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ABSTRACT

With the prosperous development of Deep Neural Network (DNNs),
numerous Process-In-Memory (PIM) designs have emerged to ac-
celerate DNN models with exceptional throughput and energy-
efficiency. PIM accelerators based on Non-Volatile Memory (NVM)
or volatile memory offer distinct advantages for computational
efficiency and performance. NVM based PIM accelerators, demon-
strated success in DNN inference, face limitations in on-device
learning due to high write energy, latency, and instability. Con-
versely, fast volatile memories, like SRAM, offer rapid read/write
operations for DNN training, but suffer from significant leakage cur-
rents and large memory footprints. In this paper, for the first time,
we present a fully-digital sparse processing in hybrid NVM-SRAM
design, synergistically combines the strengths of NVM and SRAM,
tailored for on-device continual learning. Our designed NVM and
SRAM based PIM circuit macros could support both storage and
processing of N:M structured sparsity pattern, significantly improv-
ing the storage and computing efficiency. Exhaustive experiments
demonstrate that our hybrid system effectively reduces area and
power consumption while maintaining high accuracy, offering a
scalable and versatile solution for on-device continual learning.

1 INTRODUCTION

The rapid advancement of DNNs in various domains has neces-
sitated the development of specialized hardware accelerators to
manage their substantial computational demands. Among these,
NVM based PIM accelerators have gained prominence, especially
for DNN inference. The energy efficiency and high-density stor-
age of NVM like Resistive Random Access Memory (RRAM)[1-4]
and Spin-Transfer Torque Magnetic RAM (STT-MRAM)[5-10] have
enabled the creation of compact, power-efficient memory devices.
However, leveraging these technologies for DNN training encoun-
ters significant challenges due to their inherent characteristics.
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The core challenges with NVM in DNN training is its high write
energy, latency, and unstability[4, 11, 12]. Training DNNs involves
frequent updates to the weight memory, which are highly write-
intensive operations. NVMs, optimized for read-intensive tasks,
incur higher energy consumption and slower write speed com-
pared to fast volatile memories, which becomes a bottleneck in
training where speed and efficiency of weight updates are crucial.
Additionally, DNN training requires the support of transpose matrix
operations during backpropagation. Given the memory’s write lim-
itations, designing NVM-based accelerators to efficiently manage
these operations also brings higher architectural complexity. More-
over, the endurance of certain types of NVMs, like RRAM, where
each cell can sustain a finite number of write operations, becomes a
critical concern due to the frequent weight updates in the training
process. In contrast, volatile memory technologies, like SRAM, excel
in scenarios requiring rapid operation and frequent data rewriting.
Their low latency and fast write capabilities align well with the it-
erative nature of DNN training algorithms. However, these benefits
are offset by issues such as significant leakage currents leading to
higher power consumption, and larger memory footprint, which
poses challenges in scalability and integration[13-15].

To address these challenges, in this work, for the first time, we
present a fully-digital hybrid sparse PIM architecture that combines
the strengths of both NVM and SRAM technologies, tailored for
both DNN sparse inference and training for on-device continual
learning. To further improve efficiency, we design both the NVM
and SRAM based PIM circuit macros to support storage and pro-
cessing with popular N:M structured sparse weight encoded with
compressed sparse column (CSC) format. Sparsity in neural net-
works, where a significant portion of the weights are zeros, offers
a great reduction in computational and storage requirements.

Our proposed hybrid architecture is effective and demonstrated
for the state-of-the-art on-device continual learning application,
where we exploit the high density and low leakage benefits of
NVM based PIM processing element (PE) for storing and processing
the offline-learned backbone network with fundamental features,
where such basic model weight parameters are frozen during new
downstream task learning. While, the SRAM based PIM PEs are
used to implement small amount of residual adaptors for learning
the new data features, leveraging its fast and efficient write capabili-
ties. To facilitate smoother integration and enhance scalability, both
the SRAM and NVM-based PEs have been implemented in the digi-
tal domain. Systematic and exhaustive experiments are conducted
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using a MRAM-SRAM prototype design. The results clearly demon-
strate that our novel hybrid design, combined with the strategic
mapping method and N:M sparse processing, significantly reduces
both area and power consumption for on-device continual learning.

