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Abstract— Control of wheeled humanoid locomotion is a
challenging problem due to the nonlinear dynamics and under-
actuated characteristics of these robots. Traditionally, feedback
controllers have been utilized for stabilization and locomotion.
However, these methods are often limited by the fidelity of the
underlying model used, choice of controller, and environmental
variables considered (surface type, ground inclination, etc).
Recent advances in reinforcement learning (RL) offer promising
methods to tackle some of these conventional feedback con-
troller issues, but require large amounts of interaction data
to learn. Here, we propose a hybrid learning and model-
based controller Hybrid LMC that combines the strengths of a
classical linear quadratic regulator (LQR) and ensemble deep
reinforcement learning. Ensemble deep reinforcement learning
is composed of multiple Soft Actor-Critic (SAC) and is utilized
in reducing the variance of RL networks. By using a feedback
controller in tandem the network exhibits stable performance
in the early stages of training. As a preliminary step, we explore
the viability of Hybrid LMC in controlling wheeled locomotion of
a humanoid robot over a set of different physical parameters in
MuJoCo simulator. Our results show that Hybrid LMC achieves
better performance compared to other existing techniques and
has increased sample efficiency.

I. INTRODUCTION

Humanoid robots have the potential to aid workers in phys-
ically demanding and dangerous jobs such as firefighting and
disaster relief [1], [2]. In order to aid in these tasks, humanoid
robots must be capable of manipulation and locomotion,
while being robust to intermittent contact and disturbances.
Wheeled-humanoid robots (WHR) are emerging as promis-
ing platforms for accomplishing these tasks by combining
advantages of mobile robots with the dexterity of legged
robots [3], [4].

However, inherent instability, nonlinearity, inaccurate
modeling error, and strongly coupled mechanism pose chal-
lenges to control WHR. Specifically, balancing control of the
WHR is a pivotal role for the robots to transverse various
terrains in the real world.

The most common approach of control for these high
dimensional nonlinear systems is to model a robot using
reduced-order models (RoMs), such as Linear Inverted Pen-
dulums (LIP) and Wheeled Inverted Pendulums (WIP), and
adopt model-based linear quadratic regulator (LQR) [5], [6]
or model predictive control (MPC) [7]. Alternatively, differ-
ential dynamic programming (DDP) and Nonlinear MPC
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Fig. 1: Wheeled Humanoid Robot System, SATYRR.

(NMPC) are utilized to generate whole-body motion as a
nonlinear approach [8], [9]. Despite their widespread usage
among the robotic community, the stability and robustness
of these controllers are limited by the fidelity of the robot
model and of the surrounding environment. Besides, the
performance of these methods depends on the accuracy of
the model which has an inherent error.

Deep reinforcement learning (RL)-based methods have
garnered a growing amount of attention recently as an up-
and-coming solution and have shown the success of tack-
ling highly nonlinear locomotion problems [10], [11], [12].
They can overcome the limitations of prior model-based
approaches by learning a policy directly from experience
and automatically tuning the controller to optimize the given
reward (or cost) function representing the task. However,
standard RL methods require long interaction between the
robot and an environment to learn complicated skills, which
can be unsafe initially. Collecting the amount of data that is
needed to learn a complex task is time-consuming. Although
many Sim-to-Real techniques are suggested [12], [13], [14],
reducing the domain gap between a simulation and reality is
still challenging and takes an extensive amount of time, up to
several days, to train. Exceptionally, control of WHRs solely
with RL is challenging since they are inherently unstable at
the initial stage during exploration, and re-setup of the robot
every time is significantly inefficient and risky.

Meanwhile, the incorporation of the inductive bias or prior
knowledge (e.g., analytical model, a conventional controller)
with RL looks to address the issues of a conventional
controller and RL-based methods by aiding the RL policy to
be explored more safely and fast through increasing sample
efficiency and reducing state space volume [15], [16], [17].
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Fig. 2: Overall Pipeline of Hybrid LMC. Hybrid LMC generates the compensated torque 7, directly (End-to-End) via a combination of
the hybrid policy II(a|s) and a LQR controller H ga|s). Hybrid policy I1(a|s) is obtained by using an ensemble deep RL policy that is a

mixture of a single SAC policy 7(als) with s € R!?

at time k as an input. State s comprises the states of the WIP model of the robot as

well as other augmented states including the predefined desired command C,. All states are defined in the section III-B.

