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Abstract —Developing automatic algorithms for real-time
monitoring of underwater acoustic events is essential in
ocean acoustic applications. Most previous ocean acoustic
ecosystem monitoring studies are non-real-time, focusing on
data received on a single hydrophone or a specific analysis,
such as bearing estimation or detection, without consider-
ing the full end-to-end analysis system. Here, we develop
a unified framework for real-time ocean acoustic data anal-
ysis including beamforming, detection, bearing estimation,
and classification of transient underwater acoustic events.
To detect sound sources, thresholding on computed mel-
scale per-channel energy normalization (PCEN) is applied,
followed by morphological image opening to extract pixels

Receiver ship
T

Ji'-‘ .Ocean

Towed g
hydrophone 4 | vehicle
\ [/ /7 /Toathed -~
s ////x\‘ Whales -.b»":_\
/7/;;;:, o Vocal
/29%@@/ »~ Mmarine

=~ —— mammals

with significant intensities. Next, connected component analysis is applied for grouping pixel detections. The bearing
of signal detections is next estimated via nonmaximum suppression (NMS) of 3-D stacked beamformed spectrogram
imageries. To classify a variety of whale species from their calls, time—frequency features are extracted from each
detected signal’s beamformed power spectrogram. These features are next applied to train three classifiers, including
support vector machine (SVM), neural networks, and random forest (RF), to classify six whale vocalization categories:
Fin, Sei, Unidentified Baleen, Minke, Humpback, and general Odontocetes. Best results are obtained with the RF
classifier, which achieved 96.7% accuracy and 87.5% F1 score. A variety of accelerating approaches and fast algorithms
are implemented to run on GPU. During an experiment in the U.S. Northeast coast in September 2021, the software
and hardware advances developed here were used for near real-time analysis of underwater acoustic data received by
Northeastern University’s in-house fabricated 160-element coherent hydrophone array system.

Index Terms— Array processing, beamforming, coherent hydrophone array, data processing acceleration, detection,

machine learning, passive acoustic, remote sensing.

|. INTRODUCTION

U NDERWATER acoustic data usually contain signals from
a myriad of sound sources including marine life such as
marine mammals (MMs), fishes, and crustaceans; man-made
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machinery such as ships, wind farms, and seismic airguns; and
natural geophysical processes such as earthquake and volcanic
eruption [1], [2], [3], [4], [5], [6], [7]. MM vocalization
classification is a challenging problem due to the transient
nature of their broadband calls, high variation in the calls of
a specie (intraclass variation), and high similarity between the
calls of some species.

MMs are usually defined as mammals whose terrestrial
predecessors have returned to life in the sea. The most
important criterion is that they must get all or most of their
food from the marine environment. MMs include at least
129 extant species divided into four groups [8], [9]. They are
cetaceans (whales, dolphins, and porpoises), pinnipeds (seals,
sea lions, and walruses), sirenians (sea cows that are now
extinct, manatees, and dugongs), and fissipeds (one bear, the
polar bear, the sea, and marine otters). Some of these groups
such as fissipeds are much less completely adapted to living
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Fig. 1. Sample log-transformed beamformed power spectrograms of

different whale vocalization categories from the GOM 2006 Experiment.
(a) Fin whale 20-Hz pulses, (b) unidentified baleen whale downsweep
chirp (UBDC on left) and pair of sei whale downsweep chirps (right),
(c) minke whale buzz sequence, (d) humpback whale song sequence,
and (e) odontocete whale click signals.

in the water compared with others such as cetaceans that are
fully adapted to live their entire lives in the water [8].

There are currently 86 known living species of Cetacea,
which can be divided into two suborders—baleen whales
(Mysticeti) and toothed whales (Odontoceti). Baleen whales
examples are Blue (Balaenoptera musculus), fin (Balaenoptera
physalus), sei (Balaenoptera borealis), minke (Balaenoptera
acutorostrata), and humpback (Megaptera novaeangliae).
Toothed whales examples are sperm (Physeter microcephalus),
killer (Orcinus orca), pilot (Globicephala spp.), and Delphinid
species. Baleen whales are generally large, such as the blue
whale (up to 33 m or more in length) and the smallest is
the pygmy right whale (less than 7-m long). In contrast, the
toothed whales are small to medium size, with the exception
of the sperm whale which can get up to 18 m in length. Baleen
whales do not have teeth, and instead in the mouth, the upper
jaw is hung with baleen (stiff plates of keratin with fringes on
the inside) [8].

MM vocalizations are associated with a variety of purposes
such as echolocation, sexual display while mating, singing
while migrating to breeding and feeding grounds, commu-
nication, and contact calls for coordinated movement during
group feeding and other activities [1], [10]. In this work,
we investigate whale species classification for six classes
including: Fin, Sei, Unidentified Baleen Downsweep Chirp
(UBDC), Minke, Humpback, and toothed whales or Odon-
tocetes. Examples of calls in each of these categories are
shown in Fig. 1, recorded during the Gulf of Maine (GOM)
2006 Experiment [1], [11], [12], [13], [14]. These sounds span
a wide range of frequencies from low-frequency fin whale

20-Hz pulse calls, to odontocetes click signals recorded here
up to 4 kHz due to sampling frequency limitation of 8 kHz.
Odontocetes can make sounds with significant energies at
much higher frequencies to about 150—170 kHz [15] from the
smallest odontocetes.

