be divided into two suborders—baleen whales 

(Mysticeti) and toothed whales (Odontoceti). Baleen whales 

examples are Blue (Balaenoptera musculus), fin (Balaenoptera 

physalus), sei (Balaenoptera borealis), minke (Balaenoptera 

acutorostrata), and humpback (Megaptera novaeangliae). 

Toothed whales examples are sperm (Physeter microcephalus), 

killer (Orcinus orca), pilot (Globicephala spp.), and Delphinid 

species. Baleen whales are generally large, such as the blue 

whale (up to 33 m or more in length) and the smallest is 

the pygmy right whale (less than 7-m long). In contrast, the 

toothed whales are small to medium size, with the exception 

of the sperm whale which can get up to 18 m in length. Baleen 

whales do not have teeth, and instead in the mouth, the upper 

jaw is hung with baleen (stiff plates of keratin with fringes on 

the inside) [8]. 

MM vocalizations are associated with a variety of purposes 

such as echolocation, sexual display while mating, singing 

while migrating to breeding and feeding grounds, commu- 

nication, and contact calls for coordinated movement during 

group feeding and other activities [1], [10]. In this work, 

we investigate whale species classification for six classes 

including: Fin, Sei, Unidentified Baleen Downsweep Chirp 

(UBDC), Minke, Humpback, and toothed whales or Odon- 

tocetes. Examples of calls in each of these categories are 

shown in Fig. 1, recorded during the Gulf of Maine (GOM) 

2006 Experiment [1], [11], [12], [13], [14]. These sounds span 

a wide range of frequencies from low-frequency fin whale 

20-Hz pulse calls, to odontocetes click signals recorded here 

up to 4 kHz due to sampling frequency limitation of 8 kHz. 

Odontocetes can make sounds with significant energies at 

much higher frequencies to about 150–170 kHz [15] from the 

smallest odontocetes. 

Substantial volumes of underwater acoustic data are usually 

acquired in passive ocean acoustic waveguide remote sensing 

(POAWRS) experiments with a large-aperture densely pop- 

ulated coherent hydrophone array. The POAWRS technique 

has been widely used to detect, localize, track, and study 

underwater acoustic events such as whale behavior, population 

and distributions in time and space, and their interaction with 

prey species [1], [4], [7], [14], [16]. The task of processing 

and analyzing large volumes of underwater acoustic data is 

extremely laborious, especially when the data are drawn from 

measurements of a large-aperture densely populated coher- 

ent hydrophone array, since beamformed signals in multiple 

distinct bearing directions spanning 360◦ azimuths about the 

receiver array need to be analyzed concurrently. Developing 

automatic, accurate, and fast algorithms for the detection and 

classification of underwater acoustic events can help minimize 

the human effort needed for underwater acoustic monitoring, 

enabling real-time processing and analysis, and hence aiding 

rapid scientific discoveries at sea. 

Prior works in the published literature on classification of 

MM sounds using machine learning approaches and developed 

in recent years include [7], [17], [18], [19], [20], [21], [22], 

[23], [24], and [25]. In [17], deep learning was used for 

detection and classification of Sperm whale clicks. They used 

convolutional neural network (CNN) to classify each 0.5 s 

of data into “click” and “no click” categories, and then used 

long short-term memory (LSTM) and gated recurrent unit 

(GRU) to perform classification tasks for coda type, vocal clan, 

and whale identity classification. In [18], wavelet denoising 

was used to reduce noise level in the audio signal, and then 

dual-threshold endpoint detection algorithm [26] was used to 

detect the beginning and ending positions of the whale clicks. 

Next, a set of extracted features emphasizing the duration and 

scale energy from wavelet coefficient matrix were extracted 

and used to train a set of classifiers including support vector 

machine (SVM) and neural networks to distinguish between 

sperm whale and pilot whale clicks. Zhang et al. [19] used 

transfer learning approach using pretrained CNN models on 

the ImageNet dataset [27], and combined with Mix-up data 

augmentation, they fine-tuned the models on the whale-call 

datasets to subclassify 16 whale family units known as “pods” 

from killer and pilot whales. In [21], CNN consisting of 

residual blocks is trained for killer whale sound classification. 

In [22], region-based CNN is used for detection of Fin 

whale 40 Hz, and Blue whale D calls while also providing 

number of calls and times they occur. To detect North Atlantic 

right whale up-calls, Ibrahim et al. [23] used spectrograms 

and scalograms as the input to a CNN and stacked autoen- 

coder, respectively, to train the models and then fused the 

predictions from the two individual models for final prediction. 

In [24], CNNs are trained for killer and long-finned pilot 

whales’ whistle detection. In [25], five different types of 

Fin whale calls including 20-Hz single and double pulses, 
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18-Hz backbeat, 130-Hz upsweep, and 40–60-Hz down- 

sweep chirps in beamformed data of a coherent hydrophone 

array were classified using a set of classifiers including 

SVM, decision tree (DT), and CNNs. In older works, such 

as [28], automatic detection, and classification system for 

baleen whale calls was developed using pitch-tracking and 

quadratic discriminant function analysis. In [29], subclas- 

sification of humpback whale downsweep moan calls into 

13 subgroups was accomplished using K -means clustering 

after beamformed spectrogram analysis, pitch-tracking, and 

time–frequency feature extraction. Automatic classifiers were 

further developed in [7] to distinguish humpback whale song 

sequences from nonsong calls in the GOM by first applying 

bag of words to build feature vectors from beamformed time- 

series signals, calculating both power spectral density and 

mel frequency cepstral coefficients (MFCCs) features, and 

then using and comparing the performances of SVM, neural 

networks, and naive Bayes in the classification. Wavelet- 

transform-based approaches are also widely used in different 

applications. In [30], features from the discrete wavelet trans- 

form are fed into CNN architecture for fault detection in power 

systems. In [31], least-squares wavelet is applied to astronomi- 

cal time-series analysis and shown to provide higher resolution 

time–frequency spectrogram since it considers correlated and 

systematic noises. Most existing approaches for whale call 

classification focus on just one to two species and are based on 

acoustic data acquired with a single hydrophone. Supervised 

deep-learning-based approaches such as CNN and recurrent 

neural network (RNN) usually require large volume of labeled 

data to reach high accuracy. This is especially challenging for 

coherent hydrophone array data since labeling is necessary for 

data in multiple beamformed directions and frequency ranges. 