2 BACKGROUND & RELATED WORKS

2.1 Processing-In-Memory

2.1.1 Digital SRAM-based PIM. SRAM based PIM has been lauded
as a promising approach to accelerate small scale compute intensive
applications. SRAM being mature CMOS technology has popular-
ized digital In-Memory compute and has shown to scale well in
smaller nodes [14, 15]. There are analog counter parts to SRAM
based compute but they incur a significant accuracy drop due to
Analoge to Digital Converter (ADC) noise and huge power from
the high-precision ADCs. Digital on the other hand can support
high precision using off-the-shelf adder trees, but adder trees still
dominate the area when compared to the bit-cell area. To reduce
the adder tree cost per bit-cell, other works tend to time-multiplex
the memory with the compute hardware to amortize the cost. But
this just ends up scaling upon memory w.r.t. compute hardware.
Since sparsity is a key component in modern DNNs, we take a
different approach of processing the sparse-encoded weights in
memory to improve storage density and time-multiplex sparsity,
i.e. time-share the compute hardware w.r.t. to compressed weights
similar to [13, 16]. But unlike supporting a proprietary compres-
sion format, we design to use a popular compression format called
Compressed sparse column (CSC) for high adaptability.

2.1.2 MRAM-based PIM. Magnetoresistive random-access mem-
ory (MRAM) is an emerging NVM, where the basic memory cell
device is Magnetic Tunnel Junction (MTJ). MT]J typically consists
of multiple layers where two ferromagnetic layers sandwich a thin
insulating layer. One of the two ferromagnetic layers is a perma-
nent magnet with a particular polarity called ‘fixed layer’. Another
ferromagnetic layer’s magnetization can be changed by external
stimulus called ‘free layer’. When the free layer’s magnetization
toward opposite to the fixed layer, this MT] is in Anti-Parallel State
(AP), making it have high electrical resistance. On the contrary,
when the free layer’s magnetization has the same polarity as the
fixed layer. This MT]J is in Parallel State (P), with a relatively low
electrical resistance.

Unlike other popular NVMs, like RRAM based PIM designs those
are often analog, leveraging RRAM’s capability to handle multi-
ple resistance levels[1-4], MRAM-based PIM designs are predomi-
nantly digital due to MRAM’s inherent binary nature (AP/P status).
In this work, we mainly use MRAM as the major NVM technology
for the purpose of all digital PIM design. Existing MRAM-based
PIM accelerators primarily focus on DNN inference using one time
deployment of pre-trained models [5-10]. Computation predomi-
nantly occurs in or near memory array, employing modified sense
amplifiers for executing bit-wise operations essential to neural net-
work processing[5, 6]. Additionally, more complex calculations are
handled by dedicated circuitry such as adder trees, shift registers,
and accumulators, located close to MRAM arrays to leverage the
benefits of in/near-memory processing[7-10]. This architecture
aims to minimize the energy and latency costs associated with data
movement in traditional computing systems, making it a promising
approach for efficient neural network hardware.
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Figure 1: The overall architecture of the hybrid design.
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Figure 2: N:M Sparse Matrix Multiplication
2.2 Hybrid PIM design

[17] proposes a hybrid design to accelerate DNN on-device train-
ing with non-volatile and volatile memory-based hybrid precision
synapses, where the RRAM and capacitor are combined to lever-
age the non-volatility and large dynamic range of RRAM, together
with the symmetric charging/discharging behavior of capacitor.
Another hybrid RRAM/SRAM approach is to partition weights bit
precision where the RRAM is for MSBs and the SRAM/capacitor
is for LSBs. [18] develops a hybrid RRAM/SRAM PIM design for
robust DNN acceleration. To mitigate the post-mapping accuracy
loss in DNNs, it trains models on RRAM and SRAM PIM memories
respectively, and then sums the outputs from both sides to create
an ensemble model with bit-level compensation. Both works focus
on using hybrid RRAM/SRAM to partition weights bit precision
where the RRAM is for MSBs, while SRAM/capacitor are for LSBs.
Differentiating from prior hybrid works, our approach has novel
circuit designs for all-digital NVM and SRAM based sparse-PIM
circuit macros to directly store and process sparse-encoded weight
parameters and further supporting on-device continual learning.