Although this approach has shown impressive results on
manipulation and navigation tasks [15], [16], it has yet to
be shown for locomotion that is a high dimensional and
challenging to collect task-relevant data. Specifically, most
controllers for WHRs map from the command to the resulting
torque straightly without using a high-level trajectory or a
learned policy, and this results in addressing the locomotion
problem more challenging.

With this in mind, the goal of this paper is to develop a
hybrid controller for a WHR that complements each of the
RL and a model-based controller by starting exploration from
a relatively stable controller as well as effectively reducing
a residual error of the control part.

In this work, a hybrid learning and model-based con-
troller (Hybrid-LMC) combining an optimal controller and
ensemble deep reinforcement learning is proposed to enhance
the locomotion control performance by reducing a residual
error resulting from nonlinearities, modeling error, and a
variety of environmental changes. The fundamental concept
is the same with the residual reinforcement learning [15],
but unlike the previous work, we utilized the ensemble
RL policy that leverages multiple Soft Actor-Critic (SAC)
[18] and distributional action torque provided by an optimal
controller (LQR) to choose the compensated torque more
carefully through broader exploration with low variance. Our
approach allows generating a torque directly contrary to the
existing works that use a policy network to build a high-level
command such as a trajectory signal.

The contributions of this work are as follows: (1) Hybrid

TABLE I: SATYRR specification.

Parameter Value Parameter| Value |Parameter| Value
mo 6.8kg I 0.16kgm>| m,  [0.4297kg
L 0.28m r 0.06m h 0.26m
I, 0.00278kgm?|  Lgine 0.15m w 0.22m

learning and model-based controller, taking the advantage
of both a model-based controller and a deep reinforcement
learning for increasing the control performance of wheeled-
legged humanoid robots, is proposed. To the best of our
knowledge, this is the first trial to apply the combined policy
such as residual RL to humanoid locomotion. (2) Experi-
mental results indicate that Hybrid LMC outperforms resid-
ual reinforcement learning and model-free reinforcement
learning algorithms as well as compensates the residual
error of a LQR controller even in the situation where the
diverse physical parameter has changed. (3) Ablation study
and additional experiments for investigating Hybrid LMC
utilizing efficiently are carried out and analyzed carefully. (4)
Experimental result using a human data shows the feasibility
of Hybrid LMC applying to a teleoperated system.

II. METHOD

In this section, we discuss the wheeled-legged humanoid
robot platform of our choice, SATYRR, its RoM and LQR
controller, and the proposed Hybrid LMC that combines an
ensemble deep RL and LQR. The Hybrid LMC pipeline can
be seen in Fig. 2. We explain its details in section II-B
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A. Modeling and Feedback Control

SATYRR (Fig. 1) is an anthropomorphic biped robot with
two powered wheels in place of its feet. We describe the
main parameters of the SAYTRR model in Table. I.

Here we use the WIP [5], [19] RoM model that consists
of the wheels and a lumped rigid body that represents the
robots torso as seen in Fig. 2. The dynamics of this model
are given by:

1, . "
<m(,—|—mw—|— —vzv) % +moLsg 0> —myLcg®=u
r
(m(,L2 +1,) 6 —myLcox, —m,gLsg =0 (1)

where x,, denotes the traversed position of SATYRR calcu-
lated as an average of two wheel encoders, 0 is the pitch
angle. %, and O represent their corresponding derivatives.
The mass of the body and wheel indicates mo and m,,,
respectively. u is the control input and torque applied to the
wheel, r is the radius of the wheel, and g is gravity. The
length between the center of the wheel and the center of
mass (CoM) of the body is denoted by L, I, is the inertia of
the wheel, and [j is the inertia of the body.

