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Abstract—Convolutional neural networks (CNNs) have gained
increasing popularity and versatility in recent decades, finding
applications in diverse domains. These remarkable achievements
are greatly attributed to the support of extensive datasets with
precise labels. However, annotating image datasets is intricate
and complex, particularly in the case of multi-label datasets.
Hence, the concept of partial-label setting has been proposed to
reduce annotation costs, and numerous corresponding solutions
have been introduced. The evaluation methods for these existing
solutions have been primarily based on accuracy. That is,
their performance is assessed by their predictive accuracy on
the test set. However, we insist that such an evaluation is
insufficient and one-sided. On one hand, since the quality of
the test set has not been evaluated, the assessment results are
unreliable. On the other hand, the partial-label problem may
also be raised by undergoing adversarial attacks. Therefore,
incorporating robustness into the evaluation system is crucial.
For this purpose, we first propose two attack models to generate
multiple partial-label datasets with varying degrees of label
missing rates. Subsequently, we introduce a lightweight partial-
label solution using pseudo-labeling techniques and a designed
loss function. Then, we employ D-Score to analyze both the
proposed and existing methods to determine whether they
can enhance robustness while improving accuracy. Extensive
experimental results demonstrate that while certain methods
may improve accuracy, the enhancement in robustness is not
significant, and in some cases, it even diminishes.

Index Terms—computer vision, multi-label classification, CNN
robustness, partial labels

I. INTRODUCTION

Convolutional Neural Networks (CNNs), with the ability

to extract and learn features automatically from raw data

have revolutionized the field of computer vision and have

achieved state-of-the-art results on various tasks, including

image classification [1], object detection [2], semantic seg-

mentation [3], and so on [4]–[6]. Recently, with the rapid

development of deep learning techniques, CNNs have also

become an indispensable tool for many real-world computer

vision applications, such as self-driving cars [7], security and

surveillance systems [8], and medical diagnosis [9].

The tremendous success of CNNs is largely attributed to

the support of accurate labeling. However, acquiring precise

annotations is quite expensive. To economize on annotation

costs, previous endeavors introduced the notion of the ’partial-

label setting’ and suggested various methodologies to tackle

this problem, enabling CNNs to employ only a fraction of

the labels during training [10]–[12]. After a comprehensive

review of the literature on the partial-label problem, we

noticed that prior works have primarily assessed their pro-

posed methods based on accuracy alone. We consider it one-

sided to conclude the effectiveness of the proposed methods

in addressing the partial-label problem solely based on this

type of evaluation. On the one hand, previous works merely

demonstrated improved accuracy of their proposed solutions

on predefined test sets without evaluating the test sets them-

selves. Therefore, such evaluation results may not be reliable.

On the other hand, besides saving annotation costs, adversarial

attacks are one of the reasons for partial-label problems.

Extensive prior research has proven that CNNs are vulnerable

to adversarial attacks [13], which is a type of attack used to

deteriorate the performance of CNNs targeting datasets, image

features, label information, or the models themselves. CNNs

with poor robustness often experience significant performance

degradation when subjected to adversarial attacks. Therefore,

we insist that analyzing the partial-label problem solely from

the perspective of accuracy is one-sided. We also need to

analyze it from the standpoint of robustness, that is, analyzing

CNN’s robustness with respect to label removal.

To conduct an analysis of the partial-label problem from

a robustness perspective, we first require datasets that have

been subjected to adversarial attacks. Such datasets should

consist of training images where only a portion of the labels

is known after the adversarial attacks. The current datasets are

either fully labeled or partially labeled with a fixed quantity

of missing labels, making it challenging to effectively verify

how proposed methods are affected by varying degrees of

label loss. For this purpose, we initially propose two attack
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models: random attacks Rp and targeted attacks Tp. The

former randomly removes p% of the labels from the images

in the training set, irrespective of whether they are positive or

negative labels. The latter selectively targets only the positive

labels in the training set, removing p% of the positive labels

while preserving all the negative labels. Furthermore, we

introduce a lightweight solution to the partial-label problem.

It leverages pseudo-labeling techniques and a well-designed

loss function. Moreover, to evaluate whether our method

and existing approaches enhance robustness concerning label

removal, besides using the mAP evaluation metric, we also

employed the D-Score [14] analysis method to assess the

robustness of these methods.

Our Contributions are summarized as follows:

• We propose two adversarial attack models targeting

image labels: targeted attacks and random attacks. These

attack methods selectively remove certain labels, trans-

forming the full-label setting into a partial-label set-

ting. Experimental results demonstrate that this attack

effectively reduces the performance of existing STOA

methods.

• We present a lightweight approach to address the partial-

label problem, which is achieved through the utilization

of pseudo-labeling techniques and an improved loss

function, without the need for additional statistical in-

formation or network structures.

• The extensive experiments on three large-scale public

image datasets (COCO, NUS-WIDE, and Pascal VOC)

demonstrate that our method outperforms the STOA

methods, both in terms of accuracy (mAP) and robust-

ness (D-Score).