2.3 N:M Structured Sparse Neural Network

Pruning weights from a neural network is one of the most popular
strategies to improve both memory and compute efficiency. Unlike
unstructured pruning, structured pruning is favored for its efficient
memory access and simplicity in hardware implementation. A re-
cent concept of N:M structured sparsity [19] is proposed, where
at most N out of every M (contiguous, aligned) elements are non-
zero, promising enhanced computational efficiency with minimal
accuracy loss. As exemplified by NVIDIA, its Ampere GPU archi-
tecture introduces a 2:4 sparsity pattern in its Tensor Cores[20],
effectively reducing the required multiply-and-add operations by
half and potentially doubling performance over equivalent dense
matrix multiplications. Recognizing the current absence of PIM
hardware designed to capitalize on N:M structured sparsity, our
work aims to bridge this gap through designing sparse PIM circuits.

3 MRAM-SRAM HYBRID PIM DESIGN

Figure 1 illustrates our hybrid MRAM-SRAM based sparse PIM ar-
chitecture. It integrates off-chip memory, a scheduler, and a cluster
of hybrid MRAM/SRAM cores interconnected by buses. The off-chip
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Figure 3: SRAM based sparse PE design
memory, marked as G, is responsible for storing local data and pa-

rameters. The scheduler, denoted by o manages data distribution
and orchestrates execution in a Single-Instruction-Multiple-Thread
(SIMT) manner, maximizing hardware parallelism. Each core, la-
beled e is equipped with a data buffer, control units (Ctrl.), shared
accumulators (Acc.), and multiple processing engines (PE) con-
nected via a bus, specialized for sparse matrix operations. The data
buffer facilitates pipelined execution in a row-stationary approach
[21], temporarily buffering input and output activations. Note that,
the computation is fully digital and completely supported by the
compute logic. As discussed earlier, this hybrid architecture could
be adapted to different NVM technologies, like MRAM or RRAM.
Here in this work, we use MRAM as a digital NVM case study to
evaluate its performance and conduct comprehensive analysis.

To harness the advantages of different memory technologies, two
types of sparse PEs are designed: e the SRAM sparse PE and e
the MRAM sparse PE. Both are capable of storing and processing
N:M sparse matrix multiplication within PE. As shown in Fig. 2
e, during sparse multiplication, both the sparse non-zero weight
and its corresponding index are involved to only process non-zero
operands, rather than whole matrix multiplication as in traditional
dense approach (Fig. 2 G), to reduce complexity. The follow up

shift-add operations are the same as demonstrated in Fig. 2 e The
detailed circuit designs SRAM and MRAM sparse PEs are explained
respectively below:

3.1 Sparse Matrix Multiplications in SRAM PE

The architecture and circuits of a fully digital bit-serial SRAM based
sparse PE is shown in Fig. 3 o Each SRAM PE is sized to be
128x96. Out of which, 128x8x8 is for weight storage and 128x8x4 is
for index storage, to support 8bit (i.e., INT8) weight resolution and
4 bit index range for up to N:16 structured sparsity pattern as will
be explained in the mapping section. Each 128x12 column group
consists of an index generator and an adder tree, whereas each
12b Weight index pair is padded with a comparator for decoding
the compressed weights. All the column groups in the PE deposit
onto a shift accumulator for input precision compensation and a
row-wise accumulator for edge cases of uneven sparsity. Fig. 3 e

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

shows the bit-cell circuit schematic. The source terminal of T1 is
always grounded and the source of T2 is the row-wise shared input
word line (IWL). The drain is shared across T1 and T2. Depending
on the weight stored in the bit-cell, either the T1 or T2 is active.
Thus, they perform a pass-gate based static AND operation against
weight and the IWL, serving as the 1-bit in-memory partial product
compute for digital multiplication.

