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A B S T R A C T

Data-driven techniques can enable enhanced insights into wind turbine operations by efficiently extracting
information from turbine data. This work outlines a data-driven strategy to augment these insights, describing
its benefits and limitations. Different data-driven models are trained on supervisory control and data acquisition
(SCADA) and meteorological data collected at an onshore wind farm. The developed models are used to predict
wind speed, turbulence intensity (𝑇 𝐼), and power capture for each turbine with excellent accuracy for different
wind and atmospheric conditions. Modifications of the incoming freestream wind speed and 𝑇 𝐼 due to the
evolution of the wind field over the wind farm and effects associated with operating turbines are captured
enabling modeling at the turbine level. Farm-level modeling is achieved by combining models predicting wind
speed and 𝑇 𝐼 at each turbine location from inflow conditions with models predicting power capture. Data-
driven filters are also considered in the context of generating accurate data-driven models. In contrast to many
current works that utilize simulated data, the proposed approach can describe subtle phenomena, such as
speedups, TI damping, and wake-generated turbulence, from real-world turbine data. It is noteworthy that the
accuracy achievable through data-driven modeling is limited by the quality of the data; therefore, guidelines
are proposed to estimate resultant model performance from a given training set without the need to train or
test a model.
1. Introduction

The wind energy sector continues to grow rapidly to meet the ever-
growing energy need and to address the rising concerns associated with
fossil fuel use, of which the most prominent is greenhouse gas emission
and the associated warming effects. High targets are set for future
wind energy capacity [1] while current production costs drop [2]. With
the growing number of wind turbines installed, larger data sets are
collected from more turbines and other instruments to monitor the
performance, power production, operating conditions, and life span of
the wind turbines. Contained in this data is a wealth of information
that can improve the current understanding of wind turbine operation
and unlock new insights into turbine design and performance. Much of
this information, however, remains untapped due to the overwhelming
amount of available data and the lack of guidelines or procedures to
analyze these data sets.

At the same time, machine learning and artificial intelligence have
been advancing at an extremely rapid pace. Various neural network
models have been applied to a strikingly broad array of problems
with great success. Yet the successful application of these models is
not trivial and requires careful engineering of the networks and the
data on which they run. Machine learning has been used to solve
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many wind energy problems, such as wind speed forecasting [3,4],
component fatigue and failure monitoring [5], component design [6],
power production modeling [7], and wake modeling [8–12]. It may
seem that machine learning has thoroughly penetrated the wind energy
field; however, machine learning has been used relatively little to
extract information from real-world data and instead has generally been
used to generate surrogate models of complex first-principle models
while reducing the required computational cost [13].

Machine learning has been broadly used for modeling wind turbine
power curves upon training on real-world data [7,14–18]. For oper-
ations in region two of the turbine power curve (i.e., for incoming
wind speeds between cut-in and rated wind speed), wind turbines
theoretically produce power in a cubic relationship with the incoming
wind speed [19]. However, real-world turbines do not follow this
cubic relationship perfectly due to wind heterogeneity over the ro-
tor area [20], blade aging [21], sub-optimal control operations [22],
and wake interactions [23], among other reasons. Thus, quantifying
the empirical relationship between incoming wind speed and power
production is an important problem since it enables more accurate
estimates of energy production. Furthermore, power may vary with
respect to other environmental parameters, such as wind turbulence
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intensity (𝑇 𝐼) and shear [24–26]. Since these interactions are complex
and nonlinear, they are suitable applications for machine learning. As a
result, many works have used machine learning to develop better power
curve models and to better understand the relationship between the
incoming wind field and turbine power capture [15–17,27].

Unlike power curve modeling, if we consider the field of wake
modeling, we find relatively few cases where real-world data were
used. In general, the goal of wake modeling is to describe the velocity
deficit downstream of an operating turbine induced as it extracts kinetic
energy from the wind and to predict its downstream recovery affected
by the background atmospheric conditions [28]. This velocity deficit
is a function of the turbine – most importantly, the turbine rotor
diameter and the thrust the turbine exerts on the wind – as well as the
inflow conditions, including wind speed and 𝑇 𝐼 . This velocity deficit
an be simulated very accurately using large eddy simulation (LES)
r Reynolds-Averaged Navier–Stokes (RANS) solvers [29–31]. These
olvers are computationally expensive, hampering their application for
asks requiring a large number of simulations, such as optimization of
he wind farm layout or wind farm control. While low-cost analytical
engineering) models exist and can be used with some accuracy, their
ccuracy is generally limited when compared to CFD models [32].

More attention has therefore been given to machine learning mod-
ls that can recreate numerical solutions with computational costs
loser to the analytic solutions. These will be referred to as machine
earning surrogate models [13]. While the machine learning surrogate
odels are useful in many ways since they provide a low-cost way

o estimate wake velocity deficits with high accuracy, they do not
enerally advance the understanding of the physics underpinning the
volution and interactions of wind turbine wakes. Analysis of real-
orld data is needed to accomplish this goal. While several studies have
sed statistical methods to approach this problem [25,33–35], machine
earning has been relatively underused.

To illustrate this point, we consider several recent studies in ma-
hine learning modeling of wind turbine wakes. Ti and coworkers
eveloped early models that trained artificial neural networks to pre-
ict the wake deficit field in three dimensions using a CFD-generated
raining set, and then expanded this approach to farm modeling using
nalytic wake overlapping methods [8,9]. This approach of training
odels on high-fidelity simulation creates a reduced order model of

he high-fidelity simulation that can quickly be executed. Thus, they are
seful in wind farm control cases [36]. Convolutional neural networks
CNNs) have also been used as reduced-order models, such as in [37].
tarting from CFD data, Zhang and Zhao trained a generative adversar-
al network (GAN) that can predict yawed wake behavior [38]. Graph
eural networks (GNNs) also hold promise in wind farm modeling, as
hey can generalize wake behavior from a given farm to any arbitrary
arm layout, if properly constructed. Starting from data generated by
nalytic wake models, recent works have demonstrated the applica-
ility of these models to wind farm modeling [39,40]. Using similar
nalytic models, Zhou and coworkers developed machine learning ap-
roaches that generalize by computing initial wake effects from the
nalytic models [41]. Using high-fidelity data, GNNs can be used to
redict three-dimensional wake effects on arbitrary grids in the region
ownstream of an operating turbine [42].

Digital twins that solve the governing equations of turbulent flows
hile matching measured data can also be efficiently created using
eural networks, but require high-fidelity data to validate, and have
ot yet been extended to field cases [43]. Recent works have refined
ake models using LES training data [44,45]. Works using SCADA
ata to investigate wake effects through machine learning methods
re scarce. For instance, Sun and coworkers developed wake models
ased on SCADA data, but also inject analytic wake model results
o the models [46]. Recent works have also tried generating graph-
ased models using SCADA data, but solve graph weights between tur-
ines using minimization techniques rather than learning by modeling
2

echniques [47].
Table 1
Technical details of the wind turbines under investigation.

Manufacturer Siemens Model SWT-2.3-108
Year online 2014 Rated capacity 2.3 MW
Hub height 80 m Rotor diameter 108 m
Cut in wind speed 3 m s−1 Rated Wind Speed 11 m s−1

Cut out wind speed 25 m s−1 No. Turbines 25

The current work seeks to augment insights uncoverable from real-
world noisy turbine data with the aim of predicting wake interactions,
wake-generated turbulence, and power losses at the turbine level with
high accuracy not easily achievable through classical statistical ap-
proaches or other reduced order models. To this aim, we have devel-
oped data-driven models to predict wind speed, 𝑇 𝐼 , and power capture
at individual turbines as a function of estimated freestream/reference
conditions. These models are then probed to explain wind farm flow
processes and turbine power performance by varying the model input
parameters. The resulting models are free from limitations typically
associated with statistical analyses, such as a priori determination of
parameters’ ranges for data binning, while letting data features surface
naturally, such as to identify the occurrence of speedups or quantify
wake-generated turbulence.