Defining the state vector ¢ =[x, 6 X%, 6]', we lin-
earize 1 around the upright equilibrium to obtain the state
space equations and resulting optimal gains for the LQR:
K =[-100,—315,—40,—40]. For regulating yaw motion and
the height of the robot conventional PD controller are used.

B. Hybrid Learning and Model-based Controller

Hybrid LMC shares fundamental concepts with residual
RL [15] in that they combine a conventional feedback
controller with a learned RL policy. In this manner, the two
controllers complement each other and compensate for their
individual shortcomings:

T = TLor(S) + 74 (s) ?2)

where T7r(s) and 74 (s) are the output action (torque) from
the LQR and the hybrid policy ¢(a|s) at given state s,
respectively. As seen in [15], [16], using prior knowledge of
the system (e.g., its model and conventional controller) can
aid the RL network in operating within safer bounds as well
as increase its sampling efficiency. Conversely, RL policies
can assist conventional controller in adapting to various
environmental changes by interacting with the world. The
proposed Hybrid LMC follows this outline but differs from
previously explored residual RL frameworks - instead of a
deterministic policy, a stochastic approach with distributional
actions is utilized. We assume that a stochastic approach
promotes the search - through randomly sampled behaviors
- of the nearby action-space for more optimal torques. This
ultimately result in better tracking of the desired states
and in reduction of residual error, Ag = ¢?¢ — q created
by unexpected disturbance, and environmental changes. The
detailed procedure of Hybrid LMC is decribed in Algorithm
1. Also we note that our strategy builds its action as the
sum of a stochastic policy and the conventional feedback

controller (i.e the LQR), unlike BCF where the action is
only sampled from the hybrid policy [17].

In order to take advantage of a stochastic approach and
alleviate its drawback of large behavior variance, we use
an ensemble technique that leverages multiple RL pol-
icy networks m(als) in parallel [20]. The action of the
¢ (a|s) follows the composite Gaussian distribution @ (a|s) ~
N(ug, G(%) computed as follows:

%7511

_ Unoj + HHOY
- 2 2
Oy + o

2 2
o+ 0y

, 0y = 3)
where [ (s) denotes the mean of action from LQR and
o4 is its variance. To acquire a distributional action from a
conventional controller, we empirically assume the variance
62 (=0.4) for the LQR. The mean iy (s) is the same with an
original action from LQR. We believe that the LQR, H(als),
can guide ¢(a|s) in exploring more realistic torques during
the early stages of training as the feedback controller is able
to leverage prior information about the model and dynamics.

As seen in ensemble techniques [21], the mean up and
variance 612[ of a uniformly weighted Gaussian mixture
model I1(a|s), Ensemble policy, are obtained by combining
M number of single RL policy 7(als):

M
ur(s) =M Y iz, (s) )
m=1

Ms

oi(s) =M""Y (op,(s) + 1z, () —pii(s) (5

1

3
Il

)

where iz, (s) and o (s) denote the mean and variance
of a single RL policy m(als). Each RL policy m(als) is
trained with the use of the SAC algorithm [18] that has
achieved state-of-the-art (SOTA) performance in simulated
robotic systems by addressing the continuous action problem.
SAC was determined suitable here because it is a stochastic
policy that chooses an action by sampling from a Gaussian
distribution. This enables exploration of a larger state-space
and action-space area.

The hybrid policy ¢ (als) samples the appropriate torques
mainly affected by cZ(s) and c3(s). We assume that the
variance of Il(als) gradually decreases so ¢(als) follows
the ensemble policy IT(a|s) more, and the LQR less as the
policy is learned over time. This is motivated by epistemic
uncertainty estimation techniques [17], [21].