Substantial volumes of underwater acoustic data are usually
acquired in passive ocean acoustic waveguide remote sensing
(POAWRS) experiments with a large-aperture densely pop-
ulated coherent hydrophone array. The POAWRS technique
has been widely used to detect, localize, track, and study
underwater acoustic events such as whale behavior, population
and distributions in time and space, and their interaction with
prey species [1], [4], [7], [14], [16]. The task of processing
and analyzing large volumes of underwater acoustic data is
extremely laborious, especially when the data are drawn from
measurements of a large-aperture densely populated coher-
ent hydrophone array, since beamformed signals in multiple
distinct bearing directions spanning 360° azimuths about the
receiver array need to be analyzed concurrently. Developing
automatic, accurate, and fast algorithms for the detection and
classification of underwater acoustic events can help minimize
the human effort needed for underwater acoustic monitoring,
enabling real-time processing and analysis, and hence aiding
rapid scientific discoveries at sea.

Prior works in the published literature on classification of
MM sounds using machine learning approaches and developed
in recent years include [7], [17], [18], [19], [20], [21], [22],
[23], [24], and [25]. In [17], deep learning was used for
detection and classification of Sperm whale clicks. They used
convolutional neural network (CNN) to classify each 0.5 s
of data into “click” and “no click” categories, and then used
long short-term memory (LSTM) and gated recurrent unit
(GRU) to perform classification tasks for coda type, vocal clan,
and whale identity classification. In [18], wavelet denoising
was used to reduce noise level in the audio signal, and then
dual-threshold endpoint detection algorithm [26] was used to
detect the beginning and ending positions of the whale clicks.
Next, a set of extracted features emphasizing the duration and
scale energy from wavelet coefficient matrix were extracted
and used to train a set of classifiers including support vector
machine (SVM) and neural networks to distinguish between
sperm whale and pilot whale clicks. Zhang et al. [19] used
transfer learning approach using pretrained CNN models on
the ImageNet dataset [27], and combined with Mix-up data
augmentation, they fine-tuned the models on the whale-call
datasets to subclassify 16 whale family units known as “pods”
from killer and pilot whales. In [21], CNN consisting of
residual blocks is trained for killer whale sound classification.
In [22], region-based CNN is used for detection of Fin
whale 40 Hz, and Blue whale D calls while also providing
number of calls and times they occur. To detect North Atlantic
right whale up-calls, Ibrahim et al. [23] used spectrograms
and scalograms as the input to a CNN and stacked autoen-
coder, respectively, to train the models and then fused the
predictions from the two individual models for final prediction.
In [24], CNNs are trained for killer and long-finned pilot
whales’ whistle detection. In [25], five different types of
Fin whale calls including 20-Hz single and double pulses,
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18-Hz backbeat, 130-Hz upsweep, and 40-60-Hz down-
sweep chirps in beamformed data of a coherent hydrophone
array were classified using a set of classifiers including
SVM, decision tree (DT), and CNNs. In older works, such
as [28], automatic detection, and classification system for
baleen whale calls was developed using pitch-tracking and
quadratic discriminant function analysis. In [29], subclas-
sification of humpback whale downsweep moan calls into
13 subgroups was accomplished using K-means clustering
after beamformed spectrogram analysis, pitch-tracking, and
time—frequency feature extraction. Automatic classifiers were
further developed in [7] to distinguish humpback whale song
sequences from nonsong calls in the GOM by first applying
bag of words to build feature vectors from beamformed time-
series signals, calculating both power spectral density and
mel frequency cepstral coefficients (MFCCs) features, and
then using and comparing the performances of SVM, neural
networks, and naive Bayes in the classification. Wavelet-
transform-based approaches are also widely used in different
applications. In [30], features from the discrete wavelet trans-
form are fed into CNN architecture for fault detection in power
systems. In [31], least-squares wavelet is applied to astronomi-
cal time-series analysis and shown to provide higher resolution
time—frequency spectrogram since it considers correlated and
systematic noises. Most existing approaches for whale call
classification focus on just one to two species and are based on
acoustic data acquired with a single hydrophone. Supervised
deep-learning-based approaches such as CNN and recurrent
neural network (RNN) usually require large volume of labeled
data to reach high accuracy. This is especially challenging for
coherent hydrophone array data since labeling is necessary for
data in multiple beamformed directions and frequency ranges.
Here, we implement beamforming algorithms for high sam-
ple rate large-aperture coherent hydrophone array data and
output the power spectrogram density in multiple bearings
spanning 360° azimuths about the horizontal receiver array
simultaneously. Next, approaches for rapid detection, bearing
estimation, and time—frequency feature extraction of under-
water acoustic events from high sample rate beamformed
data are implemented, including adaptation of methods in
computer vision, image processing, and perception science
for underwater acoustic data analysis. The results are then
used as inputs in classification of MM vocalizations for real-
time applications. We use underwater acoustic data from a
160-element coherent hydrophone array and use the POAWRS
technique to enable sensing and detections over instantaneous
wide areas more than 100 km in diameter from the array.
A variety of computational accelerating approaches, combin-
ing hardware and software, which make the methods desirable
for real-time applications are also developed.

Il. MATERIALS AND METHODS
A. Datasets

In this section, we describe the datasets analyzed here which
are from the GOM 2006 and the U.S. Northeast coast (USNE)
2021 experiments.

The GOM 2006 Experiment dataset [1], [12], [13], [14]
was acquired in Fall 2006, from September 19 to October 6,

in this important North Atlantic MM feeding ground con-
taining large populations of spawning fish, the Atlantic herr-
ing [12], [13], [32]. Acoustic recordings of whale vocalizations
were acquired using a large-aperture densely populated coher-
ent hydrophone array with 160 elements, the ONR FORA
array [33], [34] towed by a research vessel along designated
tracks in Franklin Basin, north of Georges Bank. The acoustic
data are sampled at 8000 Hz per element. Data from all
160 hydrophone elements nested into four subapertures are
analyzed, where each subaperture contains 64 hydrophones
for spatially and temporally unaliased sensing up to 4 kHz [1].
In some time periods of the experiment, several hydrophones
were nonresponsive and were omitted from data processing,
reducing the number of usable hydrophones from 160 to 132.
The water depth ranged from 180 to 250 m at the array
locations. The array tow depth was roughly 105 m, and tow
speed was roughly 2 m/s.