To use this data-driven approach to extracting information, though,
care needs to be taken to ensure that the models are properly inter-
preted. If the models are probed over a region of inputs where there
are few to no data points, they can extrapolate with varying degrees
of accuracy. Additionally, the quality of the training data can directly
impact the accuracy of the resulting models, and therefore reliabil-
ity of any conclusions drawn from probing the models. A significant
contribution of this work is therefore to understand the limitations
real-world data places on data-driven models. This task is approached
from the perspective of a practitioner in wind energy. As such, all the
models considered are readily available for typical users and can be
implemented through various Python packages. While this work does
not present any new models, we believe that the framework we propose
will be useful for wind energy practitioners or researchers seeking to
efficiently work with large amounts of data, while also highlighting
an area of machine learning not commonly considered in the wind
energy field, namely, frameworks to explain and interpret data. The
models developed here are also specific for the wind turbines probed
for generating the training data set, thus they need to be re-trained for
each different wind farm. However, the proposed framework for data
mining and extracting physical insights is generalizable.

The remainder of this work is organized as follows. Section 2
discusses the data used to train the data-driven models. The filtering
applied to the data is discussed in Section 3 with more details listed in
Appendix. After filtering, the optimal data-driven models are selected
in Section 4. Section 5 shows that the selected models can accurately
reproduce data behaviors. Section 6 discusses how data-driven methods
can be used to extract information from the SCADA data while Section 7
illustrates how this method can outperform statistical approaches. The
limitations on model performance and a method to predict model
performance from the training data alone, without the need to train or
test a model, are covered in Section 8. Section 9 offers closing remarks.

2. Data set and wind farm overview

The wind farm under consideration is located in the Panhandle of
Texas and includes 25 wind turbines arranged in three rows roughly
aligned along the East-West direction [25,48,49]. The details of the
turbines are summarized in Table 1 while the site wind rose and wind
farm layout are reported in Fig. 1(a) and (b), respectively.

Data were collected from a meteorological (met) tower starting
on July 17th, 2014, and continuing until June 23rd, 2017. Specifi-
cally, wind speed, wind direction, ambient temperature, pressure, and
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Fig. 1. Characterization of the wind turbine array: (a) windrose of the site with wind speed normalized by the turbine rated wind speed of 11 m s−1 and (b) layout of the wind
turbines.
air density are provided as mean and standard deviation over 10-
minute periods. After not-a-number (NaN) data rejection, a total of
150,132 time stamps are available, which correspond to a total time
of 2.85 years.

SCADA data for every turbine were recorded from August 20th,
2015 up until April 15th, 2017. The data is composed of statistics over
10-minute periods for wind speed, 𝑇 𝐼 (defined as the ratio between
the wind speed standard deviation and its mean value), wind direction,
ambient temperature, and power capture. The number of NaN data
points varies from turbine to turbine. After removing these points,
the average number of down-selected samples per turbine is 63,517
giving 1.21 years of data. These data are not necessarily continuous
in time, though, as removing time stamps with NaN values causes
discontinuities in time. The number of time stamps where all 25 wind
turbines and the meteorological tower have non-NaN values is 40,720
for 0.77 years of data.

To investigate wind turbine performance, the freestream (reference)
wind condition has to be characterized. To this aim, reference wind
conditions are defined as the average of environmental conditions
across all turbines not affected by wakes (unwaked turbines), as pro-
posed in a previous work studying the site under consideration [25].
This procedure is used to define reference conditions for hub-height
wind speed, 𝑇 𝐼 , and direction. For wind speed monitored at each
turbine through the SCADA, the wind speed correction is applied as
follows:

𝑈𝑐𝑜𝑟𝑟 = 𝑈
(

𝜌
𝜌0

)1∕3
, (1)

where 𝜌 is the air density at each turbine, 𝜌0 is the reference air density
of 1.225 kg m−3, and 𝑈 is the mean wind speed. Since air density
measurements are not available at each turbine, the best approximation
is to calculate air density from the turbine ambient temperature in
Kelvin, 𝑇 , and the met-tower pressure in Pascals, 𝑃 :

𝜌 = 1
𝑇

[

𝑃
𝑅0

− 𝜙 𝑎 𝑒𝑏𝑇
(

1
𝑅0

− 1
𝑅𝑤

)]

, (2)

where 𝑅0 is the gas constant of dry air (287.05 J kg−1 K−1), 𝑅𝑤 is
the gas constant of water vapor (461.6 J kg−1 K−1), 𝜙 is the relative
humidity (set to 0.5 since humidity measurements are unavailable), 𝑎 is
a constant equal to 0.0000205, and 𝑏 is a constant equal to 0.0631846.
Since each turbine’s wind speed is density-corrected, the reference wind
speed is also density-corrected. It should also be noted that measure-
ments from anemometers mounted on turbine nacelles, behind the
3

rotors, can be impacted by blade passage, turbine misalignment, and
other factors. However, the manufacturer calibrates the anemometer
to correct for these issues, so they are not considered important in this
study.

A scaling factor is then defined to correct turbine 06, since it is
closest to the met-tower, by reducing the bias between the wind speed
measured at turbine 06 and at the met-tower. This correction is applied
to the other turbines through the same scale factor estimated for turbine
06 [30,50]. In this way, bias errors in the turbine anemometers should
be corrected or, at least, reduced.

3. Data filtering

SCADA data typically contain many outliers due to several factors,
such as power curtailment, maintenance, off-design performance, or
sensor fault. When training data-driven models, it can be important
to remove outliers because they may jeopardize the accuracy of the
models. Further, regions of the wind turbine power curve that are not
of interest to an analysis should also be removed so that the model
is not diluted by those points. Region one of the turbine power curve
includes turbine operations for average wind speeds below the cut-
in wind speed of 3 m s−1 and is characterized primarily by random
fluctuations in power. Furthermore, since region-one operations occur
very infrequently, they are filtered out. Additionally, region three,
i.e. when the average wind speed is above the rated wind speed of
11 m s−1, is not important for wake studies, since power capture is
fixed at the rated power and the main turbine risks are associated with
loads [51]. This region is removed by rejecting samples with an average
wind speed above 13 m s−1. This way, the transition from region two
to region three is kept.

The turbines being studied have a rated power of 2.3 MW but are
capable of boosting power output up to 2.5 MW under specific environ-
mental conditions and high energy demand on the electricity grid. This
power boost cannot be predicted, however, from environmental data
alone, since it depends on grid conditions. For this reason, it is rejected
by removing all points with power above 2325 kW. Finally, when the
turbine rotor is being spun up to operating speed, the turbine may draw
more power than it produces. If this is the case, the recorded power will
be negative. These data points are of no interest and dilute the models,
and, thus they are rejected.

In order to reject outliers from the data and create ‘‘clean’’ SCADA
data, this study considers four types of outlier filters. The considered
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filters are a binning filter, a K-means clustering filter, an automatic
Gaussian Process (GP) filter, and a novel data-driven filter, referred to
as the General Machine Learning (GML) filter. These filters are applied
for all 25 wind turbines, then an optimal filter was selected, namely
the GML filter. For a more detailed discussion on filtering SCADA data
outliers and filter selection, the reader is referred to Appendix.

Note that when developing models to predict wind speed or 𝑇 𝐼
rather than power, the data used to train those models is left unfiltered.
This is due to the more challenging nature of defining an outlier in
these parameters due to increased variability from wake interactions
and variability due to different inflow conditions.