ITII. EXPERIMENT
A. Experimental Setup

Simulation Setup: All experiments for validating the
Hybrid LMC were conducted using MuJoCo [22] simulation
which is widely used to evaluate many learning-based
methods. We modeled a wheeled humanoid robot, SATYRR
using a Unified Robot Description Format (URDF) that has
the same physical parameters (Table. I) as a real hardware
platform. (Fig. 3)
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Algorithm 1 Hybrid Leaning and Model-based Controller

Require: Learned M policies (7 (ails1), m(az|s2),
Ty (ap|syr)) from SAC models and LQR controller
H(als) ~ N(tsr, 03)

Ensure: Compensated torque 7,

1. for n=0,... epoch do
2:  Select a single agent randomly among M policies
for m =0,...,M multiple agents do
Observe state s, and act an action da,,~ T, (+|s;)
end for

Compute a single univariate Gaussian distribution

(als) ~ N(um, o) (see Equation 4 and 5)

7:  Compute the composite Gaussian distribution
O(als) ~N(uy, G(%) (see Equation 3)
a = H(a|s) +tanh(¢(als))
Execute a and Observe next state s, reward r, and
done signal d

10:  Store (s,a,r,s ,d) in replay buffer D

11:  If ' is terminal, reset environment state.

12:  If it’s time to update then

13: Compute targets and Update Q-function, policy, and

target networks based on SAC algorithm [18]
end if

14: until convergence

AN A

Experimental Variation: We tested Hybrid LMC on a
diverse set of model parameters through changing of mass,
friction, gear ratio, and CoM position values. The ranges of
each parameter are described in Table. II.

Baselines: Hybrid LMC is compared to the following base-
lines:
1) LQR controller: LQR controller derived using a WIP
model (a conventional feedback controller).
2) Model-free RL algorithms: SAC (stochastic approach)
and Deep Deterministic Policy Gradient (DDPG) [23] (de-
terministic approach) have shown promising results in the
continuous action space.
3) Residual RL: Residual RL framework [15] consisting of
the sum of a deterministic residual policy and a feedback
controller. To benchmark this framework’s perfromance for
comparision, we tested DDPG with LQR (DDPG+LQR) and
SAC with LQR (SAC+LQR) in our experiments.
4) Bayesian controller fusion (BCF): A hybrid control strat-
egy combining a model-free RL and a conventional controller
[17] that motivates a basic structure of Hybrid LMC.
During experiments, we chose the best model from each
method. All methods are trained with the same reward
function, same state definition s, same LQR gains (equal as
parameters described in section II-A), and system parameters
mentioned in section II. Note that we only trained our
model, Hybrid LMC, using velocity profiles of 5th-order
polynomials. Other methods (e.g. DDPG, SAC+LQR, etc.)
required training on full reference trajectories.
Evaluation Metric: To compare the performance of Hybrid

Position x (m)
Velocity (m/s)

Time (s)

Time (s)

Fig. 3: Experiments in MuJoCo Simulation: (A) Task2: a 5th-
order velocity trajectory is given as an input xfff (xdes — xdes |
xfffm). (B) Task3: a Sth-order position trajectory is given as
an input xﬁ,” ()’c‘ff“ = 0). (C) Taskl: Balancing task in a fixed
point (x4¢%,i4¢s = 0). (D) Human Machine Interface (HMI) [24]
to provide a human data. g% = [x4¢5 5des g7¢s §4¢5]T where both
6 and 69¢ are 0.

LMC against baselines, we use root mean square error
(RMSE) between the errors of respective desired states and
position of x,,, velocity x,,, and pitch angle 6.

B. Training Details

Defining State-Action Space and Reward Function: The
state s at time k is defined as s* = (g*, 75~!,C*,®") and each
components are defined as follows:
« State-space vector: gF = (x, 6% xk k)
o Applied torque vector at the previous time step k — 1:
Tl = <T£g_211€77£_177§_1>
o The desired position and pitch angle:
Ck _ <C§,C’é> c qdes
« History of position error and velocity: @ = <®§e,®')§>
GI;E = <Axlv(v_2»Axlv(v_17Axlv(v>’ ®])§ = <xlvcv_2»xlv(v_17xlv(v>
where the symbol A indicates the error between the desired
value and the actual value. The usage of TF~! and @fe
is motivated by previous works [25], [12]. The key to
generating an end-to-end (state-to-torque) policy was found
in the inclusion and usage of both 7¢~! and @';e within the
residual RL framework.
The reward function was designed to track the robot’s
desired position x2¢ and pitch 6 to keep the robot stable. The
resulting reward function R at time k is defined as follows :

