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Abstract

Efficient and high-accuracy filtering of cryo-electron microscopy (cryo-EM) micrographs is an
emerging challenge with the growing speed of data collection and sizes of datasets. Convolutional
neural networks (CNNs) are machine learning models that have been proven successful in many
computer vision tasks, and have been previously applied to cryo-EM micrograph filtering. In this
work, we demonstrate that two strategies, fine-tuning models from pretrained weights and includ-
ing the power spectrum of micrographs as input, can greatly improve the attainable prediction

accuracy of CNN models. The resulting software package, Miffi, is open-source and freely avail-

able for public use (https://github.com/ando-lab/miffi).
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Introduction

Single particle cryo-electron microscopy (cryo-EM) is a technique that can provide detailed struc-
tural information on the architecture of biological macromolecules with resolution ranging from
atomic details to quaternary arrangement (Nogales and Scheres, 2015). It particularly excels at
characterizing large biological assemblies or heterogeneous samples, which are extremely chal-
lenging targets for other high-resolution structural techniques such as X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy. Since the introduction of direct electron detec-

tion (DED) cameras roughly a decade ago, cryo-EM has undergone rapid development both on the



hardware and software fronts (Chua et al., 2022). Improved automation and throughput during data
collection, coupled with efficient and user-friendly data processing software, has enabled wide

adoption of this technique in many areas of biological research.

Despite the achievements so far, many aspects of cryo-EM can still benefit from further improve-
ments. One such area concerns efficient recognition and exclusion of non-ideal cryo-EM micro-
graphs, given the increasing number and size of cryo-EM datasets. Currently, a beam-image shift
scheme (Cheng et al., 2018) is commonly used during cryo-EM data collection using software
such as SerialEM (Mastronarde, 2005), EPU, and Leginon (Cheng et al., 2021), which greatly
increases data collection throughput. Coupled with newer detectors with shorter exposure times,
300 or more cryo-EM movies can be obtained per hour with little compromise on achievable res-
olution (Fréchin et al., 2023; Peck et al., 2022). Effort is also being made to automate microscope
operation through deep learning methods (Bouvette et al., 2022; Cheng et al., 2023; Fan et al.,
2024), which would further accelerate the data collection process. Such advances, combined with
the need for a large amount of data for low-concentration or highly heterogeneous samples, have
led to increasingly large dataset sizes, typically ranging from a few thousand to tens of thousands
of movies. Inevitably, a portion of the collected data will be non-ideal for processing and will thus
need to be excluded. A common method for performing filtering is based on contrast transfer func-
tion (CTF) fitting, in which the user defines a threshold for acceptable CTF fit resolution or defocus
value for a given micrograph. This method is very efficient at excluding micrographs with drift
issues or beam aberrations, but it is not ideal for filtering out many other issues such as crystalline
ice or off-target support film images. To achieve high filtering accuracy, manual inspection of
micrographs is often needed, which is slow and requires expert knowledge to perform. Such an

approach becomes less practical as the dataset size increases.

A convolutional neural network (CNN) is a machine learning algorithm that is specialized for
processing matrix-like data, such as images. CNNs have been successfully applied to a wide range
of computer vision tasks such as image recognition, classification, and segmentation (Alzubaidi et
al., 2021). CNNs have also proven useful in many cryo-EM processing steps such as particle pick-
ing (Bepler et al., 2019; Tegunov and Cramer, 2019; Wagner et al., 2019), 2D class selection

(Kimanius et al., 2021; Li et al., 2020), and micrograph segmentation (Sanchez-Garcia et al.,



2020). Because cryo-EM micrograph filtering is an image classification task at its essence, a CNN-
based approach is highly attractive. Cianfrocco and co-workers were the first to demonstrate such
an approach (Li et al., 2020). By training a CNN based on a ResNet34 model on a labeled dataset
of “good” and “bad” micrographs, they were able to show that CNN-based micrograph filtering
greatly improves prediction accuracy (~93%) over traditional CTF-based filtering (~78%), in par-
ticular by dramatically reducing the false negative rate (“good” micrographs predicted as “bad”).
The improvement over CTF-based filtering is especially significant for the classification of tilted
images as tilting inherently leads to lower CTF resolution. A more recent version of their tool,
MicAssess 1.0 (Li and Cianfrocco, 2021), implements a hierarchical process to further subclassify
the “good” and “bad” classes with ~75 and 80% subclass prediction accuracy, respectively. The
success of the CNN-based approach to micrograph filtering raises new questions. For example,
can we further improve the accuracy of CNN-based filtering given limited training data? Addi-
tionally, can we better encode the reasoning behind micrograph filtering into CNN-based meth-

ods?

