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ABSTRACT

While RRAM crossbar-based In-Memory Computing (IMC) has
proven highly effective in accelerating Deep Neural Networks
(DNNs) inference, RRAM-based on-device training is less explored
due to its high energy consumption of weight re-programming
and cells’ low endurance problem. Besides, emerging trends indi-
cate a need for on-device continual learning which sequentially
acquires knowledge from multiple tasks to enhance user’s experi-
ences and eliminate data privacy concerns. However, learning on
each new task leads to forgetting prior learned knowledge on prior
tasks, which is known as catastrophic forgetting. To address these
challenges, we are the first to propose a novel training framework,
Hyb-Learn, for enabling on-device continual learning with a hybrid
RRAM/SRAM IMC architecture design. Specifically, when training
each new arriving task, our approach first partitions the model
into two groups based on the proposed task-correlated PE-wise
correlation to freeze or re-training, and correspondingly mapping
to RRAM and SRAM, respectively. In practice, the RRAM stores
frozen weights with strong task correlation to prior tasks to elimi-
nate the high cost of weight reprogramming issue of RRAM, while
the SRAM stores the remaining weights that will be updated. Fur-
thermore, to maximize the freezing ratio for improving training
efficiency while maintaining accuracy and mitigating catastrophic
forgetting, we incorporate self-supervised learning algorithms that
are initialized from a pre-trained model for training each new task.

1 INTRODUCTION

Continual learning (CL) enables Deep Neural Network models
(DNNis) to adapt and acquire new knowledge sequentially over time
while retaining previously learned information. This characteristic
is vital for Al systems to continually enhance their knowledge and
skills throughout their operational lifespan. The main challenge
in continual learning is to prevent catastrophic forgetting, a phe-
nomenon where a model’s accuracy on previously learned tasks
significantly deteriorates when learning new tasks. To mitigate
this issue, many continual learning techniques are developed to
selectively reuse and consolidate knowledge from past tasks while
accommodating new information[1].
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From the hardware perspective, the traditional Von-Neumann
architecture (e.g., CPU, GPU) suffers from high off-chip data commu-
nication energy consumption which is approximately two orders
of magnitude higher than the actual data processing. This phe-
nomenon, often referred as the “Memory Wall", poses a significant
challenge in achieving efficient and energy-conscious DNN compu-
tations. Recently, the RRAM crossbar-based In-Memory Computing
(IMC) [2-4] has proven highly effective in expediting the inference
process of DNNs, owing to its high storage density, strong parallel
computing capacity, and low energy consumption. For example, re-
lated to continual learning, [5] proposes an RRAM crossbar column-
wise sparse training framework which performs sparse training for
each task offline and then maps the well-trained weights to RRAM
crossbar for online inference.

Different from online inference, on-device continual learning
involves sequentially training the DNN model online for each task,
which requires to update weights frequently for optimizing the loss
function. Due to the fact that the RRAM write operation (i.e., weight
reprogramming) suffers from high latency and energy consumption,
performing weight updating in the RRAM-based IMC is quite expen-
sive or even unacceptable. Therefore, how to avoid the expensive
weights updating meanwhile taking advantage of its computing
and memory capacity becomes the critical issue for on-device DNN
training in the IMC. Furthermore, from algorithm perspective, since
continually training DNN models on new tasks can result in the
forgetting of previously learned knowledge (a.k.a catastrophic for-
getting), on-device continual learning needs to improve the training
efficiency without sacrificing the learning performance.

To tackle these crucial challenges for enabling on-device contin-
ual learning, we are the first to propose Hyb-Learn, a novel training
framework with designing a hybrid RRAM/SRAM IMC system.
Specifically, the architecture of the hybrid RRAM/SRAM IMC sys-
tem includes RRAM-based IMC macros and SRAM macros with the
corresponding auxiliary unit and control logic, where we treat both
RRAM and SRAM-based macros as the MAC engine which uses pro-
cessing element (PE) as the basic computing unit. Importantly, these
two types of macro have different objectives: RRAM-based PE aims
to maximize the data computing in parallel, while the SRAM PE is
to modify/update the stored data with less power. Furthermore, to
support continual learning with co-design of hardware and soft-
ware, by taking advantage of the proposed Hybrid RRAM/SRAM
IMC system, the proposed training framework incorporates two
important strategies:

1) Model weights freezing and partition via PE-wise task
correlations. Prior to train each new task, we propose a model
weight freezing and partition mechanism that separates the weights
into two distinct groups: trainable weights and frozen weights,
where the trainable weights are mapped to SRAM, and the frozen
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Figure 1: RRAM based In-Memory-Computing Systems

weights are mapped to RRAM. This freezing and partition is based
on a defined PE-wise task correlation between the current task and
previously trained tasks with the objective to only update the un-
correlated weights. By doing so, we can guarantee that the frozen
weights will not be updated during training, avoiding high RRAM
re-programming time and energy consumption, importantly also
mitigating catastrophic forgetting in continual learning. Further-
more, we propose to freeze the weights in processing element wise
(i.e., PE-wise), which is the basic parallel computing core in our
hybrid RRAM/SRAM architecture. It helps to further improve the

efficiency of the computation and data flow.
2) Continual learning via self-supervised learning. While

weight freezing can enhance training efficiency, it generally leads
to a degradation in DNN model accuracy especially large weight
freezing ratio. To mitigate this issue, we employ a self-supervised
learning algorithm [6] to train the model for each new task. It
helps the model learning more general features that are proven
to mitigate catastrophic forgetting and more robust when weight
freezing is applied. Furthermore, we enhance the PE-wise weight
freezing ratio to reduce the computation cost by initializing the
weights using a pre-trained model.

2 RELATED WORKS

2.1 RRAM and Hybrid DNN accelerators

Attracted by high energy efficiency, storage density, and parallelism,
existing RRAM-based IMC accelerators have primarily focused on
DNN inference, employing pre-trained models for single-time de-
ployment [3, 7-9]. RRAM-based IMC is an attractive solution for
DNN inference due to its high parallelism and dense storage. Fig. 1
illustrates the basic architecture of the 1T1R crossbar array, which
enables efficient vector-matrix multiplication (VMM) through paral-
lel analog computation along the column. In the RRAM-based IMC
accelerator, the weights of the pre-trained DNN model are mapped
as the conductance values, denoted as G, within RRAM cells. The
input vector is represented by analog voltage pulses, referred to as
Vin [4], which are applied through the horizontal select line (SL).
The output of the vector-matrix multiplication (VMM) is obtained
by computing the product current between the incoming voltage
Vin and the programmed conductance G along the bit line (BL).
To explore the on-device learning, XMA[8] have been devel-
oped for multi-task adaptation. It learns new tasks offline, training
column-wise masks while keeping the backbone model static. By
enabling columns for new tasks or shifting partial accumulated
results, it bypasses the need for expensive reprogramming and thus
enhances energy efficiency. In a different approach, [9] proposes
a method that, instead of calculating accurate gradients, deter-
mines only the sign of the gradient. During the on-chip training
phase, this method involves array-level weight updates, where each
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RRAM device’s resistance is gradually adjusted based on the gradi-
ent sign, without verification. Although this technique has shown
effectiveness on small-scale data, its simplicity may not guarantee
convergence when applied to training larger models.

In addition, a few hybrid DNN accelerators are proposed with
different objectives. [10] develops a hybrid RRAM/SRAM IMC de-
sign for robust DNN acceleration. To mitigate the post-mapping
accuracy loss in DNN, it trains models on RRAM and SRAM IMC
memories respectively. Then it sums the outputs from both sides
to create an ensemble model with bit-level compensation. [11] pro-
poses to accelerate DNN on-device training with non-volatile and
volatile memory-based hybrid precision synapses.