The rest of the paper is organized as follows. Section II

discusses the related work. Our proposed method is presented

in Section III. Section IV shows the experimental settings and

results. Finally, conclusions are drawn in Section V.

II. RELATED WORKS

A. Partial-label Problems

The partial-label problem means that for one input image

in the training set, only a subset of all the labels for it can be

observed and the rest remains unknown during the training

process [10], [12]. Addressing this problem is meaningful for

saving annotation costs.

A straightforward approach for the partial-label problem

is BR [15], which decomposes the task into a number of

binary classification problems, each for one label. Such an

approach encounters many difficulties, mainly due to ignoring

correlations between labels. PU-learning is an alternative

solution [16], which studies the problem with a small num-

ber of positive examples and a large number of unlabeled

examples for training. Most methods can be divided into the

following three categories: two-step techniques [17], biased

learning [18], and class prior incorporation [19]. However,

all these methods require that the training data consists of

positive and unlabeled examples [20]. Pseudo-label [10] is

another solution. Pseudo-labeling was first proposed in [21].

The goal of pseudo-labeling in partial-label problems is to

generate pseudo-labels for the unobserved part [11].

B. The Evaluation for CNNs’ Robustness

To evaluate CNNs, researchers have proposed several ap-

proaches, which can be divided into two categories. The

first category involves introducing the traditional software

engineering testing method, mutation testing, to CNNs [22]–

[24]. This approach applies carefully designed mutation op-

erators [25] to the CNN model to generate multiple variants.

The higher the number of differences between the predictions

of the variant models and the original model, the higher the

quality of the test set. However, the score itself remains a

black box, and the reasons behind the low quality of the

test set are still unknown. Additionally, effective methods

for selecting and combining mutation operators to detect test

set quality remain unexplored [26]. The second category of

approaches is based on neuron coverage [27]–[29]. These

methods use gradient ascent to solve a joint optimization

problem that maximizes both neuron coverage and the number

of potentially erroneous behaviors, and eventually generate

a set of test inputs [27]. However, as noted in [30], higher

neuron coverage can lead to fewer defects detected, less natu-

ral inputs, and more biased prediction preferences. Therefore,

developing effective methods for providing white-box scores

for CNNs and proposing methods for enhancing these scores

is critical for improving robustness and accuracy of CNNs.

III. METHODOLOGY

In this section, we introduce details of our proposed meth-

ods, including two adversarial attack models, the solution to

the partial-label problem, and the evaluation methods.

A. Simulation of Targeting-label Attack

Label removal is one of the most prevalent adversarial

attacks that specifically targets labels. It operates by altering

the label distribution through the removal of ground-truth

labels, thereby diminishing the model’s accuracy and poten-

tially impeding the training process. To validate our method’s

efficacy in combating adversarial attacks and fortifying the

CNN’s robustness, we must initially simulate this targeted

label attack. We’ve devised two attack models based on the

positive or negative attributes of the targeted labels.

• Targeted attacks. In this attack model, we directly elim-

inate all negative labels and a certain proportion of

positive labels. We designate this attack model as Tq ,

where q represents the deletion percentage of positive

labels. Essentially, this attack method removes q̂ percent

of the labels.:

q̂% =
tn + q%× tp

t



where t, tn, and tp stand for the number of total labels,

the number of negative labels, and the number of positive

labels, respectively.

• Random attacks. In this attack model, we do not dis-

tinguish between positive and negative labels; instead,

we directly delete labels based on a specific proportion.

We denote this attack model as Rq , where q represents

the percentage of labels deleted. It is worth noting that

this attack model could result in an extreme scenario

where all positive labels are removed. This implies that

for an image in the training set, its corresponding label

contains only negative labels. This situation could easily

lead the model to generate a trivial solution, significantly

reducing its accuracy. Hence, when designing a solution,

it is crucial to address this extreme label imbalance.

These two attacking models are summarized in Figure. 1.

B. The Solution for Targeting-label Attack

To avoid introducing additional computational burden to

the model, we propose a lightweight solution that involves

modifying only the loss function to enhance the CNN’s

robustness against targeting-label attacks.

Pseudo-label. We can divide the labels associated with an

image into two parts: E, which persists after the attack, and

N , the labels removed due to the attack. For multi-label

classification tasks, Binary Cross-Entropy (BCE) commonly

serves as the primary loss function, as shown in Equation. 1,

Lbce(ŷ, y) = −
1

L

L∑

i=1

[(yi log(ŷi)+ (1− yi) log(1− ŷi)]. (1)

where y and ŷ stand for the ground-truth labels and predic-

tions of the classifier, respectively. For part E, we compute

the loss using the original ground-truth as the target. For

the N part, we introduce pseudo-labels and employ them as

targets to calculate the loss. The pseudo-label begins with an

initialization of 1, and its value undergoes updates using a

historical stack. This stack retains the model’s predictions for

this label from the previous three epochs. These processes are

summarized in Equation. 2,

ỹij =

{
f(Sij , α, β, γ), update

1, initialization
(2)

where Sij stands for the historical stack, which always

reserves the predictions of the last three epochs for the ith

image’s jth category, that is, size(Sij ) = 3. α, β, and γ

stand for the weight for the three elements in Sij during the

calculation of function f(·),

f(Sij , α, β, γ) = αSij [0] + βSij [1] + γSij [2], (3)

where Sij [k] = ŷe−k
ij

, e represents the index of current epoch

number, and ŷij stands for the prediction for the ith image’s

jth category. The values of α, β, and γ are decided by

extensive experiments, and and α+ β + γ = 1.