In this work, we examined various strategies to improve CNN-based filtering. First, we tested
whether using a CNN pretrained on the ImageNet dataset (Deng et al., 2009), which does not
resemble cryo-EM micrographs, as a starting point for training can achieve better micrograph fil-
tering accuracy than training a CNN on cryo-EM data from scratch. This method, known as fine-
tuning or transfer learning, has been shown to greatly improve attainable accuracy of CNN models
when only limited training data is available (Kolesnikov et al., 2019; Yadav and Jadhav, 2019).
Second, we examined whether the direct inclusion of Fourier space information as part of the CNN
input could result in a better prediction accuracy, since many issues such as crystalline ice or sam-
ple drift can be better spotted in the power spectrum than in the real-space image. Finally, we
aimed to expand the versatility of CNN-based filtering in terms of the type of samples and detec-
tors that it can be applied to and provide integration with common processing software packages
including RELION (Kimanius et al., 2021) and cryoSPARC (Punjani et al., 2017). We named the
resulting tool Miffi, which stands for cryo-EM micrograph filtering utilizing Fourier space infor-
mation (Figure 1). Miffi is open-source and freely available for public use

(https://github.com/ando-lab/miffi). Importantly, we find that fine-tuning provides significant im-

provement over training from scratch and that inclusion of power spectra as a second input channel



suppresses the false positive rate (“bad” micrographs predicted as “good”), largely through im-
proved detection of micrographs with crystalline ice. While we provide Miffi for public use, our
results also indicate that CNNs pretrained on the ImageNet dataset provide a useful starting point

for any user interested in training a model on custom datasets.
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Figure 1. Schematic of Miffi. Miffi employs a convolutional neural network (CNN) for classifica-
tion by predicting multiple labels for each micrograph. Real-space cryo-EM micrographs and their
corresponding power spectra are preprocessed and input into the CNN as two channels, from which
an output array containing prediction probability for each label is obtained. Predicted labels are
then determined as the one with the highest probability within each of the four label categories:
support film coverage, drift, crystallinity, contamination (examples of which can be found in Fig-
ure 2).

Methods

1. Data used for training, validation, and testing

All micrographs used in this work were either directly obtained from EMPIAR (Iudin et al., 2023)
or obtained in-house and motion corrected using MotionCor2 (Zheng et al., 2017) in RELION 4
(Kimanius et al., 2021). For data collected on a Gatan K3 detector, 7 by 5 patches were used for
motion correction, while 5 by 5 patches were used for data collected on a Gatan K2 Summit de-
tector. The training set included a mix of in-house datasets and EMPIAR entries 10202 (Tan et al.,
2018), 10249 (Herzik et al., 2019), and 11228 (Filman et al., 2019), as described in Table 1. An

in-house dataset on a 240 kDa globular protein collected on a Gatan K3 detector that was not part



of the training set was used as the validation set, as it contained a number of micrographs with
various issues. All in-house datasets used in training and validation were curated from their re-
spective full sets such that bad micrographs constituted roughly 50% of each set. Micrographs
from EMPIAR entries 10175 (Noble et al., 2018b), 10344 (Campbell et al., 2020), 10379 (Li et
al., 2020), 10916 (Yang et al., 2022), and 11093 (Roder et al., 2020) were used as additional test
sets to evaluate the trained model, the details of which can be found in Table 2. Dose-weighted

micrographs were used for all cases.

num of square

source particle notes detector .
micrographs
240 kDa globular
in-house K3 11732
protein
on graphene oxide
300 kDa globular
in-house film, includes tilted K3 11820
protein ‘
images
210 kDa elongated
in-house K3 3384
protein
200 kDa globular
in-house K3 1638
protein

filament with 160
in-house S K3 3712
kDa asymmetric unit

methionine synthase

mixed with apoferri- | includes tilted im-
in-house K3 10050
tin (Watkins et al., ages
2023)
EM-

adeno-associated vi-
PIAR- 3.8 MDa globular K2 Summit 1317
rus (Tan et al., 2018)