2.2 Continual learning

Continual learning aims to continually learn multiple tasks that
arrive in a sequential manner without forgetting prior learned
knowledge. Plentiful continual learning methods have been devel-
oped in supervised learning with the main objective of mitigating
cartographic forgetting when learning new tasks [12-14]. and can
be generally divided into three categories: 1) Regularization-based
methods (e.g., [15]) preserve knowledge from old tasks by incor-
porating an additional regularization term in the loss function. 2)
Structure-based methods (e.g., [12, 16]) adapt model parameters or
architectures sequentially as new tasks are introduced. 3) Memory-
based methods can be further divided into memory-replay methods
and orthogonal-projection based methods. Memory-replay meth-
ods (e.g., [17]) store and replay data from old tasks when learning
new tasks. On the other hand, orthogonal-projection based meth-
ods (e.g., [13, 14]) update the model for each new task in a direction
orthogonal to the subspace spanned by the inputs of old tasks.

Different from supervised learning, self-supervised learning is an
unsupervised learning scheme aimed at learning visual representa-
tions without the need for costly data labeling. Recent advances [6]
have demonstrated comparable or even superior performance com-
pared to supervised representation learning. As a representative
work, Barlow Twins [6] aims to minimize redundancy between
components of embedding vectors while preserving maximum in-
formation. This is achieved by minimizing the cross-correlation
matrix, computed between the outputs of two identical networks,
to make it closer to the identity matrix. One advantage of Bar-
lowTwins is that has no need for large batch size and negative
samples compared to prior works. Thus, in this work, we adopt it as
base learning method for self-supervised continual learning. More
recently, several works [1, 18] have emerged to address the problem
of self-supervised continual learning. These studies demonstrate
that self-supervised continual learning can mitigate catastrophic
forgetting and learn more general representations compared to su-
pervised continual learning. Specifically, CaSSLe [18] and PFR [1],
employ a temporal projection module to ensure that newly learned
feature spaces preserve information from previous tasks. LUMP [19]
adapts the Mixup technique [20] to interpolate data between the
current task and instances from previous tasks. This interpolation
is achieved by combining the current task data with samples from
a replay buffer, reducing catastrophic forgetting. To improve the
training efficiency of the self-supervised continual learning, [21]
proposes layer-wise freezing based on task correlations to freeze
partial layers for training each task.
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3 METHODOLOGY
3.1 Overview of Hyb-Learn framework.
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Figure 2: Overview of the framework.

In this work, we propose Hyb-Learn, a novel training framework
to enable on-device continual learning with hybrid RRAM/SRAM
IMC design. In practice, given new tasks ({71, 72, ..., 7y }) that ar-
rive sequentially, Hyb-Learn aims to continually perform on-device
training for each task in sequential order without forgetting prior
learned knowledge. As shown in Fig. 2, the overflow of Hyb-Learn
can be divided into two steps: 1) model freezing and partition via
PE-wise task-correlation and 2) self-supervised learning where only
trainable weights in SRAM are updated. In the following, we will
dive into these two key steps of the proposed Hyb-Learn.

Model freezing and freezing via PE-wise task correlation. Given a
new arriving task t;, we first divide the DNN model weights into two
groups in processing elements (PEs) granularity: trainable weights
and frozen weights. The PE serves as the fundamental computing
core in hybrid RRAM/SRAM architectures. To take advantage of the
hybrid IMC design and avoid high-cost write operations in RRAM,
we partition the frozen weights into RRAM PEs and the trainable
weights into SRAM PEs. Furthermore, to determine the mapping
partition to RRAM and SRAM, we propose PE-wise task correlation
to partition weights in PE-wise. Specifically, the weights that are
partitioned into RRAM (frozen) are highly correlated to the current
task, while the low-correlated weights will be mapped into SRAM
that needs to be updated for learning new task.

Continual learning via self-supervised learning. After partition-
ing certain weights into RRAM and SRAM PEs, we proceed with
self-supervised learning to train the DNN model for each new task.
Specifically, we employ the BarlowTwins [6] algorithm as the back-
bone self-supervised learning method to train the model. It is im-
portant to note that the weights located in the RRAM PEs are frozen
and used only for forward propagation, while the weights in the
SRAM PEs are updated during the training process which largely
reduces the computing cost. In the following, we will introduce the
detailed techniques of each component respectively.