Prior PIMs rely on the structure of the matrix to perform matrix
multiplications in-memory [14, 15, 22], which does not work for
sparse processing since compression breaks the matrix structure.
Compressed Sparse Column (CSC) compresses a matrix along the
column direction, there by preserving the column structure (multi-
plications) but breaking the row structure (accumulations). Simi-
larly, Compressed Sparse Row (CSR) works the other way around.
Digital PIMs usually perform multiplications through a fixed shared
row-wise word lines and accumulations through column-wise adder
trees. So prior to mapping, we need to determine the ideal compres-
sion structure to first map to the memory array. CSR as mentioned
before breaks multiplications, column-wise matrix indices are used
to encode and compress CSR. But breaking multiplications will re-
quire input reordering and an additional buffer to accumulate and
write-back every cycle. Whereas CSC breaks accumulations only,
in this work, we choose to gate accumulations of particular indices
to enable sparse matrix multiplication using CSC. Fig. 4 describes
how a sparse weight matrix is CSC compressed and mapped to the
PIM design. As the term CSC suggests the sparse weight matrix is
compressed in the column-wise direction. For sparse processing,
we get two weight matrices namely the compressed weight matrix
and the corresponding index matrix pair.

The steps to perform CSC sparse matrix multiplication as follows:

e Step 1: Parallel in-memory dot-products.

e Step 2: Index generation and compare.

e Step 3: Accumulate selected indices and shit accumulate for
input precision compensation.

First, the inputs (i.e. activations) are streamed and applied on the
input word lines of every row in bit-serial. The 8T bit-cells perform
parallel AND operations as described earlier with the shared input.
Next, the column-wise index generators generate column specific
indices in each cycle and send it to the comparators. The compara-
tors compare this index against the index stored in the 6T bitcells
adjacent to the 8T bit-cells. If the comparison is successful, then
the results from step-1 are sent to the adder-trees for accumulation.
These comparisons happen in all 128 rows of a column group for 1
index in parallel, and also across 8 columns for 8 unique indices also
in parallel. In step-3, the selected indices are sent to the adder tree
for accumulation followed by the shift accumulator to compensate
the cycle-wise bit-serial input precision. A corner case to CSC is
that one column might be more sparse than another column. In
that case, when mapping to PIM, one index might span several
columns rather than being confined to a single column. So we need
a row-wise accumulator as shown in Fig. 3 to satisfy this scenario.

3.2 Sparse Matrix Multiplications in MRAM PE

Figure 5 details the architecture and circuits of the MRAM sparse
PE. In this design, it mainly leverages the concept of near-memory
processing that MRAM array serves mainly as NVM to store the
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Figure 5: MRAM based sparse PE design.
sparse encoded weight and its indexes and all the required MAC

operations are implemented through its peripheral digital circuits.
As illustrated in Fig. 5 e the MRAM array is divided into weight
section and index section similar as our previous SRAM array struc-
ture. Upon receiving addresses from the control unit, the decoder
activates the correspond memory row to retrieve weight values
and sends to the parallel shift-and-accumulator for processing as
the compressed matrix operand. Simultaneously, the corresponding
index values are read and sent to the multiplexer (MUX). As shown
in Fig. 5 e this MUX interfaces with the activation buffer to se-
lect the appropriate activation data, which are then paired with
the sparse weights in the parallel shift-and-accumulator to only
process the stored non-zero weights. To maximize throughput, the
PE operates in a pipeline fashion, as depicted in Fig. 5 e In this
setup, fetching the weight and index, selecting the corresponding
activation, and performing parallel shift-and-accumulation are de-
signed in three pipleline stages. Once accumulation is complete,
the element-wise multiplication results are aggregated by the adder.
The PE output will be transmitted to other PEs via a shared bus,
facilitating systolic-array-like dataflow.