10202
EM- alcohol dehydrogen-
) 81 kDa globular, '
PIAR- ase (Herzik et al., K2 Summit 1151
very densely packed
10249 2019)




EM- cytochrome OmcS thin filament with
PIAR- nanowire (Filman et | 50 kDa asymmetric K2 Summit 964
11228 al., 2019) unit

Table 1. Datasets used in the training set. All in-house datasets were curated such that bad micro-
graphs consisted of roughly half of each set. The training set contains micrographs from various

types of samples, detectors, and modes of data collection.

source particle notes detector
EMPIAR- hemagglutinin (Noble et
190 kDa elongated K2 Summit
10175 al., 2018b)
EMPIAR- | aVP8 integrin (Campbell | 240 kDa elongated on
K2 Summit
10344 et al., 2020) graphene oxide film
EMPIAR-
aldolase (Li et al., 2020) 160 kDa globular K2 Summit
10379
EMPIAR- amyloid-$ 42 filament filament with 9 kDa
Falcon 4i
10916 (Yang et al., 2022) asymmetric unit
EMPIAR- amylin amyloid fibril thin filament with 8 kDa
Falcon III
11093 (Roder et al., 2020) asymmetric unit

Table 2. Additional test sets. The test sets contain a diverse set of micrographs that were not part
of the training set.

To maximize applicability of the model on data collected from different detectors which are of
different dimensions, we set the CNN inputs as square images. Micrographs that are non-square
were thus split or cropped into square micrographs during the preprocessing stage for training and
inference. For analyses done in this work, micrographs from a Gatan K3 detector (5760 pix x 4092
pix) were split into two square micrographs (4092 pix x 4092 pix) spanning the original micro-
graph with overlap in the middle (2424 pix x 4092 pix). Micrographs from a Gatan K2 Summit
detector, which are nearly square (3838 pix x 3710 pix), were cropped into a single square micro-
graph (3710 pix x 3710 pix) starting from the left edge of the original micrograph oriented with
the long dimension in the horizontal direction. Micrographs that are originally square (e.g., col-
lected on a TFS Falcon detector) were kept as is. Each square micrograph in the training and val-

idation sets was labeled individually and treated as separate entries. The training set included a



total of 45768 square micrographs, while the validation set included a total of 4000 square micro-

graphs.

2. Labeling scheme

The training, validation, and test datasets were labeled manually by inspecting each square micro-
graph along with its corresponding power spectrum. A GUI interface designed for this process is
included in the GitHub repository. Each square micrograph was given four labels representing
different categories of issues: support film coverage, drift, crystallinity, contamination (Figure 1).
The first label describes the degree of the support film coverage in the micrograph, which can be
one of the following: no film, minor film, major film, film (Figure 2, top row). Note that film here
only means support film of the grid itself, and additional continuous film such as mono-layer gra-
phene oxide is not considered film in this case. The second label is binary and describes issues of
sample displacement, where sample drift, cracks, or an empty micrograph is labeled as “bad” (Fig-
ure 2, second row). The third label describes the crystallinity of the ice in the sample, which is
determined by non-diffuse intensity at around 1/3.7 A" in Fourier space, and can be one of the
following: not crystalline, minor crystalline, major crystalline (Figure 2, third row). Finally, the
fourth label is binary and describes whether the micrograph is covered largely in contaminant ob-
jects, which includes ice crystals and ethane contamination (Figure 2, bottom row). It is worth
noting that as the changes within each category are often continuous, it is difficult to set a clear

cutoff, but extra care was made to keep the labeling scheme as consistent as possible.
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Figure 2. Example “bad” micrographs for each label category from the in-house training set. The
real-space micrograph is shown on the left, with its corresponding power spectrum shown on the
right. (a) Support film category. Support carbon film in the example is the darker region on the
right side of the real-space micrograph, while the ice-containing hole is the lighter region on the
left side. (b) Sample displacement category. Translational motion of the sample caused by drift or
cracks often results in asymmetric resolution or a streaky pattern in the power spectrum. An empty
hole on the other hand has a flat power spectrum with high intensity at the origin of Fourier space.
(c) Ice crystallinity category. Ice crystallinity is determined by a non-diffuse ring at 1/3.7 A"! in
Fourier space. Micrographs with strong ice crystallinity often exhibit clear dark-and-light alternat-
ing patterns in real space (example on the right). However, for samples with minor crystallinity,
features in the real-space micrographs are often subdued and thus are better identified with the ring
feature in the power spectra. (¢) Contamination category. Two examples shown here represent
contaminating ice crystals adhering to the hole (left) and ethane contaminants embedded in ice

(right).

