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Abstract 

 

Efficient and high-accuracy filtering of cryo-electron microscopy (cryo-EM) micrographs is an 

emerging challenge with the growing speed of data collection and sizes of datasets. Convolutional 

neural networks (CNNs) are machine learning models that have been proven successful in many 

computer vision tasks, and have been previously applied to cryo-EM micrograph filtering. In this 

work, we demonstrate that two strategies, fine-tuning models from pretrained weights and includ-

ing the power spectrum of micrographs as input, can greatly improve the attainable prediction 

accuracy of CNN models. The resulting software package, Miffi, is open-source and freely avail-

able for public use (https://github.com/ando-lab/miffi). 
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Introduction 

 

Single particle cryo-electron microscopy (cryo-EM) is a technique that can provide detailed struc-

tural information on the architecture of biological macromolecules with resolution ranging from 

atomic details to quaternary arrangement (Nogales and Scheres, 2015). It particularly excels at 

characterizing large biological assemblies or heterogeneous samples, which are extremely chal-

lenging targets for other high-resolution structural techniques such as X-ray crystallography or 

nuclear magnetic resonance (NMR) spectroscopy. Since the introduction of direct electron detec-

tion (DED) cameras roughly a decade ago, cryo-EM has undergone rapid development both on the 
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hardware and software fronts (Chua et al., 2022). Improved automation and throughput during data 

collection, coupled with efficient and user-friendly data processing software, has enabled wide 

adoption of this technique in many areas of biological research. 

 

Despite the achievements so far, many aspects of cryo-EM can still benefit from further improve-

ments. One such area concerns efficient recognition and exclusion of non-ideal cryo-EM micro-

graphs, given the increasing number and size of cryo-EM datasets. Currently, a beam-image shift 

scheme (Cheng et al., 2018) is commonly used during cryo-EM data collection using software 

such as SerialEM (Mastronarde, 2005), EPU, and Leginon (Cheng et al., 2021), which greatly 

increases data collection throughput. Coupled with newer detectors with shorter exposure times, 

300 or more cryo-EM movies can be obtained per hour with little compromise on achievable res-

olution (Fréchin et al., 2023; Peck et al., 2022). Effort is also being made to automate microscope 

operation through deep learning methods (Bouvette et al., 2022; Cheng et al., 2023; Fan et al., 

2024), which would further accelerate the data collection process. Such advances, combined with 

the need for a large amount of data for low-concentration or highly heterogeneous samples, have 

led to increasingly large dataset sizes, typically ranging from a few thousand to tens of thousands 

of movies. Inevitably, a portion of the collected data will be non-ideal for processing and will thus 

need to be excluded. A common method for performing filtering is based on contrast transfer func-

tion (CTF) fitting, in which the user defines a threshold for acceptable CTF fit resolution or defocus 

value for a given micrograph. This method is very efficient at excluding micrographs with drift 

issues or beam aberrations, but it is not ideal for filtering out many other issues such as crystalline 

ice or off-target support film images. To achieve high filtering accuracy, manual inspection of 

micrographs is often needed, which is slow and requires expert knowledge to perform. Such an 

approach becomes less practical as the dataset size increases. 

 

A convolutional neural network (CNN) is a machine learning algorithm that is specialized for 

processing matrix-like data, such as images. CNNs have been successfully applied to a wide range 

of computer vision tasks such as image recognition, classification, and segmentation (Alzubaidi et 

al., 2021). CNNs have also proven useful in many cryo-EM processing steps such as particle pick-

ing (Bepler et al., 2019; Tegunov and Cramer, 2019; Wagner et al., 2019), 2D class selection 

(Kimanius et al., 2021; Li et al., 2020), and micrograph segmentation (Sanchez-Garcia et al., 
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2020). Because cryo-EM micrograph filtering is an image classification task at its essence, a CNN-

based approach is highly attractive. Cianfrocco and co-workers were the first to demonstrate such 

an approach (Li et al., 2020). By training a CNN based on a ResNet34 model on a labeled dataset 

of “good” and “bad” micrographs, they were able to show that CNN-based micrograph filtering 

greatly improves prediction accuracy (~93%) over traditional CTF-based filtering (~78%), in par-

ticular by dramatically reducing the false negative rate (“good” micrographs predicted as “bad”). 