R(s) = —K|lep|l2 +1(|err(x, )] < 1) x1(lerr(8)i] < .35)
+1(|err(xy)i| < lerr (xw)i|) * 1(Jerr(0);] < |err’(9)k|26)

where err(x); = x4¢ (k) — x,, (k) and err(8); =0 — 0(k). In-
dicating the change pattern of the error denotes err’(y);_; =
y% (k) —y(k —1). The scaling factor K = [0.1,0.1] and &} =
lerr(x)g,err(0)i]T.

Learning the Ensemble Deep Reinforcement Learning: In
this work, we use 10 single SAC policy m(als) (M =10). A
single RL policy 7(a|s) is a 3-layer multi-layer perceptron
(MLP), with input s € R'>, and output u € R! that represents
wheel torque for stabilization. We trained for total of 5,00
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Fig. 4: Result of Locomotion Benchmark in Different Tasks. Two figures in each column (e.g., (a) and (e)) indicate the position tracking
and balancing performance of each task. Each column corresponds to taskl, 2, and 3 from the leftmost.

TABLE II: Locomotion Performance Benchmark. Each table shows the experimental result performed in different tasks: (1) Balancing
task (2) Tracking task given Sth-order velocity trajectory (3) Tracking task given Sth-order position trajectory. Normal case is set the
same physical parameter with training environment. Case 2 and 3 are set with different physical parameters. The result value indicates the
average of a total of 5 trials. The number in parentheses represents the probability of the operation time was performed when it failed.