3. Model training



The ConvNeXt-Small model (Liu et al., 2022) was chosen for the classification task in this work
based on its simplicity in architecture and high performance on the ImageNet datasets. All models
and their training were implemented in Pytorch (Paszke et al., 2019). Training was performed
either from scratch using randomly initialized model weights, or via fine-tuning of model weights
pretrained on the ImageNet-12k dataset (Deng et al., 2009; Liu et al., 2022). We tested both a
single-channel input of real-space micrographs as well as a two-channel input of the real-space
micrographs with their corresponding power spectra. The Timm package (Wightman, 2019) was
used to modify the input and output layers of the model to match the desired number of input
channels and output classes. As the ImageNet-pretrained model was trained with three input chan-
nels corresponding to three colors, pretrained weights were reduced to one or two channels in the
following manner to maintain normalization: for a single input channel, the sum of weights from
the original three channels was used; for two input channels, the weights in first two original chan-

nels were multiplied by a factor of 1.5, while the third was unused.

Square micrographs were Fourier cropped to 1.5 A pixel size during preprocessing to keep the
location of the ice ring consistent in the power spectrum. During the training stage, data augmen-
tation was subsequently applied, including a random crop with a ratio randomly chosen from 0.8
— 1.0, along with a random horizonal and vertical flip. Data augmentation was not applied during
validation or inference. For two-channel input models, the power spectra of the augmented micro-
graphs were computed and appended as an additional channel. Inputs were then downsampled to
384 pix x 384 pix with bilinear interpolation, and finally normalized to a mean of 0 with a standard
deviation of 1 for each channel individually, with pixels that have intensity falling outside 2.5
standard deviation thresholded (to ensure that micrographs from different sources are on a similar
intensity scale). During training, the four label categories for each micrograph are treated as inde-
pendent from each other, while the probability for all possible labels within each label category is
summed to one using the softmax function. Cross-entropy between true label and predicted label
probability (softmax of CNN output) for all four label categories were calculated individually, and
the sum of which was defined as the loss function. The AdamW optimizer (Loshchilov and Hutter,
2017) and a cosine learning rate scheduler were used for training all models. Layer-wise learning

rate decay was applied in fine-tuning by dividing layers into 12 groups and setting the learning



rate for each group. Linear warmup epochs were used in the case of training from scratch. Detailed
parameters used in training can be found in Table 3. Notably, the fine-tuning process was found
to be prone to overfitting, likely reflecting the fact that our training set is small relative to the size
of the CNN such that the models can overfit and lose generality. The learning rate, number of
training epochs, and layer decay ratio were thus chosen carefully to minimize overfitting, which
can be visualized in the loss functions (i.e., the training loss will continue to decrease as the model
improves its fit with the training set, but the validation loss will begin to increase as the model
begins to lose its generality). All models were trained on a NVIDIA RTX-3090 GPU with less

than an hour per epoch.

from scratch fine-tune fine-tune

single-channel

single-channel

two-channel

optimizer AdamW AdamW AdamW
base learning rate 4e-4 le-5 le-5
weight decay 0.05 le-8 le-8
batch size 32 32 32
training epochs 20 9 10
warmup epochs 5 None None

learning rate (Ir) schedule | cosine decay

None 0.9 0.9

cosine decay | cosine decay

layer Ir decay ratio

Table 3. Hyperparameters used in model training

To test how the number of training samples can affect achievable accuracy, trainings were per-
formed with subsets of the full training set in the following manner. The full training set was
downsampled to 30000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100 micrographs, by randomly
removing samples while keeping the relative number of different labels the same to ensure diver-
sity in training samples. Two-channel ConvNeXt-Small and ConvNeXt-Tiny models pretrained
on ImageNet data were then fine-tuned on the downsampled training sets with the same hyperpa-
rameters as the two-channel fine-tuned model in Table 3 for 10 epochs, with intermediate models

saved at each epoch. The intermediate model with the highest validation accuracy in each training
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was then used to perform the inference on the validation set to calculate the good-versus-bad pre-

diction accuracy.