The improvement over CTF-based filtering is especially significant for the classification of tilted 

images as tilting inherently leads to lower CTF resolution. A more recent version of their tool, 

MicAssess 1.0 (Li and Cianfrocco, 2021), implements a hierarchical process to further subclassify 

the “good” and “bad” classes with ~75 and 80% subclass prediction accuracy, respectively. The 

success of the CNN-based approach to micrograph filtering raises new questions. For example, 

can we further improve the accuracy of CNN-based filtering given limited training data? Addi-

tionally, can we better encode the reasoning behind micrograph filtering into CNN-based meth-

ods? 

 

In this work, we examined various strategies to improve CNN-based filtering. First, we tested 

whether using a CNN pretrained on the ImageNet dataset (Deng et al., 2009), which does not 

resemble cryo-EM micrographs, as a starting point for training can achieve better micrograph fil-

tering accuracy than training a CNN on cryo-EM data from scratch. This method, known as fine-

tuning or transfer learning, has been shown to greatly improve attainable accuracy of CNN models 

when only limited training data is available (Kolesnikov et al., 2019; Yadav and Jadhav, 2019). 

Second, we examined whether the direct inclusion of Fourier space information as part of the CNN 

input could result in a better prediction accuracy, since many issues such as crystalline ice or sam-

ple drift can be better spotted in the power spectrum than in the real-space image. Finally, we 

aimed to expand the versatility of CNN-based filtering in terms of the type of samples and detec-

tors that it can be applied to and provide integration with common processing software packages 

including RELION (Kimanius et al., 2021) and cryoSPARC (Punjani et al., 2017). We named the 

resulting tool Miffi, which stands for cryo-EM micrograph filtering utilizing Fourier space infor-

mation (Figure 1). Miffi is open-source and freely available for public use 

(https://github.com/ando-lab/miffi). Importantly, we find that fine-tuning provides significant im-

provement over training from scratch and that inclusion of power spectra as a second input channel 
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suppresses the false positive rate (“bad” micrographs predicted as “good”), largely through im-

proved detection of micrographs with crystalline ice. While we provide Miffi for public use, our 

results also indicate that CNNs pretrained on the ImageNet dataset provide a useful starting point 

for any user interested in training a model on custom datasets. 

 

 
Figure 1. Schematic of Miffi. Miffi employs a convolutional neural network (CNN) for classifica-
tion by predicting multiple labels for each micrograph. Real-space cryo-EM micrographs and their 
corresponding power spectra are preprocessed and input into the CNN as two channels, from which 
an output array containing prediction probability for each label is obtained. Predicted labels are 
then determined as the one with the highest probability within each of the four label categories: 
support film coverage, drift, crystallinity, contamination (examples of which can be found in Fig-
ure 2). 
 

Methods 

 

1. Data used for training, validation, and testing 

 

All micrographs used in this work were either directly obtained from EMPIAR (Iudin et al., 2023) 

or obtained in-house and motion corrected using MotionCor2 (Zheng et al., 2017) in RELION 4 

(Kimanius et al., 2021). For data collected on a Gatan K3 detector, 7 by 5 patches were used for 

motion correction, while 5 by 5 patches were used for data collected on a Gatan K2 Summit de-

tector. The training set included a mix of in-house datasets and EMPIAR entries 10202 (Tan et al., 

2018), 10249 (Herzik et al., 2019), and 11228 (Filman et al., 2019), as described in Table 1. An 

in-house dataset on a 240 kDa globular protein collected on a Gatan K3 detector that was not part 
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of the training set was used as the validation set, as it contained a number of micrographs with 

various issues. All in-house datasets used in training and validation were curated from their re-

spective full sets such that bad micrographs constituted roughly 50% of each set. Micrographs 

from EMPIAR entries 10175 (Noble et al., 2018b), 10344 (Campbell et al., 2020), 10379 (Li et 

al., 2020), 10916 (Yang et al., 2022), and 11093 (Röder et al., 2020) were used as additional test 

sets to evaluate the trained model, the details of which can be found in Table 2. Dose-weighted 

micrographs were used for all cases. 

