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Abstract—The exact common information between a set of
random variables X1, ..., Xn is defined as the minimum entropy
of a shared random variable that allows for the exact distributive
simulation of X1, ..., Xn. It has been established that, in certain
instances, infinite entropy is required to achieve distributive
simulation, suggesting that continuous random variables may be
needed in such scenarios. However, to date, there is no established
metric to characterize such cases. In this paper, we propose the
concept of Common Information Dimension (CID) with respect to
a given class of functions F , defined as the minimum dimension
of a random variable W required to distributively simulate
a set of random variables X1, ..., Xn, such that W can be
expressed as a function of X1, · · · , Xn using a member of F .
Our main contributions include the computation of the common
information dimension for jointly Gaussian random vectors in a
closed form, with F being the linear functions class.

I. INTRODUCTION

The common randomness between dependent random vari-
ables is a fundamental problem in information theory [1]–[4]
and has ubiquitous applications in a number of areas, such as
key generation in cryptography [5]–[8], hypothesis testing in
statistical inference [9]–[12], and multi-modal representation
learning in machine learning [13]–[17]. Multiple informa-
tion theoretical notions have been developed to measure the
common randomness, for instance, Gács-Körner’s common
information [2], Wyner’s common information [3], common
entropy [18], and coordination capacity [19] (see also the
monograph [12]); but as far as we know, all of them measure
common information in terms of bits. In this paper, we
introduce the notion of common information dimension, that
uses dimensionality instead of bits to characterize common
randomness for continuous random variables.

Gács-Körner’s common information [2] and Wyner’s com-
mon information [3] are perhaps the most classical notions
of common information. Gács-Körner’s common information
is defined as the maximum number of bits per symbol of
the information that can be individually extracted from two
dependent discrete variables X,Y , namely

CGK(X,Y ) := max
f,g:f(X)=g(Y )

H(f(X)), (1)

where f and g are deterministic functions. However, it is
known from [2], [20] that CGK(X,Y ) equals zero except for
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one special case where X = (X 0, V ), Y = (Y 0, V ) and
X 0, Y 0, V are independent variables.

Wyner’s common information was originally defined for a
pair of discrete sources (X,Y ) ⇠ ⇡XY as

CWyner(X,Y ) := min
PWPX|WPY |W :PXY =⇡XY

I(X Y ;W ). (2)

Wyner [3] provided two operational interpretations. One is
for the source coding problem: the minimum common rate
for the lossless source coding problem over the Gray-Wyner
network, subject to a sum rate constraint. The other is for
the distributed simulation problem: the minimum amount of
shared randomness to simulate a given joint distribution ⇡XY .
Recently, the works in [21] and [19] generalized Wyner’s
common information to n discrete random variables settings;
and the works [22], [23] and [24], [25] generalized its inter-
pretations to continuous sources in lossy source coding and
distributed simulation, respectively.

Wyner’s distributed simulation assumes codes of large block
length (i.e., multi-shot) and approximate generation: the rela-
tive entropy between the generated distribution and the target
distribution goes to zero as the block length goes to infinity.
Kumar, Li and El Gamal [18] extended Wyner’s work to define
the exact common information (also called common entropy)
which requires a single-shot (i.e., block length 1) and exact
generation of ⇡XY . The common entropy is defined as

G(X,Y ) := min
PWPX|WPY |W :PXY =⇡XY

H(W ). (3)

To generalize this to the multi-shot (asymptotic) setting, they
also defined the exact common information rate as

CExact(X,Y ) := lim
n!1

1

n
G(Xn, Y n). (4)

The exact common information was extended to n continuous
variables in [24], and was shown to provide an upper bound
on Wyner’s common information in [18].

Why do we need a new notion of common randomness?
All of the above discussed notions of common randomness
are expressed in terms of “bits", and thus they are only
meaningful, for example in distributed simulation, when finite
common randomness is sufficient. Nevertheless, in the general
case of continuous variables, an infinite amount of randomness
may be required. For instance, [23] calculated the Wyner’s
common information of bivariate Gaussian random variables
X,Y as CWyner(X,Y ) = 1

2 log
1+⇢
1�⇢ , where ⇢ is the correlation

coefficient, and CWyner(X,Y ) goes to infinity as ⇢ goes to 1.
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To the best of our knowledge, there is no proposed metric that
distinguishes between different problem complexities when an
infinite amount of randomness is needed.