4. Data-driven model selection

As mentioned above, the goal of this work is to describe turbine
performance as a function of reference wind conditions and thereby
extract information on turbine and farm performance from the SCADA
data. To accomplish this goal, three models are needed for every
turbine: a wind speed model, a 𝑇 𝐼 model, and a power model. The wind
speed model predicts the local wind speed at a given turbine location
as a function of the reference wind conditions and captures the impact
of neighboring turbines on wind speed, such as wakes and speedups.
The 𝑇 𝐼 model predicts the local 𝑇 𝐼 at each turbine as a function of the
eference wind conditions as well as the predicted local wind speed.
hus, neighboring turbine effects on 𝑇 𝐼 are also captured. Finally, the
ower model predicts the power produced by each turbine as a function
f local wind speed and 𝑇 𝐼 . Essentially, it is a multi-dimensional power
urve tuned to each individual turbine.

For each model, an appropriate data-driven model is selected and
verall accuracy is discussed. While there are many different data-
riven models of varying complexity, each suited to unique tasks
nd with unique strengths and weaknesses, we focus here on models
hat are easy to implement using simple and straightforward Python
ackages. We only use models from the Scikit-Learn package [52], with
he exception of an XGBoost model using the XGBoost package [53] and
hares the same syntax as Scikit-Learn models, and a neural network
odel using the Keras package with the Tensorflow backend [54],
hich can be easily approximated in Scikit-Learn using multilayer
erceptron models. We simply use Tensorflow to take advantage of
PU-accelerated training. We focus on these highly accessible models

o that general practitioners in the wind energy industry can quickly
dopt the techniques discussed here without needing to also become
xperts in machine learning. For a full list of models considered and
he approach to optimizing and selecting models, the reader is directed
o Appendix A.2.

The inputs to the wind speed and 𝑇 𝐼 models could be determined
y a brute force analysis or careful design of experiments [55]. To keep
he number of inputs low, reference wind speed, 𝑇 𝐼 , and direction are
elected as the inputs to these models. However, wind direction is a
ircular variable, but the data-driven models in use will treat it as a
inear variable. To avoid potential discontinuities this may induce, the
ind direction input is first converted into 𝑥 and 𝑦 components (cos 𝜃
nd sin 𝜃, respectively) which are passed as inputs. The impact on model
ccuracy is negligible but the results avoid discontinuities at values of
◦ and 360◦.

To select a model for wind speed predictions, we optimize a Random
orest (RF), Extremely Randomized Trees (ET), Gradient Boosting (GB),
istogram Gradient Boosting (HGB), XGBoost (XGB), and dense neural
etwork (NN) models using the procedure described in Appendix A.2.
o assess the optimized models, each optimal model is trained on
0% and tested on the remaining 20% of data from every turbine.
he wind speed limits on region rejection are increased to include all
alues between 2 m s−1 and 14 m s−1 to avoid boundary issues in
he training. The root mean square error (RMSE) is reported for each
urbine, normalized by the standard deviation of the wind speed in the
4

esting set. From Table 2 listing the statistics of the results, it is evident
able 2
tatistics on RMSE of wind speed predictions for all turbines in the wind farm
omparing different optimized models. RMSE values are normalized by the standard
eviation of wind speed. The minimum value in each column is reported in bold.
Model Min. 25th %-ile Median 75th %-ile Max.

RF 20.81% 22.30% 23.89% 26.93% 27.52%
ET 20.71% 22.51% 23.94% 26.96% 27.66%
GB 20.52% 22.06% 23.60% 26.58% 27.25%
HGB 20.17% 21.89% 23.41% 26.15% 26.75%
XGB 20.44% 21.96% 23.51% 26.26% 26.81%

Table 3
Statistics on RMSE of 𝑇 𝐼 predictions for all turbines in the wind farm comparing
different optimized models. RMSE values are normalized by the standard deviation of
𝑇 𝐼 . The minimum value in each column is displayed in bold.

Model Min. 25th %-ile Median 75th %-ile Max.

RF 34.00% 36.51% 38.60% 40.94% 45.78%
ET 33.58% 36.27% 37.97% 40.71% 44.85%
GB 33.84% 35.98% 38.18% 41.29% 45.82%
HGB 33.68% 36.20% 37.88% 40.55% 44.75%
XGB 32.98% 35.28% 37.38% 39.93% 44.60%

that the HGB model has better performance than the other models. The
optimized hyperparameters of this model are the following: learning
rate is 0.083, maximum bins of 248, and maximum number of iterations
is 660.

Next, 𝑇 𝐼 is to be predicted. The inputs for 𝑇 𝐼 models are the same
as for wind speed models, with the addition of the local wind speed
at the turbine in question. Adding this input is found to increase the
accuracy of the 𝑇 𝐼 predictions. When training the 𝑇 𝐼 models, inputs
are retrieved directly from the SCADA data. In contrast, when using
𝑇 𝐼 models, the wind speed model will be used to first predict the local
wind speed. Once again, RF, ET, GB, HGB, XGB, and NN models are
tuned using DeepHyper on turbine-6 data. The models are then applied
across the farm using an 80%/20% training/testing split, and the RMSE
normalized by the standard deviation of 𝑇 𝐼 is calculated. Table 3
reports statistics on these values. From these results, the XGB model
is identified as the best-performing model with the hyperparameters
as follows: a learning rate of 0.003, a maximum depth of 30, 1950
estimators, and a subsample fraction of 0.11.

Finally, models to predict turbine power are considered. The inputs
to these models are the wind speed and 𝑇 𝐼 predicted by the wind speed
and 𝑇 𝐼 models discussed above, while the output is turbine power. In
Appendix A.2, power models are discussed in the filtering context. In
the prediction context, the models are to be trained on filtered data.
To avoid re-optimizing models, it is assumed that the hyperparameters
determined in Appendix A.2 are still optimal and that the best model
is still the XGB model with optimal parameters listed in Appendix A.2.

5. Accuracy of data-driven models

Before using the data-driven models to identify features and phys-
ical processes from the SCADA data, it is important to first assess the
accuracy of these models. Data-driven models are typically evaluated
by performing a training and testing split, where the model is trained
on a subset of data and then tested on another set. To achieve this
training and testing split (roughly 80% of the data available for training
and the rest reserved for testing), we define the training set to be all
data recorded prior to January 1st, 2017, and the testing set to be all
data recorded following that date. The data is not shuffled since points
close in time generally are strongly correlated, and having correlated
points in the training and testing sets can artificially increase model
performance [56]. All of the results that follow in this section are
reported from models trained on the training data set then tested on
the withheld data.

First, the annual energy produced (AEP) and total farm power

predictions are compared against the true values. Power predictions
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Fig. 2. Regression analysis for actual and predicted total power using data with region removal applied and (a) no filter and (b) GML filter.
are made for all the turbines at all time stamps in the test set. Summing
across all time series values for actual and model-predicted total power,
then calculating average yearly power production, allows the AEP to
be calculated [57]. Comparing AEP allows the accuracy of farm sim-
ulations to be verified at the most coarse level. For both calculations,
the appropriate region removal must be applied to the actual power
data points to ensure that the model is only predicting over relevant
input data. Performing this analysis, the percentage difference between
the actual and predicted AEP values is 0.47%. The RMSE between
the actual and predicted total power, normalized by total farm power,
2300 kW across 25 turbines producing 57.5 MW of total power, is
5.34%.