 

source particle notes detector 
num of square 

micrographs 

in-house 
240 kDa globular 

protein 
 K3 11732 

in-house 
300 kDa globular 

protein  

on graphene oxide 

film, includes tilted 

images  

K3 11820 

in-house 
210 kDa elongated 

protein 
 K3 3384 

in-house 
200 kDa globular 

protein 
 K3 1638 

in-house 
filament with 160 

kDa asymmetric unit 
 K3 3712 

in-house 

methionine synthase 

mixed with apoferri-

tin (Watkins et al., 

2023) 

includes tilted im-

ages 
K3 10050 

EM-

PIAR-

10202 

adeno-associated vi-

rus (Tan et al., 2018) 
3.8 MDa globular K2 Summit 1317 

EM-

PIAR-

10249 

alcohol dehydrogen-

ase (Herzik et al., 

2019) 

81 kDa globular, 

very densely packed 
K2 Summit 1151 
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EM-

PIAR-

11228 

cytochrome OmcS 

nanowire (Filman et 

al., 2019) 

thin filament with 

50 kDa asymmetric 

unit 

K2 Summit 964 

Table 1. Datasets used in the training set. All in-house datasets were curated such that bad micro-
graphs consisted of roughly half of each set. The training set contains micrographs from various 
types of samples, detectors, and modes of data collection. 
 

source particle notes detector 

EMPIAR-

10175 

hemagglutinin (Noble et 

al., 2018b) 
190 kDa elongated K2 Summit 

EMPIAR-

10344 

αVβ8 integrin (Campbell 

et al., 2020) 

240 kDa elongated on 

graphene oxide film 
K2 Summit 

EMPIAR-

10379 
aldolase (Li et al., 2020) 160 kDa globular K2 Summit 

EMPIAR-

10916 

amyloid-β 42 filament 

(Yang et al., 2022) 

filament with 9 kDa 

asymmetric unit 
Falcon 4i 

EMPIAR-

11093 

amylin amyloid fibril 

(Röder et al., 2020) 

thin filament with 8 kDa 

asymmetric unit 
Falcon III 

Table 2. Additional test sets. The test sets contain a diverse set of micrographs that were not part 
of the training set. 
 

To maximize applicability of the model on data collected from different detectors which are of 

different dimensions, we set the CNN inputs as square images. Micrographs that are non-square 

were thus split or cropped into square micrographs during the preprocessing stage for training and 

inference. For analyses done in this work, micrographs from a Gatan K3 detector (5760 pix × 4092 

pix) were split into two square micrographs (4092 pix × 4092 pix) spanning the original micro-

graph with overlap in the middle (2424 pix × 4092 pix). Micrographs from a Gatan K2 Summit 

detector, which are nearly square (3838 pix × 3710 pix), were cropped into a single square micro-

graph (3710 pix × 3710 pix) starting from the left edge of the original micrograph oriented with 

the long dimension in the horizontal direction. Micrographs that are originally square (e.g., col-

lected on a TFS Falcon detector) were kept as is. Each square micrograph in the training and val-

idation sets was labeled individually and treated as separate entries. The training set included a 
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total of 45768 square micrographs, while the validation set included a total of 4000 square micro-

graphs. 

 

2. Labeling scheme 

 

The training, validation, and test datasets were labeled manually by inspecting each square micro-

graph along with its corresponding power spectrum. A GUI interface designed for this process is 

included in the GitHub repository. Each square micrograph was given four labels representing 

different categories of issues: support film coverage, drift, crystallinity, contamination (Figure 1). 

The first label describes the degree of the support film coverage in the micrograph, which can be 

one of the following: no film, minor film, major film, film (Figure 2, top row). Note that film here 

only means support film of the grid itself, and additional continuous film such as mono-layer gra-

phene oxide is not considered film in this case. The second label is binary and describes issues of 

sample displacement, where sample drift, cracks, or an empty micrograph is labeled as “bad” (Fig-

ure 2, second row). The third label describes the crystallinity of the ice in the sample, which is 

determined by non-diffuse intensity at around 1/3.7 Å-1 in Fourier space, and can be one of the 

following: not crystalline, minor crystalline, major crystalline (Figure 2, third row). Finally, the 

fourth label is binary and describes whether the micrograph is covered largely in contaminant ob-

jects, which includes ice crystals and ethane contamination (Figure 2, bottom row). It is worth 

noting that as the changes within each category are often continuous, it is difficult to set a clear 

