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Abstract— Simulation is commonly adopted in developing
building automated fault detection and diagnosis (AFDD)
strategies. However, simulations often fall short in accurately
representing real-world scenarios, which hinders the efficacy of
models trained on such data for identifying faults in actual
buildings. To tackle this challenge, we present a new approach
for feature extraction that leverages entropy obtained from
graph structures. These structures are constructed based on
features that can distinguish between normal and faulty
conditions. This method includes acquiring graph structures
from simulated data, extracting their entropies as features to
train AFDD models. Then, the process of obtaining entropies
from graphs is replicated for real building data, and the trained
AFDD model is applied to conduct tests on them. Empirical
findings illustrate that our suggested approach enables fault
detection in real-world scenarios, even when the model is trained
with simulated data. The features extracted by our proposed
approach surpass the baseline, which consists of GNN embedded
features, in terms of fault detection performance. Therefore, we
infer that our method has the potential to take advantage of
simulation for real building fault detection.

Index Terms— Failure Detection and Recovery; Big-Data and
Data Mining; AI-Based Methods

I. INTRODUCTION

Buildings are complex with multiple subsystems and
controllers, and the most critical ones are heating, ventilation
and air conditioning (HVAC) systems. According to 2022
Global Status Report [1], buildings are responsible for
approximate 135 exajoule operational energy demand and 10
Gross tonnage energy-related carbon dioxide emission in 2021
[1]. HVAC systems usually suffer from faults, including
sensor failure, equipment failure and malfunctioning
operations, which can lead to uncomfortable indoor
environments, poor air quality, high maintenance costs, and
excessive energy waste. It is reported that energy waste [2]
caused by the faulty conditions in buildings accounts for
almost 30% of total energy consumption [3]. Therefore,
automatic fault detection and diagnosis (AFDD), a process
including fault detection, identification, and isolation, is
critical to ensure building operational reliability. Studies have
shown that AFDD is able to achieve annual 10% median
energy savings with two-year simple payback periods in the
United States [4].
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AFDD methods can be either qualitative model-based,
quantitative model-based, or process history-based [5]. The
qualitative and quantitative methods, including rule-based and
physics-model approaches, are well-understood by building
engineers and researchers due to their interpretability from a
building physical domain. Nevertheless, these approaches are
constrained by issues like limited adaptability across various
systems and substantial expenses linked to implementation
because of the necessity to tailor physics-based models,
regulations, and thresholds for each building system.
Consequently, they have not gained widespread acceptance in
the architectural industry market [6]. The process-history ones,
including data-driven and machine learning approaches,
address the challenges of scalability and high implementation
costs. Due to the progress in data science and machine
learning, as well as the growing adoption of building
automation systems (BAS) and sensor technologies, data-
driven AFDD has become prominent. Different from those
methods typically integrated into off-the-shelf AFDD
products, data-driven AFDD techniques do not rely on prior
expert knowledge and heuristics, thus offering the possibility
of reducing costs while maintaining high accuracy in fault
detection and diagnosis [7]. In recent studies, there has been a
growing emphasis on data-driven AFDD approaches, both at
the component and whole-building scales. For instance, Zhang
et al. [8] study how data-driven AFDD influence the economic
implications of installing new sensors; Li et al. [9] study data-
driven AFDD on the vulnerabilities in BAS and strategies for
cyber resilient control. The success of these data-driven
methods significantly depends on the quality of the training
data, underscoring the importance of high-quality training data
for the efficacy of AFDD tools.

