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Abstract: This article presents a novel approach for evaluating laser scribing quality through cross-

section profiles generated from a three-dimensional optical profiler. Existing methods for assessing 

scribing quality only consider the width and depth of a scribe profile. The proposed method uses a 

cubic spline model for cross-section profiles. Two quality characteristics are proposed to assess scrib-

ing accuracy and consistency. Accuracy is measured by the ratio of the actual laser-scribed area to 

the target area (RA), which reflects the deviation from the desired profile. The mean square error 

(MSE) is a measure of how close each scribed cross-section under the same scribing conditions is to 

the fitted cubic spline model. Over 1370 cross-section profiles were generated under 171 scribing 

conditions. Two response surface polynomial models for RA and MSE were built with 18 scribing 

conditions with acceptable scribing depth and RA values. Both RA and MSE were considered sim-

ultaneously via contour plots. A scatter plot of RA and MSE was then used for Pareto optimization. 

It was found that the cross-sectional profile of a laser scribe could be accurately represented by a 

cubic spline model. A multivariate nonlinear regression model for RA and MSE identified pulse 

energy and repetition rate as the two dominant laser parameters. A Pareto optimization analysis 

further established a Pareto front, where the best compromised solution could be found. 

Keywords: laser scribing; aluminum thin film on silicon; target area ratio (RA); mean square error 

(MSE) 

 

1. Introduction 

Laser scribing is a versatile laser micromachining technique that finds applications 

across various industries, including medical device production [1], automotive parts man-

ufacturing [2], semiconductor processing [3], and solar cell fabrication [4]. It facilitates the 

creation of shallow scribe lines on surfaces, with exceptional precision in both depth and 

lateral dimensions [5,6]. Laser scribing presents numerous advantages by enabling the 

fabrication of high-quality scribe lines and plays a pivotal role in achieving intricate and 

precise microscale structures across various industries [7]. Moreover, in the domain of 

solar cell fabrication [8–10], laser scribing assumes a critical role in enhancing the effi-

ciency and performance of solar cells. 

To ensure the high-quality scribe lines demanded by these applications, researchers 

have extensively studied the suitability of short pulse lasers, such as picosecond and na-

nosecond lasers, in laser scribing processes [11,12]. These lasers offer high precision and 

control, enabling researchers to explore the relationship between pulse energy, pulse du-

ration, and scribing outcomes [13,14]. The short pulse duration allows for rapid energy 

deposition on the material surface, induced localized heating, and minimized heat diffu-

sion to the surrounding areas. This characteristic is particularly advantageous in laser 

scribing as it enables precise control over the ablation process while minimizing thermal 

effects and collateral damage to adjacent regions of the solar cell [15–17]. 
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However, the quest for higher productivity and faster processing speeds must be bal-

anced with the need to maintain high scribe quality. Despite the above-mentioned ad-

vantages of short pulse lasers, several studies have highlighted potential negative effects, 

including tapered cross-sectional profiles, thermal damage, microcrack formation, and re-

cast material accumulation [18–20]. These issues arise due to the Gaussian beam profile 

and intense heat generated during the laser scribing process [21,22]. Furthermore, laser 

stability and variations in surface morphology and composition pose additional chal-

lenges, affecting laser–material interaction and resulting in inconsistent scribe quality 

[23,24]. Hence, optimizing process parameters for different materials and applications is 

essential. 

For process optimization, measures of scribe quality need to be defined. From a geo-

metric point of view, scribe width and depth are often used to measure scribe quality 

[25,26]. However, width and depth are only two quality characteristics, while a cross-sec-

tional profile provides more complete information on scribing quality. In our pursuit of 

deeper analysis and heightened comprehension, we turned to the mathematical technique 

of cubic spline interpolation. This approach is instrumental in estimating values between 

known data points. By constructing a seamless curve using a series of cubic polynomials, 

this method ensures both continuity and smoothness. The term ‘spline’ is derived from 

the flexibility of the curve to adapt to the shape of the data, resembling a flexible strip or 

spline of wood used by draftsmen. This technique provides a superior means of dissecting 

scribing profiles, affording us intricate understandings of the interplay between the laser 

scribing tool and the material, particularly in situations where precision and accuracy 

hold paramount importance. This methodology proves essential, enabling us to capture 

even the subtlest nuances and intricate details. 

In this study, we present an exploratory investigation of laser scribing quality assess-

ment through cross-sectional scribing profiles. We demonstrate how a cubic spline model 

allows for interpolation between data points and the fitting of a smooth curve to identify 

the optimal parameter settings for achieving the desired quality characteristics. Further-

more, we define two measurement statistics for measuring accuracy and consistency and 

construct a regression model for each statistic to address the parameter optimization pro-

cess. The proposed methodology aims to identify the optimal laser scribing conditions 

and offer valuable insights for applications that rely on precise and controlled scribing 

techniques. 

2. Experimental Plan and Data Collection 

2.1. Experimental Plan 

The laser scribing experimental setup, as depicted in Figure 1a, is outlined in the fol-

lowing bullet points. 

Experimental Setup: 

• Laser Scribing Setup: 

• Utilizes a femtosecond (fs) laser. 

• Adjusts pulse energy using a half-wave plate and cube polarizer. 

• Focuses pulse energy to a focal spot on the sample surface with a focusing 

lens. 

Sample Characteristics: 

• Consists of a 300 nm thick aluminum film coated on silicon. 