3.2 Model freezing and patition via PE-wise task
correlation

To maximize training efficiency with hardware and software co-
design meanwhile mitigating catastrophic forgetting in continual
learning, we propose task-correlated PE-wise weight freezing
to freeze the large portion of weights that are “highly correlated”
with prior currents and only fine-tune a small number of uncorre-
lated weights. The intuition of such design is that freezing “highly
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correlated" weights can preserve the prior learned knowledge, lead-
ing to mitigating catastrophic forgetting, meanwhile only updating
the uncorrelated weights enable better learning capacity for current
task. Specifically, we formally define the PE-wise correlation ratio
between the current and prior tasks as:

||Proj5§ (VL (W;_l))||2
r‘ = 3
TN L)l

where Proj si denotes the projection on the input subspace S; of

1)

prior tasks (1,2, ...t — 1) on ith PE, and W£—1 represents the ith PE-
wise weight in the model before learning task t. Here Projs(A) =
AB(B)’ for some matrix A and B is the bases for S. Due to the
fact that the gradient lies in the span of the input [22], if the task
correlation ratio r; € (0,1) has a large value, it implies that the
current task ¢t and prior tasks may have sufficient common bases in
ith PE-wise weight between their input subspaces and hence are
strongly correlated. Based on this, the proposed task-correlated PE-
wise weight freezing method freezes partial PE-wise weights with
the highest correlation ratios during new task learning to enhance
the training computation and memory efficiency. After that, we
apply a TopK function according to the gradient projection norm
magnitude in PE-wise to select the PEs to freeze.

F = {i|P} € TopK(Pr, k)} @)
where P; denotes a set of global projection norms across all layers
for current task ¢ and P; is the simplified denotation of

IIProjgi (V-Le(wi_1))ll2 3)

for ith PE-wise weight. k is a pre-defined PE-wise freezing ratio
(e.g., 0.5, 0.6, etc..) which denotes the global ratio of the number
of frozen PE-wise weights. In practice, we use a fixed ratio that is
shared by all tasks.

The proposed PE-wise freezing approach enables efficient train-
ing for each new task. However, as shown in Eq. (1), due to the
varying task correlation between the current task and prior tasks,
the indexes of the frozen PEs differ for different tasks. This means
that after training the prior task, some of the PE-wise weights in
RRAM become trainable weights for the current new task t;, and
vice versa for SRAM. To address this issue, we introduce a technique
called weight swapping to partition weight in an efficient way. In
practice, after performing the task-correlated weight correlation
analysis as discussed above, we swap the newly determined train-
able PE-wise weights in RRAM, for current task, with the frozen
weights in SRAM. This swapping ensures that the weights identi-
fied as frozen in both prior task and current task remain in RRAM
without incurring any additional reprogramming costs. By apply-
ing the weight swapping technique, we can minimize the cost of
one-time weight re-partition before new task learning.

From the hardware perspective, the proposed PE-wise weight
freezing naturally aligns with the hybrid RRAM/SRAM IMC de-
sign. For each new task data, the weights are partitioned into two
groups: trainable weights and frozen weights, which can be effi-
ciently mapped in the corresponding PEs. In practice, the frozen
weights are allocated to RRAM PEs, while the trainable weights are
stored in SRAM. During the training of each task, the weights in
RRAM PEs are frozen, meaning they do not contribute to the weight
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updates for backpropagation. This maximizes the computational
capacity of the system and, importantly, eliminates the need for
extensive and costly RRAM cell re-programming.

3.3 Self-supervised continual learning with
pre-trained model

Although beneficial for training efficiency, weight freezing can often
result in an accuracy degradation of learning new task. Motivated
by the recent self-supervised continual learning works [1, 18, 21, 23],
which shows that the self-supervised learning learns more general
features that own higher correlations between tasks leading to less
catastrophic forgetting. It implies that self-supervised continual
learning has the potential to freeze more weights compared to
supervised learning. Thus inspired, we employ the self-supervised
learning algorithm to train the model for each task. In general, self-
supervised continual learning does not require data labels during
training. The objective is to learn a general representation invariant
to augmentations on all tasks, which can be formulated as:

T Nt
minw, > 3 LssL(f(x},x7 ) (@)
t=1 i=1
1

1,i ,
specifically, we utilize the BarlowTwins algorithm [6] which mini-

mizes the redundancy between the embedding vector components
while preserving the maximum information. It achieves this by min-
imizing a specific loss function that involves the cross-correlation
matrix computed between the outputs of two identical networks.