4 ALGORITHM DESIGN AND DATA MAPPING

In this work, we mainly focus on on-device multi-task continual
learning setup, where assuming a pre-trained backbone model is
available to be mapped to MRAM PE and a new task adaptor mapped
to SRAM PE will be learned on-chip for new downstream task data.
Figure 6 c presents a state-of-the-art (SOTA) efficient multi-task
continual learning structure, Rep-Net [23], which we will imple-
ment for this work. It includes a fixed main branch (i.e., the back-
bone model) and a tiny, parallel reprogramming network (Rep-Net)
path. These two pathways exchange intermediate feature maps via
an activation connector, allowing for mutual enhancement and im-
proved performance in learning new tasks. The working principle
is that the backbone model provides basic and general features,
while the parallel, tiny Rep-Net path focuses on assimilating new
knowledge from local data. By tweaking intermediate activations
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and training a new classifier for each task, this architecture effec-
tively tackles new tasks with minimal weight updates (e.g., 5% of
total size reported in [23]), keeping the majority of weights fixed.

To minimize memory overhead and facilitate efficient on-device
continual learning, the backbone model remains fixed (both in terms
of weights and architecture), as highlighted in Fig. 6 c This part is
mapped onto our MRAM PEs, taking advantage of the non-volatile
memory’s characteristics. Conversely, only the Rep-Net path and
the shared final classification layer (marked in orange) learn new
task data, which will be mapped to SRAM PEs, leveraging SRAM’s
rapid operation speed and ease of reprogramming. Compared to
the backbone model, the Rep-Net path is very compact, consist-
ing of just several convolutional modules and requiring minimal
additional memory (for activation storage and extra parameters).

To support the on-device learning for the Rep-Net modules im-
plemented in SRAM PEs, those below computations need to be
supported by the system for backpropagation:

Error propagation : el=1 = (Wl)T x el (1)
Gradient : gl =a x (el)T (2)
Weight Update : W,{ew = olld - gl (3)

Where,a, W, e, and g represent activation, weight, error, and gradi-
ent, respectively. The upper script ‘I’ represents the | — th layer. It
can be seen that the major computation is still matrix multiplica-
tion that is discussed earlier, while the key missing parts are the
transposed matrix of W! and e!. In our system, as shown in Fig.
6 0, we adopt the design of transposed SRAM PE buffer. During
backpropogration for Rep-Net, the current layer trained weights
and generated error are transposed and written into such trans-
posed SRAM PEs for error propagation and gradient calculation
using the previously discussed in-memory matrix multiplication.

Note that, since the error and gradients are calculated layer by
layer, the number of such transposed SRAM PE should be opti-
mized depending on the system parallelism requirement and upper
bounded by the maximum size of learned parameters for each layer.
Due to the small percentage of learned parameters in Rep-Net
structure and our N:M structured sparse processing hardware, the
number of such transposed SRAM PE buffers is limited and depend-
ing on the model sparsity level, which will be discussed in our later
evaluation section.

5 EXPERIMENT AND ANALYSIS

5.1 Algorithm Evaluation

As discussed in the SRAM and MRAM PE circuits, our system
mainly support INT8 digital bit-serial N:M structured sparse pro-
cessing, to assess the performance in continual learning, we con-
ducted extensive experiments using five popular downstream datasets
including Flowers [24], Food[25], Pets[26], Cifar10 and Cifar100.
For all the experiments, we report the accuracy of new task learn-
ing with different sparsity and precision, as shown in Table 1. Our
experiments utilize an ImageNet pre-trained ResNet-50 as the back-
bone fixed main branch and assign 6 learnable Rep-net modules,
each consisting of 1 pooling layer and 2 convolution layers where
one of the convolution kernel is 1 X 1.

The ‘backbone@imagenet’ column indicates the backbone model
accuracy. We only performed INT8 Post-Training Quantization
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Figure 6: The fixed main branch is mapped to MRAM PE while the parallel tiny Rep-Net branch is mapped to SRAM PE to

provide the learning capability.
Table 1: Accuracy Evaluation Result

Configure Precision | Backbone@imagenet | flower102 | Pets | Food101 | Cifar10 | Cifar100
Dense RepNet[23] FP32 76.14% 96.1 % 91.8 % 80.5 % 95.9 % 819 %
Sparse RepNet FP32 7134% 9494% | 90.27% | 80.47% | 94.28% | 78.73%
(1:8) INT8 71.11% 94.56% 88.71% 78.14% 91.63% 77.32%