Model Settings Metric Method
(Mass, Gear ratio, Friction, CoM) (RMSE) LQR DDPG SAC | DDPG+LQR | SAC+LQR | BCF | Hybrid LMC
Case 1 (Normal) Position (m) 0.128 0.025 0.271 0.377 0.164 F 0.038
(.05, 1,1, 0) Velocity (m/s) 0.06 0.283 0.279 0.159 0.209 F 0.043
o Pitch angle (rad) | 0.042 0.051 0.048 0.048 0.049 F 0.041
Case 2 Position (m) 0.116 | 0.126 (0.12) | 0.252 0.367 0.156 F 0.05
(8.05, 1.3 13, 0.12) Velocity (m/s) 0.05 | 0.456 (0.12) | 0.287 0.156 0.209 F 0.046
T o Pitch angle (rad) | 0.038 | 0.181 (0.12) | 0.045 0.047 0.044 F 0.036
Case 3 Position (m) 0.116 | 0.083 (0.12) | 0.228 0.368 0.148 F 0.053
(14.05, 0.9 11, -0.12) Velocity (m/s) [ 0.081 | 0.323 (0.12) | 0.289 0.177 0.205 F 0.074
T T e T Pitch angle (rad) | 0.039 | 0.146 (0.12) | 0.063 0.050 0.047 F 0.038
Model Settings Metric Method
(Mass, Gear ratio, Friction, CoM) (RMSE) LQR DDPG SAC DDPG+LQR | SAC+LQR | BCF | Hybrid LMC
Case 1 (Normal) Position (m) 0.147 | 0.269 (0.47) | 0.482 (0.26) 0.137 0.116 F 0.083
4.05,1 .1, 0) Velocity (m/s) [ 0.084 | 0.313 (0.47) | 0.370 (0.26) 0.109 0.184 F 0.074
T Pitch angle (rad) | 0.049 | 0.054 (0.47) | 0.027 (0.26) 0.051 0.059 F 0.049
Case 2 Position (m) 0.136 | 0.285 (0.53) | 0.583 (0.3) 0.146 0.122 F 0.087
(805,13 ,13, 0.12) Velocity (m/s) | 0.081 | 0.380 (0.53) | 0.394 (0.3) 0.11 0.181 F 0.074
T o Pitch angle (rad) | 0.046 | 0.048 (0.53) | 0.070 (0.3) 0.048 0.056 F 0.046
Case 3 Position (m) 0.129 | 0.265 (0.51) | 0.05 (0.11) 0.14 0.122 F 0.077
(14.05, 0.9 1.1, -0.12) Velocity (m/s) | 0.080 [ 0.349 (0.51) | 0.312 (0.11) 0.109 0.188 F 0.073
T o Pitch angle (rad) | 0.045 | 0.048 (0.51) [ 0.092 (0.11) 0.048 0.057 F 0.046
Model Settings Metric Method
(Mass, Gear ratio, Friction, CoM) (RMSE) LQR DDPG SAC DDPG+LQR | SAC+LQR | BCF | Hybrid LMC
Case 1 (Normal) Position (m) 0.140 | 0.144 (0.88) | 0.122 (0.3) 0.374 0.110 F 0.060
4.05,1 .1, 0) Velocity (m/s) | 0.082 ] 0.202 (0.88) | 0.336 (0.3) 0.120 0.175 F 0.087
T Pitch angle (rad) | 0.047 | 0.051 (0.88) | 0.091 (0.3) 0.049 0.057 F 0.047
Case 2 Position (m) 0.128 | 0.152 (0.88) | 0.04 (0.19) 0.362 0.100 F 0.058
(805,13 ,13, 0.12) Velocity (m/s) | 0.080 | 0.209 (0.88) | 0.326 (0.19) 0.120 0.179 F 0.087
T o Pitch angle (rad) | 0.043 | 0.048 (0.88) | 0.07 (0.19) 0.046 0.054 F 0.043
Case 3 Position (m) 0.122 | 0.154 (0.87) | 0.041 (0.2) 0.359 0.101 F 0.046
(14.05, 0.9 1.1, -0.12) Velocity (m/s) | 0.082 | 0.205 (0.87) | 0.213 (0.2) 0.132 0.243 F 0.082
T o Pitch angle (rad) | 0.044 | 0.047 (0.87) | 0.084 (0.2) 0.047 0.067 F 0.043
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epochs with each epoch consisting of a maximum of 4,000
steps. The policy was updated at every 1,000 steps. The
size of our replay buffer was 1¢®. The learning rate was
set to le=3. The discount factor was set to 0.99. We chose
p, for updating our target network value, to be 0.995. The
entropy regularization coefficient value is chosen using an
auto temperature adjustment [26]. The batch size is 64 and
the Adam optimizer was utilized for all our implementations.
The structure of SAC was implemented by referring the
OPENALI open source [27]. A single desktop with 1 GPU
(RTX3060t1) was used for training RL algorithms. Training
takes roughly half day on the desktop machine.

IV. RESULT AND DISCUSSION

In this section we conducted three tests to gauge the per-
formance of the proposed Hybrid LMC: A) A performance
benchmark. B) Hybrid LMC with human control data test.
C) An ablation study highlighting key design parameters of
Hybrid LMC. Each experiment was conducted on different
random seeds.

In section IV-A we fix our model parameters and reward
function and compare against different controllers ranging
from the standard LQR, model-free RLs, a residual RLs, to
Hybrid LMC. We showcase our results and discuss why we
believe Hybrid LM C demonstrates improved performance. In
section IV-B, we highlight the performance of Hybrid LMC
in the absence of hand-designed preconstructed trajectories,
using human HMI commands for reference instead. Finally,
in section IV-C we discuss an ablation study with varied de-
sign parameters, specifically using data history and previous
time step torque values as an input of the network.

A. Performance Benchmark

We have summarized the performance of Hybrid LMC
in Table II and described in Fig 4. Overall, Hybrid LMC
achieves the highest performance (RMSE values less than
0.1) in all test cases. The proposed Hybrid LMC shows an
average performance increase of 48% for position tracking
compared to just an LQR. There was no significant improve-
ment in tracking of the other states, x,, and 6. Interestingly,
Hybrid LMC showed better overall performance for the 3
different tracking tasks, specified in II, despite being trained
using only desired velocity trajectories and their integrated
terms, as described in Fig. 3. Basic residual RL was not able
to enhance performance and even performed worse than just
the LQR in certain situations. Lastly, the policy with only
BCEF failed to generate the appropriate torques for completing
the locomotion tasks and stabilizing SATYRR.

