
  

  

Abstract— Simulation is commonly adopted in developing 

building automated fault detection and diagnosis (AFDD) 

strategies. However, simulations often fall short in accurately 

representing real-world scenarios, which hinders the efficacy of 

models trained on such data for identifying faults in actual 

buildings. To tackle this challenge, we present a new approach 

for feature extraction that leverages entropy obtained from 

graph structures. These structures are constructed based on 

features that can distinguish between normal and faulty 

conditions. This method includes acquiring graph structures 

from simulated data, extracting their entropies as features to 

train AFDD models. Then, the process of obtaining entropies 

from graphs is replicated for real building data, and the trained 

AFDD model is applied to conduct tests on them. Empirical 

findings illustrate that our suggested approach enables fault 

detection in real-world scenarios, even when the model is trained 

with simulated data. The features extracted by our proposed 

approach surpass the baseline, which consists of GNN embedded 

features, in terms of fault detection performance. Therefore, we 

infer that our method has the potential to take advantage of 

simulation for real building fault detection. 

Index Terms— Failure Detection and Recovery; Big-Data and 

Data Mining; AI-Based Methods 

 

 

I. INTRODUCTION 

Buildings are complex with multiple subsystems and 
controllers, and the most critical ones are heating, ventilation 
and air conditioning (HVAC) systems. According to 2022 
Global Status Report [1], buildings are responsible for 
approximate 135 exajoule operational energy demand and 10 
Gross tonnage energy-related carbon dioxide emission in 2021 
[1]. HVAC systems usually suffer from faults, including 
sensor failure, equipment failure and malfunctioning 
operations, which can lead to uncomfortable indoor 
environments, poor air quality, high maintenance costs, and 
excessive energy waste. It is reported that energy waste [2] 
caused by the faulty conditions in buildings accounts for 
almost 30% of total energy consumption [3]. Therefore, 
automatic fault detection and diagnosis (AFDD), a process 
including fault detection, identification, and isolation, is 
critical to ensure building operational reliability. Studies have 
shown that AFDD is able to achieve annual 10% median 
energy savings with two-year simple payback periods in the 
United States [4].   
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AFDD methods can be either qualitative model-based, 
quantitative model-based, or process history-based [5]. The 
qualitative and quantitative methods, including rule-based and 
physics-model approaches, are well-understood by building 
engineers and researchers due to their interpretability from a 
building physical domain. Nevertheless, these approaches are 
constrained by issues like limited adaptability across various 
systems and substantial expenses linked to implementation 
because of the necessity to tailor physics-based models, 
regulations, and thresholds for each building system. 
Consequently, they have not gained widespread acceptance in 
the architectural industry market [6]. The process-history ones, 
including data-driven and machine learning approaches, 
address the challenges of scalability and high implementation 
costs. Due to the progress in data science and machine 
learning, as well as the growing adoption of building 
automation systems (BAS) and sensor technologies, data-
driven AFDD has become prominent. Different from those 
methods typically integrated into off-the-shelf AFDD 
products, data-driven AFDD techniques do not rely on prior 
expert knowledge and heuristics, thus offering the possibility 
of reducing costs while maintaining high accuracy in fault 
detection and diagnosis [7]. In recent studies, there has been a 
growing emphasis on data-driven AFDD approaches, both at 
the component and whole-building scales. For instance, Zhang 
et al. [8] study how data-driven AFDD influence the economic 
implications of installing new sensors; Li et al. [9] study data-
driven AFDD on the vulnerabilities in BAS and strategies for 
cyber resilient control. The success of these data-driven 
methods significantly depends on the quality of the training 
data, underscoring the importance of high-quality training data 
for the efficacy of AFDD tools. 

