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Abstract— Model-based controllers using a linearized model
around the system’s equilibrium point is a common approach
in the control of a wheeled humanoid due to their less
computational load and ease of stability analysis. However,
controlling a wheeled humanoid robot while it lifts an unknown
object presents significant challenges, primarily due to the
lack of knowledge in object dynamics. This paper presents a
framework designed for predicting the new equilibrium point
explicitly to control a wheeled-legged robot with unknown
dynamics. We estimated the total mass and center of mass of the
system from its response to initially unknown dynamics, then
calculated the new equilibrium point accordingly. To avoid us-
ing additional sensors (e.g., force torque sensor) and reduce the
effort of obtaining expensive real data, a data-driven approach
is utilized with a novel real-to-sim adaptation. A more accurate
nonlinear dynamics model, offering a closer representation of
real-world physics, is injected into a rigid-body simulation
for real-to-sim adaptation. The nonlinear dynamics model
parameters were optimized using Particle Swarm Optimization.
The efficacy of this framework was validated on a physical
wheeled inverted pendulum, a simplified model of a wheeled-
legged robot. The experimental results indicate that employing
a more precise analytical model with optimized parameters
significantly reduces the gap between simulation and reality,
thus improving the efficiency of a model-based controller in
controlling a wheeled robot with unknown dynamics.

I. INTRODUCTION

Wheel-legged robots have emerged as a potential platform
to facilitate operations in a wide range of industries, in-
cluding agriculture, mining, military, and search and rescue.
Combining the mobility of wheels and the mobility of legs,
the capability to navigate difficult environments could be
greatly improved. [1], [2], [3], [4], [S].

Controlling a wheeled-legged robot poses significant chal-
lenges due to its inherent instability and complex nonlinear
dynamics. Traditional methods often simplify the system by
linearizing the system dynamics around its equilibrium point,
enabling the use of diverse control techniques like the Linear
Quadratic Regulator (LQR) or Model Predictive Control
(MPC) [1], [6]. The underlying assumption is that the system
can be treated as a linear system within the equilibrium
point. For example, within the equilibrium point, the inverted
pendulum remains upright and stationary, meaning that the
net force acting on the pendulum is zero and it does not expe-
rience any acceleration. However, when the robot engages in
tasks like manipulating objects or pushing heavy loads, these
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Fig. 1: Conceptual overview of the proposed method. The data-
driven regression model learns to identify the new equilibrium point
for a wheeled inverted pendulum from a high-fidelity simulation
closely mirroring the real world. A physical version of this pendu-
lum tests the framework’s viability, suggesting its applicability in
controlling a wheeled humanoid robot lifting an unknown object.

changes can drastically alter the equilibrium point due to
shifts in the center of mass (CoM) or contact forces, making
linear approximations inadequate for effective control [7].
Recently, approaches such as deep reinforcement learning
(RL) and domain randomization have emerged, showing a
promising result in locomotion tasks [8], [9], [10]. Yet, they
suffer from interpretability issues and cannot assure stability.

In this work, our focus is on addressing the challenge
of a wheeled humanoid robot transporting an unseen object
during locomotion. The framework capable of rapidly and
explicitly estimating the new equilibrium point of a wheeled-
legged robot is proposed. The main idea is to directly identify
the equilibrium point by capturing the momentary change
in a history of initial proprioceptive states when the robot
falls (e.g., the heavier and farther away the object, the faster
the robot will fall). Our approach does not involve solving
the Newton-Euler equations, which are typically employed
in system identification processes. As a result, we avoid
the need for using force/torque sensors and cameras to
estimate the new center of mass and total mass when an
object is included. Moreover, our framework can simply be
incorporated with a classical model-based controller without
re-formulating their equation.