Our observation is that, for the latter case, a real-valued
random variable W may be needed to represent the common
randomness, and its dimension could provide guidance for
practical applications. This is akin to compressed sensing [26],
[27], where we seek a low dimensional representation in a high
dimensional space. Note that without imposing any structural
assumptions, the minimum dimension does not exceed one.
This is due to the existence of measurable bijections between
R and Rd for any d � 1. However, these functions are not
implementable and unstable, as noted in [28], and hence, are
not useful for applications. Therefore, regularity constraints
on the common variable need to be considered. In particular,
in our definition, we allow for a restriction of the form
W = g(X1, · · · , Xn) for some g 2 F , where F is a given
class of functions. For example, F may be chosen to be the
set of linear, or smooth functions. If F is chosen to contain
all possible functions, then the minimum dimension of W will
be upper bounded by one, as previously explained.

In our work, we consider two notions of dimension: the
number of elements of a vector and the information dimension
(also called Rényi dimension). The Rényi dimension is an
information measure for random vectors in Euclidean space
that was proposed by Rényi in 1959 [29]. It characterizes the
growth rate of the entropy of successively finer discretizations
of random variables. The Rényi dimension of a random vector
W 2 RdW is defined as (when the limit exists)

dR(W ) = lim
m!1

H(hW im)

logm
, (5)

where hW im is the element-wise discretization of W defined
as hW (i)im = bmW (i)c

m and H(V ) is the entropy of V . Wu
and Verdú [28] interpreted the Rényi dimension as the fun-
damental limit of almost lossless data compression for analog
sources under regularity constraints that include linearity of
the compressor and Lipschitz continuity of the decompressor.

Our contributions in this paper are as follows. We pro-
pose the concept of Common Information Dimension (CID),
defined as the minimum dimension of a random variable,
with respect to a class of functions, required to distributively
simulate a set of random vector variables X1, ..., Xn. We
define the Rényi common information dimension (RCID) as
the minimum Rényi dimension of a random variable, with
respect to a class of functions, required to distributively
simulate X1, ..., Xn. We define the Gács-Körner’s common
information dimension (GKCID) as the maximum Rényi di-
mension of a common function that can be extracted from
each random variable individually. We prove that for jointly
Gaussian random vectors, CID and RCID coincide, GKCID
is upper bounded by CID, and they can all be computed by
examining ranks of covariance matrices. Moreover, we give a
closed form solution for the CID, RCID and GKCID of jointly
Gaussian vectors with F being the class of linear functions and

Fig. 1. The one-shot exact version of (a) Wyner’s distributed simulation
problem and (b) Gács-Körner’s distributed randomness extraction problem.

an efficient method to construct W with minimum dimension
that enables the distributed simulation of X1, · · · , Xn.

II. NOTATION AND DEFINITIONS

Notation. For a random (vector) variable X , we use
dX to denote the number of dimensions of X . We use
X = [X1, . . . , Xn] when Xi’s are column vectors to refer
to X = [X>

1 . . . X>
n ]>. We use [X1 ?? ... ?? Xn|W ]

to abbreviate that X1, · · · , Xn are conditionally independent
given W . The entropy of a random variable V is denoted as
H(V ). For a discrete random variable H(V ) is defined asP

v2Supp(V ) �P(V = v) log2 P(V = v), where Supp(V ) is
the support of V . For a matrix M , we use r(M) to denote
the number of its rows.

Common Information Dimension (CID). We consider the
one-shot exact version of the distributed simulation problem in
Fig. 1 (a), where n distributed nodes leverage the common ran-
domness (V,W ), in addition to their own local randomness, to
simulate random vectors X1, · · · , Xn that follow a given joint
distribution ⇡X1,··· ,Xn . We note that the distributed simulation
is possible only if X1, · · · , Xn are conditionally independent
given (V,W ). Specifically, each node i generates Xi accord-
ing to a distribution PXi|(V,W ), and the joint distribution is
required to satisfy ⇡X1,··· ,Xn = EV,W

⇥Qn
i=1 PXi|(V,W )

⇤
.

We assume that V is a (one-dimensional) random variable
with finite entropy H(V ) < 1, and W 2 RdW is a
possibly continuous random vector of dimension dW that can
be expressed as W = g(X1, . . . , Xn) for some function g
in a given class of functions F . Our goal is to determine
the minimum dimension of W that is necessary to enable
the distributed simulation. Note that we allow for the finite
entropy random variable V to not follow the F restriction,
and thus the common randomness needs to be expressed using
a function in F only up to finite randomness. This allows
the common information dimension to be zero when a finite
amount of randomness is sufficient for the simulation, and
avoids extra dimensions that may arise when this sufficient
finite randomness cannot be expressed using F .