Most data-driven AFDD strategies are developed and
assessed using simulated data, primarily because obtaining and
analyzing real building data is challenging. Due to the ease of
use and lower costs, simulations have thus been widely applied
in building research. For example, Kang et al. [10] apply
simulation modeling to predict optimal control for ice-based
thermal energy storage systems in commercial buildings. Ye
et al. [11] provide insights on the applications of simulated
system modeling for grid-interactive efficient building
detection strategy. Malkawi et al. [12] propose a simulation-
based architecture to monitor building normal operations. Yet
AFDD strategies trained by simulations may not achieve
satisfactory effectiveness when directly applied to real
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building systems, mainly because measurements from
simulation system data may still contain different information
from real-world scenarios, as concluded in [13]. As
simulations rely on real-world data and are thus bound by
physical laws, we assume that the relationships among various
building components may remain consistent between real-
world and simulated datasets. This assumption prompt us to
explore leveraging these relationships to enhance the AFDD
system. Consequently, we propose a method of extracting
these relationships by training the model on simulated data and
applying these learned relationships to real data, utilizing
graph techniques for this purpose. Graph techniques utilize a
collection of interconnected elements to represent connections
and address issues in intricate systems, making them suitable
for capturing relationships from simulated data and utilizing
them for real data analysis in this context. The graph comprises
nodes representing features and edges symbolizing the
connections between them, reflecting relationships or
interdependencies. In this scenario, we generate the graph
structures using simulated data by considering the
relationships between various attributes. The AFDD model is
then trained using the entropies obtained from these
configurations. This process of constructing graphs is iterated
with actual data to calculate entropies, and ultimately, the
model trained on simulated data entropies is tested using the
entropies from the real data to make predictions. This method
illustrates how graph structures can enhance the application of
knowledge from simulated data to make predictions on real
data, thereby enhancing the predictive accuracy of models
trained on simulated data and evaluated on real data.

The study thus introduces an innovative method for feature
extraction from graphs to facilitate the implementation of
cross-dataset AFDD strategies for HVAC systems. Initially,
we detect important pairwise feature relationships within
simulated building data and utilize these relationships as
connections to create multiple graphs for further analysis.
Once the graph structures are established, corresponding
entropies are extracted using the eigen-entropy technique,
developed in a previous investigation [14]. Subsequently, the
same entropy extraction process is carried out for real data.
Ultimately, data-driven AFDD models are trained using
simulation data entropies as features and then evaluated on real
building data using the corresponding entropies. The rest of
the paper is organized as follows. Methodology is detailed in
Section II. Experiments and results are presented in Sections
III, and IV, respectively. Conclusions and future work are
drawn in Section V.

II. METHODOLOGY

In this section, we will introduce the graph structured data
and eigen-entropy (EE). Next, we will outline the procedure
for generating graphs and extracting associated EEs as
attributes for both simulated and actual building datasets.

A. Graph structure

In graph theory, a graph is a mathematical structure used
to present pairwise relationship between objects. A graph, G
(V, E), is composed of vertices (V) and edges (E) that connect
pairs of vertices. Typically, given a graph with m vertices (e.g.,
in the context of building, m features), it can be represented by

a m by m adjacency matrix, , where elements of the matrix
indicate edges, as illustrated in Fig. 1.

1 N2 Tim
f21 T2 T2m
Tmi Tm2 Tmm

Fig. 1: An example of graph adjacency representation

As discussed earlier, when components in a building
system are viewed as vertices and pairwise interactions among
components are viewed as edges. The interactions between
pairs of building components are depicted using an adjacency
matrix, which illustrates the coupling effects. These pairwise
interactions correspond to the correlation coefficients among
the features.

B. Eigen-entropy

Eigen-Entropy (EE) [14] is an information entropy
derived on eigenvalues extracted from the correlation
magnitude matrix of multivariate data. Given a building
AFDD dataset with n samples and m features, the
corresponding correlation magnitude matrix on feature space

is defined as
/ 1 Ciz Ci‘m\
C§1 1 ... ¢
= o M
Cm1 Cmz - 1
where cj;, is the absolute value of correlation coefficient
(correlation magnitude) between feature j and £, ¢jj, = 0.

EE is defined as
Ay A
EE = — Y2, log™ 2)

where 4; is the eigenvalue extracted from C*. In other words,
Eigen-entropy is utilized to extract features that represent
correlations, as it has been demonstrated to be a successful
method for capturing relationships between features.