A prominent challenge in adopting data-driven approaches
is the issue of data scarcity. To counter this, we built a high-
fidelity simulation via real-to-sim adaptation and trained a
data-driven model in the simulation. The adaptation method
includes a more accurate dynamics model that accounts for
friction, damping, and actuator dynamics, elements that are
often oversimplified in typical rigid-body dynamics simula-
tions.
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II. RELATED WORK

Wheeled-Legged Robot Control: The most popular
approach to control wheeled-legged robots is model-based
control, which leverages a mathematical dynamics model.
Some strategies use simplified models, like the Wheeled
Inverted Pendulum (WIP), and linearize them around the
system’s equilibrium point [3], [2], [5]. To achieve better
tracking and versatility, more complex models have been
applied [1], [11], [12]. However, the success of these
methods depends greatly on the precision of the modeled
dynamics, a precision that is difficult to attain and may not
adjust well to changes in the system or environment. As
an alternative, adaptive controllers have been presented to
enable the robots to adapt to new environments [13], [14].
Moreover, learning-based methods, combining deep neural
networks with reinforcement learning (RL), have been
suggested as an effective approach to address the nonlinear
locomotion challenges of legged robots [9], [8]. With the
benefits of simulation for safe and efficient training, many
RL studies employ sim-to-real techniques, resulting in
successfully transferring the RL policy to the real world
[15], [16], [17]. Despite their innovative success, they often
require a lot of manual tuning or have many difficulties
in interpreting the behavior and ensuring the safety of the
system.

Sim-to-Real Transfer: Despite learning-based approaches
making controller design in simulations simpler and less
reliant on specialized domain knowledge, sim-to-real transfer
still necessitates extensive manual adjustments. For example,
the process of choosing dynamic parameters to randomize
for training a robust RL policy across diverse dynamics
remains complex and not easily automated [16], [17], [18].
An alternative way to reduce a reality gap is system identifi-
cation which entails adjusting model parameters to align the
simulation’s observations with those from actual hardware
[19], [20], [21], [22], [23]. While this approach has helped
generate robust policies, the focus lies solely on adapting
the physics engine’s parameters or distribution which are
often inaccurate due to their simplification. Many rigid-body
simulators prioritizing fast computation often employ sim-
plified dynamics to lessen computational demands, typically
overlooking factors like static and viscous friction at joints,
damping, and actuator dynamics. While some studies have
explored data-driven approaches to model actuator dynamics
[10], [15], these are not universally applicable to passive
joints or varied controller types, such as position or torque
modes. Instead of merely adjusting existing simulator pa-
rameters, our approach integrates a more detailed dynamics
model with its optimized parameters into the simulation,
aiming to minimize the reality gap.

III. BACKGROUND

The qualitative behavior of the nonlinear system in the
vicinity of a hyperbolic equilibrium point is determined by
the characteristics of the corresponding linear system [24].
Given that xp = 0 is an equilibrium point of the system,

we have f(0) = 0. By applying Taylor’s Theorem, we can
express the function f(z)in the expanded form as follows:

i = f(z) = Df(0)z + %DQf(O)(x,x) +.o0 (D

where D f(0)z denotes the Jacobian matrix of f evaluated
at 0, linearly acting upon x, and D?f(0)(x, z) indicates the
higher-order terms. The same theory can be applied to a
wheeled-humanoid robot (e.g., SATYRR [2]) to linearize
its nonlinear dynamics. The wheeled inverted pendulum
is commonly taken to express the motion of a wheeled
humanoid and its equation of motion is as follows:

(mb + 1M+ I—;”) T +anLs(9)92 —myLe(0)0=u
r

(mbL2 + Ib)é — mpLc(0)z, —mpgLs(6)=0 2)

where my, my,, L, 0, I, I, 7, and v denote the body and
wheel masses, the distance between the CoM to the center of
the wheel, pitch angle, wheel and body inertia, wheel radius,
and control force, respectively. Linearizing the system’s
dynamics at the equilibrium (CoM above the wheel) yields
a linear state-space model:

Aq = AAq + BAu, 3)

where q = [xw,e,:bw,é]T defines the state vector, and
A ¢ R¥4 B ¢ R**! are state-space matrices. Deviations
from equilibrium state q¢ and nominal control effort ug are
Aq = q — qo and Au = u — ug, respectively. Changes in
total mass and equilibrium point 6y, such as when lifting
an object, affect these dynamics, degrading model-based
controller performance. An LQR controller 7 designed
with the above dynamics serves as our baseline for evaluating
the proposed framework.