FP32
INT8

74.61%
74.62%

95.24%
95.16%

91.31%
90.33%

82.02%
79.57%

95.78%
92.21%

80.38%
80.06%

Sparse RepNet
(1:4)

(PTQ) and applied the N:M sparsity pattern, to assess their impacts
on the backbone model. The results show that the higher sparsity
level leads to larger accuracy drop. For example, the 1:4 (75%) spar-
sity only degrades around 1.5% accuracy, but the 1:8 (87.5%) sparsity
significantly drops the accuracy more than 5%. The INT8 model
can maintain the accuracy at the same level of its FP32 version.
In the subsequent phase of our study, we examined the learning
capabilities of these models on new downstream tasks by only up-
dating the Rep-Net path modules and the final shared classifier as
discussed earlier. To implement an accurate N:M sparsity pattern,
we initially conducted a one-epoch gradient calculation across all
weights on the RepNet path to identify the most crucial N weights
among every consecutive M weights, based on magnitude. This
was followed by a 30-epoch fine-tuning phase to learn the sparse
weights. As can be seen in Table 1, even with 1:8 sparsity and INTS,
the accuracy on the transfer dataset is still close to its baseline (i.e.,
FP32 dense model) with less than 2% accuracy drop. As anticipated,
the 1:4 sparsity configuration achieves much smaller accuracy drop
with less sparsity level. Notably, the 1:4 model exhibits superior per-
formance on the Food101 dataset. This is attributed to the smaller
size of Food101, which features only 750 training images and 250
testing images per class. This smaller dataset size likely contributes
to the overfitting observed in the dense model.

5.2 Hardware Evaluation

To establish a comprehensive cross-layer device-architecture frame-
work for system evaluation and comparison, we developed an in-
house evaluation framework utilizing advanced array-level circuit
modeling techniques. This framework incorporates the use of PIMA-
SIM[27], NVSIM[28], and the TSMC 28nm Product Development Kit
(PDK), enabling us to analyze and compare various aspects of our
proposed hybrid PIM design thoroughly. The framework includes
the development and extraction of SPICE-compatible STT-MRAM
device models, allowing for detailed circuit-level performance anal-
ysis of sub-array circuits, and architecture-level performance esti-
mation for peripheral circuits. At the circuit level, we constructed
the memory sub-array with peripheral circuits, simulated using
Cadence Spectre with the 28nm TSMC PDK library. This setup
provides us with an accurate assessment of the circuit-level per-
formance, crucial for the efficiency and feasibility of the proposed
memory sub-array designs. To evaluate the timing, energy, and

area of different memory technologies at the architecture level,
we utilize PIMA-SIM and NVSIM. These tools offer flexibility in
memory configuration, enabling the organization of banks, mats,
and subarrays, as well as the design of peripheral circuitry.

Table 2 presents the hardware specifications for both SRAM and
MRAM PEs. For the SRAM PE, Cadence Virtuoso was employed for
designing the bit-cell layout, and HSPICE are used for evaluating
the memory array along with other memory peripherals. The digital
peripherals are designed in RTL and synthesized using Synopsys
Design Compiler, followed by implementation in APR. Post-layout
power and latency evaluations were conducted using PrimeTime
and PrimePower. The reported area for the SRAM PE pertains to
one 128x96 PIM array with 8 128-input, 8-bit adder trees, and the
index decoder includes 128x8 comparators and index generators.
Regarding the MRAM PE, we construct a 1024 x 512 memory sub-
array with all required peripheral circuits, such as parallel shift-and-
accumulators, decoders, and adder trees, which are also simulated
in Cadence Spectre using the 28nm TSMC PDK library.

From the architecture level, each core contains 4 X 4 banks,
with each bank comprising 4 X 4 MRAM sub-arrays as PEs. Given
that the weights in the Rep-Net path are approximately 5% of the
backbone model, we proportionately reserve the required storage
in a fixed number of SRAM PEs. To accommodate the around 26 MB
storage requirement of the dense RepNet model, we adopt a dual-
core configuration in our evaluations for the non-sparse supported
SRAM/MRAM designs, as a single core could only store 16MB.