In the building domain, the interconnections between
components are often assessed through correlations [15].
Subsequently, the graph’s adjacency matrix resembles the
correlation magnitude matrix in case of EE. While the
correlations are based on simulated data and represented
through edges, it is anticipated that the correlation values may
not be precisely identical due to potential noise in real data.
However, the general trends of the significant correlations are
expected to remain consistent as both the simulated and real
building data adhere to physical principles, which is validated
by domain knowledge [13]. Therefore, we favor employing an
EE that illustrates the correlation patterns over utilizing direct
correlation values obtained from simulated data. This enables
the use of patterns observed in features derived from simulated
data to analyze trends in real data, rather than relying solely on
correlation values.

C. Proposed method

Fig. 2 illustrates the flowchart of conducting simulation-
to-real AFDD analysis with the method we have put forward.
The objective is to establish a graphical structure from both
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simulated and actual data, extract the relevant EE values as
features to facilitate cross-dataset analysis, specifically
training on simulated data and evaluating on real data. Thus,
during the training stage, our emphasis is on simulation data.

A simulation fault test case
with  Ngpp fault  and
Ngimpr fault-free samples,
each consisting of m features

A real fault test case with
Nyeqiy fault and nygq ¢ fault-
free samples, each consisting
of m features

l

l

Obtain ~ Ngjpy fault  and
Nsimgr fault-free snapshot
windows

Obtain =~ Npegyp fault  and
Nyeaipr fault-free snapshot

windows

Calculate correlations on m
features on each of fault and
fault-free snapshot windows

Identify M correlations as
significant edges that can
distinguish fault and fault-
free snapshot windows by
two-sample t-test

Calculate correlations on m
features on each of fault and
fault-free snapshot windows

¥

Construct P graphs using M
significant edges for all fault
and  fault-free  snapshot

Transfer learned P graphs

snapshot windows

windows
l

l

Obtain EEs from P graphs
for all fault and fault-free
snapshot windows

Obtain EEs from P graphs
for all fault and fault-free
snapshot windows

l

l

Train data-driven models by

Test data-driven models on

extracted EEs (simulation

test case)

|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
|
I
|
I
|
I
I
I
|
I
—:—- for all fault and fault-free
I
I
I
I
I
I
]
I
I
I
'_:_. extracted EEs (real test case)
I

Fig. 2: Flowchart of the proposed method

The process is outlined as follows. Initially, we identify
correlations among features that can be used to construct a
graph structure. This involves evaluating the discriminatory
power of these correlations in distinguishing between faulty
and fault-free conditions. The method for evaluating this is
elaborated on later in this section. First, let’s examine the data:
it consists of time series data for multiple features
corresponding to both faulty and fault-free datasets. To
accommodate the temporal aspect, we capture snapshots of
these datasets at regular intervals defined by a window size,
denoted as W . Suppose we have ng;,r samples for the
simulated faulty dataset and ng;,, - samples for the simulated
fault-free dataset. For each snapshot, we extract Ngiyf
continuous samples (Where Nyjyr = Ngimy /W) for the faulty
dataset and Ng;p, s samples (wWhere Njppr = Ngipmpr /W) for
the fault-free dataset. Assuming there are m features in total,
we compute feature correlations by evaluating each pair of
features using samples from each snapshot window. These
correlations are computed for every snapshot window across
all features, resulting in Ngjpr or N pp correlation values
for each pair of features. Following this, we conduct a two-

sample t-test to identify M significant feature correlations that
effectively distinguish between faulty and fault-free
conditions. These significant correlations form the edges for
constructing graphs. Once these significant correlations (M in
total) are determined, we proceed to construct graphs for each
snapshot window in both faulty and fault-free datasets. The
construction process is detailed as follows: for each snapshot
window, we select one feature with identified significant
correlation as the starting node. The significant correlations
of this feature with other features, determined in the previous
step, serve as edges, while the correlated features become
additional nodes. This process is repeated for each significant
feature in each snapshot window. Features with only two
significant correlations are omitted since a minimum of three
correlations is required to construct a graph.

Following the procedure mentioned above, for a given set
of M edges, we obtain (say P) number of graphs for every
simulation snapshot, and extract corresponding EEs as
features. In the test phase, we follow the same procedure
indicated above to extract EEs. As a result, we have EEs
generated for actual building data and simulated data. The
EEs from the simulation are then employed to train a data-
driven model, which is subsequently tested using the EEs
from the real data. This method allows for the application of
training EEs obtained from simulated data to real data by
deducing the EEs of the real data, thus enabling cross-dataset
AFDD.