IV. METHOD
A. Real-to-Sim Adaptation via a High-Fidelity Simulation

Unlike previous studies that apply the domain transfer to
a trained model to bridge the domain gap Ax during or after
training, our approach aims to reduce the reality gap at the
beginning of the entire process. This can be achieved by
incorporating a more precise dynamics model that accounts
for nonlinear friction, damping, and motor dead-zone effects
into a rigid-body simulation. Especially, in this work, we are
interested in minimizing the gap caused by the parametric
modeling error Axp,.

Ax(t) = x(t) —%(t) = Axp((,t) + AXpp(x,t)  (4)

Parametric Error ~ Nonparametric Error

Here, Ax(t) denotes the reality gap, with Ax, as the
parametric error dependent on model parameters ¢ and time
t, and Ax,, representing nonparametric error related to
state x and time ¢. Particle Swarm Optimization (PSO)[25]
is used for parameter optimization. A schematic of the
framework is depicted in Fig. 2.
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Fig. 2: Real-to-Sim Adaptation via a High Fidelity Simulation. (a) High-fidelity simulation is achieved by minimizing parametric
modeling error, Axp, via updates to ¢. The state trajectories of the system in two different domains are obtained from a physical system
and a simulation, respectively, offline. The global optimization algorithm (e.g., PSO) is utilized to identify the parameters ¢ to deduce the
reality gap. (b) A data-driven model (e.g., LSTM) is trained to predict the new equilibrium point via supervised learning with the data
obtained from a high-fidelity simulation. (c) The trained data-driven model estimates the new equilibrium point online in deployment.

Data Construction. To build a high-fidelity simulator
toward achieving a real-to-sim adaptation, we constructed
the M number of source dataset Dg = (Xsi,yg)?il, and
a small m number of target dataset Dy = (XTi,y%)Zl
obtained from a simulator and a real-world, respectively
(m = 40, M = 1200). Both domains acquire samples drawn
from the source and target distribution, D* ~ p.(Xs,ys)
and D! ~ p;(XT,yr) which typically differ (D* € Ds
and D! € Dr). In our application, the output y indicates
the linearized pitch angle 6 deciding the equilibrium point.
Inspired by the previous research [17], the input data X
consists of the state vector X = [xt:T,Gt:T]T represents a
T time-series trajectory of linear position and pitch angle.
Since the goal is to estimate the new equilibrium point of a
wheeled-legged robot in a situation where the total payload
and CoM position change, we randomized the total mass,
inertia, and CoM position of the robot while collecting the
dataset D. We utilized a RaiSim [26] simulation to construct
the simulation dataset Dg. Note that the new angle 6;;, is
easily computed in a simulation with the known position
of CoM. In the real world, we manually measured the 60;;,
at which the robot can stabilize itself without controller
intervention (see Fig. 5). To get more accurate and less
noisy data in the real world, we applied the Extended
Kalman Filter to a physical system and utilized the same
control gain in both domains.

More Accurate Nonlinear Dynamic Function. The non-
linear dynamics model is designed by combining the core
elements typically factored in during a sim-to-real transfer
[15], [16], [17]. Since the success of most machine learning
models (e.g., Gaussian Processes, Deep Neural Networks)
highly depends on the quantity and quality of the dataset,
we adopted to use of an analytical model with its optimized
parameters considering the sample efficiency to reduce the
reality gap. Although some rigid-body simulators have a
built-in function allowing users to tune the parameter of
friction and damping, their function is usually simplified to
reduce the complexity and sometimes not clear in deciding

the numerical value. To use a more accurate and intuitive
dynamic model in a simulation, we designed the nonlinear
dynamics model that takes account of the effect of the static
friction, damping, latency, and actuator dynamics in each
joint. Here, a more accurate is denoted by g which satisfies
Xt41 = f(xta Ug, gC(Xt))’ where C = (Fssa FC’ Vs, W, €, a)
is physics parameters of the model g¢. The nonlinear dy-
namics model g¢ is designed as follows:

g¢(t) = —aFes(t) + (a — 1)Fs(t — 1)

. {0 G<e
Fosign(v) + (Fs — F.)e"sign(v) + ov ¢ >=¢

e’ = —(v/vs)?