Previous analysis in [1], [11], and [29] provided the labeled
set of MM vocalization signals for this project. There the
acoustic pressure—time series measured by sensors across
the coherent hydrophone array which were converted into
2-D beam-time series by beamforming. A total of 64 beams
were formed, separately for each subaperture, spanning 360°
horizontal azimuth about the receiver array. Each beam-time
series was converted into a beamformed spectrogram by
short-time Fourier transform (STFT) (sampling frequency
8 kHz, frame 2048 samples, overlap 3/4, Hann window).
Significant sounds present in the beamformed spectrograms
were automatically detected by first applying a pixel inten-
sity threshold detector [35] followed by pixel clustering and
verified by visual inspection. Beamformed spectrogram pixels
with local intensity values that stood 10 dB above the back-
ground were grouped using a clustering algorithm according
to a nearest-neighbor criteria which determines whether the
pixels can be grouped into one or more significant sound
signals. MMs’ vocalization signal detections were verified and
labeled manually by visual inspection and listening to the
sounds [1], [14], [29].

The USNE 2021 experiment dataset was acquired from
September 3 to September 8, 2021 at the Great South Channel
and the continental slope and deep water south of Rhode

Island. The purpose of this experiment was to test the newly

developed Northeastern University large-aperture coherent

hydrophone array hardware, and data processing and analysis
software systems for instantaneous wide-area passive acoustic
monitoring of MMs, including detection and classification
of MM sounds. The 160-element coherent hydrophone array
hardware and software systems were designed, fabricated,
and assembled in-house at Northeastern University (NU) [36],
[371, [38], [39], [40]. The array was towed by a ship, and
acoustic data were acquired at adjustable sampling frequencies
ranging from 8 to 100 kHz per element. Whale vocalizations
from a wide range of species, both mysticetes and odontocetes,
were recorded in the frequency range spanning 10 Hz—50 kHz.
The experimental regions for both the GOM 2006 and
USNE 2021 experiments are shown in Fig. 2. Detailed
schematics of the coherent hydrophone array systems includ-
ing hydrophone positioning are provided in [33] and [34] for
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Fig. 2. Map of the region containing bathymetry contours for GOM
2006 and USNE experiments.

the ONR FORA hydrophone array used in GOM 2006 Exper-
iment, and in [38] for the NU coherent hydrophone array used
in USNE 2021 Experiment.

B. Beamforming

Beamforming is a spatial filtering technique using data from
an array of sensors to enhance the signal-to-noise ratio (SNR)
in the specified azimuthal direction or bearing and is widely
used in acoustic and electromagnetic remote sensing and
imaging systems [41], [42]. Relative bearing is the horizontal
azimuth of a source with respect to the hydrophone array
axis normal. Delay and sum array beamforming is used to
amplify signals in specified relative bearing directions while
simultaneously suppressing signals from other directions. The
theoretical SNR gain from beamforming when using the n
hydrophone array compared with using only one hydrophone
is up to 10 logio n dB, so if n = 64, the SNR gain is up to
18 dB [1]. The actual array gain, which may differ from the
18-dB theoretical array gain, is dependent on noise coherence
and signal wavelength relative to array aperture length [43].
A large densely populated linear array of hydrophones enables
detection of acoustic events from greater distances than a
single hydrophone. The time delay of signal arrival between
two successive hydrophones in the array is computed using
the following equation:

t = isin& )
C

where ¢ is the speed of sound propagation in water, d is the
distance between two successive hydrophones in meters, and 6
is the relative bearing. Data are beamformed in 147 directions
spanning 6 between —90° and +90° corresponding to back-
and forward endfires, respectively, with 0° corresponding to
array broad side. The relative bearing 6 is converted into
true bearing £ in a clockwise direction from true north by
correcting for the array heading a.

C. Detection of Transient Signals

Many sound sources in the ocean generate broadband tran-
sient signals, for example, MM vocalizations, fish-generated
sounds, and human activities such as offshore piling and

sonar transmissions. The detection of transient broadband sig-
nals can be significantly enhanced via data transformation in
two key steps. They are nonuniform high-frequency compres-
sion via mel-scale transformation and removal of persistent
tonal background signals via per-channel energy normalization
(PCEN) [44], [45]. Morphological image processing operation
is next applied to remove noisy background regions while
finding the desired potential detections.

1) Mel Spectrogram: The mel-scale is a result of psychoa-
coustics [46], which is a scale of pitches judged by listeners
to be equal in distance one from another and looks like a
quasi-logarithmic function of acoustic frequency. It shows
humans do not perceive sound frequency differences in a linear
scale. For example, 500-Hz frequency differences at lower
frequencies, such as between 500 and 1000 Hz, are more
readily discernible than at higher frequencies, such as between
10 000 and 10 500 Hz. In [47], the empirically determined
transformation from Hertz to mel-scale is defined as

m = Clogy 1+i 2
Jo
where fo = 700 Hz is the corner frequency where human
perception of frequency transitions from approximately linear
to log dependence, and C = 1000/ logio(1 + (1000/700)) =
2595 is a constant that ensures the mel-scale m = 1000 equals
the physical frequency f = 1000 Hz.