4. Inference and calculation of prediction accuracy

During inference, micrographs were first split into square micrographs and Fourier cropped to 1.5
A pixel size as described above for the training datasets. Power spectra were then appended when
applicable, followed by downsampling and normalization, as were done in training. The prepared
input was passed through the CNN model to obtain the output array, which was then converted to
probabilities for each label using the softmax function. The predicted label for each category was
determined as the one with highest probability (Figure 1, right). For micrographs with multiple
square splits, predictions from individual splits are combined with a predefined set of rules which
can be customized by the user (e.g., the user can choose to only keep micrographs in which all
splits are classified as “good,” or a user may choose the maximize the number of micrographs by
also keeping ones that are partially “bad”). In this work, because each square split was labeled
individually, accuracy calculation was also performed for each split without combining. For the
good-versus-bad accuracy calculations shown here, we defined the following for the two non-
binary categories: for the support film coverage category, we defined “good” micrographs as ones
that are labeled as either no film or minor film; for the crystalline ice category, we defined “good”
micrographs as ones that are labeled as not crystalline. Overall “good” micrographs were then
defined as ones that are labeled as “good” in all four categories, with the rest defined as bad mi-
crographs. Accuracy was calculated as the number of correct predictions divide by the total number
of samples. True positive denotes the number of correctly predicted “good” micrographs, while
true negative denotes the number of correctly predicted “bad” micrographs. False positive denotes
the number of “bad” micrographs predicted as “good”, while false negative denotes the number of

“good” micrographs predicted as “bad”.

To compare the performance of our model with existing methods, micrograph filtering was per-
formed with MicAssess (Li et al., 2020; Li and Cianfrocco, 2021) and CTF-based filtering using
the same test sets. Version 1.0 of MicAssess was obtained from GitHub, and the model weights

were obtained from the authors. Default parameters were used during inference, and micrographs
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predicted as “good” in the binary classification step of MicAssess were treated as “good” micro-
graphs, while the rest were treated as “bad” micrographs. To compare our model with CTF-based
filtering, patch CTF estimation was performed in cryoSPARC (Punjani et al., 2017). Because the
distribution of CTF fitting resolution varied greatly between different datasets, we set the cutoff
individually for each dataset. Micrographs with CTF fitting resolution worse than 10 A were first
excluded as they greatly biased the statistics and were treated as “bad” micrographs. Of the re-
mainder, those with CTF fitting resolution within two standard deviations of the mean were treated

as “good” micrographs, while those outside of this range were treated as “bad” micrographs.

Results and Discussions

We tested two strategies in model design and training and evaluated their effects on the prediction
accuracy with the validation set. The first strategy was to perform fine-tuning starting from model
weights pretrained on the ImageNet-12k dataset, which contrasts with previous work which trained
a model from scratch (Li et al., 2020). Although the ImageNet dataset consists of everyday objects
that are very different from cryo-EM images, previous examples such as medical imaging have
shown that pretrained weights can still notably improve accuracy especially in cases where limited
training data is available (Yadav and Jadhav, 2019). The second strategy was to directly include
power spectra of the micrographs as an additional channel in the input. This is inspired by the fact
that many issues with micrographs can be spotted more easily in the power spectrum, particularly
the ice crystallinity. Although information in the Fourier space representation should theoretically
also be present in the real-space images, the information content will be significantly reduced after
the downsampling process, which is a necessary preprocessing step when utilizing CNNs on mi-
crographs due to computational cost. By explicitly including power spectra as part of the input,
high-resolution Fourier space information contained in the original micrographs can be preserved
through the downsampling step. Here, we compared the resulting models of three training cases:
(1) training from scratch with a single-channel real-space input, (2) fine-tuning from a pretrained
model with a single-channel real-space input, and (3) fine-tuning with a two-channel input that
includes power spectra. The resulting overall good-versus-bad micrograph accuracy can be found

in Table 4, while the accuracy for individual categories can be found in Supplementary Table S1.
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acc. | TP | FP [ TN | FN

from scratch
0.780]1749| 418 |1371| 462
single-channel

fine-tune
0.961|2178| 122 |1667| 33
single-channel

fine-tune
0.986(2183( 27 [1762] 28
two-channel

Table 4. Overall accuracy (acc.) of good-versus-bad predictions made for the validation set by
the three models. True positive = TP; false positive = FP; true negative = TN; false negative =

FN.