We adopt the prior fully digital in-SRAM computing design
ISSCC’21[29] and fully digital MRAM-based design ISCAS’23[30]
as baselines to evaluate our hybrid sparse design. Since [29] and
[30] do not support sparse encoding, we mapped the entire model
onto them without any compression. Fig. 7 shows the inference
power and area consumption normalized to the SRAM design from
[29]. Notably, due to SRAM’s high leakage, [29] exhibits the highest
power usage during inference, while the MRAM-based [30] is the
most power-efficient. Although our hybrid design benefits from
sparse compression, reducing the scale of the design, the integrated
SRAM part offsets these advantages, positioning our hybrid design’s
power efficiency between the SRAM- and MRAM-based designs. It’s
important to note that the power plot’s y-axis is log-scaled. In terms
of area, [30] capitalizes on MRAM’s high storage density, requiring
almost half the area of the SRAM-based [29] for the same model.
Our hybrid design, leveraging N:M structured sparsity, needs only
about 30% of the area compared to [29]. Although the SRAM PE
occupies a larger area than the MRAM PE, in our hybrid design, only
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Table 2: Hardware Specs

SRAM PE MRAM PE
Area(mm?) __ Power(mW) Area(mm?) _Power(mW)

Decoder 0.0168 0.96 Memory Array (1024 x 512) | 0.00686 B
Bit Cell 0.0231 1.2 Parallel Shift Acc 0.00258 0.834
Shift Acc 00148 42 Col Decoder + Driver 0.0243 158
Index Decoder 0.06 7.4 Row Decoder + Driver 0.0037 0.68
Adder 0.14 1211 Adder Tree 0.044 163

Global Buffer | 00065 0.0004/bit/access Resistance 44080 / 8759Q

Global ReLU | 0.00719 0.12 Single bit Set/Reset Energy 0.048p]

Power w.r.t. SRAM Area w.r.t. SRAM
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about 4% of the area is dedicated to SRAM PEs, with the majority
allocated to MRAM PEs for the backbone model.

While the SRAM-PE exhibits higher leakage and area overhead,
it offers advantages in terms of lower write energy and latency.
This results in a considerably reduced energy-delay product (EDP)
compared to the MRAM PE, making the SRAM PE more suitable
for weight updates and learning. Initially, we mapped the backbone
model onto prior works [29] and [30]. These designs need to fine-
tuning the entire model to absorb new knowledge, resulting in the
highest EDP for continual learning processes, as shown in Fig. 8.
Changing the model to RepNet reduces the volume of weights up-
dates, thereby lowering the EDP. Our proposed hybrid design takes
this a step further. By integrating the compact and compressed
RepNet path, it drastically diminishes the requirement of writing
operations. This reduction is due to the fewer weights updates in
compressed sparse model. Additionally, these updates, executed
within the SRAM PE, showcase the lowest EDP during continual
learning phases. This combination of strategies underlines the effec-
tiveness of our design in optimizing continual learning processes.

6 CONCLUSION

In this work, we propose an efficient on-device continual learning
system with the fully-digital hybrid PIM design. This system is
a product of synergistic hardware and algorithm co-design. We
develop SRAM- and MRAM-based sparse PEs for hardware, sup-
porting both inference and on-device learning. Algorithmically, we
deploy the RepNet structure in our system and optimize the map-
ping methodology. This design features NVM-based PE, capitalizes
on its dense storage and low leakage attributes by storing the ma-
jority of the weights. The weights stored in the NVM-based PE are
frozen and remain unchanged during on-device learning. Comple-
menting this, the SRAM-based PE is leveraged for its fast operation
and rapid rewriting capabilities, playing a crucial role in enabling
the system’s learning capability. Extensive experiments prove the

Fan Zhang, Amitesh Sridharan, Wilman Tsai, Yiran Chen, Shan X. Wang, and Deliang Fan

system’s ultra-high energy efficiency, showcasing its potential for
efficient Al acceleration.
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