Here, we implement beamforming algorithms for high sam- 

ple rate large-aperture coherent hydrophone array data and 

output the power spectrogram density in multiple bearings 

spanning 360◦ azimuths about the horizontal receiver array 

simultaneously. Next, approaches for rapid detection, bearing 

estimation, and time–frequency feature extraction of under- 

water acoustic events from high sample rate beamformed 

data are implemented, including adaptation of methods in 

computer vision, image processing, and perception science 

for underwater acoustic data analysis. The results are then 

used as inputs in classification of MM vocalizations for real- 

time applications. We use underwater acoustic data from a 

160-element coherent hydrophone array and use the POAWRS 

technique to enable sensing and detections over instantaneous 

wide areas more than 100 km in diameter from the array. 

A variety of computational accelerating approaches, combin- 

ing hardware and software, which make the methods desirable 

for real-time applications are also developed. 

II. MATERIALS AND METHODS 

A. Datasets 

In this section, we describe the datasets analyzed here which 

are from the GOM 2006 and the U.S. Northeast coast (USNE) 

2021 experiments. 

The GOM 2006 Experiment dataset [1], [12], [13], [14] 

was acquired in Fall 2006, from September 19 to October 6, 

in this important North Atlantic MM feeding ground con- 

taining large populations of spawning fish, the Atlantic herr- 

ing [12], [13], [32]. Acoustic recordings of whale vocalizations 

were acquired using a large-aperture densely populated coher- 

ent hydrophone array with 160 elements, the ONR FORA 

array [33], [34] towed by a research vessel along designated 

tracks in Franklin Basin, north of Georges Bank. The acoustic 

data are sampled at 8000 Hz per element. Data from all 

160 hydrophone elements nested into four subapertures are 

analyzed, where each subaperture contains 64 hydrophones 

for spatially and temporally unaliased sensing up to 4 kHz [1]. 

In some time periods of the experiment, several hydrophones 

were nonresponsive and were omitted from data processing, 

reducing the number of usable hydrophones from 160 to 132. 

The water depth ranged from 180 to 250 m at the array 

locations. The array tow depth was roughly 105 m, and tow 

speed was roughly 2 m/s. 

Previous analysis in [1], [11], and [29] provided the labeled 

set of MM vocalization signals for this project. There the 

acoustic pressure–time series measured by sensors across 

the coherent hydrophone array which were converted into 

2-D beam-time series by beamforming. A total of 64 beams 

were formed, separately for each subaperture, spanning 360◦ 

horizontal azimuth about the receiver array. Each beam-time 
series was converted into a beamformed spectrogram by 
short-time Fourier transform (STFT) (sampling frequency 

8 kHz, frame 2048 samples, overlap 3/4, Hann window). 

Significant sounds present in the beamformed spectrograms 

were automatically detected by first applying a pixel inten- 

sity threshold detector [35] followed by pixel clustering and 

verified by visual inspection. Beamformed spectrogram pixels 

with local intensity values that stood 10 dB above the back- 

ground were grouped using a clustering algorithm according 

to a nearest-neighbor criteria which determines whether the 

pixels can be grouped into one or more significant sound 

signals. MMs’ vocalization signal detections were verified and 

labeled manually by visual inspection and listening to the 

sounds [1], [14], [29]. 

The USNE 2021 experiment dataset was acquired from 

September 3 to September 8, 2021 at the Great South Channel 

and the continental slope and deep water south of Rhode 

Island. The purpose of this experiment was to test the newly 

developed Northeastern University large-aperture coherent 

hydrophone array hardware, and data processing and analysis 

software systems for instantaneous wide-area passive acoustic 

monitoring of MMs, including detection and classification 

of MM sounds. The 160-element coherent hydrophone array 

hardware and software systems were designed, fabricated, 

and assembled in-house at Northeastern University (NU) [36], 

[37], [38], [39], [40]. The array was towed by a ship, and 

acoustic data were acquired at adjustable sampling frequencies 

ranging from 8 to 100 kHz per element. Whale vocalizations 

from a wide range of species, both mysticetes and odontocetes, 

were recorded in the frequency range spanning 10 Hz–50 kHz. 

The experimental regions for both the GOM 2006 and 

USNE 2021 experiments are shown in Fig. 2. Detailed 

schematics of the coherent hydrophone array systems includ- 

ing hydrophone positioning are provided in [33] and [34] for 
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Fig. 2. Map of the region containing bathymetry contours for GOM 
2006 and USNE experiments. 

 

the ONR FORA hydrophone array used in GOM 2006 Exper- 

iment, and in [38] for the NU coherent hydrophone array used 

sonar transmissions. The detection of transient broadband sig- 

nals can be significantly enhanced via data transformation in 

two key steps. They are nonuniform high-frequency compres- 

sion via mel-scale transformation and removal of persistent 

tonal background signals via per-channel energy normalization 

(PCEN) [44], [45]. Morphological image processing operation 

is next applied to remove noisy background regions while 

finding the desired potential detections. 