Moreover, to maximize the freezing ratio of weight freezing, we
initialize the weights using a pre-trained model. By doing so, we can
enhance the PE-wise weight freezing ratio to reduce the computing
cost meanwhile achieving better overall accuracy.

4 HYBRID RRAM/SRAM HARDWARE

Fig. 3 represents the overall architecture of the hybrid RRAM/SRAM
system. Both RRAM-based PEs and SRAM-based PEs could process
the required forward or backward computation along with input
buffer to temporarily store the intermediate data.

Fig. 3(b) shows the RRAM-based IMC macro to perform the MAC
(multiplication and accumulation) operation where the weight is
stored in the RRAM devices as the conductance located at the
intersection of horizontal worldlines (WLs) and vertical bitlines
(BLs). The inputs (images or activation from the last layer) are
fed to the SL in a bit-serial manner. Then the MAC operation is
done based on Ohm’s law at the analog domain where the 1-bit
multiplication is done at the intersections based on I = V X G. Next
the BL accumulates all the currents together to realize the ADD
operation. The ADC converts the analog current result back to the
digital domain. Finally, the shift-and-add circuit works together
with the bit-serial input scheme to generate the proper MAC result.
The MAC result is temporally stored in the macro buffer and is
waiting for post-process (concatenate/add with the result from
other PEs to be able to send to the next module).

Fig. 3(c) shows the adopted SRAM PE design. For better reliability
and to reduce the design complexity, we did not adopt the new rising
in-SRAM computing circuits. Instead, we choose the typical design
which has the SRAM array to store the correlated weights, and the

where x, ; and x? ; are augmented images generated from x; ;. More
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digital PE units are placed close by to maximize the throughput
and utilize the memory bandwidth. Each PE has the multiplier
and adder to perform the MAC operation. Thus the PEs associated
with the same SRAM array are able to run independently and in a
parallel fashion. Note, the adopted SRAM PE is a general PE since
it supports both multiplication and addition with arbitrary data
from the SRAM array and input buffer. It could be used to replace
RRAM PE for convolution and backpropagation, or used as extra
computing resources to compensate the computing error due to
RRAM PE[10, 11]. Here we treat both RRAM and SRAM-based PEs
as the MAC engine, but with different properties: RRAM-based PE
leverages the Non-Volatile Memory’s zero leakage and the analog
domain computation maximize the parallelism by turning all the
devices on at the same time while the SRAM PE is more general
and requires much less power to modify/update the stored data. To
make data partition more efficient between SRAM PE and RRAM
PE, we design both PEs hold the same amount of data. For the
RRAM PE, each PE holds a 64 X 64 RRAM array where each RRAM
cell can represent 4 different resistance levels. Such a 64 X 64 RRAM
array is equivalent to 8Kb. Thus, we choose the SRAM array is the
same as 8Kb, a SRAM PE can hold all data from a RRAM PE and
process the same computation. If they both hold the same weight
and fed the same input, the computation result is identical.

4.1 Training dataflow

Fig. 4 shows the dataflow during the backpropagation of the training
process. Although only partial weights need to be updated, it still
needs to backpropagate the loss with the transposed weight matrix
for all layers. For the SRAM PE, transpose the weight can be easily
done with a pre-defined access order. However, performing the
MAC operation with the transposed weight in RRAM PE is not an
easy job. Usually, extra accessing transistor, transposed WL/BL/SL
decoders, ADC, and other peripherial circuits are necessary to
design the tranposable RRAM PE. Not mentioning the extra effort
for the routing. To simplify the design, we choose to use extra
RRAM PE instead of designing the tranposable RRAM PE. For each
64x64 weights, we use two RRAM PEs to store the weight. One
RRAM PE stores the weight as the matrix while the other RRAM PE
stores the transposed weight matrix. Thus RRAM PEs will be used
in forward and backward pass separately. Again, the weight stored
in RRAM PEs are only involved in the activation/loss propagation.
Those weights are frozen in RRAM arrays and will not be updated.
Only the SRAM PE will be participated in the weight gradients
calculation and weight update.