III. EXPERIMENTS

A. Experimental datasets

Simulation building datasets used for training in this study
are generated by Lawrence Berkeley National Laboratory
(LBNL) [16] from a single-duct variable-air-volume (VAV)
air handling unit (AHU) virtual testbed, which provides
heating and cooling to the middle floor of a three-story DOE
large office reference building. Fig. 3 illustrates this building
floor layout. As can be noticed, the conditioned floor space
consists of a single interior zone and four perimeter zones,
where AHU distributes conditioned air by five VAV boxes.

VAV
Box #3
—
Supply Duct
VAV
-

B:A:I ?OFEC - Zone E
X 2,532.32 m?(27,257.66 SQFT) 201.98 m?

= (2,174.09
SQFT)

Zone N
313.42 m?(3,373.62 5QFT)

VAV
Box #2

Zone W
201.98 m*
(2,174.09

SQFT)

Zone N

313.42 m? (3,373.62 SQFT) &

Total 3563.12 m? (38353.10 SQFT)

Fig. 3: Simulation virtual testbed floor layout (adapted from [16])

Real building datasets used for test are generated from the
ASHRAE 1312 research project [17]. These datasets are
collected from a laboratory building that is set up like a small
office building whose layout is shown in Fig 4. As can be
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Fig. 4: Energy resource station (ERS) setup (adapted from [17])

observed, the building consists of HVAC systems with two
VAV boxes, each serving 4 different rooms, and the design of
the test facility is intended to have each AHU serving room
with nearly identical loads. Each HVAC system serves rooms
facing east, west, south, and one interior room. During the
study, System A (AHU-A and all A rooms) is artificially
injected with various commonly occurring faults while System
B (AHU-B and all B rooms) is continuously operated in a
fault-free state.

In this instance, we are examining data related to four
distinct faults, with three related to the cooling coil valve
(CCV) and the remaining one associated with the outdoor air
damper (OAD). It is essential that the fault types remain
consistent between the real and simulated data for cross-data
analysis, as altering the fault type can potentially result in
changes to the adjacency matrix, and also the corresponding
EE values. We generate snapshot windows for every fault test
case, for both simulation, and actual building data, comprising
of both faulty and fault-free instances, each with a window size
of 30 (W = 30) as recommended in [18]. The number of
snapshot windows for each dataset is detailed in Table I.
Additionally, Table II outlines the features utilized to identify
important edges for constructing graphs.

TABLE I: Summary of the number of snapshot windows for each fault case

Case Training datasets Test datasets

No. (LBNL simulation) (ASHRAE real building data)
Fault case # snapshot Fault case # snapshot

1 ccv Ngims 5.7k cCcv Nyeaif 20
25% Open Nsimpr 5.7k 15% Open Nyearfr 20
2 CCV Ngims 5.6k cCcv Nreair 20
50% Open Neimr 5.7k 65% Open Nyeaifr 20
3 OAD Ngims 5.7k OAD Nreaif 20
10% Open Ngimsr 5.7k 0% Open Neearr 20
4 OAD Ngims 3.9k OAD Nrearr 20
75% Open Neimsr 5.7k 45% Open Nyeaifr 20

*Ngimys : simulation fault snapshot windows; Ny, simulation fault-free snapshot windows; Nyq:
real fault snapshot windows; Ny.qf,: real fault-free snapshot windows.

TABLE II: Summary of original sensor features

Feature index Feature name  Feature description

1 SF-WAT AHU supply air fan power

2 MA-TEMP AHU mixed air temperature

3 OA-TEMP AHU outdoor air temperature

4 RA-TEMP AHU return air temperature

5 RA-DMPR AHU return air damper position

6 SA-TEMP AHU supply air temperature

7 SF-SPD AHU supply air fan speed

8 RF-SPD AHU return air fan speed

9 OA-DMPR AHU outdoor air damper position
10 CHWC-VLV AHU cooling coil valve position
11 RF-WAT AHU return air fan power

B.  Evaluation

We utilize two classification models, namely decision tree
(DT) and random forest (RF), in order to classify derived EEs.
These models are widely employed in machine learning to
develop data-driven AFDD for identifying fault symptoms.