cutoff, but extra care was made to keep the labeling scheme as consistent as possible. 
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Figure 2. Example “bad” micrographs for each label category from the in-house training set. The 
real-space micrograph is shown on the left, with its corresponding power spectrum shown on the 
right. (a) Support film category. Support carbon film in the example is the darker region on the 
right side of the real-space micrograph, while the ice-containing hole is the lighter region on the 
left side. (b) Sample displacement category. Translational motion of the sample caused by drift or 
cracks often results in asymmetric resolution or a streaky pattern in the power spectrum. An empty 
hole on the other hand has a flat power spectrum with high intensity at the origin of Fourier space. 
(c) Ice crystallinity category. Ice crystallinity is determined by a non-diffuse ring at 1/3.7 Å-1 in 
Fourier space. Micrographs with strong ice crystallinity often exhibit clear dark-and-light alternat-
ing patterns in real space (example on the right). However, for samples with minor crystallinity, 
features in the real-space micrographs are often subdued and thus are better identified with the ring 
feature in the power spectra. (e) Contamination category. Two examples shown here represent 
contaminating ice crystals adhering to the hole (left) and ethane contaminants embedded in ice 
(right). 
 

3. Model training  
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The ConvNeXt-Small model (Liu et al., 2022) was chosen for the classification task in this work 

based on its simplicity in architecture and high performance on the ImageNet datasets. All models 

and their training were implemented in Pytorch (Paszke et al., 2019). Training was performed 

either from scratch using randomly initialized model weights, or via fine-tuning of model weights 

pretrained on the ImageNet-12k dataset (Deng et al., 2009; Liu et al., 2022). We tested both a 

single-channel input of real-space micrographs as well as a two-channel input of the real-space 

micrographs with their corresponding power spectra. The Timm package (Wightman, 2019) was 

used to modify the input and output layers of the model to match the desired number of input 

channels and output classes. As the ImageNet-pretrained model was trained with three input chan-

nels corresponding to three colors, pretrained weights were reduced to one or two channels in the 

following manner to maintain normalization: for a single input channel, the sum of weights from 

the original three channels was used; for two input channels, the weights in first two original chan-

nels were multiplied by a factor of 1.5, while the third was unused. 

 

Square micrographs were Fourier cropped to 1.5 Å pixel size during preprocessing to keep the 

location of the ice ring consistent in the power spectrum. During the training stage, data augmen-

tation was subsequently applied, including a random crop with a ratio randomly chosen from 0.8 

– 1.0, along with a random horizonal and vertical flip. Data augmentation was not applied during 

validation or inference. For two-channel input models, the power spectra of the augmented micro-

graphs were computed and appended as an additional channel. Inputs were then downsampled to 

384 pix × 384 pix with bilinear interpolation, and finally normalized to a mean of 0 with a standard 

deviation of 1 for each channel individually, with pixels that have intensity falling outside 2.5 

standard deviation thresholded (to ensure that micrographs from different sources are on a similar 

intensity scale). During training, the four label categories for each micrograph are treated as inde-

pendent from each other, while the probability for all possible labels within each label category is 

summed to one using the softmax function. Cross-entropy between true label and predicted label 

probability (softmax of CNN output) for all four label categories were calculated individually, and 

the sum of which was defined as the loss function. The AdamW optimizer (Loshchilov and Hutter, 

2017) and a cosine learning rate scheduler were used for training all models. Layer-wise learning 

rate decay was applied in fine-tuning by dividing layers into 12 groups and setting the learning 
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rate for each group. Linear warmup epochs were used in the case of training from scratch. Detailed 

parameters used in training can be found in Table 3. Notably, the fine-tuning process was found 

to be prone to overfitting, likely reflecting the fact that our training set is small relative to the size 

of the CNN such that the models can overfit and lose generality. The learning rate, number of 

training epochs, and layer decay ratio were thus chosen carefully to minimize overfitting, which 

can be visualized in the loss functions (i.e., the training loss will continue to decrease as the model 

improves its fit with the training set, but the validation loss will begin to increase as the model 

begins to lose its generality). All models were trained on a NVIDIA RTX-3090 GPU with less 

than an hour per epoch. 