5 EXPERIMENT AND EVALUATION
5.1 Algorithm Experiment

We evaluate the algorithm performance of the proposed framework
using ResNet-18 [24] architecture on split CIFAR-100. We follow
the training and evaluation setup of [19] and learned models are
evaluated with KNN classifier [25]. In addition, we initialize the
model with the pre-trained weight by using ImageNet-1K dataset.
Two metrics are used to evaluate the performance: Accuracy, the
average final accuracy over all tasks, and Forgetting, which measures
the forgetting of each task between its maximum accuracy and
accuracy at the completion of training. Accuracy and Forgetting
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Accuracy = T Zi:l ATt Q)
) 1 T-1
Forgetting = -1 Zi:l max; (A1, — Aii) (6)

where T is the number of tasks, At ; is the accuracy of the model
on i-th task after learning the T-th task sequentially.

Table 1 present the experimental results for accuracy and forget-
ting under different configurations. The “weight update" column
indicates the ratio of non-frozen PE-wise weights, where “100%
weight update” means re-training the full weights for each task.
The terms “FP32" and “INT8" refer to the model weights represented
by 32-bit floating points and 8-bit integers, respectively. First, the
INT8 achieves the same accuracy as FP32 for all different weight up-
date ratios. To demonstrate the effectiveness of using a pre-trained
model for initialization, we compare the results w/wo a pre-trained
backbone model for the case of 100% weight update. As shown in
Table 1, utilizing a pre-trained model significantly increases the
accuracy by 1.1%. Moreover, even updating only 50% of the weights,
the accuracy of the pre-trained model surpasses that of the non pre-
trained model with 100% weight update. When only updating 10%
of weight, we can still obtain 76.79% accuracy which demonstrates
that the prosed PE-wise freezing preserves the “important” weight
for each task. Furthermore, we conduct an ablation study to evalu-
ate the impact of the weight update ratio under 5 configurations
(i.e., 100%, 60%, 50%, 20%, and 10%). It can be observed that as the
weight update ratio decreases, the accuracy gradually decreases.
However, the forgetting also decreases, indicating a reduction in
catastrophic forgetting. This is attributed to a larger proportion
of fixed weights when using a smaller weight update ratio, which
helps mitigate the occurrence of catastrophic forgetting.

5.2 Hardware Evaluation

There are three different layers in the ResNet-18 based backbone
models: 3x3 Conv2D, 1x1 Conv2D as residual connection, and Lin-
ear layers. All those layers’ in/out channels are the power of 2 (32,

Table 1: Accuracy/forgetting of the learned model on Split
CIFAR-100

Pre-train? ‘ N/A ‘ With Pre-trained backbone ‘

100% |

|

| Weight Update | 100% | 60% | 50% | 20% | 10% |
| FP32
\

| 79.03/2.29 | 81.4/2.52 | 81.19/2.17 | 80.64/1.8 | 77.69/1.26 | 76.79/1.54 |
INT8 | 79.0/2.23 | 8138/2.54 | 81.13/2.15 | 80.63/1.8 | 77.6/1.41 | 76.65/1.68 |
Table 2: Comparison with other IMC Platforms
Reference Ours TIME[26] PipeLayer[3] Science[9]
Device RRAM+SRAM RRAM RRAM RRAM
RRAM Structure 1TIR 1TIR 1T1IR 2T2R + 1ITIR
Learning Capability Y Y Y Y
Weight update p 1 | backp signed based weight update
oo Only Update Re-Program Re-Program Re-Program
Learning Scheme SRAM Weights RRAM RRAM RRAM
RRAM write freq. per iter. 0 3 3 1
Normalized Training Eng, ; E;g’/ ng 108 108 136
Normalized Inference Eng. |+ :;g; ixm 1 1 1
Normalized Area léz(gi)(z/z%sm% ) 1 1 1.5