To better understand the source of errors in the farm power pre-
dictions, a regression analysis is performed and reported in Fig. 2(a).
The regression scores are excellent. However, a possible contribu-
tor to errors could be points that lie far above the 𝑦 = 𝑥 curve.
Since these scattered points have higher predicted power than actual
power, it is reasonable to guess that these may be points where one or
more turbines were curtailed or were operating at lower-than-typical
performance. Thus, de-rated conditions should be removed to better
quantify the model accuracy, which is performed by applying the
above-described GML filter, then repeating the total power analysis
for data with region removal applied as well as ML filtration. From
Fig. 2(b), the cloud of points above the 𝑦 = 𝑥 line – supposed to be
de-rated conditions – is reduced. Noting that the slopes in Fig. 2(b) are
slightly improved over Fig. 2(a) and that the 𝑅2 score improves, it can
be concluded that this analysis gives a more accurate quantification of
the performance of the model. The revised percent difference between
AEP values is now 0.49% while the normalized RMSE is 4.07%.

Next, considering the predicted power for individual turbines across
the farm gives a more granular analysis. For this analysis, the real
data from every turbine is filtered and the region removal procedure is
applied. For each resultant filtered set, the relevant reference conditions
are provided as inputs to the wind speed, 𝑇 𝐼 , and power models,
chained together, to determine the predicted power. The regression
results are displayed in Fig. 3(a).

To understand the impact of the occurrence of wake interactions
on the model accuracy, the data considered previously are split into
waked and unwaked sets, namely identifying for each turbine wind
sectors for which wake interactions may occur. The IEC standard is
used to define waked conditions with respect to the reference wind
direction [58]. Finally, the accuracy and regression analyses are applied
again, independently, to each set. The regression results for waked and
unwaked wind conditions are shown in Fig. 3(b) and (c), respectively.
Clearly, waked conditions are more difficult to predict than unwaked
conditions, with the results in Fig. 3(a) falling somewhere in between
the two. Averaging across the farm, the normalized RMSE (normalized
by the standard deviation of power) is 24.28% for all conditions,
27.12% for waked conditions, and 20.04% for unwaked conditions.
5

6. Identification of features and physical processes from the
SCADA data

Once the different data-driven modeling approaches have been de-
fined and the models trained, and once the models have been shown to
be accurate, they can be used to interpret the SCADA data. To this end,
the percent differences between turbine wind speed, 𝑇 𝐼 , and power,
all predicted by chaining the wind speed, 𝑇 𝐼 , and power models, and
the reference wind speed and 𝑇 𝐼 , as well as ideal power (i.e., power
produced by the given turbine operating in freestream conditions), are
investigated for individual turbines over varying reference wind speeds,
directions, and 𝑇 𝐼 values. This analysis highlights the capability of the
models to describe wind farm phenomena, such as wake interactions
decreasing local wind speed, increasing local 𝑇 𝐼 , and decreasing power
capture. More complex behaviors are also captured, such as local
increases in wind speed and damping of 𝑇 𝐼 connected with speedup
conditions, which occur for wind sectors adjacent to those associated
with wake interactions [59,60], which might be difficult to detect using
statistical methods. This challenge is further investigated in Section 7.

First, the turbine wind speed model is investigated. As turbines 07
and 08 have the most interesting and complex wake interactions of
the wind farm under investigation (Fig. 1), they are chosen for this
analysis [25]. For each turbine, a synthetic input set is generated where
the reference wind direction varies continuously within the range 0◦ −
360◦, while the reference wind speed and 𝑇 𝐼 are held constant. The
constant values used for wind speed vary from 3 m s−1 up to 13
m s−1 with 5 evenly spaced steps. The 𝑇 𝐼 values used are 5%, 8%,
12%, and 18%, roughly corresponding to the 10th, 25th, 50th, and
75th percentile values of reference 𝑇 𝐼 , respectively. The percentage
difference between the predicted local wind speed and the reference
wind speed is analyzed for each synthetic data set to identify speedups
or slowdowns. For each unique set of wind speed, direction, and 𝑇 𝐼
values given as inputs, a bin is defined, centered on these values, with
a width in wind speed of 0.5 m s−1, in wind direction of 2.5◦, and in
𝑇 𝐼 of 2%. If the training data has fewer than 10 points in this bin,
the data-driven predictions for this bin are rejected to avoid excessive
extrapolation and uncertainty in predictions.

Starting from the predictions of wind speed in Fig. 4, slowdowns
due to wakes for turbines 07 and 08 are evident from the regions
with a positive percentage loss. Considering turbine 07 (top row in
Fig. 4), sharp losses are observed at wind directions of roughly 160◦ and
270◦, which are associated with the wakes generated by turbines 08
and 73, respectively (Fig. 1(b)). Weaker losses are observed at roughly
135◦ and 100◦ due to the larger distance from turbines 09 and 10,
respectively, or due to weakly-merged wakes from the rest of the second
row. The magnitude of the slowdowns due to wakes is also consistent
with other field studies performed for this wind farm [25]. Indeed, for a
specific wind sector and 𝑇 𝐼∞, e.g. wind direction about 160◦ and 𝑇 𝐼∞
= 5%, it is noticed that the wind speed deficit reduces with increasing
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Fig. 3. Regression analysis for actual and predicted power for all individual turbines combined with region removal and GML filtering considering (a) all conditions, (b) waked
conditions, and (c) unwaked conditions.
Fig. 4. Local wind speed percentage losses for turbines 07 and 08. 𝑇 𝐼 increases from left to right with turbine 07 results in the top row and turbine 08 results in the bottom row.
freestream wind speed, 𝑈∞. This is due to the gradual transition of the
wind turbine operations from region two to region three of the power
curve and associated reduction in the rotor thrust coefficient.

In Fig. 4, as 𝑇 𝐼 increases, wakes become less prominent and the
peaks for the percentage velocity deficit recede [48,61]. Finally, for
some wind directions, the percent difference drops below zero, which
represents a speedup that is expected to occur between wakes as mass
conservation requires a region of faster-moving fluid between two
regions of slower-moving fluid [11,59,60,62].

Repeating this analysis for turbine 08, the results are consistent with
those of turbine 07. The percentage differences show a strong loss at
90◦ due to turbine 09. Weaker losses can be observed at about 315◦.
The weakest effects are caused by the first row (turbines 01 through
06) and can be seen for wind directions between 135◦ and 180◦. The
wakes decrease in intensity with increasing reference 𝑇 𝐼 and speedups
can be observed on either side of the wake centered on 90◦.

To demonstrate wind speed losses at the farm level, the reference
wind speed is set to be 8 m s−1 and the reference 𝑇 𝐼 is set to the median
𝑇 𝐼 , roughly 12%. The foregoing procedure is applied to each turbine
to generate the percentage deficit in wind speed for the considered
environmental setting. As can be noted in Fig. 5, the wakes are all
visible and pointing in the expected directions from where the wakes
are generated.

The speedup effect occurring for turbines of the middle row (i.e.,
turbines 08 through 14) is illustrated in Fig. 6 for a reference wind
speed of 8 m s−1 and 𝑇 𝐼 of 8%. The varying wind direction highlights
how wakes from the northerly row and even the middle row might
combine to produce speedup effects. As might be expected, turbine 08
6

benefits most from channeling between the middle and upper rows and
has the strongest speedup effect (negative values in Fig. 6). On the
other hand, turbines 13 and 14 are located on the edge of the row
and experience the least benefit. It is noteworthy that these turbine
array effects are impossible predict using analytical engineering wake
models, and difficult to identify through statistical analysis of SCADA
data due to the specific ranges in wind reference parameters to be
used to avoid merging with other flow conditions. However, these
phenomena can be investigated through CFD models, but only for a
few wind conditions due to the larger computational costs required.

The local 𝑇 𝐼 models are validated following a similar procedure as
for the predictions of wind speed. In this case, the expected behavior
is that 𝑇 𝐼 will spike in waked regions while remaining unaffected in
unwaked regions. Identical analyses are performed to the prior wind
speed analyses. While results similar to Fig. 5 are not reproduced here
for the sake of brevity, Fig. 7 reproduces the results of Fig. 4 when the
same analysis is applied to 𝑇 𝐼 .