In linear scale spectrogram, the frequency width of con-
secutive bins is a constant. However, in mel spectrogram,
frequency resolution varies nonlinearly such that resolution
is finer at low frequencies and broader at high frequencies.
An advantage of mel-scale over linear scale spectrogram
is a reduction in computational complexity for subsequent
stages of the detection algorithm. For example, in STFT
for spectrogram generation with desired temporal window
length of 0.128 s, data sampled at 8000 Hz will lead to
8000 * 0.128 = 2'© = 1024 number of FFT points for
each temporal window. For data sampled at 100 kHz, there
will be 2% = 16 384 number of FFT points for the same
temporal resolution. This increase in the number of FFT points
will in consequence raise the computational complexity. Here,
using mel-scale can help improve the processing time for
the subsequent steps. In the ocean acoustic datasets analyzed
here, the key frequency information contained in detected
signals can usually be represented by just 256 mel bins
since fine frequency resolution is often needed for acoustic
signals centered at low frequencies, but the same resolution
is not necessary for signals centered at high frequencies. For
example, a frequency resolution of around 1 Hz is usually
necessary for an acoustic event centered at 20 Hz, while a
coarser frequency resolution of around 100-500 Hz would
suffice for acoustic events at 10 kHz. This is because most
natural underwater acoustic signals, such as whale calls, have
increasing frequency bandwidths as their call central frequen-
cies increase. Another advantage of using mel over linear
frequency scale is the reduction in noise level in the mel-scale.
That is because for computing the mel-scale from linear scale,
some kind of averaging (usually triangular window filter bank)
is often used to summarize the frequency information from
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multiple frequency bands into a single mel-scale band. This
in consequence increases the detection algorithm’s accuracy.
Nonlinearity in human perception also extends to acoustic
intensities, where Weber’s law applies in that the smallest
resolvable change, a just-notable-difference, grows in direct
proportion to the stimulus. In [48], Weber’s law was found
to be a consequence of attaining the theoretical minimum
mean-square error possible, the Cramer—Rao lower bound,
in resolving the intensity of naturally scintillating light and
sound. Thus showing human intensity resolution is optimally
adapted to the natural scintillation of light and sound.

2) Per-Channel Energy Normalization: PCEN [44] is an
alternative to logarithmic transform, with the aim of pro-
viding better dynamic range compression (DRC), adaptive
gain control, robustness to channel distortion, and learnable
differentiable parameters that can be optimized using gradient-
based optimizations [45]. The PCEN is applied to beamformed
mel-scale transformed data prior to signal detection. Here, the
equation used for PCEN, derived in the Appendix, is given by

Ceup .,
(c+ Mt )

where E(t, /) is the instantaneous signal energy at time ¢
and frequency f, M(?, f) is the mean signal energy obtained
via time-averaging, € prevents overflow error in quiet back-
ground regions, r is the exponential transform power, and
0 > 1 is a threshold parameter that enables the DRC to
be adjusted. Instead of having a constant J, we set it as
a frequency-dependent parameter in a way that it fits the
background frequency-dependent ocean noise. The formula for
o0 is described in the Appendix.

3) Thresholding and Morphological Operations: The goal for
transient underwater acoustic event detection is to extract
individual signals that stand above the background noise and
to focus on capturing the dominant signal energy, without
breaking a signal into parts. To do so, we apply a proce-
dure consisting of pixel thresholding, morphological image
opening, and connected components’ labeling. A constant
threshold equal to 2.5 is applied to PCEN spectrograms images
to convert them into binary images. This threshold value is
determined experimentally to provide a good tradeoff between
false alarm rate and missed detections. Smaller threshold
values will lead to more noisy detections while larger threshold
values will cause some true detections to be missed. This
constant thresholding is an advantage of working with PCEN
since it scales out the frequency dependence of underwater
stationary ambient noise. Otherwise a frequency-dependent
and varying threshold would be needed, for instance, when
working directly with linear or log-transformed acoustic
energies.

Fig. 3(d) shows an example of the output of thresholding
on PCEN spectrogram for frequency range below 100 Hz.
These data include several Fin whale 20-Hz and Sei whale
downsweep chirp calls. As can be seen, the PCEN image
has frequency-independent background, enabling the transient
events (whale calls) to be readily detected. To focus detec-
tion on dominant signal energies and to make the detection
algorithm more robust against background noise regions, mor-

PCEN(t, f) = -J (3)
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Fig. 3. Detection processing stages showing (a) log-transformed
power spectrogram of single hydrophone, (b) log-transformed power
spectrogram of beamformed data using 132 hydrophones, (c) PCEN
transformed spectrogram, (d) thresholded binary image, and (e) binary
image after image opening. The results of connected component label-
ing are shown as the white bounding boxes over the detected regions
on the beamformed power spectrogram in (b).

phological image opening is applied. Morphological image
opening consists of two steps, the first is morphological image
erosion, and the second is morphological image dilation. In the
erosion step, a kernel slides through the binary image, and in
the output image a pixel value will be equal to 1 if all the
values inside the kernel are 1, and else it will be 0. Erosion
makes the foreground boundaries thinner and also removes
small dot-like detections. Dilation is the opposite of erosion
in that a pixel is 1 in the output image if at least one pixel in the
kernel is 1, making the boundaries of the foreground thicker
and also merging nearby detections, thus compensating for the
effect of erosion on foreground boundaries. Fig. 3(e) shows the
output of the opening operation on the binary image in Fig.
3(d) where the correct number signals are detected focusing
on dominant signal energies.

Next, connected components’ labeling [49] is applied to find
the exact location of the detections and also separate them
from each other. In a binary image, a connected component
is a set of adjacent pixels whose values are 1. Fig. 3(b)
shows the bounding boxes on the original beamformed power
spectrogram after applying the connected component labeling
on Fig. 3(e). The entire acoustic events’ detection procedure
is capable of detecting and separating individual transient
signals.