Most data-driven AFDD strategies are developed and 
assessed using simulated data, primarily because obtaining and 
analyzing real building data is challenging. Due to the ease of 
use and lower costs, simulations have thus been widely applied 
in building research. For example, Kang et al. [10] apply 
simulation modeling to predict optimal control for ice-based 
thermal energy storage systems in commercial buildings. Ye 
et al. [11] provide insights on the applications of simulated 
system modeling for grid-interactive efficient building 
detection strategy. Malkawi et al. [12] propose a simulation-
based architecture to monitor building normal operations.  Yet  
AFDD strategies trained by simulations may not achieve 
satisfactory effectiveness when directly applied to real 
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building systems, mainly because measurements from 
simulation system data may still contain different information 
from real-world scenarios, as concluded in [13]. As 
simulations rely on real-world data and are thus bound by 
physical laws, we assume that the relationships among various 
building components may remain consistent between real-
world and simulated datasets. This assumption prompt us to 
explore leveraging these relationships to enhance the AFDD 
system. Consequently, we propose a method of extracting 
these relationships by training the model on simulated data and 
applying these learned relationships to real data, utilizing 
graph techniques for this purpose. Graph techniques utilize a 
collection of interconnected elements to represent connections 
and address issues in intricate systems, making them suitable 
for capturing relationships from simulated data and utilizing 
them for real data analysis in this context. The graph comprises 
nodes representing features and edges symbolizing the 
connections between them, reflecting relationships or 
interdependencies. In this scenario, we generate the graph 
structures using simulated data by considering the 
relationships between various attributes. The AFDD model is 
then trained using the entropies obtained from these 
configurations. This process of constructing graphs is iterated 
with actual data to calculate entropies, and ultimately, the 
model trained on simulated data entropies is tested using the 
entropies from the real data to make predictions. This method 
illustrates how graph structures can enhance the application of 
knowledge from simulated data to make predictions on real 
data, thereby enhancing the predictive accuracy of models 
trained on simulated data and evaluated on real data.          

The study thus introduces an innovative method for feature 
extraction from graphs to facilitate the implementation of 
cross-dataset AFDD strategies for HVAC systems. Initially, 
we detect important pairwise feature relationships within 
simulated building data and utilize these relationships as 
connections to create multiple graphs for further analysis. 
Once the graph structures are established, corresponding 
entropies are extracted using the eigen-entropy technique, 
developed in a previous investigation [14]. Subsequently, the 
same entropy extraction process is carried out for real data. 
Ultimately, data-driven AFDD models are trained using 
simulation data entropies as features and then evaluated on real 
building data using the corresponding entropies. The rest of 
the paper is organized as follows. Methodology is detailed in 
Section II. Experiments and results are presented in Sections 
III, and IV, respectively. Conclusions and future work are 
drawn in Section V. 

 

II. METHODOLOGY 

In this section, we will introduce the graph structured data 

and eigen-entropy (EE). Next, we will outline the procedure 

for generating graphs and extracting associated EEs as 

attributes for both simulated and actual building datasets.  

A. Graph structure 

In graph theory,  a graph is a mathematical structure used 
to present pairwise relationship between objects. A graph, G 
(V, E), is composed of vertices (V) and edges (E) that connect 
pairs of vertices. Typically, given a graph with m vertices (e.g., 
in the context of building, m features), it can be represented by 

a m by m adjacency matrix, , where elements of the matrix 
indicate edges, as illustrated in Fig. 1. 

 

 

 

 

As discussed earlier, when components in a building 
system are viewed as vertices and pairwise interactions among 
components are viewed as edges. The interactions between 
pairs of building components are depicted using an adjacency 
matrix, which illustrates the coupling effects. These pairwise 
interactions correspond to the correlation coefficients among 
the features.  

B. Eigen-entropy 

 Eigen-Entropy (EE) [14] is an information entropy 
derived on eigenvalues extracted from the correlation 
magnitude matrix of multivariate data. Given a building 
AFDD dataset with n samples and m features, the 
corresponding correlation magnitude matrix on feature space 
is defined as  

𝐂∗ =

(
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where 𝑐𝑗𝑘
∗  is the absolute value of correlation coefficient 

(correlation magnitude) between feature j and k, 𝑐𝑗𝑘
∗ ≥ 0. 