64, 128, 256, etc). To maximally utilize the internal memory band-
width, layer weights are partitioned alone the in/out channel-wise.
Both residual layers and linear layers could be easily mapped on the
64 X 64 RRAM array by dividing the in/out channels by 64. For the
3x3 Conv2D kernel, a 64 X 64 RRAM array can map a 3X3x7X64
portion which equals to 63X64 and leave one row spare for defect
rescuing[27]. The hardware performance of different algorithms
is evaluated based on the circuit-level simulator NeuroSim [28].
The quantized targeted DNNs are characterized by the 2-bit per
cell HfO, 1T1R RRAM devices, the RRAM array characteristics are
adopted from[8]. Each RRAM column is connected to a 5-bit suc-
cessive approximation register (SAR) analog-to-digital converter
(ADC). To avoid frequent off-chip memory access, we choose the
global buffer as the same size as the largest feature map during the
inference process.

Fig. 5(a) shows the normalized energy cost of weight update dur-
ing on-device learning. The RRAM only means the conventional
RRAM-based IMC scheme that all the weights are stored and up-
dated in the RRAM array during training. Other bars show the nor-
malized weight update energy saving for our hyb-learn framework
with different percentages of SRAM PEs for on-device learning. It
could be seen that the smaller ratio of SRAM PE indicates larger
portion of weights mapped to RRAM PEs are frozen, thus more
energy saving during training. For example, with 10% SRAM PE
ratio, 90% of weights are frozen during training, achieving around
13.6X energy cost reduction. Fig. 5(b) shows the total area usage
while 50% weights are stored in SRAM PEs and 50% weights are
stored in RRAM PEs.
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Figure 5: (a) Weight update energy (b) Area breakdown.

Table 2 presents a comparison of our proposed hybrid RRAM-
and SRAM- IMC design with the state-of-the-art IMC designs that
facilitate on-device learning. The training schemes employed in
these state-of-the-art IMC designs require extensive reprogram-
ming of RRAM devices, posing significant challenges in terms of
both the endurance of RRAM devices and the high energy consump-
tion associated with training.

The TIME[26] and PipeLayer[3] projects suggest conducting
both forward and backward operations within a 1T1R crossbar ar-
ray. However, this approach requires three RRAM write operations
for each weight update due to the necessary transpose operation.
These operations include writing transposed weights for error/loss
propagation, writing transposed error/loss to calculate the gradi-
ent, and updating the weight. As RRAM devices typically consume
much more energy during writing compared to SRAM, this RRAM-
based on-device learning approach tends to be the most energy-
intensive for training. A recent advancement is highlighted in a
Science paper[9], which introduced the novel STELLAR learning
scheme. This method diverges from traditional backpropagation-
based learning by using the sign of the input, output, and error to
determine the update direction for each RRAM device. A specially
designed CMOS weight updating circuit facilitates this calcula-
tion. By eliminating the need to transpose weights and errors, this
scheme reduces RRAM write operations to once per iteration, sig-
nificantly lowering power consumption during training. However,
while this modified learning scheme has shown promise in smaller
datasets like MNIST, its effectiveness and convergence for training
larger models and datasets have not yet been conclusively estab-
lished. Finally, our proposed One-time re-map and learning on
SRAM method, not only mitigate the endurance demand of RRAM
but also leverages the frequent weight update on the low cost SRAM
makes the on-device learning easier to implement.

6 CONCLUSION

In this work, we present Hyb-learn, an innovative framework de-
veloped for on-device continual learning, utilizing a hybrid RRAM
and SRAM IMC architecture. With the arrival of sequential tasks,
Hyb-learn features a unique hybrid design that smoothly integrates
model partitioning and self-supervised learning initialization, real-
ized through a strategic co-design of both software and hardware.
Our experimental results highlight that the Hyb-learn framework
not only achieves high accuracy but also effectively minimizes for-
getting, even with 50% of the weights being frozen. Additionally, we
offer a detailed analysis of the framework’s energy efficiency and a
comprehensive breakdown of the hardware area, underscoring the
practicality and effectiveness of Hyb-learn in on-device learning
applications.
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