• Sample position controlled by an XYZ translation stage. 

• Writing direction perpendicular to the beam propagation axis. 
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Laser Scribing Process: 

• Conducted on the Al-coated silicon sample. 

• Variables Adjusted: 

• Pulse energy (range: 12–360 μJ) 

• Pulse duration (range: 0.184–10 ps) 

• Pulse frequency (range: 250–200000 Hz) 

Over 171 test conditions were implemented, each with three repetitions. The pulse 

energy density ranged from 4.8 to 240 J/cm2. 

Post-Scribing Analysis: 

• Examination using a 3D optical profiler. 

• Measure cross-sectional profiles for each scribe. 

• Conducted at a minimum of three distinct locations. 

 

 
(a) (b) 

Figure 1. (a) Configuration of laser scribing experiment and (b) outline of the envisaged data anal-

ysis approach. 

2.2. Data Collection and Preprocessing 

Following the laser scribing process, the sample underwent scrutiny using a 3D op-

tical profiler, where the cross-sectional profile for each scribe was assessed at a minimum 

of three distinct locations. The demographic data were subsequently extracted from the 

measurements and then exported for further comprehensive data analysis. 

The data analysis methodology, illustrated in Figure 1b, began with the acquisition 

of raw data from the 3D optical profiler. Subsequently, a data preprocessing phase was 

implemented to effectively eliminate any noise or outliers, thereby ensuring the integrity 

of the dataset. Following this, a comprehensive characterization of each scribe’s cross-sec-

tional profile was conducted, encompassing crucial parameters such as depth, width, and 

overall shape. This critical step formed the cornerstone for evaluating the quality of the 

scribing process. The subsequent stage involved the application of a cubic spline to the 

profiles, which is described in detail in the next section. 

3. Cubic Spline Interpolation Approach 

Examples of spatial series of scribing depths representing scribing profiles are shown 

in one of the two-dimensional scatter plots in Figure 2. For example, several profiles rep-

resented in blue dots can be observed in machine condition 89 (front row and last plot). 

The shape of profiles provides much more information about scribing quality than mere 

width and depth alone since the profile shape is much more complex than linear regres-

sion models can handle. We chose a cubic spline approach for modeling this application. 

Once the average cross profiles were computed, both proposed quality characteristics, 

mean square error (MSE) and the area ratio (RA), could be estimated. The concept and 

computation of both RA and MSE will be discussed in Sections 4.1–4.3. The use of both 

RA and MSE for process optimization will also be explored in Section 4.4. 
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Figure 2. Cubic spline fitting for laser scribing cross-section profiles across a chosen set of 21 scribing 

conditions. The blue lines in each plot are cross-section profiles from multiple measurements and 

the red line is the cubic spline fit based on the blue lines. 
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Cubic spline interpolation is a mathematical technique used to create smooth curves 

through a series of data points. It works by breaking a dataset into smaller segments and 

fitting cubic polynomial functions to each segment. This process results in a continuous 

curve that closely follows the original data, providing a high level of accuracy. As shown 

in Figure 3, control points are crucial in determining the accuracy of the interpolated 

curve. Starting with just four control points, the interpolation may exhibit slight variations 

from the original data. However, as we increase the number of control points to eight, 

twelve, sixteen, twenty, and finally twenty-five, the cubic spline interpolation becomes 

progressively refined. This refinement allows it to capture finer details with greater preci-

sion. This demonstration highlights how the choice of control points significantly influ-

ences the geometric shape of the interpolation, emphasizing the importance of careful pa-

rameter selection in achieving the desired outcomes. 

 

Figure 3. Cubic spline interpolations created using a varying number of control points, from 4 to 25 

points. 

The cubic spline method [27] was utilized to fit the laser-scribing datasets. Spline in-

terpolation offers a higher degree of polynomial interpolation while maintaining stability, 

thanks to Runge’s phenomenon [28]. Cubic spline interpolation is a mathematical tech-

nique for constructing a smooth and continuous function that passes through a set of 

given data points. The method involves dividing the range of the data points into a series 

of intervals and constructing a cubic polynomial function for each interval. The polyno-

mials are carefully chosen to match the values of the function at the endpoints of each 

interval while maintaining continuous first and second derivatives [29,30]. 

Let (x0, y0), (x1, y1), ..., (xn, yn) be the given data points, where 𝑥𝑖 < 𝑥𝑖+1 or i = 0, 1, ..., n 

− 1. Our objective is to find a function S(x) that passes through all the data points and 

possesses continuous first and second derivatives [31]. To achieve this, we first define a 

set of cubic polynomials Si(x) on each interval [𝑥𝑖, 𝑥𝑖+1] 

𝑆𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖(𝑥 − 𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)
2 + 𝑑𝑖(𝑥 − 𝑥𝑖)

3 (1) 
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where 𝑎𝑖 𝑎𝑖 = 𝑦𝑖 , 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 are constants to be determined for each interval. We can 

determine these constants by imposing the following conditions on each interval i = 0, 1, 

..., n − 1: 

𝑆𝑖(𝑥𝑖) = 𝑦𝑖  for i = 0, 1, …, n − 1. (2) 

to ensure that each polynomial passes through its corresponding endpoint of the interval; 

𝑆𝑖+1(𝑥𝑖+1) = 𝑆𝑖(𝑥𝑖+1) , for i = 0, 1, ..., n − 2. (3) 

to ensure that the polynomials are continuous at the interval endpoints; 

𝑆𝑖+1
′ (𝑥𝑖+1) = 𝑆𝑖

′(𝑥𝑖+1) , for i = 0, 1, ..., n− 2. (4) 

to ensure that the first derivatives of the polynomials are continuous at the interval end-

points; and 

𝑆𝑖+1
′′ (𝑥𝑖+1) = 𝑆′𝑖

′(𝑥𝑖+1) , for i = 0, 1, ..., n − 2. (5) 

The second derivatives of the polynomials are continuous at the interval endpoints. 