(&)

where « represents the damping ratio, which delays signals,
and F, the static and dynamic friction model, incorporating
a dead zone effect denoted by e. The friction model, Figq,
integrates Coulomb friction F,, the differential static friction,
and viscous damping o, where the damping force correlates
with velocity (see Fig. 3). The Stribeck velocity, vs, marks
the shift from static to dynamic friction. Notably, the friction
force, F,,, is significant in steady states with minimal
movement v,

Torque [Mm]

Welocity [radis]

Fig. 3: Visualizing the Nonlinear Dynamic Function g¢. The
selected parameter ¢ is [0.15, 0.12, 0.2, 0.02, 0.01, 0.7]. The
model exhibits non-responsiveness near zero speed due to the
dead zone effect, with a behavior that is more nonlinear compared
to the standard viscous and Coulomb friction model (Baseline).
Additionally, a slight phase shift is observed, indicative of a delay.
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Algorithm 1 Real-to-Sim Adaptation Procedure

Input: Dy = {DL, D2,..., D'}, m =38
Initialize: ¢ € R*, £ € R,k = 12 » Initialize parameter
of g¢ and Loss function
while until (L converges) do
(XTZﬂ y%“);ll « Dt
for i =0,...m do
end for
Calculate the Loss function £
Update parameter ¢ via PSO algorithm
end while
Return: ¢*

> From a real-world
> Run Raisim Simulator
> From a baseline LQR

> Eq. (7)

leading to instability. To mitigate this, we introduce a dead-
zone ¢ in Eq. (5). In our application, the model g¢ is specif-
ically applied to translation and actuator joints separately
to address high friction and latency issues. Moreover, we
applied the artificial high-frequency noise to acquire more
realistic observed state Xg. The calculation for this high-
frequency noise denoted as w, is presented subsequently.

w = Acos(27 ft) x BN(0,1) (6)

where A, B, and variables f,¢,N(0,1) representing
frequency, time, and a normally distributed random number,
respectively (setting A = 0.01, B = 0.5, f = 0.0002), noise
w 1is added to the original observation. We also chose an
inertia value more carefully bu calculating the moment of
inertia (e.g., I = ML?) rather than using an arbitrarily
selected value within a specific range.

Parameter Optimization For Nonlinear Function via
Particle Swarm Optimization. If the accumulation of model
match over trajectories X§& and X% is the same, we can say
that there is almost no reality gap in two domains. Therefore,
the objective is to find the most appropriate parameters ¢
resulting in matching two trajectories as close as possible.
We leverage mean square error (MSE) as a distance metric
d(-|-) across m samples, each spanning 7" units, to effectively
bridge the reality gap [20].

m T
1
arg min — Z Z d(X&, XE5). @)
¢ MiZii=

The optimal parameter ¢* can be chosen by solving the Eq.
7 and we utilized the PSO algorithm due to its global search
ability and fast convergence speed. Real-to-Sim adaptation
procedure is described in Algorithm 1.

The PSO algorithm, implemented via the SciPy package
[27], updates particle velocities and positions as per:

Vit = wViy + 11 (P g — Xig) + cara(Gh 0 — Xia),

t+1 _ t+1
X' =Xl +Vy

®

Here, V';"! and X' denote the ith particle’s velocity and
position in dimension d at time t + 1. Parameters include

inertia weight w, and cognitive and social factors c; and ca,
influencing the particle’s momentum and the pull towards its
best and the swarm’s best positions, respectively, with P} ;;
and Gi,i 4 representing these best positions in dimension d
at time ¢ (c1 = 0.5,¢2 = 0.2,w = 0.9).

In the optimization of parameter ¢, the mean X% € RV*L
of real data per class is utilized, where N = 2 (features)
and L = 80 (window size). The parameter range for ¢ in
global optimization is manually tuned. For optimizing the
built-in simulation parameters, seven parameters including
joint friction and damping, crucial for domain randomization,
are selected.

B. Estimating New Equilibrium Point via Data-Driven
Model

Training a Data-Driven Model. To capture the new
equilibrium point for a wheeled-legged robot with unknown
dynamics, we focus on the initial behavioral characteristics of
a robot under different dynamics influences (e.g., changes in
payload weight and center of mass (CoM) position affecting
speed during forward falls). This behavior is encapsulated as
preconception history, employing time-series features X =
[z¢.n,0:n]" as inputs to a data-driven estimator.