In our studies we consistently found that the LQR con-
troller had larger position steady state error than steady state
pitch error. Hybrid LMC is attempting to reduce the residual
error by rewarding smaller deviations from the desired.
Hence, we hypothesize that our policy effectively learned
to complement the LQR and help reduce the largest source
of error found in position tracking. As the other errors in
pitch and velocity were already small, we noticed marginal
improvement.

120000
10000

g 6000

4000

2000|

Fig. 5: Learning Curves of the Total Reward. (a) Total test reward
graph given a 5th-order velocity trajectory. (b) Total test reward
graph given command to stand upright in place. (c) Comparison
total reward value for ablation study.
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Fig. 6: Results of the Performance of Hybrid LMC using a
Human Data. RMSE of each state is 0.124, 0.273, 0.064, 0.2419,
corresponding to position, velocity, pitch angle, and yaw position.

For the balancing task, model-free DDPG had the best
performance for Task 1, Case 1. In other cases, DDPG
failed to successfully track the desired trajectories. Also,
the performance of DDPG+LQOR significantly decreased with
changes in the model parameters (mass, friction, etc.). The
stochastic approach, SAC+LQOR, showed similar successful
performance regardless of the model parameter changes.
This suggests that a stochastic approach might be more
advantageous in building a versatile policy against model
changes for locomotion. We believe that stochastic policies
promote exploration of the action space through random
sampling of the output action distribution, which in turn
enables discovery of potentially more ideal actions. However,
methods using a single stochastic policy, i.e. SAC, are prone
to having large output variance. Consequently, this degrades
control performance and consistency. The performance dif-
ference between Hybrid LMC and SAC+LQR suggests that a
deep ensemble RL is efficient in handling the high-variance
issues highlighted above (see Fig. 4). Finally, from our
comparisons of model-free RL we also see that these policies
do not effectively learn end-to-end, state-to-torque values for
the wheeled robot locomotion problem. These initial findings
highlight the need for hybrid polices such as Hybrid LMC.
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TABLE III: Ablation Study for Hybrid LMC: Performance result
without a key component.

Metric (RMSE)

Hybrid LMC 5 ion () [Velocity (m/s)|Pitch angle (rad)
W/O history data| 0.132 0.074 0.042
Taskl 'W/O LQR torque|] 0.108 0.067 0.041
W/O Both 0.149 0.095 0.042
W Both 0.032 0.048 0.041
W/O history data| 0.134 0.09 0.049
Task2 'W/O LQR torque[ 0.146 0.09 0.049
W/O Both 0.166 0.113 0.05
W Both 0.079 0.076 0.049

All learning curves are shown in Fig. 5. We trained
all models until they converged and the total reward no
longer increased. The methods based on residual RL (e.g.
SAC+LQOR and Hybrid LMC) showed faster convergence than
their model-free counterparts (SAC, DPPG). These hybrid
controllers converged in approximately 20 epochs. Compared
to Hybrid LMC, we found that SAC+LQOR achieved a larger
reward value but also had larger variance here. This high
variance can result in undesired noisy output actions as
shown in Fig. 4.

Hybrid LMC consistently showed improved performance
in reducing residual error in simulation, but application to
real hardware presents a final step in evaluating the efficacy
and performance of the Hybrid LMC. We look forward
to hardware implementation in future studies. To bridge
the sim-to-real gap, we plan on utilizing an environmental
encoder, a teacher policy [14], [13], and domain random-
ization techniques. We believe that a LQR (ideally tuned
for hardware) within the Hybrid LMC will guide the policy
in realizing more realistic torques and reduce the risk of
undesirable actuation while exploring in the beginning stages
of training.