Note that we have n + 1 data points and n intervals, so we have n unknowns (the coeffi-

cients 𝑏𝑖, 𝑐𝑖, and 𝑑𝑖 for each interval) and n equations (the four conditions above for each 

interval). To obtain a unique solution, we also need to specify additional boundary condi-

tions. The most common boundary conditions are determined as follows: the second de-

rivatives at the endpoints are set to zero and clamped where the first derivatives at the 

endpoints are set to given values. Specifically, the natural boundary conditions are S″(𝑥0) 

= S″(𝑥𝑛) = 0 and the clamped boundary conditions are S′(𝑥0) = 𝑚0 and S′(𝑥𝑛) = mn, where 

𝑚0 and mn are given values. Once we solve the coefficients of each polynomial, we can use 

the resulting spline function S(x) to approximate the original function at any point within 

the range of the data. The formula for the spline function on an interval [𝑥𝑖, 𝑥𝑖+1] is as 

follows: 

 S(x) = 𝑆𝑖(𝑥), 

for 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1. 
(6) 

Additional boundary conditions can be specified to obtain a unique solution. In cubic 

spline methodology, the B-spline function is often used to reduce the dimension of the 

model function while still capturing the key features that define the shape of the profiles. 

Splines are composed of smoothly connected polynomial segments, with the connection 

points referred to as knots. The knots do not have to be evenly spaced, and when each 

segment of a spline is a polynomial of degree d, the spline is referred to as a degree d 

spline. In our case shown in Equation (1), the cubic spline has a degree 3. In this study, the 

natural boundary of the cubic spline models was determined by the end points of the 

depth profile datasets. This property provided a smooth transition beyond the scribed 

section of a cross-section profile without the need for manual intervention. 

4. Scribing Quality Evaluation Using Cubic Spline Trajectory 

The proposed methodology for evaluating the quality of laser scribing profiles is il-

lustrated as follows. The first step was to collect the cross-sectional profile data for each 

laser scribe. From the data, the depth of the scribe was calculated, and scribing conditions 

that met the depth criteria of 250–350 nm were identified. To assess the quality of the 

scribing profiles, we considered not only the width and depth but also the cross-section 

profiles. The cross-section profiles were modeled using cubic spline regression, which al-

lowed for a more accurate representation of the profile. Unknown coefficients of a regres-

sion model were estimated from multiple profiles under the same scribing condition. Two 

quality characteristics were introduced to evaluate the scribe quality: the ratio of the actual 

laser scribed to the target area (RA) and the mean square error (MSE) of the cubic spline 

model. RA measured the deviation of the estimated profiles (i.e., the fitted cubic spline 
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model) from the desired profile (i.e., a square). MSE evaluated the consistency of a scribe 

condition by computing the mean square error of each scribe cross-section from the fitted 

cubic spline model. 

To establish correlations between the laser parameters and the dual responses RA 

and MSE, two response surface models were constructed. The laser parameters included 

pulse energy (E), pulse duration (tp), and pulse frequency (fp). Based on the fitted models, 

contour plots could be used to identify possible optimization regions that maximize RA 

and minimize MSE. Note that a contour plot only contains two laser parameters at a time. 

We chose the two most significant factors while fixing the least significant factor. This 

comprehensive workflow offers a reliable method for evaluating laser scribing quality and 

can be applied in future applications. By considering cross-sectional profiles and using 

the cubic spline regression, the proposed methodology provides a more accurate and com-

prehensive approach to assessing laser scribing quality. 

4.1. Cubic Spline Fit of Laser Scribing Profiles 

A cubic spline model was utilized to fit the laser-scribing cross-section profiles in this 

study. This model ensures a smooth and continuous curve that accurately represents the 

cross-section data points. Precise representation of a laser scribing cross-section profile is 

vital for evaluating scribing quality as it allows for a detailed analysis of the scribing pro-

cess and its outcomes. The flexibility of cubic spline fitting is particularly advantageous in 

this context as it allows for adjusting the degree of smoothing to achieve the best fit for 

the given data. Cubic spline fitting has been widely recognized for its effectiveness in han-

dling noisy and irregular data while maintaining the desired smoothness and continuity. 

This cubic spline property enables laser scribing cross-section profile modeling, which can 

often exhibit fluctuations and irregularities due to various factors such as material prop-

erties, processing parameters, and experimental conditions. The application of cubic 

spline fitting in this study ensured the accurate representation of laser-scribing cross-sec-

tion profiles and enabled a comprehensive analysis of the scribing quality under different 

conditions. 