Distinct datasets were constructed from varied simulation
configurations, each mirroring the specifics of corresponding
baseline real-to-sim methods. A total of 1,500 data points
constituted each dataset, divided into training, validation,
and testing sets with an 8:1:1 split. The optimum model
for each method, validated through simulation datasets, was
chosen for benchmarking, as shown in Table I. The sequence
length was established at 80, equivalent to approximately 1.2
seconds of data. The data-driven estimator, exemplified by an
LSTM, underwent training exclusively on simulation-derived
datasets. Specifically, the LSTM was trained over 500 epochs
with a batch size of 256 and a learning rate of 1 x 1073,
alongside a weight decay of 1 x 107, The LSTM featured
a hidden size of 1024 across two layers.

Deployment in a Physical System. The pre-trained data-
driven model is utilized to predict the new equilibrium point
in a physical system without using further manual tuning.
The WIP system, when in motion, tends toward the direction
where additional mass is added, as illustrated in Fig 5. The
estimator quickly identifies the new equilibrium point within
a short time frame (less than 1.2 sec). To facilitate a smooth
transition in the desired pitch angle reference, a soft-update
method is employed.

0 = maz(Oyin, —Bt) ©)
0:™ = afde + (1 — a)fs™,

where the first equation encourages that the reference angle

updates gradually until the new equilibrium point 6y;,,. The

role of the second equation is to update the reference angle

smoothly such as polynomial trajectory. Hyperparameters o

and (3 are manually tuned. (o« = 0.05 and 5 = 0.1)
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Fig. 4: Sample Result of Data Trajectory Comparison Between a Simulation and the Real World. The last graph presents a comparison
of data trajectories between simulation and reality for all methods. Our approach effectively narrows the reality gap and aligns the trajectory
shape with the actual one. The residual error is attributed from coupled-dynamics, non-parametric nonlinear dynamics, and class-specific
data variance. All data samples are collected from the WIP system using LQR control.

V. EXPERIMENT

Three separate experiments are conducted: 1. Verification
of real-to-sim adaptation in estimating the new equilibrium
point in both a simulation and the real world. 2. Evaluation
of the tracking performance of an LQR applied the newly
equilibrium point. 3. An ablation study aimed at investigating
the influence of the chosen time-series regression model and
optimization algorithm.

A. Simulation Setting

A RaiSim [26] simulation is used to collect the simulation
dataset Ds. Unified Robot Description Format (URDF) [28]
file is employed to simulate a customized wheeled inverted
pendulum. The control loop runs at a control frequency of
approximately 600-700Hz considering the hardware control
frequency.

B. Target Prototype Hardware Testbed: Wheeled-Inverted
Pendulum

A customized wheeled-inverted pendulum (WIP) was de-
veloped to verify the feasibility of the proposed framework
as depicted in Fig. 5. The WIP is often used as a template
model to control a wheeled-legged robot [3]. Note that while
the degree of freedom of WIP is less complex, this still
maintains intricate interactions between the robot and its
surroundings, including contact dynamics distinct from those
of a traditional inverted pendulum. Extra payloads can be
affixed to alter its total payload and the position of the
CoM. The same actuator equipped in the MIT Mini Cheetah
[29] is employed and an inertial measurement unit (VN-
100, VectorNav, USA) is mounted to the pole link. The
motor communicates over the CAN bus with the desktop
PC (Ubuntu20.04) and all software is connected via Robot
Operating System (ROS).