D. Bearing Estimation

The PCEN and transient acoustic event detection algo-
rithms are applied to each beamformed spectrogram imagery
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to extract significant acoustic signals. Because of potential
sidelobe effects and broad spatial beamwidths, especially at
low frequencies, some detections may appear in multiple
azimuthal directions. The relative bearing direction with the
highest foreground energy is the correct direction for the
detected signal. Furthermore, signals not overlapping in time
and frequency should be considered as separate detections.
Here, we use nonmaximum suppression (NMS) to determine
a detected signal’s correct relative bearing. Note that NMS
has been widely used for object detection in image process-
ing [50], [51], [52]. In computer vision applications, many
object detection methods produce multiple potential detections
that are usually indicated by bounding boxes around the target
objects. There NMS is used to select the bounding box with the
highest detection score or probability among all the bounding
boxes overlapping above some threshold. There are different
criteria for measuring the percent of overlap between bounding
boxes, among which the most commonly used is intersection
over union (IoU), a similarity measure based on the Jaccard
index. The IoU between two sets, A and B, is expressed as
|4 N B
)

|4 U B| - Area of Union

Area of Intersection
J(A, B) =

In NMS, among all the bounding boxes with IoU higher
than some predefined threshold, the one with highest detection
score is selected as the final detection.

For beari timati NMS anpd I -
lapping sacattre i el he Boreine bow with the highes
score among overlapping bounding boxes. To compute IoU,
the signal energy in decibels is used as the detection score
obtained from summing power of foreground time and fre-
quency pixels inside detection bounding boxes in beamformed

power spectrogram imagery.

Once the correct relative azimuthal angle is found, the
potential left-right bearings with respect to true north are

calculated using the following:

ﬁrigm =a+ (90 — 0)
et = a — (90 — 6)

&)
(©)

where 6 is the relative bearing of the detected acoustic event
with respect to the array heading. o is the array heading with
respect to the north. Srgn is the right bearing with respect
to the north, and fin is the left bearing with respect to
the north, and only one of these is the true bearing, while
the other is ambiguous. The inherent left-right ambiguity
about the horizontal line-array’s axis is resolved by varying
ship heading as described in [12], [14], [53], and [54].
The bearing estimates for acoustic detections in the GOM
2006 and USNE 2021 Experiments are shown in Section III.
Sequences of bearing estimates for acoustic detections from
a particular source form a bearing-time trajectory. Bearing-
time trajectories are essential for subsequent passive acoustic
source localizations [53], [55].

E. Classification

For each detection, we extract a set of features from the
time—frequency power spectrograms of beamformed signals.

These features should be as discriminant as possible for
different classes and at the same time be similar for samples
of the same class. We extracted the following 13 features:
1) minimum frequency, fmin (Hz); 2) maximum frequency
fmax (Hz); 3) average central frequency f ¢ (Hz); 4) band-
width BW (Hz); 5) mean instantaneous bandwidth BWay
(Hz); 6) power amplitude weighted average frequency f (Hz);
7) duration of the detected call z (s); 8) SNR; 9) slope (Hz/s);
10) curvature (Hz/s?) from the first- and second-order polyno-
mial fit to the vocalization traces obtained via pitch-tracking;

11) area which is the number of pixels for the detected
sound; 12) relative instantaneous bandwidth BW”; and
13) instantaneous power-weighted average frequency f " (Hz).
Equations (7)—(20) provide the formulas to calculate these
features

fmax = II}%Xf(l,]) Vl,j (8)
BW = fmax - fmin (9)
fi(j) = /Z(i =1 j) (10)
ftc = m;alx(ft) + m/in(ft) 2 (11
o= /N (12)
BW,; = n;jax(ft) — min(fy (13)
L
BWae = BW./Nr (14)
_ | I -
Si= PGjSG]) P(i, j) (15)
|L J
f= JiNe (16)
BW/ = BW,/f ; (17)
L
BW' = BWi/Nr (18)
i L
P =10log,, PG, j) (19)
J
- L - 4
fr=" fn bp (20)

i
where N7 is the number of time slteps, and P(i, j) is the power

for time step index i and frequency band index j . The final
feature vector is defined as

features = [fmm, Jmax, ¢, BW, BWayg, f_r %

|
SNR, slope, curvature, area, f , BW" . (21)

We trained a set of classifiers including SVM, multi-
layer perceptron (MLP) neural network, DT, and random
forest (RF). Data are first normalized so the features have
zero mean and unit variance. For DT, we use Gini impurity
criterion for splitting the features. For RF, we set the number
of estimators to 100 trees, each trained on a subset of training
data samples with replacement and the final prediction is
the majority vote of DTs. For MLP, we set the number of
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fully connected layers to 5, each containing 30 neurons and
rectified linear unit (ReLU) activation functions. Stochastic
gradient descent (SGD) with batch size 200 and Adam [56]
optimizer with learning rate 0.001, g1 = 0.9, f> = 0.999, and
€ = le~% is used to train the network by minimizing categori-
cal cross-entropy loss. Weight decay of 1e~* is used to reduce
overfitting. For SVM, we set the parameter C = 10 and used
RBF kernel with parameter y = 1/numfeatures = 1/13 when
13 features are used or 1/7 when seven features are used.

[ll. RESULTS

In this section, we apply the methods developed and dis-
cussed above to detect, analyze, and classify the significant
sound sources including MM vocalization signals in the GOM
2006 and USNE 2021 experimental datasets. First, we provide
a comprehensive time—frequency features’ importance analy-
sis, and then evaluate performances of various classifiers for
distinguishing calls of different MM species present in our
datasets. Next, we present the detection and bearing estimation
results from the two experiments, including computational
complexity analysis for real-time performance.