A selected 21 among 171 conditions in Figure 2 were chosen to filter out defective 

samples via the targeted scribing depth, which measured approximately 300 nm. Specifi-

cally, a scribing condition was chosen when the average scribing depth of all samples un-

der this condition fell within a tolerance range (250–350 nm). Figure 2 shows 21 fitted cubic 

spline cross-section profiles in red. Specifically, 10 profiles were generated for each scrib-

ing condition. At each spatial location, 10 depths were averaged. The collection of all av-

eraged depth data was then fed into the proposed cubic spline model to generate the red 

profiles in Figure 2. Each plot is under one scribing condition. Multiple scribing cross sec-

tions shown in blue profiles were used to fit a cubic spline model. These scribed conditions 

were chosen based on the average scribe depth. 

Note that there were large variations in the cross-sectional profiles from sample to 

sample, even under the same scribing conditions. The main cause of this is believed to be 

the large differences associated with the deposited laser energy profile, i.e., non-uniform 

laser intensity and non-uniform energy density over the writing area. Other sources may 

include plasma/plume shielding of the laser beam, optical property change during laser 

irradiation, material ejection and redeposition dynamics, etc. 
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4.2. Area Ratio for Scribing Precision Measurement 

The scribing precision was assessed through the area ratio, which was defined as the 

ratio of the laser scribe’s cross-sectional area to the designed target area, with a depth of 

300 nm and a width of 100 μm. The target area was obtained by multiplying the width 

and depth, resulting in a value of 30 μm2. The target area is illustrated in Figure 2 as a 

green box. The actual scribing area for each condition was calculated using the profile 

data, and a penalty (Apenalty, the area outside the box) was imposed when the area exceeded 

the designed area to ensure the accuracy of the measurement. The scribing precision was 

evaluated using the area ratio (RA), which was computed as the ratio of the actual scribing 

area (Aactual) to the target area (Atarget). The equation for calculating the area ratio is as fol-

lows: 

RA = (Aactual − Apenalty)/Atarget (7) 

In this equation, Apenalty represents the area that exceeds the intended target area. 

When the laser scribing area extended beyond the boundaries of the target, a penalty func-

tion was applied to eliminate the portion outside the target box. The penalty function was 

defined as the integral of the exceeded trace, which quantified the area where the laser 

scribing extended beyond the intended target boundaries. It measured the extent of the 

exceeded area by integrating the exceeded trace. By subtracting the penalty value (Apenalty) 

from the actual scribing area (Aactual), the area ratio calculation ensured that only the scrib-

ing area within the target boundaries was considered. Aactual is the area of the scribe pro-

files falling within the target area, which was a square (i.e., the green box in Figure 2). 

Dividing the adjusted scribing area by the target area (Atarget) provided a normalized meas-

ure of the scribing process’s adherence to the desired specifications. 

In Equation (7), a large area ratio (RA) indicates better precision in achieving the tar-

geted scribe area. The actual scribe area closely matching the targeted value and achieving 

a maximum RA (rectangularity) of 1 may not be feasible in practice due to the inherent 

tapering of the laser beam shape, which differs from the ideal rectangular shape. The scrib-

ing process was highly accurate and achieved the desired outcome with minimal devia-

tion. For the limits of the equation, there may be several specific factors that affect practical 

application. The first is material characteristics: certain materials may inherently limit the 

achievable RA due to their properties. For instance, brittle or heat-sensitive materials may 

introduce constraints on precision. The second is equipment precision: the level of preci-

sion achievable is also influenced by the capabilities of the scribing equipment. Advanced 

machinery may enable higher Ras, but there may be diminishing returns beyond a certain 

point. While a large RA generally signifies better precision, its practical application should 

be assessed considering material properties, equipment capabilities, and the specific de-

mands of the application. In summary, the target RA value is a function of these afore-

mentioned factors. The proposed method seeks to maximize it while ensuring a balance 

between precision and feasibility. We recommend the choice of an RAtarget value close to 

the best result in the experimental pool or best known value from a similar application. 

To evaluate the impact of various factors on the area ratio, a linear regression model 

was developed. The choice of a linear regression model was based on its simplicity, inter-

pretability, and ability to capture the linear relationships between predictor variables re-

lated to the scribing process (e.g., laser parameters) and the area ratio. By estimating the 

coefficients of the model, it was possible to identify the influence of each predictor variable 

on the area ratio. The results of the model were then analyzed to evaluate the scribing 

precision. After computing the RA values, as shown in Table 1, we observed that the last 

three conditions (conditions 147, 160, and 163) generated RA values of less than 20%. Since 

our purpose was to seek settings for large RA, we eliminated these last three rows for 

regression model building. 
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Table 1. Computing the RA and MSE values. 

Condition E (µJ) tp (ps) fp (Hz) MSE RA 

Con 8 240 10 500 0.00361 37.94 

Con 11 240 1 250 0.00638 44.61 

Con 15 360 2 250 0.00447 49.86 

Con 35 120 10 1000 0.00075 46.43 

Con 57 24 0.5 10,000 0.00107 42.06 

Con 60 24 10 10,000 0.00192 69.94 

Con 71 48 0.184 2000 0.00059 40.9 

Con 75 48 10 2000 0.00055 32.18 

Con 85 105 10 1000 0.00111 29.2 

Con 88 30 1 2000 0.00047 41.08 

Con 89 30 2 2000 0.00129 47.9 

Con 95 30 10 5000 0.00042 53.43 

Con 103 60 0.5 1000 0.00068 41.24 

Con 104 60 1 1000 0.00076 43.4 

Con 105 60 2 1000 0.00061 44.17 

Con 120 60 10 2000 0.00081 44 

Con 124 60 2 3000 0.00043 43.5 

Con 125 60 10 3000 0.00038 42.85 

Con 147 15 0.5 50000 0.00107 11.66 

Con 160 10 10 100,000 0.00114 19.35 

Con 163 12 1 100,000 0.00184 10.95 

A first-order polynomial linear regression model was utilized to quantify the rela-

tionship between the laser scribing area ratio and the parameters involved, pulse energy 