EE is defined as 

 𝐸𝐸 = − ∑
𝜆𝑖

𝑚
log

𝜆𝑖

𝑚

𝑚
𝑖=1  () 

where 𝜆𝑖 is the eigenvalue extracted from 𝐂∗. In other words, 

Eigen-entropy is utilized to extract features that represent 

correlations, as it has been demonstrated to be a successful 

method for capturing relationships between features. 

In the building domain, the interconnections between 

components are often assessed through correlations [15]. 

Subsequently, the graph’s adjacency matrix resembles the 

correlation magnitude matrix in case of EE. While the 

correlations are based on simulated data and represented 

through edges, it is anticipated that the correlation values may 

not be precisely identical due to potential noise in real data. 

However, the general trends of the significant correlations are 

expected to remain consistent as both the simulated and real 

building data adhere to physical principles, which is validated 

by domain knowledge [13]. Therefore, we favor employing an 

EE that illustrates the correlation patterns over utilizing direct 

correlation values obtained from simulated data. This enables 

the use of patterns observed in features derived from simulated 

data to analyze trends in real data, rather than relying solely on 

correlation values. 

C. Proposed method 

Fig. 2 illustrates the flowchart of conducting simulation-

to-real AFDD analysis with the method we have put forward. 

The objective is to establish a graphical structure from both 

 

Fig. 1: An example of graph adjacency representation 
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simulated and actual data, extract the relevant EE values as 

features to facilitate cross-dataset analysis, specifically 

training on simulated data and evaluating on real data. Thus, 

during the training stage, our emphasis is on simulation data.  

The process is outlined as follows. Initially, we identify 

correlations among features that can be used to construct a 

graph structure. This involves evaluating the discriminatory 

power of these correlations in distinguishing between faulty 

and fault-free conditions. The method for evaluating this is 

elaborated on later in this section. First, let’s examine the data: 

it consists of time series data for multiple features 

corresponding to both faulty and fault-free datasets. To 

accommodate the temporal aspect, we capture snapshots of 

these datasets at regular intervals defined by a window size, 

denoted as 𝑊 . Suppose we have 𝑛𝑠𝑖𝑚𝑓  samples for the 

simulated faulty dataset and 𝑛𝑠𝑖𝑚𝑓𝑟 samples for the simulated 

fault-free dataset. For each snapshot, we extract 𝑁𝑠𝑖𝑚𝑓 

continuous samples (where 𝑁𝑠𝑖𝑚𝑓 =  𝑛𝑠𝑖𝑚𝑓/𝑊) for the faulty 

dataset and 𝑁𝑠𝑖𝑚𝑓𝑟 samples (where 𝑁𝑠𝑖𝑚𝑓𝑟 =  𝑛𝑠𝑖𝑚𝑓𝑟/𝑊) for 

the fault-free dataset. Assuming there are m features in total, 

we compute feature correlations by evaluating each pair of 

features using samples from each snapshot window. These 

correlations are computed for every snapshot window across 

all features, resulting in 𝑁𝑠𝑖𝑚𝑓  or 𝑁𝑠𝑖𝑚𝑓𝑟 correlation values 

for each pair of features. Following this, we conduct a two-

sample t-test to identify M significant feature correlations that 

effectively distinguish between faulty and fault-free 

conditions. These significant correlations form the edges for 

constructing graphs. Once these significant correlations (M in 

total) are determined, we proceed to construct graphs for each 

snapshot window in both faulty and fault-free datasets. The 

construction process is detailed as follows: for each snapshot 

window, we select one feature with identified significant 

correlation as the starting node. The significant correlations 

of this feature with other features, determined in the previous 

step, serve as edges, while the correlated features become 

additional nodes. This process is repeated for each significant 

feature in each snapshot window. Features with only two 

significant correlations are omitted since a minimum of three 

correlations is required to construct a graph. 

Following the procedure mentioned above, for a given set 

of 𝑀 edges, we obtain (say 𝑃)  number of graphs for every 

simulation snapshot, and extract corresponding EEs as 

features. In the test phase, we follow the same procedure 

indicated above to extract EEs. As a result, we have EEs 

generated for actual building data and simulated data. The 

EEs from the simulation are then employed to train a data-

driven model, which is subsequently tested using the EEs 

from the real data. This method allows for the application of 

training EEs obtained from simulated data to real data by 

deducing the EEs of the real data, thus enabling cross-dataset 

AFDD. 