C. Experimental Plan

1) Real-to-Sim Adaptation: The first experiment was con-
ducted to assess the estimation performance of the data-
driven estimator trained in a high-fidelity simulation that
is achieved by our proposed framework. The objectives of
the experiment are two-fold: (1) to analyze the benefits of a
highly precise model in the context of real-to-sim adaptation,

|

(d)

Fig. 5: A Physical Wheeled Inverted Pendulum Testbed. (a)
Balancing (top) and tracking a sinusoidal reference task (bottom)
were conducted in non-ideal and unknown dynamic situation. (b)
A customized wheeled Inverted pendulum is made up of a motor,
wheel, IMU, translation rail, and weight. Two additional weights
(0.8kg, 1.6kg) can be attached and detached to a pole link to adjust
the total mass and the position of the CoM.

and (2) to investigate how our approach stands against
traditional domain randomization. We evaluate the impact
of the high-fidelity simulation by contrasting it with four
separate baselines: (a) Pure Sim: simulation using default
physics parameters (b) Ours WO Opt: a more accurate
dynamic model (Eq. 5) with random parameters applied
within a simulation (c) Sim Param Opt: built-in simulation
parameters adapted through a global optimization algorithm
(d) Sim Param D-R: built-in simulation parameters are
randomized (domain randomization). For the validation, the
dataset we described in the section IV-A is utlized.

2) Balancing and Tracking Tasks: The second experiment
was conducted to explore the impact of integrating the new
equilibrium point into a model-based controller to enhance
its tracking performance. The trained data-driven model
effectively identified the new equilibrium point online at
operation onset by observing the system’s behavior under
unknown dynamics. This equilibrium point was integrated
into an LQR controller, enhancing its ability to track the
reference signal and recover the original position of the
system. Controller tracking performance was assessed with
and without the new equilibrium point in two scenarios:
balancing (Task 1) and periodic signal tracking (Task 2),
where 'Ours’ utilized the new equilibrium point as a target
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TABLE I: Comparison Results of Estimating the Equilibrium Point. Mean Square Error (MSE) from 146 test data in simulation
(Sim) and 40 real-world (Real) test data, not involved in training, serves as the evaluation criteria. The discrepancy in MSE between a
simulation (Sim) and real world (Real) assesses the model’s capability to adapt simulation-trained data to real-world scenarios.

Pure Sim | Ours WO Opt [ Sim Param Opt [ Sim Param D-R | Ours
Sim Real Sim  Real Sim Real Sim Real Sim  Real
MSE (rad) | M40 0.012 0.033 0.011 0.030 0.089 0.096 0.008 0.111 0.024 0.023
raa std | 0.010 0.003 0.007 0.005 0.063 0.025 0.008 0.010 0.015 0.005
Difference 0.021 0.019 0.007 0.103 0.001
g% 2 ( E 3 s g% 2 - 3 g% T s : 0 g% s N : 3 ? 3 i 5
(@) 015, = 0.03rad (b) 0 = 0.06rad (©) 015, = 0.097ad (d) 613, = 0.127ad (e) 013, = 0.167ad

Fig. 6: Results for Balancing Tasks in Several Scenarios with Different, Unknown Dynamics. Graphs (a) to (e) display the absolute
error between targeted and actual trajectories for both linear (x.,) and angular () positions (mean of five trails). The baseline assumes zero
for both desired positions, while our method employs the new equilibrium point as the targeted angular position. Each graph corresponds to
a unique equilibrium point, reflecting varied payloads and the center of mass. The baseline LQR tends to fail, struggling with equilibrium
points significantly deviated from the original (When the system reached and crashed the end of rail, the system halt at a certain point
- this is why the baseline graph appears to stop at a certain point). We observed the system continuously fell until reaching its motion
limit. Conversely, our method quickly identified the new equilibrium point (within approximately 1 second) and effectively recovered its

position in all different cases.

o

LinPos Error (m)
LinPos Erro

AngPos Error (rad)
AngPos Error (rad)

AngPos Error (rad)  LinPos Error (m)
i

0.067rad

@) Om = 0.03rad (b) O3y, =

(©) O3 =

0.09rad (d) 015, = 0.127rad (e) 01;m = 0.167ad

Fig. 7: Results for Tracking Tasks in Several Scenarios with Different, Unknown Dynamics. Graphs (a) to (e) show the same
criteria we mentioned in Fig. 6 for the tracking task. The periodic (sinusoidal) signal is utilized as a desired reference. Incorporating a
new equilibrium point as the desired angular position, our method demonstrated superior tracking accuracy for both linear and angular

positions across all cases.

angular position, and ’Baseline’ did not. We adjusted the
total mass and CoM position of the WIP by adding weights to
the pole link, simulating a wheeled-legged robot transporting
an unknown object. Two task experiments were conducted
across five different cases, with each case undergoing five
trials.