(E), pulse duration (tp), and pulse frequency (fp). The polynomial equation is shown in 

Equation (8): 

Laser Scribing Area (RA) = 𝑏0 + 𝑏1E + 𝑏2𝑡𝑝 + 𝑏3𝑓𝑝 (8) 

where E is the pulse energy (μJ), 𝑡𝑝 is the pulse duration (ps), and 𝑓𝑝 is the pulse repeti-

tion rate (Hz). The coefficients 𝑏0 through 𝑏3 were estimated by the least-squares method 

to minimize the error between the predicted and actual laser scribing area ratios. The co-

efficient 𝑏0 is the intercept, which represents the value of RA when all independent varia-

bles are set to zero; coefficients 𝑏1, 𝑏2, and 𝑏3 are the main effects. Note that coded varia-

bles were used to fit all the regression models in this study. A coded variable is generated 

by converting the physical reading of an independent variable into the range of −1 to +1. 

For example, the range of E (μJ) is from 24 to 360. Then, the low level (−1) corresponds to 

24 while the high level (+1) corresponds to 360. The rest of the E (μJ) setting is linearly 

transformed. For example, E (μJ) = 60 is coded as (60 − (24 + range/2))/(range/2), where the 

range = 360–24. 

Table 2 presents the estimated coefficient values along with their corresponding p-

values. Smaller p-values indicate the greater significance of the variables contributing to 

the response. However, despite the significance of some variables, the R-squared value of 

the initial model was only 0.345. This suggests that approximately 34.5% of the variance 

in the response variable can be explained by variations in the laser parameters considered. 

To enhance the model’s predictive capability due to lack of fit, we decided to refit the 

model using a polynomial of degree = 2. The results of this refitted model are presented 

below: 

RA = 𝑏0 + 𝑏1E + 𝑏2𝑡𝑝 + 𝑏3𝑓𝑝 + 𝑏4𝐸 ∙ 𝑡𝑝 + 𝑏5𝐸 ∙ 𝑓𝑝 +𝑏6𝑡𝑝 ∙ 𝑓𝑝 + 𝑏7𝐸
2 +𝑏8𝑡𝑝

2+𝑏9𝑓𝑝
2 𝑏10𝐸 ∙ 𝑡𝑝 ∙ 𝑓𝑝  (9) 
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Table 2. The estimated coefficients and associated p-values for each predictor variable in a linear 

model (degree = 1) of laser scribing area ratio. 

Variable Coefficient (bi) p-Value 

Intercept 51.454 0.000 

E 4.017 0.309 

𝑡𝑝 −0.078 0.970 

𝑓𝑝 9.500 0.018 

The regression models were reconfigured with a degree of 2 to augment their predic-

tive capabilities. The degree = 2 model showcased a notable enhancement in the coefficient 

of determination (R-squared) in contrast to the degree = 1 model. The R-squared value 

surged from 34.5% to 83.2%, underscoring a significant advancement in the model’s 

adeptness at elucidating the variations within the response variable (RA). Roughly 83.2% 

of the observed fluctuations in RA could then be linked to the pertinent laser parameters. 

Despite this improvement, none of the p-values provided in Table 3 for the coefficients of 

individual predictor variables was small enough for any coefficient to be statistically sig-

nificant. However, the b0 = 64.3156 suggests that the RA was close to the best experimen-

tally observed value when the setting was set at the middle levels for all parameters. This 

is because regression model (9) was fitted via the coded variables for E, tp, and fp. In short, 

the maximal value for each variable was set to +1 and the minimal value was set to −1. 

Then, the setting 0 represented the center point. When all parameters were set to their 

center points, the estimated RA was at the b0 value. 

Table 3. The estimated coefficients and associated p-values for each predictor variable in a linear 

model (degree = 2) of laser scribing area ratio. 

Variable Coefficient (bi) p-Value 

Intercept 64.3156 0.258 

E 7.8994 0.900 

𝑡𝑝 71.7138 0.300 

𝑓𝑝 14.4419 0.817 

𝐸 ∙ 𝑡𝑝 69.076 0.335 

𝐸 ∙ 𝑓𝑝 2.3735 0.970 

𝑡𝑝 ∙ 𝑓𝑝 77.5716 0.285 

𝐸2 −0.5282 0.950 

𝑡𝑝2 −10.109 0.264 

𝑓𝑝2 −2.7738 0.752 

𝐸 ∙ 𝑓𝑝 ∙ 𝑡𝑝 65.036 0.347 

4.3. MSE for Scribing Consistency Measurement 

As shown in Figure 2, scribing cross sections vary even under the same scribing con-

ditions. The possible reasons for such variations could be non-uniform laser intensity dis-

tribution over the writing track, which will lead to non-uniform material ejection and re-

deposition during laser scribing, and Al film thickness variations and surface contamina-

tion. To assess the consistency of the laser scribing, the mean square error (MSE) was used. 