The next objective is to assess whether utilizing EEs
outperforms the utilization of other features extracted from the
graphs. To achieve this, we employ a baseline technique
known as GNNs. We extract features using GNNs from the
graphs we have created and then contrast the classification
effectiveness achieved with our approach against that achieved
with GNNs.

According to [19], four metrics, AUC, recall, and
precision, F-measure (F) are commonly used as data-driven
AFDD performance evaluations. The recall, precision, and F-
measure are calculated as:

TP
Recall = 3)
TP+FN
. TP
Precision = ©))
TP+FP
F = 2 xRecall xPrecision (5)

Recall+Precision

The samples in our study represent the feature values
(extracted EE values or GNN features) of various snapshot
windows. We define true positive (TP) as the count of faulty
snapshot windows correctly recognized; true negative (TN) as
the count of fault-free snapshot windows correctly
recognized; false positive (FP) as the count of fault-free
snapshot windows incorrectly identified as faulty; false
negative (FN) as the count of faulty snapshot windows
incorrectly identified as fault-free.

Recall is thus defined as the number of correctly identified
faulty samples over total number of faulty samples. Precision
is defined as the number of true faulty samples over total
number of predicted faulty samples. F-measure is a combined
metric derived from recall and precision. Three metrics
emphasize more on detecting true faulty samples.

AUC, or area under the curve, is to measure the
performance of a classifier [20], representing the degree of
separability archived by the classifier. The value of AUC
ranges from 0 to 1, and if AUC is equal to or lower than 0.5,
it indicates no or poor ability of the classifier to distinguish
two classes [20]; if AUC > 0.6, then it is said to be acceptable
discrimination [21].

IV. RESULTS

Table III presents the count of features derived from GNN
embedding and our proposed technique (EE) for each test
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Fig. 5: Performance of Decision Tree (DT) and Random Forest (RF) using GNN embedded and EE features

instance. It is notable that the GNN embedding method
produces a greater number of features compared to our
proposed method across all fault test cases, despite being
derived from identical graphs. The difference can be
explained by the fact that GNN is a type of deep learning
model, typically necessitating a larger amount of data for
drawing conclusions.

TABLE III: Number of extracted features by two methods

Case No. GNN embedded Proposed method (EE)
1 16 11
2 88 11
3 32 11
4 120 11

Fig. 5 illustrates the detection performance achieved by
DT and RF utilizing GNN embedded features and EE features
respectively. For DT training (i.e., GNN(DT) and EE(DT) in
each subplot), it is evident that employing EE features results
in AUC values exceeding 0.60 for all four test cases.
Conversely, the utilization of GNN embedded features does
not yield satisfactory AUC values. Specifically, in case 1, our

proposed approach achieves an AUC of 0.85, Recall of 0.95,
Precision of 0.79, and F-measure of 0.86, whereas the GNN
embedded method attains an AUC of 0.50, Recall of 1.00,
Precision of 0.50, and F-measure of 0.67. In case 2, our
method reaches an AUC of 0.63, Recall of 0.25, Precision of
1.00, and F-measure of 0.40, while the GNN embedded
method obtains an AUC of 0.50, Recall of 0.00, Precision of
0.00, and F-measure of 0.00. Moving on to case 3, our method
achieves an AUC of 0.83, Recall of 0.65, Precision of 1.00,
and F-measure of 0.79, in contrast to the GNN embedded
method which results in an AUC of 0.50, Recall of 1.00,
Precision of 0.50, and F-measure of 0.67. Lastly, in case 4,
our proposed method attains an AUC of 0.93, Recall of 0.85,
Precision of 1.00, and F-measure of 0.92, while the GNN
embedded method reaches an AUC of 0.50, Recall of 0.00,
Precision of 0.00, and F-measure of 0.00.