 

III. EXPERIMENTS 

A.  Experimental datasets 

Simulation building datasets used for training in this study 
are generated by Lawrence Berkeley National Laboratory 
(LBNL) [16] from a single-duct variable-air-volume (VAV) 
air handling unit (AHU) virtual testbed, which provides 
heating and cooling to the middle floor of a three-story DOE 
large office reference building. Fig. 3 illustrates this building 
floor layout. As can be noticed, the conditioned floor space 
consists of a single interior zone and four perimeter zones, 
where AHU distributes conditioned air by five VAV boxes. 

Real building datasets used for test are generated from the 
ASHRAE 1312 research project [17]. These datasets are 
collected from a laboratory building that is set up like a small 
office building whose layout is shown in Fig 4. As can be 

 

Fig. 3:  Simulation virtual testbed floor layout (adapted from [16]) 

 

 

Fig. 2:  Flowchart of the proposed method 
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observed, the building consists of HVAC systems with two 
VAV boxes, each serving 4 different rooms, and the design of 
the test facility is intended to have each AHU serving room 
with nearly identical loads. Each HVAC system serves rooms 
facing east, west, south, and one interior room. During the 
study, System A (AHU-A and all A rooms) is artificially 
injected with various commonly occurring faults while System 
B (AHU-B and all B rooms) is continuously operated in a 
fault-free state.  

In this instance, we are examining data related to four 
distinct faults, with three related to the cooling coil valve 
(CCV) and the remaining one associated with the outdoor air 
damper (OAD). It is essential that the fault types remain 
consistent between the real and simulated data for cross-data 
analysis, as altering the fault type can potentially result in 
changes to the adjacency matrix, and also the corresponding 
EE values. We generate snapshot windows for every fault test 
case, for both simulation, and actual building data, comprising 
of both faulty and fault-free instances, each with a window size 
of 30 (W = 30) as recommended in [18]. The number of 
snapshot windows for each dataset is detailed in Table I. 
Additionally, Table II outlines the features utilized to identify 
important edges for constructing graphs. 

TABLE I:  Summary of the number of snapshot windows for each fault case 

Case 

No. 

Training datasets  

(LBNL simulation) 

Test datasets  

(ASHRAE real building data) 

Fault case # snapshot Fault case # snapshot 

1 CCV 

25% Open 
𝑁𝑠𝑖𝑚𝑓 5.7k CCV 

15% Open 
𝑁𝑟𝑒𝑎𝑙𝑓 20 

𝑁𝑠𝑖𝑚𝑓𝑟 5.7k 𝑁𝑟𝑒𝑎𝑙𝑓𝑟 20 

2 CCV 

50% Open 
𝑁𝑠𝑖𝑚𝑓 5.6k CCV 

65% Open 
𝑁𝑟𝑒𝑎𝑙𝑓 20 

𝑁𝑠𝑖𝑚𝑓𝑟 5.7k 𝑁𝑟𝑒𝑎𝑙𝑓𝑟 20 

3 OAD 

10% Open 

𝑁𝑠𝑖𝑚𝑓 5.7k OAD 

0% Open 

𝑁𝑟𝑒𝑎𝑙𝑓 20 

𝑁𝑠𝑖𝑚𝑓𝑟 5.7k 𝑁𝑟𝑒𝑎𝑙𝑓𝑟 20 

4 OAD 

75% Open 
𝑁𝑠𝑖𝑚𝑓 3.9k OAD 

45% Open 
𝑁𝑟𝑒𝑎𝑙𝑓 20 

𝑁𝑠𝑖𝑚𝑓𝑟 5.7k 𝑁𝑟𝑒𝑎𝑙𝑓𝑟 20 

*𝑁𝑠𝑖𝑚𝑓 : simulation fault snapshot windows; 𝑁𝑠𝑖𝑚𝑓𝑟: simulation fault-free snapshot windows; 𝑁𝑟𝑒𝑎𝑙𝑓: 

real fault snapshot windows; 𝑁𝑟𝑒𝑎𝑙𝑓𝑟: real fault-free snapshot windows. 