Finally, the behavior of turbine power can be investigated by chain-
ing the wind speed, 𝑇 𝐼 , and power models. In previous analyses,
local percentage variations were calculated by comparing local environ-
mental parameters against supplied reference parameters. To obtain a
reference power to compare against, the power model is used but with
the reference wind speed and 𝑇 𝐼 as inputs, instead of the local wind
speed and 𝑇 𝐼 .

The results of this analysis for turbines 07 and 08 are reported in
Fig. 8 and show power losses connected with wake interactions. Wind
speeds above the turbine’s rated wind speed have almost no wake losses
and lie in region three of the power curve. Additionally, wake losses
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Fig. 5. Wind speed percentage losses for the entire farm for a freestream condition with U = 8 m s−1 and 𝑇 𝐼 = 12%. Red dashed lines indicate 0% change and the dashed black
line indicates 25% loss.
decrease in magnitude with increasing reference 𝑇 𝐼 , as thoroughly
documented in the literature [48,61,63]. The model can capture small
details in the variability of power performance, such as power increases
due to a combination of local wind speed and 𝑇 𝐼 variation. For in-
stance, turbine 07 typically exhibits a power boost between 45◦ and
90◦, while turbine 08 shows stronger boosts on both sides of the wake
at 90◦. Interestingly, these boost regions seem to align with 𝑇 𝐼 damping
regions. While speedup regions are difficult to utilize to increase power
7

production as they are small compared to wake regions, always occur
next to wakes, and have much smaller magnitudes than wakes so
that any positive effects are outweighed when considering long-term
performance, the ability to predict boost regions is a step forward in
understanding complex turbine wake interactions and improving wind
farm control. Finally, considering the farm as a whole, similar results
are obtained to the wind speed and 𝑇 𝐼 results above, which are not
presented here for the sake of brevity.
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Fig. 6. Speedup effects for the middle row of turbines at a reference wind speed of 8 m s−1 and 𝑇 𝐼 of 8%, varying wind direction.
Fig. 7. Local 𝑇 𝐼 percentage gain for turbines 07 and 08. Reference 𝑇 𝐼 increases from left to right with turbine 07 results in the top row and turbine 08 results in the bottom
row.
Fig. 8. Local power percentage losses for turbines 07 and 08. Reference 𝑇 𝐼 increases from left to right with turbine 07 results in the top row and turbine 08 results in the bottom
row.
7. Insights from data-driven analysis

Now that the data-driven method to extract information from
SCADA data has been discussed, we highlight the advantages of analyz-
ing wind turbine SCADA data through data-driven methods compared
to more typical statistical techniques. While both methods offer advan-
tages and drawbacks, they also provide different perspectives on the
data, making the addition of the data-driven method to any analysis
a valuable one. The main difference between the data-driven method
8

(i.e., machine learning) and the statistical method to extract informa-
tion from SCADA data is that the latter generally requires binning
of the data. The bin widths must be defined before a priori and
therefore impose assumptions on the physical phenomena of interest.
Furthermore, defining bin width usually comprises a trade-off between
large bins, which may produce results of greater statistical relevance
by averaging over more points but also reduce the granularity level of
the analysis; on the other hand, smaller bins may produce results of
less statistical relevance by considering fewer points but also enable
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Fig. 9. A comparison of the wake losses at turbine 08 at a fixed wind speed and 𝑇 𝐼 for different wind directions, comparing the data-driven result and statistical results using
different bin widths. Mean results (a) and estimated statistical uncertainty by normalizing the bin standard deviations by the bin means (b) are shown.
detection of phenomena occurring over small ranges of the input
parameters.

In contrast, once trained, an ML model can be interrogated over
continuous mapping of the input data, eliminating the need to de-
fine bins. Data features can surface naturally without imposing any
assumptions or constraints on the data analysis. The uncertainty of
deterministic ML predictions, however, is often difficult to quantify,
making it unreasonable for ML results to completely replace statistical
results. Other ML approaches, such as probabilistic techniques, allow
for better uncertainty quantification and could be investigated further.

We offer the following comparison between ML and statistical re-
sults for turbine 08, specifically focusing on the wind sector between
135◦ and 200◦. Wind speed is kept in a 1 m/s wide bin centered on
a normalized wind speed of 0.9 while 𝑇 𝐼 is kept in a 5% wide bin
centered on 5%. We consider the wake factor as the percent loss of wind
speed at turbine 08 compared to the reference wind speed. Considering
wind direction bins 10◦ 5◦ and 2.5◦ wide, we produce the statistical
wake factor results shown in Fig. 9(a). To quantify statistical uncer-
tainty, for each bin, we report the standard deviation of the wake factor
divided by the mean of the wake factor in 9(b). Given that small wake
factors contribute to unreasonably high results, approaching infinity,
we mask results where the wake factor is less than 5%. On the other
hand, we use the previously-trained wind speed model to predict the
wind speed at turbine 08, thereby enabling the calculation of the wake
factor, for continuously varying wind directions between the prescribed
limits. The wind speed is fixed at a normalized value of 0.9 and the
𝑇 𝐼 is fixed at 5%. These results are shown in Fig. 9(a). To estimate the
uncertainty of the ML result, the model is retrained 25 times, each time
sampling a random 50% of the training data. The mean of these samples
defines the wake factor and the standard deviation is also calculated
and reported, normalized by the mean, in Fig. 9(b).

From Fig. 9, we note first that the ML result provides the highest
wake factor losses, capturing best the impacts of individual wakes from
the southern row of turbines. The statistical result, on the other hand,
only gets close to the ML result with bins 2.5◦ wide. The 5◦ -wide bins
capture some effects of lower intensity, and the 10◦ -wide bins fail to
capture individual wakes at all. While the bin standard deviations from
the statistical analysis and the estimated ML uncertainty are certainly
not equivalent, their comparison is still illuminating. In all cases, the
ML uncertainty is 40% or less, while the statistical results barely get
below 50% and exceed 100% at times.

To reiterate, it is not always clear how to assess ML uncertainty. We
have here provided what we believe is a reasonable estimate and have
found it to be far less than the statistical results. Furthermore, the ML
results capture individual wakes, while the statistical results struggle
to reach the same magnitudes. Thus, we determine that the ML results
can at least be useful in detecting the expected magnitude and length
scales of effects — in this case, the strength of the wake impact and
the width of the impacted sectors. As such, the ML results provide a
compelling additional perspective to traditional statistical analysis and
9

more costly CFD analyses.
8. Data requirements to train data-driven wind farm models

While it has been shown that data-driven methods can be accurate
and useful methods for extracting information from SCADA data, it
is also important to discuss their limitations. Each data-driven model
is constrained by the statistical significance of the data used for the
model training. Bad data will generate poor models. This motivated the
filtering discussion in Section 3 and Appendix. While that discussion
considered outliers that did not match expected physical phenomena,
this section considers what further limitations data might place on
model performance, either filtered or not. As shall be shown, the
variability of the output has a direct impact on model performance.

To start, we consider turbine 07. All of the SCADA data between 3 m
s−1 and 13 m s−1 are taken and the chained wind speed, 𝑇 𝐼 , and power
models are used to predict the turbine power from reference conditions
for each data point. Bins are defined as 1 m s−1 wide in wind speed and
5◦ wide in wind direction, encompassing all 𝑇 𝐼 values. For each bin,
the RMSE is calculated. Any bin with fewer than 10 points is rejected.
The bin mean and standard deviation of the power are also calculated.
These results are reported in Fig. 10.