By comparing the resulting accuracy from the first two training cases (Table 4, top two rows), we
can see that fine-tuning from pretrained weights greatly improved the attainable accuracy with the
same training data, from 78% to 96% or greater. This can be rationalized as the feature extracting
capability of the initial layers in the CNN being largely transferable even with significant differ-
ences between pretraining ImageNet data and cryo-EM images. This is consistent with the obser-
vation that layer decay in learning rate improved attainable accuracy (results not shown), indicat-
ing that weights in initial layers require less change to arrive at the optimal values. Furthermore,
we found that when fine-tuning is performed, the training loss is already low after a single epoch
of training, and becomes lower than the final loss of training from scratch after an additional epoch
(Figure 3), again suggesting that pretrained weights are much closer to the optimal values com-
pared to randomly initialized weights. The second strategy, direct inclusion of power spectra, ad-
ditionally increased the prediction accuracy on top of fine-tuning from 96% to 99%, evident from
comparison between the last two training cases (Table 4, bottom two rows). When comparing
prediction accuracy in individual categories (Supplementary Table S1), the most significant im-
provement comes from the ice crystallinity category. Notably, the number of false positives in the
prediction of ice crystallinity was greatly reduced, consistent with the intuition that power spectra

provide better indication for the presence of crystalline ice than real-space images.
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Figure 3. Loss versus epoch for all three training cases. Solid lines denote training loss while
dashed lines denote validation loss. Black, blue, and red lines correspond to training from scratch
with single-channel input, fine-tuning with single-channel input, and fine-tuning with two-channel
input, respectively.

acc. TP FP TN FN
EMPIAR-10175 | 0.954 | 802 31 171 16
EMPIAR-10344 | 0.979 | 2348 | 26 278 30
EMPIAR-10379 | 0.996 | 884 2 230 2

EMPIAR-10916 | 0.971 | 1684 0 27 51
EMPIAR-11093 | 0.973 | 1123 16 171 20

Table 5. Overall good-versus-bad accuracy (acc.) on additional test sets. True positive = TP;

false positive = FP; true negative = TN; false negative = FN.

To further examine the generality of our two-channel input model trained with fine-tuning, we
tested its performance on five additional datasets from EMPIAR, which contains a variety of fea-
tures including filamentous samples or graphene oxide films. The resulting prediction accuracies
(Table 5 and Supplementary Table S2) show that our model performs relatively well for all chosen
datasets, with an overall accuracy higher than 95% in all cases. To compare with other existing
methods, we performed micrograph filtering with MicAssess and CTF-fitting on the same EM-
PIAR datasets and calculated prediction accuracies based on our labels (Supplementary Table S3
and Supplementary Table S4). The results indicate that our model provides the highest filtering
accuracy among tested methods for all datasets. Surprisingly, we found that CTF-based filtering

outperformed MicAssess for many of the datasets tested here. This could be a result of these test
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sets differing significantly from the training set for MicAssess. It is also important to note that our
labeling criteria may differ from those used in training MicAssess. In the absence of a standardized
and validated test set for micrograph filtering, an exact comparison cannot be made between dif-
ferent methods. Nonetheless, these results do illustrate the utility of utilizing Fourier information.
A notable example was EMPIAR-10379, for which CTF-based filtering had an overall accuracy
of 97.8%, compared to MicAssess, which had 77.5% accuracy. Interestingly, this dataset had very
few issues in the ice crystallinity, film, and contamination categories (17 out of 1118 micrographs)
but had many in the drift category (218 out of 1118) (Supplementary Table S2), indicating that
CTF-based filtering is better at detecting the latter type of issue. This observation is consistent
with the fact that CTF fitting is done in Fourier space, and drift issues are readily detectable as
they lead to anisotropic power spectra or loss of Thon rings, in the case of empty holes. The fact
that our model outperforms both CTF-based filtering and MicAssess here (overall accuracy of
99.6%) further demonstrates that combining information from power spectra and real space mi-
crographs is key to accurately assessing micrograph quality. Future benchmarking studies would

benefit from the development of publicly available standardized test set.