TABLE II:  Summary of original sensor features 

Feature index Feature name Feature description 

1 SF-WAT AHU supply air fan power 

2 MA-TEMP AHU mixed air temperature 
3 OA-TEMP AHU outdoor air temperature 

4 RA-TEMP AHU return air temperature 
5 RA-DMPR AHU return air damper position 

6 SA-TEMP AHU supply air temperature  
7 SF-SPD AHU supply air fan speed 

8 RF-SPD AHU return air fan speed 
9 OA-DMPR AHU outdoor air damper position 

10 CHWC-VLV AHU cooling coil valve position 
11 RF-WAT AHU return air fan power 

 

B. Evaluation 

We utilize two classification models, namely decision tree 
(DT) and random forest (RF), in order to classify derived EEs. 
These models are widely employed in machine learning to 
develop data-driven AFDD for identifying fault symptoms. 

The next objective is to assess whether utilizing EEs 
outperforms the utilization of other features extracted from the 
graphs. To achieve this, we employ a baseline technique 
known as GNNs. We extract features using GNNs from the 
graphs we have created and then contrast the classification 
effectiveness achieved with our approach against that achieved 
with GNNs. 

According to [19], four metrics, AUC, recall, and 
precision, F-measure (F) are commonly used as data-driven 
AFDD performance evaluations. The recall, precision, and F-
measure are calculated as: 

 

Recall =  
TP

TP+FN
                                (3)   

Precision =  
TP

TP+FP
                            (4)   

F =  
2 ×Recall ×Precision

Recall+Precision
                      (5)   

 

The samples in our study represent the feature values 

(extracted EE values or GNN features) of various snapshot 

windows. We define true positive (TP) as the count of faulty 

snapshot windows correctly recognized; true negative (TN) as 

the count of fault-free snapshot windows correctly 

recognized; false positive (FP) as the count of fault-free 

snapshot windows incorrectly identified as faulty; false 

negative (FN) as the count of faulty snapshot windows 

incorrectly identified as fault-free. 

Recall is thus defined as the number of correctly identified 

faulty samples over total number of faulty samples. Precision 

is defined as the number of true faulty samples over total 

number of predicted faulty samples.  F-measure is a combined 

metric derived from recall and precision. Three metrics 

emphasize more on detecting true faulty samples.    

AUC, or area under the curve, is to measure the 

performance of a classifier [20], representing the degree of 

separability archived by the classifier. The value of AUC 

ranges from 0 to 1, and if AUC is equal to or lower than 0.5, 

it indicates no or poor ability of the classifier to distinguish 

two classes [20]; if AUC > 0.6, then it is said to be acceptable 

discrimination [21].   

 

IV. RESULTS 

Table III presents the count of features derived from GNN 

embedding and our proposed technique (EE) for each test 

 

Fig. 4:  Energy resource station (ERS) setup (adapted from [17]) 
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instance. It is notable that the GNN embedding method 

produces a greater number of features compared to our 

proposed method across all fault test cases, despite being 

derived from identical graphs. The difference can be 

explained by the fact that GNN is a type of deep learning 

model, typically necessitating a larger amount of data for 

drawing conclusions.    

TABLE III:  Number of extracted features by two methods 

Case No. GNN embedded Proposed method (EE) 

1 16 11 
2 88 11 

3 32 11 
4 120 11 

 

Fig. 5 illustrates the detection performance achieved by 

DT and RF utilizing GNN embedded features and EE features 

respectively. For DT training (i.e., GNN(DT) and EE(DT) in 

each subplot), it is evident that employing EE features results 

in AUC values exceeding 0.60 for all four test cases. 