It is essential to note that initializing the pseudo-label as

1 stems from the prevalence of numerous negative labels

in image datasets. This often leads to label imbalance, po-

tentially prompting the model to generate trivial solutions,

that is, directly predicting each category as negative. The

initialization of the pseudo-label as 1 effectively alleviates this

issue. While updating the pseudo-label, the historical stack

aids in tracking the label value fluctuations over the past three

instances, ensuring a smoother update.

Loss function. We employ Binary Cross Entropy (BCE) as

our loss function. In the part E, we compute the loss value

using ground-truth as the target, while for the N part, we

calculate the loss value using the pseudo label as the target,

as illustrated in Equation. 4,

L = Lbce(ŷ, y) + Lbce(ŷ, ỹ), (4)

where y, ŷ, and ỹ stand for the ground-truth labels, the

predictions, and the pseudo labels respectively. In Equation. 4,

the first term represents for the loss value of the E part, and

the second term stands for the N part. Building upon this, we

introduce an attention-shifting parameter e(·) to progressively

redirect attention from the part E to the part N during the loss

function computation. The rationale behind this design is that

at the initial training stages, since pseudo labels are initially

set to 1, they may significantly deviate from the actual labels,

potentially resulting in unreliable loss value calculations for

this part. Therefore, during the early training phase, we aim

to focus more on the E part. As training advances and

the pseudo labels are continually updated, their reliability

gradually increases. Consequently, as training progresses, we

gradually shift attention towards the N part.

In previous research, the attention-shifting parameter e(·)
has often been applied using a linear function. However, in

this context, we employ an exponential function for imple-

mentation, as Equation 5,

e(nc, nt) = enc−nt , (5)

where nc and nt stand for the index of the current epoch

number and the total epoch numbers respectively. Compared

to the linear function, the exponential function exhibits faster

changes toward the end of the training process, while its

alterations are more gradual during the initial training stages.

This approach ensures that the pseudo labels have ample time

for updating during training and gradually become dominant

in calculating the loss value as training progresses.

In addition, to prevent the occurrence of trivial solutions,

we design an approach for penalizing such outcomes. This ap-

proach calculates the difference between the current model’s

predictions and the trivial solution. When this disparity is tiny,

it indicates that the current model has potentially produced a

trivial solution. In such cases, we apply a penalty P to these

predictions. We use the L2 norm to compute the difference





The effectiveness of our proposed method in addressing

the partial-label problem. To demonstrate the effectiveness

of our approach, we choose several state-of-the-art methods

as comparisons, including AN [36], WAN [37], ROLE [38].

Then, we conduct targeted attacking and random attacking

on three public image datasets, that is, COCO, Pascal VOC

and NUS-WIDE, to generate several variants of training

sets. The experimental results under targeted attacking are

summarized in Table. I. There is also a special variation

in this table, namely Ts. This variant is generated through

a specific form of targeted attack, wherein for each image,

we retain only one positive label and eliminate all other

labels. This variant holds particular practical significance:

in such scenarios, we only require a single annotation for

each image, leading to a substantial reduction in annotation

costs. Hence, we specifically examine the performance of

our approach concerning this variant. Table. II summarizes

the results by random attacking. These results demonstrate

the effectiveness of our proposed method in addressing the

partial-label problem and resisting the two proposed attacks.

The analysis of robustness. We summarize the results of the

D-Score analysis in Table. III.

V. CONCLUSION

The remarkable success of CNNs relies heavily on the

support of large, high-quality labeled datasets. However, ac-

quiring such datasets is costly due to the extensive manual

annotation involved, particularly in multi-label datasets. To

address this challenge, numerous methods have been proposed

to train CNNs using partial-label datasets. Yet, the evaluation

of these solutions has been limited to accuracy, which we

deem insufficient. It is crucial to include robustness in the

assessment, as the quality of the test sets used for evaluation

remains unverified and the partial-label issue may stem from

adversarial attacks, closely linked to CNNs’ robustness. To

tackle these challenges, we introduce two adversarial attack

models aimed at removing specific labels and generating

partial-label datasets. Subsequently, we propose a lightweight

solution for partial-label problems using pseudo-label tech-

niques. Finally, we conduct an analysis using D-Score and

mAP evaluation metrics to assess both the robustness and

accuracy of our proposed method and some state-of-the-

art methods. Experimental results demonstrate that while

our method significantly enhances accuracy, it also notably

improves robustness. Conversely, certain existing methods

exhibit improved accuracy but a simultaneous decline in

robustness.
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