 

 
from scratch 

single-channel 

fine-tune 

single-channel 

fine-tune 

two-channel 

optimizer AdamW AdamW AdamW 

base learning rate 4e-4 1e-5 1e-5 

weight decay 0.05 1e-8 1e-8 

batch size 32 32 32 

training epochs 20 9 10 

warmup epochs 5 None None 

learning rate (lr) schedule cosine decay cosine decay cosine decay 

layer lr decay ratio None 0.9 0.9 

Table 3. Hyperparameters used in model training  

 

To test how the number of training samples can affect achievable accuracy, trainings were per-

formed with subsets of the full training set in the following manner. The full training set was 

downsampled to 30000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100 micrographs, by randomly 

removing samples while keeping the relative number of different labels the same to ensure diver-

sity in training samples. Two-channel ConvNeXt-Small and ConvNeXt-Tiny models pretrained 

on ImageNet data were then fine-tuned on the downsampled training sets with the same hyperpa-

rameters as the two-channel fine-tuned model in Table 3 for 10 epochs, with intermediate models 

saved at each epoch. The intermediate model with the highest validation accuracy in each training 
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was then used to perform the inference on the validation set to calculate the good-versus-bad pre-

diction accuracy. 

 

4. Inference and calculation of prediction accuracy 

 

During inference, micrographs were first split into square micrographs and Fourier cropped to 1.5 

Å pixel size as described above for the training datasets. Power spectra were then appended when 

applicable, followed by downsampling and normalization, as were done in training. The prepared 

input was passed through the CNN model to obtain the output array, which was then converted to 

probabilities for each label using the softmax function. The predicted label for each category was 

determined as the one with highest probability (Figure 1, right). For micrographs with multiple 

square splits, predictions from individual splits are combined with a predefined set of rules which 

can be customized by the user (e.g., the user can choose to only keep micrographs in which all 

splits are classified as “good,” or a user may choose the maximize the number of micrographs by 

also keeping ones that are partially “bad”). In this work, because each square split was labeled 

individually, accuracy calculation was also performed for each split without combining. For the 

good-versus-bad accuracy calculations shown here, we defined the following for the two non-

binary categories: for the support film coverage category, we defined “good” micrographs as ones 

that are labeled as either no film or minor film; for the crystalline ice category, we defined “good” 

micrographs as ones that are labeled as not crystalline. Overall “good” micrographs were then 

defined as ones that are labeled as “good” in all four categories, with the rest defined as bad mi-

crographs. Accuracy was calculated as the number of correct predictions divide by the total number 

of samples. True positive denotes the number of correctly predicted “good” micrographs, while 

true negative denotes the number of correctly predicted “bad” micrographs. False positive denotes 

the number of “bad” micrographs predicted as “good”, while false negative denotes the number of 

“good” micrographs predicted as “bad”. 

 

To compare the performance of our model with existing methods, micrograph filtering was per-

formed with MicAssess (Li et al., 2020; Li and Cianfrocco, 2021) and CTF-based filtering using 

the same test sets. Version 1.0 of MicAssess was obtained from GitHub, and the model weights 

were obtained from the authors. Default parameters were used during inference, and micrographs 
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predicted as “good” in the binary classification step of MicAssess were treated as “good” micro-

graphs, while the rest were treated as “bad” micrographs. To compare our model with CTF-based 

filtering, patch CTF estimation was performed in cryoSPARC (Punjani et al., 2017). Because the 

distribution of CTF fitting resolution varied greatly between different datasets, we set the cutoff 

individually for each dataset. Micrographs with CTF fitting resolution worse than 10 Å were first 

excluded as they greatly biased the statistics and were treated as “bad” micrographs. Of the re-

mainder, those with CTF fitting resolution within two standard deviations of the mean were treated 

as “good” micrographs, while those outside of this range were treated as “bad” micrographs. 

 

Results and Discussions 

 

We tested two strategies in model design and training and evaluated their effects on the prediction 

accuracy with the validation set. The first strategy was to perform fine-tuning starting from model 

weights pretrained on the ImageNet-12k dataset, which contrasts with previous work which trained 

a model from scratch (Li et al., 2020). Although the ImageNet dataset consists of everyday objects 

that are very different from cryo-EM images, previous examples such as medical imaging have 

shown that pretrained weights can still notably improve accuracy especially in cases where limited 

training data is available (Yadav and Jadhav, 2019). The second strategy was to directly include 

power spectra of the micrographs as an additional channel in the input. This is inspired by the fact 

that many issues with micrographs can be spotted more easily in the power spectrum, particularly 

the ice crystallinity. Although information in the Fourier space representation should theoretically 

also be present in the real-space images, the information content will be significantly reduced after 

the downsampling process, which is a necessary preprocessing step when utilizing CNNs on mi-

crographs due to computational cost. By explicitly including power spectra as part of the input, 

high-resolution Fourier space information contained in the original micrographs can be preserved 

through the downsampling step. Here, we compared the resulting models of three training cases: 