A. Features Importance for Classification

To analyze the separability of classes and features, we apply
linear discriminant analysis (LDA) and principal component
analysis (PCA) to reduce the feature dimensions from 13 to 3.
Both LDA and PCA are methods for linear mapping where
LDA is supervised while PCA is unsupervised. All data other
than the test day data are used to find linear mapping using
PCA and LDA which are then applied to the test data. Fig. 4
shows the result of this mapping on the test data day of
October 2, 2006. It can be observed that the class Odontocestes
is highly separable from the other classes because of a different
frequency range for this class compared with other classes.
The Sei and UBDC classes as well as the Humpback and
Minke classes are not as well-separated because of overlapping
frequency range and duration of calls in these class pairs,
respectively.

To analyze features’ importance, we calculate the mean
decrease in impurity (MDI) for the RF classifier. The MDI
measure counts the number of times a feature is used to
split a node weighted by the number of samples it splits and
is plotted in Fig. 5 for classification of detections into the
six whale categories using the RF classifier. This calculation
demonstrates that the frequency-based features have higher
importance and play a more significant role in the classification
process using the RF classifier.

Some of the features we selected are collinear or highly cor-
related, for instance, the mean instantaneous bandwidth BW,,,
and total bandwidth BW. To quantify features correlation,
we calculate Pearson’s and Spearman’s correlation coefficients
for every pair of features. Pearson’s correlation is a good
indicator for Gaussian distribution, and there are no extreme
outliers in the data. However, these assumptions may not hold
for some datasets, such as the ordinal (categorical) variables
and also non-Gaussian distributions. Spearman’s correlation
coefficient is a nonparametric measure of rank correlation
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Fig. 4. Dimension reduction on the extracted features to visualize the
separability of classes using LDA and PCA.

that can be used for both continuous and discrete ordinal
variables and is relatively robust against outliers [57]. It is
basically a Pearson correlation on the ranked variables, where
the values are ordered and assigned as integers, instead of real
numbers [58]. The absolute value of Spearman’s correlation
coefficients is plotted in Fig. 6(a).

Next, we apply Ward’s minimum variance method for
hierarchical agglomerative clustering of features based on
Spearman’s correlation, where a distance matrix is formed
using the formula: d(a, b) = 1 — |corr(a, b)|, where d(a, b) is
the distance between two features a and b, and |corr(a, b)| is
the absolute value of Spearman’s correlation between a and b.
Fig. 6(b) shows the hierarchy linkage dendrogram for Ward’s
agglomerative clustering method. It can be seen that Ward’s
distances between ", f ", f¢ are low which imply that these
features are highly correlated and similar. To obtain a more
reliable estimate of feature importance, just one feature is
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method.

selected per highly correlated cluster, where the threshold for
Ward’s linkage clustering distance is set to 0.4. The resultant
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Fig. 7. Feature importance using PFl measure on seven features

selected using Ward’s minimum variance method.

seven features used are: fmin, fmax, /< T, SNR, slope, and
curvature. The classifiers are retrained and evaluated on this
subset of features, and the features’” importance is recalculated.
The MDI measure has several limitations including: 1) being
sensitive to overfitting because it is computed on just training
data; 2) can only be used for tree-based models as it is
quantified by splitting criterion; and 3) is biased to high
cardinality such as numerical features compared with binary
or categorical features. To overcome these limitations, another
measure called permutation feature importance (PFI) is used.
It can be used with any model and on both the training and test
data. The PFI is defined as the decrease in a model score when
a feature value is randomly shuffled [59]. If shuffling a feature
results in a greater decrease in model score, it implies that the
model is more dependent on that feature and in consequence
that feature is more important for the classification using the
specific model. Fig. 7 shows the PFI on MLP classifier on
test data after seven feature selection using Ward’s minimum
variance method from October 2, 2006. For each feature,
the permutation is repeated five times, and the final feature
importance measure is the average of these five repeats. The
standard deviations of PFI for these five repeats are shown as
the black vertical lines around the average values, which is
the top of bars in the plot.

B. Classification Results

We trained the classifiers on the GOM 2006 dataset. To eval-
uate the performance, we separate the training and test data
by data collection day. Out of the 13 data collection days,
we selected one day as the test day and the remaining 12 days
for training. We repeated this procedure 13 times to get a
complete set of predicted labels for all the days. For the first
training set, 10% of training data are selected randomly to
be used as the validation data to fine-tune the parameters for
the classifiers, and these parameters are used for the rest of
the experiment. Confusion matrices resulting from test data on
October 3, 2006 are shown in Fig. 8. Each cell in the confusion
matrix contains two numbers. The top quantity provides the
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Fig. 8. Confusion matrices for whale species call classification using
different classifiers on October 3, 2006 GOM dataset. Each cell in the
confusion matrix contains two numbers. The top quantity provides the
number of calls and the bottom is the percentage of calls automatically
classified to the specific class.

number of calls and the bottom is the percentage of calls
automatically classified to the specific class.

It can be seen from the confusion matrices that Fin and
Toothed whales are highly discriminant from the rest of the
classes, mainly because their frequency ranges do not overlap
with those of the other classes. Misclassifications between
Sei and UBDC, and between Minke and Humpback occur
frequently since these classes have overlapping ranges for
many features that make their classification more challenging.