1) Mel Spectrogram: The mel-scale is a result of psychoa- 

coustics [46], which is a scale of pitches judged by listeners 

to be equal in distance one from another and looks like a 

quasi-logarithmic function of acoustic frequency. It shows 

humans do not perceive sound frequency differences in a linear 

scale. For example, 500-Hz frequency differences at lower 

frequencies, such as between 500 and 1000 Hz, are more 

readily discernible than at higher frequencies, such as between 

10 000 and 10 500 Hz. In [47], the empirically determined 

transformation from Hertz to mel-scale is defined as 

in USNE 2021 Experiment. 
m = C log10 1 + 

 f  
(2) 

f0 

B. Beamforming 

Beamforming is a spatial filtering technique using data from 

an array of sensors to enhance the signal-to-noise ratio (SNR) 

in the specified azimuthal direction or bearing and is widely 

used in acoustic and electromagnetic remote sensing and 

imaging systems [41], [42]. Relative bearing is the horizontal 

azimuth of a source with respect to the hydrophone array 

axis normal. Delay and sum array beamforming is used to 

amplify signals in specified relative bearing directions while 

simultaneously suppressing signals from other directions. The 

theoretical SNR gain from beamforming when using the n 

hydrophone array compared with using only one hydrophone 

is up to 10 log10 n dB, so if n = 64, the SNR gain is up to 

18 dB [1]. The actual array gain, which may differ from the 

18-dB theoretical array gain, is dependent on noise coherence 

and signal wavelength relative to array aperture length [43]. 

A large densely populated linear array of hydrophones enables 

detection of acoustic events from greater distances than a 

single hydrophone. The time delay of signal arrival between 

two successive hydrophones in the array is computed using 

the following equation: 

t = 
d 

sin θ (1) 
c 

where c is the speed of sound propagation in water, d is the 

distance between two successive hydrophones in meters, and θ 
is the relative bearing. Data are beamformed in 147 directions 

spanning θ between −90◦ and +90◦ corresponding to back- 

and forward endfires, respectively, with 0◦ corresponding to 
array broad side. The relative bearing θ is converted into 

true bearing β in a clockwise direction from true north by 

correcting for the array heading α. 

 

C. Detection of Transient Signals 

Many sound sources in the ocean generate broadband tran- 

sient signals, for example, MM vocalizations, fish-generated 

sounds, and human activities such as offshore piling and 

where f0 = 700 Hz is the corner frequency where human 

perception of frequency transitions from approximately linear 
to log dependence, and C = 1000/ log10(1 + (1000/700)) = 

2595 is a constant that ensures the mel-scale m = 1000 equals 

the physical frequency f = 1000 Hz. 

In linear scale spectrogram, the frequency width of con- 

secutive bins is a constant. However, in mel spectrogram, 

frequency resolution varies nonlinearly such that resolution 

is finer at low frequencies and broader at high frequencies. 

An advantage of mel-scale over linear scale spectrogram 

is a reduction in computational complexity for subsequent 

stages of the detection algorithm. For example, in STFT 

for spectrogram generation with desired temporal window 

length of 0.128 s, data sampled at 8000 Hz will lead to 

8000 ∗ 0.128 = 210 = 1024 number of FFT points for 

each temporal window. For data sampled at 100 kHz, there 

will be 214 = 16 384 number of FFT points for the same 

temporal resolution. This increase in the number of FFT points 

will in consequence raise the computational complexity. Here, 

using mel-scale can help improve the processing time for 

the subsequent steps. In the ocean acoustic datasets analyzed 

here, the key frequency information contained in detected 

signals can usually be represented by just 256 mel bins 

since fine frequency resolution is often needed for acoustic 

signals centered at low frequencies, but the same resolution 

is not necessary for signals centered at high frequencies. For 

example, a frequency resolution of around 1 Hz is usually 

necessary for an acoustic event centered at 20 Hz, while a 

coarser frequency resolution of around 100–500 Hz would 

suffice for acoustic events at 10 kHz. This is because most 

natural underwater acoustic signals, such as whale calls, have 

increasing frequency bandwidths as their call central frequen- 

cies increase. Another advantage of using mel over linear 

frequency scale is the reduction in noise level in the mel-scale. 

That is because for computing the mel-scale from linear scale, 

some kind of averaging (usually triangular window filter bank) 

is often used to summarize the frequency information from 
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multiple frequency bands into a single mel-scale band. This 

in consequence increases the detection algorithm’s accuracy. 

Nonlinearity in human perception also extends to acoustic 

intensities, where Weber’s law applies in that the smallest 

resolvable change, a just-notable-difference, grows in direct 

proportion to the stimulus. In [48], Weber’s law was found 

to be a consequence of attaining the theoretical minimum 

mean-square error possible, the Cramer–Rao lower bound, 

in resolving the intensity of naturally scintillating light and 

sound. Thus showing human intensity resolution is optimally 

adapted to the natural scintillation of light and sound. 