(1) training from scratch with a single-channel real-space input, (2) fine-tuning from a pretrained 

model with a single-channel real-space input, and (3) fine-tuning with a two-channel input that 

includes power spectra. The resulting overall good-versus-bad micrograph accuracy can be found 

in Table 4, while the accuracy for individual categories can be found in Supplementary Table S1. 
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 acc. TP FP TN FN 

from scratch 

single-channel 
0.780 1749 418 1371 462 

fine-tune 

single-channel 
0.961 2178 122 1667 33 

fine-tune 

two-channel 
0.986 2183 27 1762 28 

Table 4. Overall accuracy (acc.) of good-versus-bad predictions made for the validation set by 

the three models. True positive = TP; false positive = FP; true negative = TN; false negative = 

FN. 

 

By comparing the resulting accuracy from the first two training cases (Table 4, top two rows), we 

can see that fine-tuning from pretrained weights greatly improved the attainable accuracy with the 

same training data, from 78% to 96% or greater. This can be rationalized as the feature extracting 

capability of the initial layers in the CNN being largely transferable even with significant differ-

ences between pretraining ImageNet data and cryo-EM images. This is consistent with the obser-

vation that layer decay in learning rate improved attainable accuracy (results not shown), indicat-

ing that weights in initial layers require less change to arrive at the optimal values. Furthermore, 

we found that when fine-tuning is performed, the training loss is already low after a single epoch 

of training, and becomes lower than the final loss of training from scratch after an additional epoch 

(Figure 3), again suggesting that pretrained weights are much closer to the optimal values com-

pared to randomly initialized weights. The second strategy, direct inclusion of power spectra, ad-

ditionally increased the prediction accuracy on top of fine-tuning from 96% to 99%, evident from 

comparison between the last two training cases (Table 4, bottom two rows). When comparing 

prediction accuracy in individual categories (Supplementary Table S1), the most significant im-

provement comes from the ice crystallinity category. Notably, the number of false positives in the 

prediction of ice crystallinity was greatly reduced, consistent with the intuition that power spectra 

provide better indication for the presence of crystalline ice than real-space images. 
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Figure 3. Loss versus epoch for all three training cases. Solid lines denote training loss while 
dashed lines denote validation loss. Black, blue, and red lines correspond to training from scratch 
with single-channel input, fine-tuning with single-channel input, and fine-tuning with two-channel 
input, respectively. 
 

 acc. TP FP TN FN 

EMPIAR-10175 0.954 802 31 171 16 

EMPIAR-10344 0.979 2348 26 278 30 

EMPIAR-10379 0.996 884 2 230 2 

EMPIAR-10916 0.971 1684 0 27 51 

EMPIAR-11093 0.973 1123 16 171 20 

Table 5. Overall good-versus-bad accuracy (acc.) on additional test sets. True positive = TP; 

false positive = FP; true negative = TN; false negative = FN. 

 

To further examine the generality of our two-channel input model trained with fine-tuning, we 

tested its performance on five additional datasets from EMPIAR, which contains a variety of fea-

tures including filamentous samples or graphene oxide films. The resulting prediction accuracies 

(Table 5 and Supplementary Table S2) show that our model performs relatively well for all chosen 

datasets, with an overall accuracy higher than 95% in all cases. To compare with other existing 

methods, we performed micrograph filtering with MicAssess and CTF-fitting on the same EM-

PIAR datasets and calculated prediction accuracies based on our labels (Supplementary Table S3 

and Supplementary Table S4). The results indicate that our model provides the highest filtering 

accuracy among tested methods for all datasets. Surprisingly, we found that CTF-based filtering 

outperformed MicAssess for many of the datasets tested here. This could be a result of these test 
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sets differing significantly from the training set for MicAssess. It is also important to note that our 

labeling criteria may differ from those used in training MicAssess. In the absence of a standardized 

and validated test set for micrograph filtering, an exact comparison cannot be made between dif-

ferent methods. Nonetheless, these results do illustrate the utility of utilizing Fourier information. 