After obtaining the cross-section profiles, the MSE of each laser scribing trial with the cu-

bic spline model was calculated and provided a measure of the deviation of the laser scrib-

ing profile from the fitted curve, indicating how well the model could represent the actual 

profile. The MSE equation is listed as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑎𝑐𝑢𝑡𝑎𝑙 −𝑌𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)

2  (10) 
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In this equation, 𝑌𝑎𝑐𝑢𝑡𝑎𝑙  represents the observed laser scribing value at a given loca-

tion while 𝑌𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 represents the corresponding point on the estimated value from the 

cubic spline model, and N represents the total number of locations along the cross-section 

profile. Each blue profile in Figure 2 is an actual scribed cross-section profile, and its cor-

responding cubic spline model is shown in red. To compute the MSE, Equation (10) com-

puted the squared difference between each point on the actual laser scribing trajectory 

and the corresponding point on the reference curve. These squared differences were then 

summed across all data points along a profile. Finally, the sum was divided by the total 

number of data points (N) to obtain the average squared deviation. MSE measured how 

much deviation of the laser scribing profile there was from the reference curve. A small 

MSE value indicated a more consistent and accurate reproduction of the scribing profile. 

Conversely, a large MSE value indicated a greater discrepancy between the actual and 

reference profiles. Monitoring the MSE values across different trials or experimental con-

ditions can provide valuable insights into the precision and consistency of the laser scrib-

ing process, helping to identify areas for improvement and ensuring adherence to desired 

scribing specifications. 

A small MSE value indicates a consistent scribe line and accurate reproduction of the 

scribe profile, while a large MSE suggests a significant deviation from the reference scribe 

line and indicates an issue with the scribing process. This information can help balance 

the choice of optimal operating settings. Figure 4 provides a comparison of the laser scrib-

ing in terms of MSE for selected scribing conditions. A boxplot displays the distribution 

of MSE values for each condition across 10 trials (i.e., 10 different scribes under the same 

conditions). A few scribing conditions, for example, conditions 11, 15, and 163 (depicted 

as Con 11, 15, and 163 in Figure 4), exhibited broad distributions of MSE values. This im-

plies that their performances were not very consistent across 10 trials. Conversely, most 

scribing conditions had narrower MSE distributions, which suggests more consistent per-

formances. 

 

Figure 4. The distribution of MSE with quartile values Q1, Q2, and Q3 across 21 scribing conditions. 

As shown in condition 15 in Figure 4, there are quartile values Q1, Q2, and Q3. Q1 

(the first quartile) represents the 25th percentile of the MSE distribution, meaning that 

25% of the laser scribes had MSE values below Q1. Q2 (the second quartile) represents the 

50th percentile of the MSE distribution, which is equivalent to the median. It represents 

the middle value of the MSE distribution, with 50% of the laser scribes having MSE values 
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below Q2 and 50% having MSE values above Q2. Q3 (the third quartile) represents the 

75th percentile of the MSE distribution, meaning that 75% of the laser scribes had MSE 

values below Q3. The red lines above and below a box indicate the spread of the data 

points and can be used to identify outliers. In this case, we prefer small Q2 values since 

the smaller the Q2 values, the less deviation from the fitted profile. In addition, we also 

prefer small interquartile distances (i.e., Q3-Q1). If an interquartile range value is large, 

this may indicate that the distribution of MSE values is wide and that there is a large 

spread of values. This implies that the scribes under the same condition do not generate 

similar profiles. Conversely, if the interquartile range is small, this indicates that scribing 

profiles under the same conditions generate similar profiles more consistently. Addition-

ally, if there are any laser scribes with MSE values that are significantly higher or lower 

than the rest of the values (i.e., long red lines outside the box), these could be identified as 

potential outliers, e.g., condition 11. 

The range between Q1 and Q3 was relatively small for most conditions, indicating 

that the MSE values were somewhat consistent within each condition. Con 15 had the 

highest median MSE value (Q2), followed by Con 8 and Con 11. This suggests that these 

conditions may not generate repeatable scribes compared to the other conditions. Con 11 

had the largest difference between Q3 and Q1, indicating that there was greater variability 

in MSE values for this condition. This may suggest that the laser scribing results were less 

consistent for this condition compared to the others. 

A polynomial linear regression model was employed to establish the relationship be-

tween the mean square error (MSE) of the laser scribe profile and the laser parameters 

involved, including pulse energy, pulse duration, and pulse repetition rate. The polyno-

mial equation was used to fit through the data points in the plot, allowing for the estima-

tion of the MSE at different parameter values. Specifically, a polynomial of degree = 1 was 

used, which corresponded to a linear regression. By doing so, the initial relationship be-

tween the MSE and the laser parameters was examined. The polynomial equation took 

the form of 

MSE = 𝑏0 + 𝑏1E + 𝑏2𝑡𝑝 + 𝑏3𝑓𝑏 (11) 

The concept was analogous to the RA regression model, where the coefficients 𝑏0 

through 𝑏3 were estimated through a least-squares method. This approach aimed to min-

imize the disparity between the predicted and actual MSE values. Table 4 exhibits the es-

timated coefficient values along with their corresponding p-values. Using this model, it 

was possible to analyze the effect of each parameter on the MSE, as well as any interactions 

between the parameters. The coefficient values b1, b2, and b3 of the main effect provided 

information about the magnitude and direction of the effect of each parameter on the MSE. 