Assuming the specific test data are drawn from a distri-
bution, resampling the test data can change the performance
measures such as accuracy or F1 score. This implies that
for unseen future test data, the performance measures can
vary, so these measures should be treated as random variables.
To numerically express this uncertainty in the measures and

better represent the performance estimation of models on
unseen data, we calculate the F1 score confidence intervals
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Fig. 9. F1 scores with confidence intervals for whale species vocal-
ization classification using different classifiers on October 3, 2006 GOM
dataset. The means are indicated by circles and the 95% confidence
intervals by horizontal bars.

TABLE |
CLASSIFICATION PERFORMANCE MEASURES ON THE 13 EXTRACTED
FEATURES AND SEVEN SUBSETS OF EXTRACTED FEATURES
FOLLOWING WARD’S METHOD

I3 Teatuers 7 features
Acc fT-m  fT-w Acc fllm  fl-w
DT 053.R2 R3.90 095.96 | 95.80 8426 95395
RF 96,75 8730 96.80 | 96.75 87.55 96.83
MLP | 96.66 87.60 96.80 | 96.70 87.50  96.80
SVM | 9675 R6.72  96.80 | 96.35 8389  96.38

for each class using a bootstrapping [60] method which
resamples the data with replacement [61]. Confidence interval
is a method to compute the lower and upper bounds around the
mean estimated value. After training the classifiers on training
data, we resample the test data 200 times with replacement,
and recalculate the F1 score each time. For the 95% confi-
dence interval, we select the 2.5th and 97.5th percentiles of
the 200 F1 scores as the lower and upper bounds, respectively.
Fig. 9 shows the mean F1 score and 95% confidence interval
for each class. It can be seen that uncertainties in F1 score for
Sei, UBDC, and Minke whale vocalizations are larger than
those for Fin, Humpback, and Toothed whales.

As can be seen from Table I, RF outperforms the other
classifiers based on the seven subsets of extracted features.
The performance measures including accuracy, macro average
F1 score and weighted average F1 score for the test date of
October 3, 2006 using seven subsets of extracted features are
the highest with the RF classifier. In macro average, F1 score
is first calculated for each class and then unweighted average
values of these F1 scores are calculated. For the weighted
average F1 score, after calculating the F1 score for each class,
their average, weighted by the number of true instances for
each class, is calculated.

The results and methods described above are for the clas-
sification of predetermined whale sound detections into the
six specified categories. To enable whale sound classification
into the six specified categories in the presence of other
acoustic events, such as ship-generated noise, fish sound,
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Fig. 10. Bearing-time trajectories for labeled and classified detections
based on (a) manual inspection and (b) automatic processing for data
below 4 kHz from the GOM 2006 Experiment dataset. Only the right-side
bearings are shown.

or calls produced by other whale classes, we first compute the
mean and standard deviation of the features for each of the
six specified categories. Then for an arbitrary detected event,
we apply one of the classifiers above to predict a label from
any of the six predefined categories. Next we compute distance
of the detected event’s features from the mean value of the
predicted class, and if this distance is more than three times
the standard deviation of the predicted class’ features, we label
this event as an unknown class.

The bearing-time trajectories from automatic detection and
labeling for signals in the six whale sound categories are
plotted in Fig. 10 for three hours of recording from the GOM
2006 dataset. The corresponding results obtained from manual
detection and classification are also shown for comparison.
The detections are numerous since they span the full frequency
range of the GOM 2006 dataset between 10 and 4000 Hz.
We next focus on a subset of detections, below 110-Hz
frequency range in Fig. 11 for closer comparison between the
automatic and manual processing operations. It can be seen
that the automatic approach provides bearing-time trajectories
for fin whale calls that are highly similar to those obtained
from manual processing. The detections forming well-defined
bearing-time trajectories have high SNRs. We also note
that there are more background detections in the automatic
approach compared with the manually labeled calls. Part of
these background detections are lower SNR fin whale calls
which were ignored in the manual approach, and the remainder
are random background noise.

We next apply the classifiers trained on the GOM
2006 dataset to a new dataset from the USNE 2021 experiment
to find potential whale calls there. The USNE 2021 dataset is
sampled at various frequencies up to 100 kHz per hydrophone
element. Here, we focus on a subset of detections below 4 kHz
in Fig. 12 for four hours of recording from 22:00 September 7,
to 02:10 am September 8, 2021. The automatic detection and
labeling using the trained RF classifier is effective in detecting
many fin, humpback, and toothed whales call types, consistent
with visual inspection. There are some false detections as well,
especially in the frequency range of humpback calls due to
other background sound sources. The sample spectrograms
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Fig. 11. Bearing-time trajectories for labeled and classified detections
based on (a) manual inspection and (b) automatic processing for data
below 110 Hz from the GOM 2006 Experiment dataset. Only the left-side
bearings are shown.
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Fig. 12. Bearing-time trajectories, result of automatic detection, bearing
estimation, and RF classification for the USNE 2021 experiment for
detections up to 5 kHz only. The black dots show array heading direction
with respect to true north direction.

containing MM vocalizations from the USNE 2021 experiment
are shown in [38, Figs. 8—11].

The computational complexities and run times for different
stages of the POAWRS processing algorithms were analyzed
in [36]. There, it was shown that real-time performance
is achievable for processing 60-s-long acoustic data from
132 hydrophones, each sampled at 100 kHz and beamformed
into 147 distinct relative bearing directions, followed by detec-
tion processing in full 360° horizontal azimuthal directions
simultaneously. Speed comparison for runs on CPU and GPU
for different algorithms was investigated, as well as FFT-based
versus time domain delay and sum beamforming performance
comparison. We showed that significantly faster processing
time for most algorithms ran on GPU compared with CPU,
for instance, about 338 times faster beamforming on GPU,
enabling large-aperture coherent hydrophone array data to be
analyzed in real-time.