A notable example was EMPIAR-10379, for which CTF-based filtering had an overall accuracy 

of 97.8%, compared to MicAssess, which had 77.5% accuracy. Interestingly, this dataset had very 

few issues in the ice crystallinity, film, and contamination categories (17 out of 1118 micrographs) 

but had many in the drift category (218 out of 1118) (Supplementary Table S2), indicating that 

CTF-based filtering is better at detecting the latter type of issue. This observation is consistent 

with the fact that CTF fitting is done in Fourier space, and drift issues are readily detectable as 

they lead to anisotropic power spectra or loss of Thon rings, in the case of empty holes. The fact 

that our model outperforms both CTF-based filtering and MicAssess here (overall accuracy of 

99.6%) further demonstrates that combining information from power spectra and real space mi-

crographs is key to accurately assessing micrograph quality. Future benchmarking studies would 

benefit from the development of publicly available standardized test set. 

 

While our model appears to be generally applicable, we do observe slight differences in accuracy 

for different test sets. We hypothesized that these variations correspond to their degree of dissim-

ilarity to the training set, and attempts were made to improve our model by training it with test sets 

included as part of the training set and with the same hyperparameters as before. The resulting 

models, however, show slight deterioration in performance on additional hold-out test sets (results 

not shown). This could either be due to the new training set requiring additional optimization of 

hyperparameters, or that training specialized models on individual subsets may be necessary to 

improve the accuracy beyond what we see here. To investigate how many training samples are 

required to obtain a reasonable prediction accuracy, we performed training on random subsets of 

the full training set with various sizes. We also performed the training with both ConvNeXt-Small 

and ConvNeXt-Tiny models to explore whether a smaller CNN provides better training results 

when the number of training samples is low. The result, shown in Figure 4, suggests that a rela-

tively high accuracy (~94%) can be achieved with a relatively small training set of only 1000 

micrographs, and the accuracy plateaus when the number of training samples is higher than 10000 

micrographs. Interestingly, we found that ConvNeXt-Tiny did not appear to provide an advantage 
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over ConvNeXt-Small in the low training sample regime, indicating that ConvNeXt-Small is a 

suitable choice even when training with very limited data. Overall, our result here suggests that 

with the fine-tuning strategy, training specialized models should not be difficult to achieve even 

with a small amount of data. 

 

 
Figure 4. Overall good-versus-bad accuracy on validation set plotted against the number of training 
samples used in training. Blue and red lines correspond to results from training ConvNeXt-Small 
and ConvNeXt-Tiny models, respectively. 
 

Conclusion 

 

In this work, we examined various strategies to improve CNN-based cryo-EM micrograph filter-

ing. We showed that two strategies, fine-tuning from pretrained weights and directly including 

power spectra as input, can improve the attainable accuracy of resulting models. This likely results 

from the transferability of the feature-extracting capability in the initial layers of a pretrained 

model, as well as the existence of better indicators for certain micrograph features in Fourier space. 

We demonstrated that a model trained with these strategies can filter a diverse set of cryo-EM 

datasets with high accuracy. 

 

The resulting software, named Miffi, is open-source and freely available for public use. Miffi is 

implemented with Pytorch, which enables cross-platform compatibility. Miffi can be accelerated 

with CUDA on a NVIDIA GPU (about 3 micrographs per second with our setup), but it also runs 

with reasonable speed when using CPU only (about 3 seconds per micrograph with our setup). 

Miffi accepts micrograph inputs in file formats produced by common cryo-EM processing 
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software, such as RELION and cryoSPARC, and can write output files in the same format such 

that they can be directly imported back into the originating software. Necessary preprocessing 

steps (e.g., splitting/cropping micrographs into square micrographs, Fourier cropping, calculation 

of power spectra, downsampling) are performed on input micrographs in Miffi before passing them 

to the CNN for classification. Miffi also provides users the flexibility to control the classification 

process, including the ability to customize rules for combining predictions for micrographs with 

multiple square splits, to filter predictions based on their confidence scores, and to control which 

categories are written out. We note that the labeled categories in our training process do not include 

all potential issues, such as low particle visibility or thick ice. In particular, ice thickness is a con-

tinuum quantity that is best measured experimentally (Neselu et al., 2023; Noble et al., 2018a; 

Rice et al., 2018), for which the ideal range is sample dependent. Therefore, combining Miffi with 

other data assessment criteria will still be beneficial. For example, issues with ice thickness can be 

filtered based on experimentally measured values or based on the intensity of the diffuse ice ring 

at 1/3.7 Å-1 in Fourier space, and issues with particle visibility can be filtered by excluding micro-

graphs with low defocus values. Overall, we believe that Miffi can be readily incorporated into 

common data processing pipelines and greatly improve the accuracy and efficiency of the micro-

graph curation step. 
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