2) Per-Channel Energy Normalization: PCEN [44] is an 

alternative to logarithmic transform, with the aim of pro- 

viding better dynamic range compression (DRC), adaptive 

gain control, robustness to channel distortion, and learnable 

differentiable parameters that can be optimized using gradient- 

based optimizations [45]. The PCEN is applied to beamformed 

mel-scale transformed data prior to signal detection. Here, the 

equation used for PCEN, derived in the Appendix, is given by 

PCEN(t, f ) = 
r 

+ δ 
(ϵ + M(t, f ))α 

− δr 

 

(3) 

where E(t, f ) is the instantaneous signal energy at time t 

and frequency f , M(t, f ) is the mean signal energy obtained 

via time-averaging, ϵ prevents overflow error in quiet back- 

ground regions, r is the exponential transform power, and 

δ > 1 is a threshold parameter that enables the DRC to 

be adjusted. Instead of having a constant δ, we set it as 

a frequency-dependent parameter in a way that it fits the 

background frequency-dependent ocean noise. The formula for 

δ is described in the Appendix. 

3) Thresholding and Morphological Operations: The goal for 

transient underwater acoustic event detection is to extract 

individual signals that stand above the background noise and 

to focus on capturing the dominant signal energy, without 

breaking a signal into parts. To do so, we apply a proce- 

dure consisting of pixel thresholding, morphological image 

opening, and connected components’ labeling. A constant 

threshold equal to 2.5 is applied to PCEN spectrograms images 

to convert them into binary images. This threshold value is 

determined experimentally to provide a good tradeoff between 

false alarm rate and missed detections. Smaller threshold 

values will lead to more noisy detections while larger threshold 

values will cause some true detections to be missed. This 

constant thresholding is an advantage of working with PCEN 

since it scales out the frequency dependence of underwater 

stationary ambient noise. Otherwise a frequency-dependent 

and varying threshold would be needed, for instance, when 

working directly with linear or log-transformed acoustic 

energies. 

Fig. 3(d) shows an example of the output of thresholding 

on PCEN spectrogram for frequency range below 100 Hz. 

These data include several Fin whale 20-Hz and Sei whale 

downsweep chirp calls. As can be seen, the PCEN image 

has frequency-independent background, enabling the transient 

events (whale calls) to be readily detected. To focus detec- 

tion on dominant signal energies and to make the detection 

algorithm more robust against background noise regions, mor- 

Fig. 3. Detection processing stages showing (a) log-transformed 
power spectrogram of single hydrophone, (b) log-transformed power 
spectrogram of beamformed data using 132 hydrophones, (c) PCEN 
transformed spectrogram, (d) thresholded binary image, and (e) binary 
image after image opening. The results of connected component label- 
ing are shown as the white bounding boxes over the detected regions 
on the beamformed power spectrogram in (b). 

 

 

phological image opening is applied. Morphological image 

opening consists of two steps, the first is morphological image 

erosion, and the second is morphological image dilation. In the 

erosion step, a kernel slides through the binary image, and in 

the output image a pixel value will be equal to 1 if all the 

values inside the kernel are 1, and else it will be 0. Erosion 

makes the foreground boundaries thinner and also removes 

small dot-like detections. Dilation is the opposite of erosion 

in that a pixel is 1 in the output image if at least one pixel in the 

kernel is 1, making the boundaries of the foreground thicker 

and also merging nearby detections, thus compensating for the 

effect of erosion on foreground boundaries. Fig. 3(e) shows the 

output of the opening operation on the binary image in Fig. 

3(d) where the correct number signals are detected focusing 

on dominant signal energies. 

Next, connected components’ labeling [49] is applied to find 

the exact location of the detections and also separate them 

from each other. In a binary image, a connected component 

is a set of adjacent pixels whose values are 1. Fig. 3(b) 

shows the bounding boxes on the original beamformed power 

spectrogram after applying the connected component labeling 

on Fig. 3(e). The entire acoustic events’ detection procedure 

is capable of detecting and separating individual transient 

signals. 

 

D. Bearing Estimation 

The PCEN and transient acoustic event detection algo- 

rithms are applied to each beamformed spectrogram imagery 

( 
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to extract significant acoustic signals. Because of potential 

sidelobe effects and broad spatial beamwidths, especially at 

low frequencies, some detections may appear in multiple 

azimuthal directions. The relative bearing direction with the 

highest foreground energy is the correct direction for the 

detected signal. Furthermore, signals not overlapping in time 

and frequency should be considered as separate detections. 

Here, we use nonmaximum suppression (NMS) to determine 

a detected signal’s correct relative bearing. Note that NMS 

has been widely used for object detection in image process- 

ing [50], [51], [52]. In computer vision applications, many 

object detection methods produce multiple potential detections 

that are usually indicated by bounding boxes around the target 

objects. There NMS is used to select the bounding box with the 

highest detection score or probability among all the bounding 

boxes overlapping above some threshold. There are different 

criteria for measuring the percent of overlap between bounding 

boxes, among which the most commonly used is intersection 

over union (IoU), a similarity measure based on the Jaccard 

index. The IoU between two sets, A and B, is expressed as 

These features should be as discriminant as possible for 

different classes and at the same time be similar for samples 

of the same class. We extracted the following 13 features: 

1) minimum frequency, fmin (Hz); 2) maximum frequency 

fmax (Hz); 3) average central frequency f c (Hz); 4) band- 

width BW (Hz); 5) mean instantaneous bandwidth BWavg 

(Hz); 6) power amplitude weighted average frequency f¯ (Hz); 

7) duration of the detected call τ (s); 8) SNR; 9) slope (Hz/s); 

10) curvature (Hz/s2) from the first- and second-order polyno- 

mial fit to the vocalization traces obtained via pitch-tracking; 

11) area which is the number of pixels for the detected 
sound; 12) relative instantaneous bandwidth BWr ; and 

13) instantaneous power-weighted average frequency f¯w (Hz). 