As might be expected from the previous analysis, waked conditions
are more challenging to predict accurately than unwaked conditions,
such as for the wind sector 270◦ in Fig. 10(a). These waked conditions
correspond to spikes in Fig. 10(b) which are caused by an increase in
variability due to the impacting wakes. It seems reasonable, therefore,
to expect a correlation between the variability of the training output
and the final model accuracy. In fact, we claim that a direct relationship
between output variability and model accuracy can be established in
the form of a linear model, which can be used to predict model accuracy
from the training data alone, with no need to train or test a model. To
demonstrate this, we follow a binning analysis. Bins are now defined
from 3 m s−1 to 13 m s−1 but are 0.5 m s−1 wide. Bins remain 5◦ wide
in wind direction. 𝑇 𝐼 bins are introduced with a width of 2.5%. Bins
with fewer than 5 points are rejected. These bin sizes are chosen such
that the inputs to the problem, reference wind speed, 𝑇 𝐼 , and direction,
do not change significantly throughout the bin. Thus, variability in the
output, power, is not due to variability in the inputs. This unexplained
variability will directly impact model accuracy since it cannot easily be
predicted through variations in the inputs. 20 turbines are randomly
selected and the chained wind speed, 𝑇 𝐼 , and power models are used
to predict the power for these turbines for all available data points.
The bin analysis is applied and the regression between bin RMSE,
normalized by bin mean power, and bin power standard deviation, also
normalized by bin mean power, is shown in Fig. 11(a).

As can be seen, a clear linear relationship emerges between the
normalized bin RMSE and the normalized power standard deviation. A
linear model is defined following the equation given in Fig. 11. When
fitting this equation, the intercept is assumed to be zero, since zero
standard deviation should correspond to zero error, as only the mean
needs to be predicted. This equation is then used to predict the bin-

normalized RMSE using the bin-normalized power standard deviation
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Fig. 10. Variability of the power data for turbine 07 as a function of normalized incoming wind speed, 𝑈∞, and wind direction, 𝜃∞: (a) RMSE normalized by bin mean power;
(b) power standard deviation normalized by bin mean power.
Fig. 11. Fitting a linear model on bin normalized RMSE (a) and testing the model on withheld turbines (b).
Table 4
Real and estimated normalized RMSE for each withheld turbine, where the estimated
RMSE comes from a weighted average of the estimated bin normalized RMSEs.

Turbine No. Total NRMSE Avg. NRMSE Est. NRMSE

2 15.1% 15.1% 15.8%
8 15.2% 15.3% 16.1%
11 16.0% 16.6% 17.1%
17 17.3% 18.4% 18.4%
77 16.9% 18.4% 18.7%

for the five withheld turbines. The regression between the true and
estimated bin-normalized RMSE is shown in Fig. 11.

Using the estimated bin normalized RMSE, the total RMSE of the
power predictions for each withheld turbine is estimated by averaging
all the bin RMSE values, weighting each error by the percentage of
points that fall in its respective bin. Table 4 reports the real and
estimated total normalized RMSE for each withheld turbine. The table
also reports the bin-averaged RMSE for the real data, as this may differ
slightly from the RMSE computed over the entire data set and may also
be closer to the estimated values.

9. Concluding remarks

As the number of installed and operating turbines proliferates, so
does the amount of data gathered on the operation of these turbines.
While data-driven methods have been used extensively to generate
more accurate power curve models or computationally cheap surro-
gate models for high-fidelity wake simulations, these methods are not
generally used to investigate or interpret real-world wind turbine data.
Yet these methods have unique advantages in interpreting SCADA
data over traditional statistical methods and therefore deserve further
investigation since it is critical to understand the vast amounts of data
that are now being gathered.
10
For this work, SCADA data from a wind farm in the Panhandle
of Texas have been used to develop data-driven methods. Different
filtering approaches have been discussed with a data-driven filtering
approach being selected to filter the data and ensure a high quality of
training data for future models. Region removal was also used to focus
the models on interesting phenomena in region two of the power curve,
where wake interactions are the strongest.

Once the data are prepared, data-driven models have been de-
veloped to describe individual turbine performance as a function of
reference conditions, which have provided a reasonable estimate of
freestream wind conditions. This aim has been achieved by chaining
together three models: a wind speed model, a 𝑇 𝐼 model, and a power
model. The wind speed model predicts a turbine’s local wind speed
as a function of the reference wind speed, direction, and 𝑇 𝐼 , while
the 𝑇 𝐼 model predicts a turbine’s local 𝑇 𝐼 as a function of its local
wind speed and the same reference inputs. Finally, the power model
predicts the turbine’s power as a function of its local wind speed and
𝑇 𝐼 , functioning as a multi-dimensional power curve tuned to each
individual turbine. Thus, the interactions of the turbines could be
described in terms of impacts on wind speed, 𝑇 𝐼 , and power. While
the models used are standard models and other works have considered
similar approaches to predicting turbine performance, chaining these
models together provides a unique framework to investigate physical
phenomena efficiently across large data sets.

Once the models have been developed and shown to be accurate,
they have been used to interpret the SCADA data by making predictions
for user-provided wind speeds, directions, and 𝑇 𝐼s. Importantly, wake
effects have been well described, and complex effects, such as speedups
and 𝑇 𝐼 damping, have also been identified from the data. The models
have been used to assess the wake impacts across the farm and the
varying levels of speedups at different turbines. While this might be
challenging from a statistical perspective since strict limits would have
to be applied to keep all turbines operating within nominal bounds, the
data-driven models have not suffered these restrictions.
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The specific advantages and disadvantages of the data-driven ap-
proach have been discussed against the backdrop of traditional sta-
tistical analysis. The data-driven approaches were shown to provide
a useful additional perspective to statistical analysis that could better
replicate results obtained via simulation of the wind farm but with
the caveat that the statistical uncertainty of data-driven results can be
difficult to quantify.

While data-driven models are useful, they also suffer limits imposed
by the quality of the training data. We have considered these and
showed that the model performance has been closely related to the
variability of the training data. Model performance has been modeled
as a linear function of the variability of the model output. These linear
models have been very accurate in estimating the error of a data-driven
model trained on the given data without ever needing to train or assess
these data-driven models. Thus, data sets can be assessed for data-
driven interpretations or experimental campaigns designed to ensure
high-quality data sets by using these linear models.

In summary, while there are limitations that have been described
and need to be carefully considered, the use of data-driven models to
interpret SCADA data is very promising. Since interpreting the vast
amounts of collected data is essential to promoting a better under-
standing of wind turbine performance and therefore better turbine and
farm design, control, and monitoring, this work has provided an outline
that can guide data-driven interpretations. Further applications could
include monitoring of operating farms to identify poor performance
or under-performing turbines, or greater studies of speedup effects in
different layout geometries, or the relationship between incoming flow
conditions and wake overlapping.
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Appendix. Filter definition and selection

Several filtering approaches are considered for the quality control
and pre-processing of the SCADA data before training models to pre-
dict power. As noted, data filtering is only applied to data used to
train power models and not to data used to train wind speed or 𝑇 𝐼
models. Two statistical filtering approaches are considered: a simple
binning filter and a K-means clustering filter based on the Mahalanobis
distance [17]. Further, an iterative Gaussian Process (GP) filter and a
novel machine learning filter are also considered [15]. Our goal is to
demonstrate important considerations in selecting a filter, especially for
use with data-driven models, and demonstrate the effectiveness of using
data-driven filters for data-driven models.