A positive coefficient indicated that increasing the corresponding parameter would in-

crease the MSE, while a negative coefficient indicated that increasing the parameter would 

decrease the MSE. By analyzing the coefficients, one could determine the optimal values 

of the independent variables to minimize the MSE. 

Table 4. The estimated coefficients and associated p-values for each predictor variable in a linear 

model (degree=1) of MSE. 

Variable Coefficient (bi) p-Value 

Intercept 0.0035 0.000 

E 0.0029 0.000 

𝑡𝑝 −0.0002 0.333 

𝑓𝑝 0.0007 0.113 

The R-squared value of the model, which was 0.762, suggested that around 76.2% of 

the variance in the MSE could be accounted for by the variations in the laser parameters 
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considered. To improve the model’s predictive capability, the model was refitted using a 

polynomial of degree = 2 and the corresponding results are presented below: 

MSE = 𝑏0 + 𝑏1E + 𝑏2𝑡𝑝 + 𝑏3𝑓𝑏 + 𝑏4𝐸 ∙ 𝑡𝑝 + 𝑏5𝐸 ∙ 𝑓𝑏 +𝑏6𝑡𝑝 ∙ 𝑓𝑝 + 𝑏7𝐸
2 +𝑏8𝑡𝑝

2+𝑏9𝑓𝑝
2 +𝑏10𝐸 ∙ 𝑡𝑝 ∙ 𝑓𝑝 (12) 

The regression coefficients of the predictors and their corresponding p values are 

shown in Table 5. The refitted model provided a remarkable improvement in the predic-

tive performance, as indicated by the R-squared value of 0.942. This substantial increase 

compared to the initial model (R-squared = 0.762) suggests that approximately 94.2% of 

the variability in the MSE can now be explained by the considered laser parameters. The 

enhanced R-squared value signifies that the quadratic polynomial provided a better fit to 

the data, effectively capturing a larger portion of the MSE variability. From the p-values 

from both Tables 2 and 3, we observe that parameters E and fp are statistically significant. 

Table 5. The estimated coefficients and associated p-values for each predictor variable in a linear 

model (degree = 2) of MSE. 

Variable Coefficient (bi) p-Value 

Intercept  −0.0128 0.069 

E −0.0185 0.032 

𝑡𝑝 0.0012 0.873 

𝑓𝑝 −0.0196 0.025 

𝐸 ∙ 𝑡𝑝 0.0012 0.884 

𝐸 ∙ 𝑓𝑝 −0.0209 0.019 

𝑡𝑝 ∙ 𝑓𝑝 0.0019 0.807 

𝐸2 −0.0036 0.007 

𝑡𝑝2 −0.0005 0.581 

𝑓𝑝2 −0.0016 0.150 

𝐸 ∙ 𝑓𝑝 ∙ 𝑡𝑝 0.0016 0.830 

The negative coefficient and significant p-value for E (−0.0185, p = 0.032) imply that 

increasing the pulse energy led to a reduction in MSE. Higher pulse energies may translate 

to more energy being deposited on the material surface during each laser pulse. This may 

result in a more rapid and precise material removal process, leading to lower MSE values. 

Similarly, the negative coefficient and significant p-value for fp (−0.0196, p = 0.025) indicate 

that increasing the normalized pulse repetition rate is associated with lower MSE values. 

Increasing the pulse repetition rate allowed less time for the material to cool between suc-

cessive laser pulses, which could improve the material’s response to the laser ablation and 

lead to more consistent scribe profile quality. In addition, the coefficient for the interaction 

term E × fp was also significant and had a larger value than those of E and fp. This result 

suggests that if the parameter settings of E and fp were set at a high level, the coefficient 

of E × fp would further reduce MSE. Finally, the p-values of all other coefficients (including 

tp) showed no significant effect on the MSE as its coefficients had a p-value greater than 

0.05. This result suggests that the interplay between pulse duration (tp) and pulse repeti-

tion rate (fp) does not significantly influence the MSE. It is possible that within the range 

of the data considered, the combination of pulse duration and repetition rate does not lead 

to significant changes in material removal dynamics or ablation mechanisms. Given this 

result, we shall focus on E and fp in searching for the optimal parameter setting for scrib-

ing accuracy and consistency. 
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4.4. Contour Plot Model for Exploring the Relationship between tp, E, RA, and MSE 

In our comprehensive exploration of laser scribing quality through cross-section 

scribing profiles, various analytical techniques were employed to gain insights into the 

relationship between pulse energy (E), pulse duration (tp), and the quality metrics of in-

terest [32]. One of the key tools utilized in this investigation was the contour plot analysis. 

The contour plot analysis played a crucial role in visually representing response cross sec-

tions (either MSE or RA) between two variables, E and tp. Specifically, a contour plot il-

lustrated the relationship between the E (x-axis) and the fp (y-axis) in terms of two perfor-

mance metrics: RA and MSE [33], as shown in Figure 5, where Figure 5a–c are under the 

condition tp = 5 ps, Figure 5d–f are under the condition tp = 7.5 ps, and, finally, Figure 5g–

i are under the condition tp = 10 ps. The colored areas are feasible regions. The white areas 

are infeasible because the RA should be smaller than 100% and the MSE should be posi-

tive. Parameters fp and E were chosen since both regression Equations (11) and (12) indi-

cated that E, fp, and E-fp interactions were statistically significant. 