B. Verifying Hybrid LMC with a Human Data

The goal of this experiment was to test the performance of
Hybrid LMC for locomotion and tracking when given human
command signals obtained directly from hardware as a step
toward teleoperation (e.g.,HERMES humanoids [1]). This
test scenario is important as it suggests the viability of using
reference trajectories that are irregular and rapidly changing
compared to those used in training - 5 order velocity
polynomials. The recorded human data - body tilt and twist -
acquired from the Human Machine Interface [24] is mapped
to the desired reference vector g,,, and used for tracking here
as seen in Fig. 3. Our three main findings were: 1) Compared
to the standard LQR with human commands, the Hybrid
LMC with human commands had a 20% improvement in
position tracking. 2) Compared to the Hybrid LMC with
preconstructed 5 order polynomials, the Hybrid LMC with
human commands presented slight degradation in position
tracking. We believe that because irregular signals - such
as those from the human - have high variance, they can
negatively affect the RL policy’s rate of convergence. 3) The
improved Hybrid LMC performance was consistent despite
being trained using only velocity trajectories. All results can

TABLE IV: Verification with different parameters of LQR

LQR parameter . Method

K=K Ko K K] i (RMSE) o THybriaL.C

Position (m) | 0.1 0.058

[-150,—350,—50,—50] | Velocity (m/s) [0.069] 0.059

Pitch angle (rad)[0.046] 0.045

Position (m) [0.169] 0.204

Task 2| [—50,—200,—20,—20] | Velocity (m/s) |0.096] 0.114

Pitch angle (rad)[0.047|  0.049

Position (m) [0.162[ 0.519

[-25,-100,—10,—10] | Velocity (m/s) [0.107] 0.289

Pitch angle (rad)[0.048] 0.211

be seen in Fig. 6)

C. Ablation Study and Analysis of Hybrid LMC

Performance comparison of key components: An ablation
study is conducted to investigate and analyze how crucial
components of the network affect the performance of Hybrid
LMC. Based on our results we believe that feeding previous
torque commands T’Ifé}w T{;’l , Té‘*l and a history of the states
O,,,0; as an input to Hybrid LMC is critical for achiev-
ing better performance, as seen in Table III. Here, Hybrid
LMC is trained with the velocity trajectory, Fig. 5(c). Each
component has a considerable impact on the convergence
of the network and in achieving better performance. We
hypothesize that leveraging the history state and the previous
torque brings benefits to end-to-end (state-to-torque) learning
in the broad residual RL framework, also utilized in Hybrid
LMC.

Verifying Hybrid LMC with varied LQR gains: Here
we test the dependency of Hybrid LMC on the LQR. The
Hybrid LMC was trained using the original gains (described
in section IV) but tested using varied LQR gains. From
row 1 of Table IV, we see that increasing LQR gains
results in similar performance and superiority of the Hybrid
LMC. However, decreasing the gains generally resulted in an
increase in RMSE error and lead to worse performance. This
suggests that high performance of Hybrid LMC is dependant
on the tuning and response of the feedback controller during
training. In other words, switching the gains or feedback
controller in deployment is not recommended. We believe
that varying the gains randomly during training may help
address this issue [13].

V. CONCLUSION

In this paper, we propose a hybrid learning and model-
based controller, Hybrid LMC, that combines the strength
of a conventional model-based LQR and deep reinforcement
learning for more robust tracking in the presence of model
uncertainty and parameter changes. Moreover, the ensemble
deep reinforcement approach can augment the performance
of a standard controller while reducing the variance of a
single stochastic-based RL policy. In this manner we are able
to perform end-to-end learning directly. By incorporating the
ensemble deep RL and the LQR controller, LQR guides the
RL policy in generating more appropriate torque within a
bounded range, and results in an increase in the sampling
efficiency. The ablation studies were conducted and analyzed
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carefully, to offer a proper method of using Hybrid LMC.
In all experiments, Hybrid LMC outperforms the previous
methods and demonstrates generalized performance improve-
ment in the presence of model changes and irregular desired
trajectories.

In future works, we will apply Hybrid LMC on hardware
to a wheeled humanoid robot system, SATYRR, to verify the
performance of Hybrid LMC in the physical world. Based on
our result, we expect that Hybrid LMC provides an efficient
way to train the real system safely while enhancing the
performance.
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