Equations (7)–(20) provide the formulas to calculate these 

features 

fmin = min f (i, j)  ∀i, j (7) 
i, j 

fmax = max f (i, j)  ∀i, j (8) 
i, j 

BW = fmax − fmin (9) 

| A ∩ B| Area of Intersection ft( j) = f (i = t, j) (10) 
J( A, B) = = 

| A ∪ B| Area of Union 
. (4) 

c 

(
 

 

 
than some predefined threshold, the one with highest detection 

score is selected as the final detection. 
For bearing estimation here, we use NMS and IoU over- 

  

f c = f c/NT (12) 

t 

BWi = max(ft) − min(ft) (13) 
lapping measure to find the bounding box with the highest j j 

score among overlapping bounding boxes. To compute IoU, 

the signal energy in decibels is used as the detection score 

obtained from summing power of foreground time and fre- 

quency pixels inside detection bounding boxes in beamformed 

BWavg = 
L 

BWi /NT (14) 

f¯i = 
L 

P(i, j) f (i, j)

,
L 

P(i, j) (15) 

power spectrogram imagery. j j 

Once the correct relative azimuthal angle is found, the 
potential left–right bearings with respect to true north are 

calculated using the following: 

βright = α + (90 − θ) (5) 

f̄  = f̄ i /NT (16) 
i 

BWr = BWi / f¯i (17) 

BWr = 
L 

BWr /NT (18) 

βleft = α − (90 − θ) (6) 
i 

Pi = 10 log10 

L 
P(i, j) (19) 

where θ is the relative bearing of the detected acoustic event 

with respect to the array heading. α is the array heading with 

respect to the north. βright is the right bearing with respect 

to the north, and βleft is the left bearing with respect to 

 

f̄ w = 
i 

 

f ī Pi 

j 

,
L

i

 

 

 

Pi (20) 

the north, and only one of these is the true bearing, while 

the other is ambiguous. The inherent left–right ambiguity 

about the horizontal line-array’s axis is resolved by varying 

ship heading as described in [12], [14], [53], and [54]. 

The bearing estimates for acoustic detections in the GOM 

2006 and USNE 2021 Experiments are shown in Section III. 

Sequences of bearing estimates for acoustic detections from 

a particular source form a bearing-time trajectory. Bearing- 

time trajectories are essential for subsequent passive acoustic 

source localizations [53], [55]. 

 

E. Classification 

For each detection, we extract a set of features from the 

time–frequency power spectrograms of beamformed signals. 

where NT is the number of time steps, and P(i, j) is the power 

for time step index i and frequency band index j . The final 

feature vector is defined as 

features = fmin, fmax, f c, BW, BWavg, f¯, τ, 

SNR, slope, curvature, area, f¯w , BWr .  (21) 

We trained a set of classifiers including SVM, multi- 

layer perceptron (MLP) neural network, DT, and random 

forest (RF). Data are first normalized so the features have 

zero mean and unit variance. For DT, we use Gini impurity 

criterion for splitting the features. For RF, we set the number 

of estimators to 100 trees, each trained on a subset of training 

data samples with replacement and the final prediction is 

the majority vote of DTs. For MLP, we set the number of 

In NMS, among all the bounding boxes with IoU higher 
j j 

2 (11) 

L 
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fully connected layers to 5, each containing 30 neurons and 

rectified linear unit (ReLU) activation functions. Stochastic 
gradient descent (SGD) with batch size 200 and Adam [56] 

optimizer with learning rate 0.001, β1 = 0.9, β2 = 0.999, and 

ϵ = 1e−8 is used to train the network by minimizing categori- 
cal cross-entropy loss. Weight decay of 1e−4 is used to reduce 

overfitting. For SVM, we set the parameter C = 10 and used 

RBF kernel with parameter γ = 1/numfeatures = 1/13 when 
13 features are used or 1/7 when seven features are used. 

 

III. RESULTS 

In this section, we apply the methods developed and dis- 

cussed above to detect, analyze, and classify the significant 

sound sources including MM vocalization signals in the GOM 

2006 and USNE 2021 experimental datasets. First, we provide 

a comprehensive time–frequency features’ importance analy- 

sis, and then evaluate performances of various classifiers for 

distinguishing calls of different MM species present in our 

datasets. Next, we present the detection and bearing estimation 

results from the two experiments, including computational 

complexity analysis for real-time performance. 

 

A. Features Importance for Classification 

To analyze the separability of classes and features, we apply 

linear discriminant analysis (LDA) and principal component 

analysis (PCA) to reduce the feature dimensions from 13 to 3. 

Both LDA and PCA are methods for linear mapping where 

LDA is supervised while PCA is unsupervised. All data other 

than the test day data are used to find linear mapping using 

PCA and LDA which are then applied to the test data. Fig. 4 

shows the result of this mapping on the test data day of 

October 2, 2006. It can be observed that the class Odontocestes 

is highly separable from the other classes because of a different 

frequency range for this class compared with other classes. 

The Sei and UBDC classes as well as the Humpback and 

Minke classes are not as well-separated because of overlapping 

frequency range and duration of calls in these class pairs, 

respectively. 

To analyze features’ importance, we calculate the mean 

decrease in impurity (MDI) for the RF classifier. The MDI 

measure counts the number of times a feature is used to 

split a node weighted by the number of samples it splits and 

is plotted in Fig. 5 for classification of detections into the 

six whale categories using the RF classifier. This calculation 

demonstrates that the frequency-based features have higher 

importance and play a more significant role in the classification 

process using the RF classifier. 