While our model appears to be generally applicable, we do observe slight differences in accuracy
for different test sets. We hypothesized that these variations correspond to their degree of dissim-
ilarity to the training set, and attempts were made to improve our model by training it with test sets
included as part of the training set and with the same hyperparameters as before. The resulting
models, however, show slight deterioration in performance on additional hold-out test sets (results
not shown). This could either be due to the new training set requiring additional optimization of
hyperparameters, or that training specialized models on individual subsets may be necessary to
improve the accuracy beyond what we see here. To investigate how many training samples are
required to obtain a reasonable prediction accuracy, we performed training on random subsets of
the full training set with various sizes. We also performed the training with both ConvNeXt-Small
and ConvNeXt-Tiny models to explore whether a smaller CNN provides better training results
when the number of training samples is low. The result, shown in Figure 4, suggests that a rela-
tively high accuracy (~94%) can be achieved with a relatively small training set of only 1000
micrographs, and the accuracy plateaus when the number of training samples is higher than 10000

micrographs. Interestingly, we found that ConvNeXt-Tiny did not appear to provide an advantage
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over ConvNeXt-Small in the low training sample regime, indicating that ConvNeXt-Small is a
suitable choice even when training with very limited data. Overall, our result here suggests that
with the fine-tuning strategy, training specialized models should not be difficult to achieve even

with a small amount of data.

accuracy
o
©
o

o
o)
(8]

—e— ConvNeXt-Small
—e— ConvNeXt-Tiny

10° 10° 10*
number of training samples

Figure 4. Overall good-versus-bad accuracy on validation set plotted against the number of training
samples used in training. Blue and red lines correspond to results from training ConvNeXt-Small
and ConvNeXt-Tiny models, respectively.

Conclusion

In this work, we examined various strategies to improve CNN-based cryo-EM micrograph filter-
ing. We showed that two strategies, fine-tuning from pretrained weights and directly including
power spectra as input, can improve the attainable accuracy of resulting models. This likely results
from the transferability of the feature-extracting capability in the initial layers of a pretrained
model, as well as the existence of better indicators for certain micrograph features in Fourier space.
We demonstrated that a model trained with these strategies can filter a diverse set of cryo-EM

datasets with high accuracy.

The resulting software, named Miffi, is open-source and freely available for public use. Miffi is
implemented with Pytorch, which enables cross-platform compatibility. Mifti can be accelerated
with CUDA on a NVIDIA GPU (about 3 micrographs per second with our setup), but it also runs
with reasonable speed when using CPU only (about 3 seconds per micrograph with our setup).

Miffi accepts micrograph inputs in file formats produced by common cryo-EM processing
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software, such as RELION and cryoSPARC, and can write output files in the same format such
that they can be directly imported back into the originating software. Necessary preprocessing
steps (e.g., splitting/cropping micrographs into square micrographs, Fourier cropping, calculation
of power spectra, downsampling) are performed on input micrographs in Miffi before passing them
to the CNN for classification. Miffi also provides users the flexibility to control the classification
process, including the ability to customize rules for combining predictions for micrographs with
multiple square splits, to filter predictions based on their confidence scores, and to control which
categories are written out. We note that the labeled categories in our training process do not include
all potential issues, such as low particle visibility or thick ice. In particular, ice thickness is a con-
tinuum quantity that is best measured experimentally (Neselu et al., 2023; Noble et al., 2018a;
Rice et al., 2018), for which the ideal range is sample dependent. Therefore, combining Miffi with
other data assessment criteria will still be beneficial. For example, issues with ice thickness can be
filtered based on experimentally measured values or based on the intensity of the diffuse ice ring
at 1/3.7 A" in Fourier space, and issues with particle visibility can be filtered by excluding micro-
graphs with low defocus values. Overall, we believe that Miffi can be readily incorporated into
common data processing pipelines and greatly improve the accuracy and efficiency of the micro-

graph curation step.
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