A.1. Existing filters

First, the binning filter is considered. This approach splits the power
curve into 0.5 m s−1 wide bins in wind speed [58]. The mean power
s calculated for each bin, as well as the standard deviation in power.
pper and lower limit curves are created by adding and subtracting 2

tandard deviations from the mean of each bin. For a given wind speed,
he upper and lower limits on power are determined by interpolating
hese curves. Any data point with a power value falling outside of
hese limits is considered an outlier. When applying this filter initially,
utliers with wind speeds around and above the rated wind speed of
he turbine tend to be harder to remove since the standard deviation
ncreases in that region, as seen in Fig. A.12(a). For this reason, the
ilter is applied a second time to further prune outliers in the transition
egion between regions two and three. As seen in Fig. A.12(b), the
econd application is quite effective.

Second, the K-means clustering filter uses the K-means algorithm to
luster data. For this work, 10 clusters are generated, as in the original
aper [17], then the Mahalanobis distance from the respective cluster
enter is calculated for all points in each cluster. The Mahalanobis
istance gives the distance between an observation vector of several
imensions, 𝐱, and the mean vector of all the observations being

considered, 𝝁, scaled using the covariance matrix 𝛴:

𝑀 (𝐱) =
√

(𝐱 − 𝝁)𝑇𝛴−1(𝐱 − 𝝁). (A.1)

he covariance matrix, 𝛴, is calculated uniquely for each cluster. The
onsidered SCADA parameters are wind speed, 𝑇 𝐼 , and power. Once
Mahalanobis distance has been assigned to every data point, the
ean and standard deviation of the Mahalanobis distance for each

luster is calculated. Points further than 2 standard deviations from the
ean value in each bin are rejected as in the original work. Fig. A.13

llustrates the application of this filter to the SCADA data from turbine
8. Since 𝑇 𝐼 is considered in addition to wind speed and power, this
ilter can detect potential outliers on the main body of the power curve
ather than just the fringes, as in the case of the binning filter. It is also
een that the main effect of the K-Means clustering is to roughly apply
ins in power.

The third filter considered is the automatic Gaussian Process (GP)
ilter [15], for which a single GP regression model is fit to the SCADA
ata using wind speed as the input and power as the output, with a
ifferent model being trained for every turbine. Since the GP model
eports a standard deviation value for predicted points, upper and lower
ounds on the power curve can be applied by adding 4 times the stan-
ard deviation curves to the GP-generated power curve, as prescribed
n the original paper [15]. Points beyond these bounds are rejected
nd the model is re-trained on the remaining points. This procedure
epeats until no more points are rejected. Fig. A.14 demonstrates the
pplication of this filter to turbine 08.
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Fig. A.12. Iterative application of the binning filter to turbine 08 with the filter limits shown in red dashed lines: (a) first pass and (b) second pass.
Fig. A.13. Application of the K-Means filter to turbine 08.

Fig. A.14. Application of the iterative GP filter to turbine 08.

A.2. Proposed filter

The final filter considered is an automatic data-driven filter, which
operates on a similar principle to the GP filter and is referred to as the
General Machine Learning (GML) filter. The main assumption is that in
a given data set to be filtered, there are sufficiently more inliers than
outliers, such that a data-driven model can learn the main features of
the data set from the inliers. Assuming the physical features of interest
are captured by the data-driven model, data points that cannot be
predicted with sufficient accuracy likely do not belong to the physical
features of interest and can be rejected. Applying this approach to filter
SCADA data, a data-driven model should be selected such that it can
accurately predict turbine power given wind speed and 𝑇 𝐼 inputs. It is
then trained over the entire data set to be filtered.

Power is predicted using this model for all points in the data set
and each point is assigned the absolute difference between real and
predicted power as an error. Different regions of the power curve may
12
be more or less challenging for the model to predict and therefore may
have different typical errors. For this reason, the data set is then binned
in wind speed bins 0.5 m s−1 wide, and the average and standard
deviation of the error is computed for each bin. This forms an upper
limit on allowable error. Interpolating wind speed values on this curve,
any points with errors greater than the limit are rejected. The model is
then retrained on the remaining points and the procedure is repeated
until either a threshold in iterations is reached or a threshold in the
number of rejected points.

For this filter to function, accurate data-driven models are needed
that can effectively capture important physical phenomena. We com-
pare the performance of the RF, ET, GB, HGB, XGB, and NN models.
Each model has certain high-level settings, called hyperparameters,
which greatly impact its performance. Optimizing these hyperparam-
eters is a difficult task usually requiring expertise in machine learning.
To keep this work user-focused, we opt to use the Python package
DeepHyper to automatically optimize the hyperparameters of each
model [64]. While there is no reason to expect the optimal hyperparam-
eters for power prediction to be consistent across all turbines, there is
also no reason to expect the problem to vary massively from one turbine
to the next, therefore variation in optimal settings should be small. For
this reason, the different models will be optimized to predict turbine
06 power.

For each model, only the most important hyperparameters are
optimized. DeepHyper is used to minimize the mean square error of
the model. Before starting the optimization, a stratified split is used to
create a training data set with 70% of the available data. Another split
is used to designate 30% of the data as testing data. In each iteration
of DeepHyper, the model being optimized is trained on the training
data and then used to predict over the testing data, generating a mean
square error. This is performed for turbine 06 alone. After optimizing
the hyperparameters of all the models on turbine 06, the data from the
remaining turbines is also split into training and testing sets following
the 70%/30% split. For each turbine, the optimized models are applied
and regression scores are determined. Thus, the generalizability of the
optimized hyperparameters is measured.

Starting with the RF model, the two hyperparameters to be opti-
mized are the maximum depth, which varies from 2 to 200, and the
number of estimators, which vary from 1 to 2000. Optimization on the
ET model uses identical hyperparameters and bounds to the RF opti-
mization. The three important hyperparameters to consider to optimize
the GB model are learning rate, varying from 0.0001 to 1, and number
of estimators and maximum depth, which are identical to the previous
models. To optimize the HGB model, it is necessary to optimize the
learning rate, maximum bins, and maximum iterations. The learning
rate is identical to the previous models. The maximum bins parameter
is an integer between 1 and 255 and the maximum iterations parameter
is an integer between 10 and 2000. To optimize the XGB model, the
maximum depth, number of estimators, learning rate, and subsampling
fraction must be set. The number of estimators and learning rate are
handled as before. The maximum depth is an integer allowed to vary
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Fig. A.15. Application of GML filter to turbine 08 showing (a) the rejected points in red, (b) the number of rejected points per iteration with the minimum threshold of ten
points, and (c) the error threshold curve as a function of wind speed per iteration.
Table A.5
The statistics of Normalized RMSE of filtering models calculated across all turbines.
The minimum value in each column is shown in bold.

Model Min. 25%-ile Median 75th %-ile Max.

RF 14.25 15.61 16.20 16.96 19.94
ET 14.15 15.67 16.26 17.03 19.93
GB 14.16 15.65 16.22 16.92 19.89
HBG 14.11 15.61 16.22 16.85 19.86
XGB 14.05 15.54 16.12 16.81 19.83
NN 14.62 15.65 16.35 17.32 18.26

between 2 and 50. The sub-sample fraction is allowed to vary between
0.1 and 1. Finally, the important hyperparameters for the NN are the
number of hidden layers and the number of neurons for each hidden
layer. The layers are set to have identical numbers of neurons across
all layers and are fully connected Dense layers. The activation function
of all layers is set to exponential linear unit except for the input and
output layers. The input layer always has an equal number of neurons
to the number of inputs, in this case, 2, and uses the rectified linear
unit function. The output layer has a single neuron and also uses the
rectified linear unit activation function. The number of hidden layers is
allowed to vary between 1 and 20 and the number of hidden neurons
is allowed to vary between 10 and 1000. For each unique model,
DeepHyper is run for 1000 iterations. The resultant hyperparameters of
each model determined from the DeepHyper analysis are listed below
and Table A.5 reports the regression metrics across the farm. Of course,
these hyperparameters may not be absolutely optimal, and rerunning
DeepHyper would likely result in slightly different hyperparameters. In
any case, the selected hyperparameters provide a reasonable increase in
model accuracy without the need for detailed manual tuning or costly
grid searching. From Table A.5, it is evident the XGB model performs
best. It is selected for further use in the GML filter.