Some of the features we selected are collinear or highly cor- 

related, for instance, the mean instantaneous bandwidth BWavg 

and total bandwidth BW. To quantify features correlation, 

we calculate Pearson’s and Spearman’s correlation coefficients 

for every pair of features. Pearson’s correlation is a good 

indicator for Gaussian distribution, and there are no extreme 

outliers in the data. However, these assumptions may not hold 

 

 

Fig. 4. Dimension reduction on the extracted features to visualize the 
separability of classes using LDA and PCA. 

 
 

 

that can be used for both continuous and discrete ordinal 

variables and is relatively robust against outliers [57]. It is 

basically a Pearson correlation on the ranked variables, where 

the values are ordered and assigned as integers, instead of real 

numbers [58]. The absolute value of Spearman’s correlation 

coefficients is plotted in Fig. 6(a). 

Next, we apply Ward’s minimum variance method for 

hierarchical agglomerative clustering of features based on 

Spearman’s correlation, where a distance matrix is formed 

using the formula: d(a, b) = 1 − |corr(a, b)|, where d(a, b) is 

the distance between two features a and b, and |corr(a, b)| is 
the absolute value of Spearman’s correlation between a and b. 

Fig. 6(b) shows the hierarchy linkage dendrogram for Ward’s 

agglomerative clustering method. It can be seen that Ward’s 

for some datasets, such as the ordinal (categorical) variables distances between f¯w , f¯w , f c are low which imply that these 

and also non-Gaussian distributions. Spearman’s correlation 

coefficient is a nonparametric measure of rank correlation 

features are highly correlated and similar. To obtain a more 

reliable estimate of feature importance, just one feature is 
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Fig. 5. Feature importance for the features used for six whale cate- 
gories’ classification using MDI on all 13 features set, and PFI measure 
on seven features selected using Ward’s minimum variance method. 

 

 

 
Fig. 6. (a) Spearman’s correlation coefficients for the extracted features. 
(b) Hierarchy linkage dendrogram for Ward’s agglomerative clustering 
method. 

 

 

selected per highly correlated cluster, where the threshold for 

Ward’s linkage clustering distance is set to 0.4. The resultant 

 
Fig. 7. Feature importance using PFI measure on seven features 
selected using Ward’s minimum variance method. 

 

 

seven features used are: fmin, fmax, f c, τ , SNR, slope, and 

curvature. The classifiers are retrained and evaluated on this 

subset of features, and the features’ importance is recalculated. 

The MDI measure has several limitations including: 1) being 

sensitive to overfitting because it is computed on just training 

data; 2) can only be used for tree-based models as it is 

quantified by splitting criterion; and 3) is biased to high 

cardinality such as numerical features compared with binary 

or categorical features. To overcome these limitations, another 

measure called permutation feature importance (PFI) is used. 

It can be used with any model and on both the training and test 

data. The PFI is defined as the decrease in a model score when 

a feature value is randomly shuffled [59]. If shuffling a feature 

results in a greater decrease in model score, it implies that the 

model is more dependent on that feature and in consequence 

that feature is more important for the classification using the 

specific model. Fig. 7 shows the PFI on MLP classifier on 

test data after seven feature selection using Ward’s minimum 

variance method from October 2, 2006. For each feature, 

the permutation is repeated five times, and the final feature 

importance measure is the average of these five repeats. The 

standard deviations of PFI for these five repeats are shown as 

the black vertical lines around the average values, which is 

the top of bars in the plot. 

 

B. Classification Results 

We trained the classifiers on the GOM 2006 dataset. To eval- 

uate the performance, we separate the training and test data 

by data collection day. Out of the 13 data collection days, 

we selected one day as the test day and the remaining 12 days 

for training. We repeated this procedure 13 times to get a 

complete set of predicted labels for all the days. For the first 

training set, 10% of training data are selected randomly to 

be used as the validation data to fine-tune the parameters for 

the classifiers, and these parameters are used for the rest of 

the experiment. Confusion matrices resulting from test data on 

October 3, 2006 are shown in Fig. 8. Each cell in the confusion 

matrix contains two numbers. The top quantity provides the 
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Fig. 8. Confusion matrices for whale species call classification using 
different classifiers on October 3, 2006 GOM dataset. Each cell in the 
confusion matrix contains two numbers. The top quantity provides the 
number of calls and the bottom is the percentage of calls automatically 
classified to the specific class. 

 

 

number of calls and the bottom is the percentage of calls 

automatically classified to the specific class. 

It can be seen from the confusion matrices that Fin and 

Toothed whales are highly discriminant from the rest of the 

classes, mainly because their frequency ranges do not overlap 

with those of the other classes. Misclassifications between 

Sei and UBDC, and between Minke and Humpback occur 

frequently since these classes have overlapping ranges for 

many features that make their classification more challenging. 

Assuming the specific test data are drawn from a distri- 

bution, resampling the test data can change the performance 

measures such as accuracy or F1 score. This implies that 

for unseen future test data, the performance measures can 

vary, so these measures should be treated as random variables. 

To numerically express this uncertainty in the measures and 

better represent the performance estimation of models on 

unseen data, we calculate the F1 score confidence intervals 

Fig. 9. F1 scores with confidence intervals for whale species vocal- 
ization classification using different classifiers on October 3, 2006 GOM 
dataset. The means are indicated by circles and the 95% confidence 
intervals by horizontal bars. 

 
TABLE I 

CLASSIFICATION PERFORMANCE MEASURES ON THE 13 EXTRACTED 

FEATURES AND SEVEN SUBSETS OF EXTRACTED FEATURES 

FOLLOWING WARD’S METHOD 
 

   

  

 
 

 
 

 
 

   
 
 

 

for each class using a bootstrapping [60] method which 

resamples the data with replacement [61]. Confidence interval 

is a method to compute the lower and upper bounds around the 

mean estimated value. After training the classifiers on training 

data, we resample the test data 200 times with replacement, 

and recalculate the F1 score each time. For the 95% confi- 

dence interval, we select the 2.5th and 97.5th percentiles of 

the 200 F1 scores as the lower and upper bounds, respectively. 