VI. RESULT AND DISCUSSION

A. Experiment 1: Estimating New Equilibrium Point in WIP
with Unknown Dynamics

As shown in Fig. 4, using a more accurate nonlinear
dynamics model 5 showed its benefit in narrowing the
reality gap in terms of position trajectories. Notably, on
the graph below (pitch angle), only our method showed a
similar pattern to the target graph (initially spiking upwards).
Although two trajectories is not perfectly overlapped in ours
case, results from our following experiments support that this
is sufficient to enhance the performance of estimating the
new equilibrium point (MSE less than 1.57ad). The residual
error might be caused by the other parametric errors (e.g.,
inertia of each link), coupled-dynamics, and non-parametric
modeling error such as backlash and hysteresis.

Validation outcomes for the new equilibrium point esti-
mation are summarized in Table I. These results demonstrate
the efficacy of the data-driven estimator (e.g., LSTM), trained
within a high-fidelity simulation from our framework, in nar-
rowing the reality gap and thus improving new equilibrium
point estimation accuracy. This underscores the importance
of incorporating an elaborate dynamics model and optimizing
its parameters for a seamless sim-to-real dynamics transfer.
Notably, the MSE discrepancy between simulation (Sim) and
real-world (Real) cases is a mere 0.001 rad.

Sim Param D-R counters over-fitting, improving estima-
tion in simulation tests but performing poorly in real scenar-
ios, as Domain Randomization doesn’t directly bridge the
model trajectory mismatch [30]. Generally, this can enhance
model robustness by reducing sensitivity to non-essential
features like noise, however, this attributes to increase dataset
variance through parameter diversification, bringing the per-
formance degradation in the regression problem. Ours WO
Opt shows marginally better estimation over Pure Sim,
suggesting the integration of a refined dynamics model
(Eq. (5)) helps narrow the reality gap, despite randomized
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parameters in training. Sim Param Opt shows the least
accuracy, indicating that optimizing simulation parameters
barely reduces the cost for ¢ and hampers extracting vital
features for new equilibrium point estimation, thus degrading
estimation accuracy.

B. Experiment 2: Control Performance Validation

1) Balancing Task with Unknown Dynamics: In the bal-
ancing task with an unknown payload, utilizing a new
equilibrium point effectively recover the WIP system’s orig-
inal position, as depicted in Fig. 6. More importantly, we
observed that the WIP using the baseline LQR was prone
to toppling over and continued to advance until reaching the
mechanical limit of the rail. This shows that our method
goes beyond simply increasing the tracking performance and
contributes to improving the stability of the system. On the
average considering all five cases, we observed 38% and
23% performance improvement in root mean square error
of a position and angular velocity, respectively. The perfor-
mance improvement in each case is as follows: [24.34%,
40.87%, 35.29%, 52.60%, 31.24%, 47.51%] in a position
and [0.2574%, 0.3377%, 0.2837%, 0.3542%, 0.2759%, -
0.1076%] in an angular position.

2) Tracking Task with Unknown Dynamics: In the track-
ing task, we used a predefined sinusoidal signal as a desired
velocity (W ges = 0.3sin(2x ft), f = 0.4). Given that the
baseline LQR fails at the operation’s onset with an unknown
payload attached to the system (see Fig. 6), we began the
tracking task once the system stabilizes over time for a fair
tracking task experiment. As shown in Fig. 7, using a new
equilibrium point from our estimator led to the tracking
performance improvement in both a position and angular
position. On average, across all five cases, there was a 77
improvement in the root mean square error for position and
a 60% improvement for angular velocity. The performance
improvement in each case is as follows: [0.6646%, 0.7493%,
0.8588%, 0.5962%, 0.8811%, 0.9065%] in a position and
[0.3407%, 0.5073%, 0.6740%, 0.6051%, 0.7142%, 0.7595%]
in an angular position.