For RF training (i.e., GNN(RF) and EE(RF) in each
subplot), it is evident that employing EE features can achieve
an AUC > 0.60 for all test cases except case 1, whereas using
GNN embedded features does not exhibit satisfactory AUC
for all test cases except case 2. Specifically, in case 1, our
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proposed approach attains an AUC of 0.53, Recall of 0.10,
Precision of 0.67, and F-measure of 0.17, while the GNN
embedded method achieves an AUC of 0.50, Recall of 0.00,
Precision of 0.00, and F-measure of 0.00. For case 2, our
proposed method achieves an AUC of 0.60, Recall of 0.20,
Precision of 1.00, and F-measure of 0.33, whereas the GNN
embedded method demonstrates strong performance with an
AUC 0f0.98, Recall of 1.00, Precision of 0.95, and F-measure
of 0.98. Moving on to case 3, our proposed method achieves
an AUC of 0.80, Recall of 0.60, Precision of 1.00, and F-
measure of 0.75, while the GNN embedded method obtains
an AUC of 0.55, Recall of 1.00, Precision of 0.53, and F-
measure of 0.69. Finally, in case 4, our proposed method
attains an AUC of 0.93, Recall of 0.85, Precision of 1.00, and
F-measure of 0.92, whereas the GNN embedded method
achieves an AUC of 0.50, Recall of 0.00, Precision of 0.00,
and F-measure of 0.00.

To sum up, either DT or RF models trained using EE
features can detect faults in a larger number of cases with
higher AUC values (AUC > 0.60) compared to those trained
using GNN embedded features. This suggests that the
proposed approach is effective in facilitating cross-dataset
building fault detection.

V. CONCLUSIONS AND FUTURE WORK

In this study, a new method for extracting entropy features
from graph-structured data is introduced to facilitate the
development of cross-dataset building AFDD. The approach
involves calculating EE values from the graph structures of
both simulated and real datasets. Subsequently, machine
learning models for AFDD (e.g., decision tree and random
forest) are trained using the EE values from simulated data
and then tested on EE values from the real data. To assess the
effectiveness of the proposed method, four distinct fault
scenarios (consistent between simulated and real datasets) are
examined under faulty and fault-free conditions. The
experimental findings indicate that the features extracted by
our method from simulation data can notably enhance fault
detection performance in real-world building fault scenarios.
Additionally, we utilize GNN embedded features as a baseline
for comparison with our algorithm in the same classification
task. Our algorithm outperforms the baseline in most of the
fault cases, showcasing the effectiveness and generalizability
of our approach for analyzing building HVAC systems across
different datasets.

It is important to note that this study focuses solely on two
common types of faults in building HVAC systems, with
future plans to explore a broader range of fault types,
including those affecting return fans or supply fans.

ACKNOWLEDGMENT

This research is supported by funds from the National
Science Foundation award under the grant number 2309030
entitled “PIRE: Building Decarbonization via Al-empowered
District Heat Pump Systems”.

REFERENCES

[1] United Nations Environment Programme, "2022 Global Status Report
for Buildings and Construction: Towards a Zero-emission, Efficient
and Resilient Buildings and Construction Sector," Nairobi, 2022.

[2] L. Pérez-Lombard, J. Ortiz and C. Pout, “A Review on Buildings
Energy Consumption Information,” Energy Build., vol. 40, no. 3, pp.
394-398, 2008.

[3] Energy Conservation in Buildings and Communities Programme, "Real
Time Simulation of HVAC Systems for Building Optimisation, Fault
Detection and Diagnostics," International Energy Agency, Paris,
France, Rep. No.: IEA ECBCS Annex 25, 1996.

[4] H.Kramer, G. Lin, C. Curtin, E. Crowe, and J. Granderson, “Building
analytics and monitoring-based commissioning: Industry practice,
costs, and savings,” Energy Effic., vol. 13, pp. 537-49, 2020.

[5] S.Katipamula and M.R. Brambley, “Review article: methods for fault
detection, diagnostics, and prognostics for building systems—a review,
part I,” HVAC&R Res., vol. 11, no. 1 pp. 3-25, 2005.