We favor regions with high RA values in Figure 5a. The choice of tp = 5 ps was pri-

marily guided by the analysis of the 2nd order regression model on RA, where the center 

point (i.e., E, tp, and fp were set at their middle levels) yielded favorable RA values. This 

specific setting, tp = 5 ps, served as the central point for tp. Upon closer examination of 

Figure 5b, two areas shaded in dark blue reveal low MSE values. 

In the context of multiple objective optimizations [34], it is important to note that the 

optimal solution for one response may not align with the optimal solution for another 

response. Hence, a balanced and compromised optimal solution must be achieved. In Fig-

ure 5c, we overlay two contour plots from 5a and 5b. The central points for E and fp were 

set at 168 uJ and 4875 Hz, respectively. Notably, this configuration was derived from 

Equation (9) and lay beyond the feasible MSE region. The range of optimal parameters is 

highlighted by the blue shaded circle, and several compromised parameter configurations 

are selected and detailed in Table 6. Employing a similar process, potential compromised 

solutions were generated for tp = 7.5 ps from Figure 5d–f and for tp = 10 ps from Figure 

5g–i. All potential compromised optimal solutions are summarized in Table 6. 
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Figure 5. The contour plots of RA, MSE, and superimposed RA and MSE: (a–c) tp = 5 ps, (d–f) tp = 

7.5 ps, (g–i) tp = 10 ps (c,f,i are superimposed charts from their previous two charts). 

Table 6. The potential optimal parameter settings from contour plots. 

Setting tp (ps) E (µJ) fp (Hz) RA MSE 

S1 5 31 10,000 65.64 4.9311 × 10−4 

S2 5 34 9705 65.45 2.1304 × 10−5 

S3 5 27 10,000 65.41 1.148 × 10−3 

S4 5 24 10,000 65.18 1.8 × 10−3 

S5 5 38 7833 62.56 4.5348 × 10−4 

S6 5 41 7636 62.39 7.94 × 10−5 

S7 7.5 24 10,000 70.25 1.6 × 10−3 

S8 7.5 27 9311 70.24 1.254 × 10−3 

S9 7.5 31 8720 70.21 9.21 × 10−4 



Micromachines 2023, 14, x FOR PEER REVIEW 16 of 18 
 

 

S10 7.5 34 8227 70.28 6.01 × 10−4 

S11 7.5 38 7735 70.01 3.23 × 10−4 

S12 7.5 41 7439 70.58 1.65 × 10−5 

S13 10 24 10,000 70.25 0.16 × 10-3 

S14 10 27 9311 70.24 0.1254 × 10−3 

S15 10 31 8720 70.21 0.9209 × 10−4 

S16 10 34 8326 70.78 5.675 × 10−4 

S17 10 38 7735 70.01 3.234 × 10-4 

S18 10 41 7439 70.58 1.6529 × 10−5 

Figure 6 shows a scatter plot for all 18 parameter settings based on the RA and MSE 

values listed in Table 6 in an attempt to search for a Pareto optimal setting [35]. A Pareto 

solution dominates in both RA and MSE. We do not have a Pareto solution in this case. 

Since we prefer a large RA and small MSE, the lower right-hand corner in Figure 6 is the 

preferred region, consisting of machine settings S9, S10, S16, S17, and S18. Specifically, S18 

had the lowest MSE while RA = 70.58%, while S16 had the largest RA = 70.78% but its MSE 

was larger than that of S18. Between solutions S16 and S18, a Pareto front could be gener-

ated. All the other solutions were dominated by this front. In other words, no other solu-

tions could outperform S16 or S18 in terms of either RA or MSE. A decision maker or 

process engineer can now focus on choosing the best compromised solution between S16 

and S18 or another combination on the Pareto front. 

 

Figure 6. A scatter plot depicting (RA, MSE) values across 18 parameter settings (the green line is 

the Pareto front, the two (RA, MSE) pairs dominate all the other pairs). The blue dots represent the 

18 distinct parameter settings (S1 through S18) shown in Table 6.The green line represents the Pareto 

front,where all compromised solutions are dominated by solutions on this front. . 

5. Conclusions and Future Work 

In conclusion, this study explored the laser scribing quality of a thin aluminum film 

coated on a silicon substrate through cross-section scribing profiles and identified poten-

tial optimal operating regions using contour plots. We propose the use of cross-section 

profiles for the more precise evaluation of scribing quality, rather than just scribing width 

and depth. A cubic spline model, fitting the cross-section profile, served as the base for 
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measuring scribing quality via the proposed statistics RA and MSE. Both scribing accu-

racy and consistency were considered via contour plots. A Pareto optimization procedure 

was used to search for a compromised solution. 

The findings from this study provide valuable guidance for parameter optimization 

in laser scribing processes. By focusing on the identified optimal operating points, practi-

tioners can achieve stable and satisfactory scribing quality while considering the critical 

roles of pulse energy and pulse duration. Future work is required to further explore the 

underlying mechanisms that contribute to the observed optimal regions and investigate 

additional factors that may influence laser scribing quality, such as laser power and beam 

spot size. Additionally, advanced modeling techniques can be employed to develop pre-

dictive models that encompass a wider range of parameters and accurately estimate scrib-

ing quality based on the identified optimal operating points. This research lays the foun-

dation for further advancements in laser scribing processes and opens new possibilities 

for improved efficiency and precision in various applications. 
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