Fig. 9 shows the mean F1 score and 95% confidence interval 

for each class. It can be seen that uncertainties in F1 score for 

Sei, UBDC, and Minke whale vocalizations are larger than 

those for Fin, Humpback, and Toothed whales. 

As can be seen from Table I, RF outperforms the other 

classifiers based on the seven subsets of extracted features. 

The performance measures including accuracy, macro average 

F1 score and weighted average F1 score for the test date of 

October 3, 2006 using seven subsets of extracted features are 

the highest with the RF classifier. In macro average, F1 score 

is first calculated for each class and then unweighted average 

values of these F1 scores are calculated. For the weighted 

average F1 score, after calculating the F1 score for each class, 

their average, weighted by the number of true instances for 

each class, is calculated. 

The results and methods described above are for the clas- 

sification of predetermined whale sound detections into the 

six specified categories. To enable whale sound classification 

into the six specified categories in the presence of other 

acoustic events, such as ship-generated noise, fish sound, 
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Fig. 10. Bearing-time trajectories for labeled and classified detections 
based on (a) manual inspection and (b) automatic processing for data 
below 4 kHz from the GOM 2006 Experiment dataset. Only the right-side 
bearings are shown. 

 

 

or calls produced by other whale classes, we first compute the 

mean and standard deviation of the features for each of the 

six specified categories. Then for an arbitrary detected event, 

we apply one of the classifiers above to predict a label from 

any of the six predefined categories. Next we compute distance 

of the detected event’s features from the mean value of the 

predicted class, and if this distance is more than three times 

the standard deviation of the predicted class’ features, we label 

this event as an unknown class. 

The bearing-time trajectories from automatic detection and 

labeling for signals in the six whale sound categories are 

plotted in Fig. 10 for three hours of recording from the GOM 

2006 dataset. The corresponding results obtained from manual 

detection and classification are also shown for comparison. 

The detections are numerous since they span the full frequency 

range of the GOM 2006 dataset between 10 and 4000 Hz. 

We next focus on a subset of detections, below 110-Hz 

frequency range in Fig. 11 for closer comparison between the 

automatic and manual processing operations. It can be seen 

that the automatic approach provides bearing-time trajectories 

for fin whale calls that are highly similar to those obtained 

from manual processing. The detections forming well-defined 

bearing-time trajectories have high SNRs. We also note 

that there are more background detections in the automatic 

approach compared with the manually labeled calls. Part of 

these background detections are lower SNR fin whale calls 

which were ignored in the manual approach, and the remainder 

are random background noise. 

We next apply the classifiers trained on the GOM 

2006 dataset to a new dataset from the USNE 2021 experiment 

to find potential whale calls there. The USNE 2021 dataset is 

sampled at various frequencies up to 100 kHz per hydrophone 

element. Here, we focus on a subset of detections below 4 kHz 

in Fig. 12 for four hours of recording from 22:00 September 7, 

to 02:10 am September 8, 2021. The automatic detection and 

labeling using the trained RF classifier is effective in detecting 

many fin, humpback, and toothed whales call types, consistent 

with visual inspection. There are some false detections as well, 

especially in the frequency range of humpback calls due to 

other background sound sources. The sample spectrograms 

Fig. 11. Bearing-time trajectories for labeled and classified detections 
based on (a) manual inspection and (b) automatic processing for data 
below 110 Hz from the GOM 2006 Experiment dataset. Only the left-side 
bearings are shown. 

 

 
Fig. 12. Bearing-time trajectories, result of automatic detection, bearing 
estimation, and RF classification for the USNE 2021 experiment for 
detections up to 5 kHz only. The black dots show array heading direction 
with respect to true north direction. 

 

 

containing MM vocalizations from the USNE 2021 experiment 

are shown in [38, Figs. 8–11]. 

The computational complexities and run times for different 

stages of the POAWRS processing algorithms were analyzed 

in [36]. There, it was shown that real-time performance 

is achievable for processing 60-s-long acoustic data from 

132 hydrophones, each sampled at 100 kHz and beamformed 

into 147 distinct relative bearing directions, followed by detec- 

tion processing in full 360◦ horizontal azimuthal directions 

simultaneously. Speed comparison for runs on CPU and GPU 

for different algorithms was investigated, as well as FFT-based 

versus time domain delay and sum beamforming performance 

comparison. We showed that significantly faster processing 

time for most algorithms ran on GPU compared with CPU, 

for instance, about 338 times faster beamforming on GPU, 

enabling large-aperture coherent hydrophone array data to be 

analyzed in real-time. 

 

IV. CONCLUSION 

Instantaneous wide- area POAWRS technology imple- 

mented with a large-aperture densely populated coherent 

hydrophone array has been advanced here in several crucial 

ways. Taking advantage of combined hardware and software 

advances and optimizations, the analysis and processing of 

large-aperture high-sample rate hydrophone array data has 

achieved real-time performance combining multiple stages 

of processing. These include beamforming that enhances 

signal SNR, acoustic event detection, bearing estimation, 
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Fig. 13. (a) Nonlinearity behavior for log- and exponential transforms. 
(b) Frequency-dependent plot of parameter δ in PCEN showing expo- 
nentially decreasing function of frequency. 