[6] S. Frank, X. Jin, D. Studer and A. Farthing, “Assessing barriers and
research challenges for automated fault detection and diagnosis
technology for small commercial buildings in the United States,”
Renew. Sust. Energ. Rev., vol. 98, pp. 489499, 2018.

[7] Z. Chen, Z. O’Neill, J. Wen, O. Pradhan, T. Yang, X. Lu, et al., “A
review of data-driven fault detection and diagnostics for building
HVAC systems,” Appl. Energy, vol. 339, pp. 121030, 2023.

[8] L. Zhang, M. Leach, J. Chen and Y. Hu, “Sensor cost-effectiveness
analysis for data-driven fault detection and diagnostics in commercial
buildings,” Energy, vol. 263 pp. 125577, 2023.

[9] G. Li, L. Ren, Y. Fu, Z. Yang, V. Adetola, J. Wen, et al. “A critical
review of cyber-physical security for building automation systems,”
Annu. Rev. Control, vol.55, pp. 237-254, 2023.

[10] X. Kang, X. Wang, J. An and D. Yan, “A novel approach of day-ahead
cooling load prediction and optimal control for ice-based thermal
energy storage (TES) system in commercial buildings,” Energy Build.
vol. 275, pp. 112478, 2022.

[11] Y. Ye, C. A. Faulkner, R. Xu, S. Huang, Y. Liu, D. L. Vrabie, J. Zhang,
and W. Zuo, “System modeling for grid-interactive efficient building
applications,” J. Build. Eng., vol. 69, pp. 106148, 2023.

[12] A. Malkawi, S. Ervin, X. Han, E. X. Chen, S. Lim, S. Ampanavos, and
P. Howard, “Design and applications of an IoT architecture for data-
driven smart building operations and experimentation,” Energy Build.
vol. 295, pp. 113291, 2023.

[13] J. Huang, J. Wen, H. Yoon, O. Pradhan, T. Wu, Z. O’Neill, and K.S.
Candan, “Real vs. simulated: questions on the capability of simulated
datasets on building fault detection for energy efficiency from a data-
driven perspective,” Energy Build., vol. 259, pp. 111872, 2022.

[14] J. Huang, H. Yoon, T. Wu, K.S. Candan, O. Pradhan, J. Wen, and Z.
O’Neill, “Eigen-Entropy: A metric for multivariate sampling decisions,
Inf. Sci., vol. 619, pp. 84-97, 2023.

[15] W. Liang, M. Lv, and X. Yang, “Development of a Physics-Based
Model for Analyzing Formaldehyde Emissions from Building Material
under Coupling Effects of Temperature and Humidity,” Build. Environ.,
vol. 203, pp. 108078, 2021.

[16] J. Granderson, G. Lin, Y. Chen, A. Casillas, P. Im, S. Jung, K. Benne, J.
Ling, R. Gorthala, J. Wen, Z. Chen, S. Huang, and D. Vrabie, "LBNL
Fault Detection and Diagnostics Datasets," United States. [Online].
Available: https://dx.doi.org/10.25984/1881324

[17] J. Wen and S. Li, “Tools for evaluating fault detection and diagnostic
methods for air-handling units,” ASHRAE Research Project, 2011.

[18] Y. Chen, J. Wen and L. J. Lo, “Using weather and schedule based
pattern catching and feature based PCA for whole building fault
detection — part I development of the method,” ASME J. Eng. Sustain.
Build. Cities, vol. 3, no. 1, pp. 011001, 2022.

[19] G. Lin, H. Kramer and J. Granderson, “Building fault detection and
diagnostics: achieved savings, and methods to evaluate algorithm
performance,” Build. Environ., vol. 168, pp. 106505, 2020.

[20] D. K. McClish, “Analyzing a portion of the ROC curve,” Med. Decis.
Making, vol.9, pp. 190-195, 1989.

[21] S. Yang and G. Berdine, “The receiver operating characteristic (ROC)
curve”, The Chronicles, vol. 5, no. 19, pp. 34-36, 2017.

”»

2072

Authorized licensed use limited to: Texas A M University. Downloaded on December 31,2024 at 03:49:15 UTC from IEEE Xplore. Restrictions apply.