Conversely, the utilization of GNN embedded features does 

not yield satisfactory AUC values. Specifically, in case 1, our 

proposed approach achieves an AUC of 0.85, Recall of 0.95, 

Precision of 0.79, and F-measure of 0.86, whereas the GNN 

embedded method attains an AUC of 0.50, Recall of 1.00, 

Precision of 0.50, and F-measure of 0.67. In case 2, our 

method reaches an AUC of 0.63, Recall of 0.25, Precision of 

1.00, and F-measure of 0.40, while the GNN embedded 

method obtains an AUC of 0.50, Recall of 0.00, Precision of 

0.00, and F-measure of 0.00. Moving on to case 3, our method 

achieves an AUC of 0.83, Recall of 0.65, Precision of 1.00, 

and F-measure of 0.79, in contrast to the GNN embedded 

method which results in an AUC of 0.50, Recall of 1.00, 

Precision of 0.50, and F-measure of 0.67. Lastly, in case 4, 

our proposed method attains an AUC of 0.93, Recall of 0.85, 

Precision of 1.00, and F-measure of 0.92, while the GNN 

embedded method reaches an AUC of 0.50, Recall of 0.00, 

Precision of 0.00, and F-measure of 0.00. 

For RF training (i.e., GNN(RF) and EE(RF) in each 

subplot), it is evident that employing EE features can achieve 

an AUC > 0.60 for all test cases except case 1, whereas using 

GNN embedded features does not exhibit satisfactory AUC 

for all test cases except case 2. Specifically, in case 1, our 

 

Fig. 5:  Performance of Decision Tree (DT) and Random Forest (RF) using GNN embedded and EE features 
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proposed approach attains an AUC of 0.53, Recall of 0.10, 

Precision of 0.67, and F-measure of 0.17, while the GNN 

embedded method achieves an AUC of 0.50, Recall of 0.00, 

Precision of 0.00, and F-measure of 0.00. For case 2, our 

proposed method achieves an AUC of 0.60, Recall of 0.20, 

Precision of 1.00, and F-measure of 0.33, whereas the GNN 

embedded method demonstrates strong performance with an 

AUC of 0.98, Recall of 1.00, Precision of 0.95, and F-measure 

of 0.98. Moving on to case 3, our proposed method achieves 

an AUC of 0.80, Recall of 0.60, Precision of 1.00, and F-

measure of 0.75, while the GNN embedded method obtains 

an AUC of 0.55, Recall of 1.00, Precision of 0.53, and F-

measure of 0.69. Finally, in case 4, our proposed method 

attains an AUC of 0.93, Recall of 0.85, Precision of 1.00, and 

F-measure of 0.92, whereas the GNN embedded method 

achieves an AUC of 0.50, Recall of 0.00, Precision of 0.00, 

and F-measure of 0.00. 

To sum up, either DT or RF models trained using EE 

features can detect faults in a larger number of cases with 

higher AUC values (AUC > 0.60) compared to those trained 

using GNN embedded features. This suggests that the 

proposed approach is effective in facilitating cross-dataset 

building fault detection. 

 

V. CONCLUSIONS AND FUTURE WORK 

In this study, a new method for extracting entropy features 

from graph-structured data is introduced to facilitate the 

development of cross-dataset building AFDD. The approach 

involves calculating EE values from the graph structures of 

both simulated and real datasets. Subsequently, machine 

learning models for AFDD (e.g., decision tree and random 

forest) are trained using the EE values from simulated data 

and then tested on EE values from the real data. To assess the 

effectiveness of the proposed method, four distinct fault 

scenarios (consistent between simulated and real datasets) are 

examined under faulty and fault-free conditions. The 

experimental findings indicate that the features extracted by 

our method from simulation data can notably enhance fault 

detection performance in real-world building fault scenarios. 

Additionally, we utilize GNN embedded features as a baseline 

for comparison with our algorithm in the same classification 

task. Our algorithm outperforms the baseline in most of the 

fault cases, showcasing the effectiveness and generalizability 

of our approach for analyzing building HVAC systems across 

different datasets.  

It is important to note that this study focuses solely on two 

common types of faults in building HVAC systems, with 

future plans to explore a broader range of fault types, 

including those affecting return fans or supply fans. 
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