[V. CONCLUSION

Instantaneous wide- area POAWRS technology imple-
mented with a large-aperture densely populated coherent
hydrophone array has been advanced here in several crucial
ways. Taking advantage of combined hardware and software
advances and optimizations, the analysis and processing of
large-aperture high-sample rate hydrophone array data has
achieved real-time performance combining multiple stages
of processing. These include beamforming that enhances
signal SNR, acoustic event detection, bearing estimation,
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and classification for data sampled at 100 kHz per hydrophone
element and beamformed in 147 directions. This huge volume
of data requires special considerations to achieve real-time per-
formance for underwater acoustics events’ monitoring which
we addressed in this study. Various methods including those
widely used in other domains, such as computer vision and
perception, have been adapted here to underwater acoustic data
to improve signal detection. These methods include mel-scale
frequency transformation, morphological image processing,
PCEN, and NMS. A variety of machine learning methods have
been incorporated to automatically classify MM vocalizations
in several classes. We analyzed features’ importance and class
separability for six whale vocalization categories and achieved
average F1 score of 87.5%.

Detection of calls with low SNR or large discontinuity in
frequency or time is challenging for the image-processing-
based approach implemented here. In addition, there are many
other underwater acoustic events, such as ship-radiated sounds
that can be detected or classified falsely. Applying other
machine learning approaches such as CNNs can improve
robustness in the classification. However, these approaches
usually require large volume of labeled data. In the future,
we plan to apply unsupervised learning approaches, which
do not require manually labeled data, to cluster underwater
acoustic events, and that can significantly reduce the burden
and complexity of manual labeling.

APPENDIX
PCEN DERIVATION

To derive the formulation for PCEN [44], [45], a non-
linear monotonically increasing transformation for DRC is
first selected. This transformation is important for applications
where most values, such as the Fourier transform magnitude
coefficients, are much smaller than a few large ones. This leads
to poor contrast for small values and potential instability in
numerical computations, for instance, when taking products of
small values, falling below quantization accuracy thresholds,
and numerical overflow or underflow may occur. For example,
for input data in the range from 1 to 10'?, using a nonlinear
transformation, such as the logarithm, will map the dynamic
range to 0-12, which is much more compressed and so
numerically more stable. An advantage of the transformation
is that it mimics the hearing sensitivity of humans which
resembles a logarithmic scale rather than a linear scale.

Fig. 13(a) shows the nonlinear behavior for three functions,

12 1/4
b

x4, x'*, and logx, which increase the contrast for small

values while compressing the dynamic range for larger values.
Instead of log-transform, the function x”, where 0 < r < 1,
can be used instead. From Fig. 13, it can be noted that
the nonlinearity behavior of log-transform and x ®3 is highly
similar. Reducing the value of r results in more stretching
(increasing the contrast) for smaller values and more compres-
sion (reducing contrast) for larger values. This is especially
useful for adaptive DRC. For example, a smaller value of »
may be used if the foreground audio source is relatively weak.
Another advantage is that we can use different values of r for
different regions of the signal and also optimize its value using
any gradient-based optimization approach.

Let the log-transform of instantaneous signal energy at time
t and frequency band f be log(E(t, f)). To enhance transient
signal detection, for example, a whale call signal in the
presence of random ambient noise and/or other persistent
background signals, such as ship-radiated narrowband tonals,
the log-transform of time-averaged signal energy M(t, f) can
be subtracted from the log of instantaneous signal energy. The
parameter 0 < o < 1 is introduced to control the amount of
background noise cancellation ,

E
log(E(t, £)) — alogM(t, f)) = log Lt

M, )¢
Using the exponential transform for dynamic range control
instead of log-transform, we have

( E@ f) r
(e + M(1, f))"
where € is introduced to prevent numerical instability caused
by dividing by too small numbers in the quiet background
regions. A soft threshold parameter 6 > 1 is introduced to
adjust the DRC
(

22)

= (Gt ) (23)

—RBLD 45 _y
(e + M, [))*

For quiet regions where G < d, PCEN will be close to 0,
and for loud regions where G > 9, PCEN will be higher
and closer to G". For noisy regions where the value of G
fluctuates more because of higher background noise, the larger
value of ¢ is desirable. This parameter is useful, especially for
underwater acoustic applications where the ambient noise level
varies by time and frequency. On average, the sound pressure
level of ocean acoustic ambient or background noise decays
exponentially as a function of increasing frequency [62].
We propose the following exponential decay formula for ¢

PCEN(, f) = (24)

as a function of increasing frequency:

6=2+5eY + 5 (25)

where a and b are constants, and f is the frequency. Based
on our experimental data, ¢ = 0.003 and b = 0.0001 are
empirically determined to match the ambient noise in our
dataset. The resultant plot for ¢ as a function of frequency
is shown in Fig. 13(Db).

The time-averaged signal energy M mainly carries the
loudness profile, which is the stationary background noise.
There are various approaches for estimating this background
noise. In [44], a first-order IIR filter was used to estimate M,
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useful when the background noise mean is highly variable.
Here, since the background noise within each data file of
roughly 60 s duration is fairly consistent, a global average
value for each frequency band within each recorded file can
be used. Compared with the original PCEN [44], we apply
another modification to compute M and use median value over
time instead of average value. This is to reduce the effect of
high SNR foreground event on background noise estimation,
since the median value is less sensitive to extremely large or
small values in the data compared with the mean value. Using
median instead of mean can also be justified in the context
of Bayes risk minimization, where if the mean square error or
mean absolute error is used as the Bayes risk to be minimized,
then we obtain the mean and median values as the solution,
respectively. The absolute value of error is less sensitive to
extreme values compared with the squared value of error [63].
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