C. Ablation Study

1) Performance Comparison of Different Optimization
Algorithm.: An additional experiment assessed the best
optimization algorithm for identifying the nonlinear model
parameters ¢, focusing on accuracy and time efficiency.
Among seven algorithms tested using the SciPy package
[27]—genetic algorithm (GA), particle swarm optimiza-
tion (PSO), Nelder—-Mead (NM), Powell, conjugate gradient
(CG), BFGS, and sequential least squares programming
(SLSQP)—only GA and PSO succeeded in parameter opti-
mization, as shown in Fig. 8. This success likely stems from
their global optimization capabilities, crucial for addressing
the non-convex nature of our problem, whereas the others
may stall at local minima. PSO outperformed GA in both
convergence speed and accuracy, benefiting from its simpler
velocity and position update processes. Optimizations were
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Fig. 8: Result of MSE according to update the parameter.
Graphs (a) and (b) compare the MSE (Eq. (7)) results of the GA
and PSO, respectively, showing PSO’s faster update rate allows it
to achieve more epochs within the same timeframe.

TABLE 1I: Performance benchmark for estimating the new
equilibrium point between five different data-driven model.
Mean Square Error (MSE) of 146 test data obtained from a
simulation (Sim) and 40 data obtained from the real world (Real).
Length indicates the length of data trajectories which are an input
of the data-driven estimator.

LSTM |Transformer| GRU TCN 1D-CNN
Sim Real | Sim Real | Sim Real | Sim Real | Sim Real
20{0.038 0.036{0.064 0.060 {0.010 0.037{0.068 0.065{0.009 0.040
40(0.031 0.042(0.064 0.060 |0.008 0.036[0.087 0.065[0.005 0.033
60{0.012 0.030{0.063 0.060 |0.010 0.032{0.020 0.023{0.005 0.033
80/0.024 0.023|0.028 0.024 [0.020 0.030|0.038 0.027|0.005 0.035

Inference | - 35 0.003 0.02 0.003 | 0.006
Time (sec)

Length

halted if exceeding 30 minutes, using default hyperparame-
ters for each method.

2) Performance Benchmark of Time-Series Data-Driven
Model.: In Table II, we evaluate the new equilibrium point
estimation performance using various time-series data-driven
methods, also assessing the effect of sequence data length
on accuracy. These methods were trained with high-fidelity
simulations from our framework. Our results indicate im-
proved performance with more historical data, suggesting
initial WIP system movements provide insufficient features
for identifying the new equilibrium point across different
weights and CoM positions. TCN achieved the highest
accuracy and fastest inference with shorter history data
lengths. Conversely, LSTM excelled with 80 data points,
potentially due to TCN’s concurrent processing advantage
and its structural benefits in addressing gradient issues com-
mon in recurrent networks. While 1D-CNN showed superior
simulation data results, its real-world performance was less
impressive. Notably, the choice of method did not critically
affect our application’s outcome.

D. Limitation

Although our method is more sample-efficient than model-
free RL, it still requires a target domain dataset for Real-
to-Sim adaptation. Collecting this dataset is challenging for
high-dimensional systems with unknown payloads. Develop-
ing a Real-to-Sim adaptation method that does not rely on a
target dataset is an interesting future direction. Additionally,
to enhance simulation fidelity, errors from non-parametric
models should be addressed using techniques like Gaussian
Processes and Deep Neural Networks, which are commonly
employed to represent such models.
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VII. CONCLUSION

In this work, we present a framework designed to control
a wheeled humanoid robot with unknown dynamics, aimed
at safely and accurately delivering unknown objects. Ulti-
mately, to facilitate system stability analysis and improve
model accuracy, our approach is to estimate the new equi-
librium of the system explicitly and utilize it in a model-
based controller. Data-driven method is utilized to rapidly
estimate the equilibrium point of the system with unknown
dynamics. To be more efficient in the data collection process,
we propose a novel real-to-sim adaptation that is capable
of reducing the reality gap at the beginning of training a
data-driven model and constructed dataset in the high-fidelity
simulation. We conducted experiments with a physical in-
verted pendulum we developed as a simplified version of a
wheeled humanoid. The results suggested that using a more
accurate nonlinear dynamics with its optimized parameter
showed benefit in narrowing the reality gap, contributing
to improving the tracking performance of a model-based
controller.
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