 

 

and classification for data sampled at 100 kHz per hydrophone 

element and beamformed in 147 directions. This huge volume 

of data requires special considerations to achieve real-time per- 

formance for underwater acoustics events’ monitoring which 

we addressed in this study. Various methods including those 

widely used in other domains, such as computer vision and 

perception, have been adapted here to underwater acoustic data 

to improve signal detection. These methods include mel-scale 

frequency transformation, morphological image processing, 

values while compressing the dynamic range for larger values. 

Instead of log-transform, the function xr , where 0 < r < 1, 

can be used instead. From Fig. 13, it can be noted that 

the nonlinearity behavior of log-transform and x 0.5 is highly 

similar. Reducing the value of r results in more stretching 

(increasing the contrast) for smaller values and more compres- 

sion (reducing contrast) for larger values. This is especially 

useful for adaptive DRC. For example, a smaller value of r 

may be used if the foreground audio source is relatively weak. 

Another advantage is that we can use different values of r for 

different regions of the signal and also optimize its value using 

any gradient-based optimization approach. 

Let the log-transform of instantaneous signal energy at time 

t and frequency band f be log(E(t, f )). To enhance transient 

signal detection, for example, a whale call signal in the 

presence of random ambient noise and/or other persistent 

background signals, such as ship-radiated narrowband tonals, 

the log-transform of time-averaged signal energy M(t, f ) can 

be subtracted from the log of instantaneous signal energy. The 

parameter 0 < α < 1 is introduced to control the amount of 

background noise cancellation 

PCEN, and NMS. A variety of machine learning methods have 

been incorporated to automatically classify MM vocalizations 

in several classes. We analyzed features’ importance and class 

 

log(E(t, f )) − α log(M(t, f )) = log 
 E(t, f ) 

.
 

M(t, f )α 

 

(22) 

separability for six whale vocalization categories and achieved 

average F1 score of 87.5%. 

Using the exponential transform for dynamic range control 

instead of log-transform, we have 

Detection of calls with low SNR or large discontinuity in 

frequency or time is challenging for the image-processing- 

based approach implemented here. In addition, there are many 

 E(t, f )  r 

(ϵ + M(t, f ))α 
= (G(t, f ))r (23) 

other underwater acoustic events, such as ship-radiated sounds 

that can be detected or classified falsely. Applying other 

machine learning approaches such as CNNs can improve 

robustness in the classification. However, these approaches 

where ϵ is introduced to prevent numerical instability caused 

by dividing by too small numbers in the quiet background 

regions. A soft threshold parameter δ > 1 is introduced to 

adjust the DRC 

usually require large volume of labeled data. In the future, 

we plan to apply unsupervised learning approaches, which 

do not require manually labeled data, to cluster underwater 

PCEN(t, f ) = 
r 

+ δ 
(ϵ + M(t, f ))α 

− δr . (24) 

acoustic events, and that can significantly reduce the burden 

and complexity of manual labeling. 

APPENDIX 

PCEN DERIVATION 

To derive the formulation for PCEN [44], [45], a non- 

linear monotonically increasing transformation for DRC is 

first selected. This transformation is important for applications 

where most values, such as the Fourier transform magnitude 

coefficients, are much smaller than a few large ones. This leads 

to poor contrast for small values and potential instability in 

numerical computations, for instance, when taking products of 

small values, falling below quantization accuracy thresholds, 

and numerical overflow or underflow may occur. For example, 

for input data in the range from 1 to 1012, using a nonlinear 

transformation, such as the logarithm, will map the dynamic 

range to 0–12, which is much more compressed and so 

numerically more stable. An advantage of the transformation 

is that it mimics the hearing sensitivity of humans which 

resembles a logarithmic scale rather than a linear scale. 

Fig. 13(a) shows the nonlinear behavior for three functions, 

x 1/2, x 1/4, and log x , which increase the contrast for small 

For quiet regions where G ≪ δ, PCEN will be close to 0, 

and for loud regions where G ≫ δ, PCEN will be higher 

and closer to Gr . For noisy regions where the value of G 

fluctuates more because of higher background noise, the larger 

value of δ is desirable. This parameter is useful, especially for 

underwater acoustic applications where the ambient noise level 

varies by time and frequency. On average, the sound pressure 

level of ocean acoustic ambient or background noise decays 

exponentially as a function of increasing frequency [62]. 

We propose the following exponential decay formula for δ 

as a function of increasing frequency: 

δ = 2 + 5e−a f + 5e−bf (25) 

where a and b are constants, and f is the frequency. Based 

on our experimental data, a = 0.003 and b = 0.0001 are 

empirically determined to match the ambient noise in our 
dataset. The resultant plot for δ as a function of frequency 
is shown in Fig. 13(b). 

The time-averaged signal energy M mainly carries the 

loudness profile, which is the stationary background noise. 

There are various approaches for estimating this background 

noise. In [44], a first-order IIR filter was used to estimate M, 

( 
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useful when the background noise mean is highly variable. 

Here, since the background noise within each data file of 

roughly 60 s duration is fairly consistent, a global average 

value for each frequency band within each recorded file can 

be used. Compared with the original PCEN [44], we apply 

another modification to compute M and use median value over 

time instead of average value. This is to reduce the effect of 

high SNR foreground event on background noise estimation, 

since the median value is less sensitive to extremely large or 

small values in the data compared with the mean value. Using 

median instead of mean can also be justified in the context 

of Bayes risk minimization, where if the mean square error or 

mean absolute error is used as the Bayes risk to be minimized, 

then we obtain the mean and median values as the solution, 

respectively. The absolute value of error is less sensitive to 

extreme values compared with the squared value of error [63]. 
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