• RF: maximum depth of 8, number of estimators of 150
• ET: maximum depth of 12, number of estimators of 65
• GB: learning rate of 0.032, maximum depth of 5, number of

estimators of 130
• HGB: learning rate of 0.006, maximum bins of 235, maximum

iterations of 825
• XGB: learning rate of 0.012, maximum depth of 4, number of

estimators of 510, subsampling fraction of 0.89

Now that the optimal data-driven model for power prediction for
use in the SCADA filter has been determined, the GML filter can be
applied. Fig. A.15 shows the application of the filter to turbine 08.

A.3. Filter selection

Now that all the filters have been defined and introduced, how is
the best filter to be determined? Qualitatively, the filtered power curves
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could be compared. Filter rejection rates are also important to consider,
as overly-aggressive filters may not leave sufficient data behind to train
data-driven models. Yet merely comparing filter rejection rates does
not give a good indication of whether the filter is rejecting outliers.
Of course, since the purpose of filtering is to determine which points
are inliers and which points are outliers, it is impossible to define the
accuracy of a filter, since that would presuppose inliers and outliers are
already known. Since the purpose of the filters is to train accurate data-
driven models, two metrics are defined with respect to that purpose.
First, the effect of filtering on model uncertainty is observed. Then, the
effect of filtering on model accuracy is determined.

Under the assumption that data-driven models can capture the
physical phenomena represented by inliers but with diluted accuracy
in the presence of outliers, the presence of outliers should add some
variability to model predictions. This can be measured by training a
data-driven model on random selections from a larger training set and
then using the trained model to predict outputs for a constant testing
set. Since the test set is constant, variability in the predictions can be
attributed to variability in the input data, especially variability that
does not belong to any physical phenomena, i.e., outliers.

To demonstrate this effect, turbine 08 data is randomly sampled 10
times keeping 50% of the data each time to create 10 subgroups. A
synthetic data set is defined with linearly increasing values in wind
speed and a constant 𝑇 𝐼 set to the median of the full turbine 08
data set. For each of the 10 subgroups, a new XGB model is trained
with the previously identified hyperparameters. The model is used to
predict power output for the synthetic data set. A standard deviation
in predictions across the 10 subgroups can therefore be defined. An
example of this analysis is demonstrated in Fig. A.16, which considers
the binning filter applied to turbine 08 and shows both the standard
deviation curve and the curve of standard deviation normalized by
mean power.

To quantify the impact of filtering on model variability, the dif-
ference in the normalized standard deviation curves before and after
filtering is integrated over the wind speed values as is the original
unfiltered normalized standard deviation curve. The ratio of the two
represents the percent improvement caused by filtering. Fig. A.16
shows an improvement of 21%. This procedure is applied to all the
turbines using all the filters and the statistics of the resultant percent
improvements are reported in Table A.6. From the table, it can be
seen that, in some cases, filtering actually increases model variability.
In these cases, the assumptions made by each filter do not match the
physical phenomena and poor filtering occurs. Comparing the scores,
it seems like the GML filter is promising. From the 25th percentile
and above, the binning and GML filters have very similar scores. The
K-means and GP filters have better maximum improvements but fall
behind all other cases. However, all filters except for the GML filter
have very poor minimum performance with all cases falling below a
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Fig. A.16. The effect of the binning filter on data-driven model variability is shown in the (a) standard deviation of power predictions and (b) standard deviation of power
redictions normalized by the mean powers.
able A.6
ercent improvement in model variability caused by filtering. The maximum value in
ach column is shown in bold.
Filter Min. 25th %-ile Median 75th %-ile Max.

Binning −37 8.9 24 29 35
K-Means −24 −8.6 14 21 38
GP −22 −1.0 6.7 19 42
GML −1.0 12 19 29 35

20% decrease. Thus, while the GML filter does not achieve the same
maximum as the K-means and GP filters, those maximum scores are
unlikely, and it avoids the extreme minima of these filters, as well as
the extreme minima of the binning filter.

Next, the impact of filtering on model accuracy is considered. This
can be determined by splitting the data, before removing outliers, into
a training set with 80% of the data and a testing set with 20% of
the data. From the training set, which is considered raw because it
includes outliers, is defined a filtered training set, derived by rejecting
the outliers. The raw training set is then downsampled to have the same
number of points as the filtered training set. The previously optimized
XGB model is used to train two models, one trained on raw data,
and one trained on filtered data. Both models are then used to make
predictions over the test set and the accuracy is compared. Of course,
the outliers in the testing set will dilute any improvements in model
accuracy. By leaving the testing set unfiltered, however, no biases are
introduced at the testing stage. When comparing the accuracy, one
significant detail is that mean absolute error (MAE) is used instead
of RMSE, and a new metric is introduced, mean root absolute error
(MRAE), defined in Eq. (A.2).

𝑀𝑅𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(
√

|𝑃𝑖 − 𝑃𝑖|

)

, (A.2)

where 𝑃𝑖 is the true power produced at the 𝑖th timestep and 𝑃𝑖 is the
predicted power for the same time stamp. MAE and MRAE are used
because RMSE penalizes large errors more severely than small errors.

Training a model on filtered data is expected to make the model
more accurate at predicting inliers and less accurate at predicting
outliers. If the model, when trained on raw data, generally tends to
reproduce the mean behavior of the data set, then the improvement
from filtering will be to shift the predictions closer to the inlier behav-
ior, which will cause the outliers to be predicted with lower accuracy.
Since the outliers already lie far from the mean, the increased error
of the outliers will be penalized heavily and increase the RMSE while
the improved accuracy of the inliers will not have a large impact on
the RMSE. The result is that filtering increases the RMSE. The MAE, on
the other hand, penalizes all errors equally. The MRAE enhances the
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Table A.7
Percent improvement in model MAE and MRAE (reported as MAE/MRAE) caused
filtering. The maximum values in each column are displayed in bold.

Filter Min. 25th %-ile Median 75th %-ile Max.

Binning 0.0/−0.1 0.3/0.1 1.4/0.7 2.8/1.5 6.7/4.4
K-Means −0.1/−0.1 0.2/0.1 0.4/0.2 1.2/0.7 8.3/5.2
GP 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 2.4/1.2
GML 0.0/0.0 0.2/0.0 1.1/0.5 2.6/1.2 10/6.4

penalization of small errors. Thus, these two metrics should better cap-
ture the impact of filtering on inlier prediction without being diluted
as severely as the RMSE.

The above procedure is applied to all the turbines and the statistics
of the results are listed in Table A.7. Some of the percent improvement
scores are negative, indicating worse performance following filtering.
While this may not indicate that filtering is decreasing the data quality,
it at least indicates that the benefits gained in accuracy for inliers
are outweighed by negative impacts on predicting outliers. The result
should be considered inconclusive, as the outlier errors are obscuring
any gains in inlier performance. The GP and GML filters are interesting
in this respect, as they have no negative impacts. Overall, the binning
and GML filters perform best, with the binning filter performing slightly
better.

With these considerations in mind, it seems that either the binning
filter or the GML filter would make an appropriate filter for data-driven
modeling. Given that the improvements in accuracy as similar, with
the binning filter holding only a slight edge, while the improvements
in variability are also similar, but with the GML filter taking a more
meaningful lead here by avoiding extremely poor performance, the
GML filter using an XGB model is selected for use in this work, though
both the binning and GML filters could be used to good effect.
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