Definition 1: The Common Information Dimension (CID)
of random variables X1, · · · , Xn with respect to a class of
functions F , is defined as

dF (X1, · · · , Xn) = min{dW |W 2 WF}, (6)

where

WF = {W | 9V, g : R
Pn

i dXi ! RdW 2 F , such that

X1 ?? ... ?? Xn|(V,W ), H(V ) < 1, W = g(X1, · · · , Xn)}.
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We next define the concept of the Rényi Common Infor-
mation Dimension (RCID) by replacing the dimension of W
with the Renyi dimension described in (5).

Definition 2: The Rényi Common Information Dimension
(RCID) of random variables X1, · · · , Xn with respect to a
class of functions F is defined as

dRF (X1, · · · , Xn) = inf{dR(W )|W 2 WF}. (7)

Finally, we define the Gács-Körner’s Common Infor-
mation Dimension (GKCID) (illustrated in Fig. 1 (b)) for
continuous random variables by replacing the entropy with
the Rényi dimension in the Gács-Körner’s common informa-
tion definition. This measures the maximum dimension of a
vector W that can be extracted from each random variable
individually, using a potentially different function fi 2 F .

Definition 3: The Gács-Körner’s Common Information
Dimension (GKCID) of random variables X1, · · · , Xn with
respect to a class of functions F is defined as

dGK
F (X1, · · · , Xn) = sup

(8i2[n])W=fi(Xi),fi2F
dR(W ), (8)

where the optimization is over W, {fi}ni=1.

III. CID AND RCID FOR JOINTLY GAUSSIAN RANDOM
VARIABLES

We note that although CID, RCID and GKCID are well-
defined, it is not clear whether and how they can be computed.
Similarly, the calculation of Wyner’s common information
and its variants is challenging since it involves optimizing a
concave function over a non-convex set. Therefore, closed-
form solutions are available only in special cases [3], [23],
[30], [31]. In this section, we characterize the CID, and RCID
for jointly Gaussian random variables when F is the class
of linear functions. Our results show that CID and RCID are
equal and that CID, RCID can be computed simply from ranks
of covariance matrices. A closed form for GKCID is provided
in Section IV and complete proofs are in the Appendix in [32].

We consider a jointly Gaussian random vector X =
[X1, · · · , Xn], where Xi 2 RdXi , with covariance matrix
⌃X . We use ⌃I|J for I, J ✓ {1, · · · , n} to denote the
conditional covariance matrix of XI conditioned on XJ , where
XI denotes the elements of X with indices in the set I . We
also use �I to denote the complement of I in {1, · · · , n}. To
simplify notation, we drop the parentheses when listing the
elements of the sets I, J . Also, as we only consider F being
the class of linear functions, we omit it in the subscripts.

We assume without loss of generality that the variables
Xi are zero-mean. It is known from [23], [24] that ⌃X is
non-singular if and only if a finite amount of randomness
is sufficient to break the dependency between X1, · · · , Xn.
Hence, when ⌃X is singular, infinite entropy is necessary.

A. CID of Jointly Gaussian Random Variables
Theorem 1 derives the CID for jointly Gaussian random

variables in a closed form. The proof also provides a method to
construct the pair (V,W ), with F the class of linear functions.

TABLE I
TABLE OF NOTATION FOR THEOREM 2

Notation Definition

X,Y jointly Gaussian random vectors

⌃X,Y ,⌃X ,⌃Y covariance matrices of [X,Y ], X, Y respectively

N basis of the null space of ⌃X,Y

NX ,NY N =
⇥
NX �NY

⇤
(9)

N 0
X ,N 0

Y basis of the complementary space of NX ,NY (10)

MX ,MY MX =


NX
N 0

X

�
,MY =


NY
N 0

Y

�
(11)

Theorem 1: Let X = [X1, · · · , Xn] be a jointly Gaussian
random vector. The common information dimension between
X1, · · · , Xn with respect to the class of linear functions is

d(X1, · · · , Xn) =
nX

i=1

rank(⌃�i)� (n� 1)rank(⌃),

where ⌃ is the covariance matrix of X , and ⌃�i is the
covariance matrix of [X1, · · · , Xi�1, Xi+1, · · · , Xn].

Theorem 2 proves the result for the special case of two
random variables X,Y ; the proof derives properties that are
later used to prove Theorem 1.

Theorem 2: Let [X,Y ] be a jointly Gaussian random vector.
Then, the common information dimension between X,Y with
respect to the class of linear functions equals

d(X,Y ) = rank(⌃X) + rank(⌃Y )� rank(⌃X,Y ).

Proof of Theorem 2: We start by stating the following
lemma that enables to discover deterministic relations between
X,Y by just examining the covariance matrix ⌃X,Y . The
proofs of all lemmas are in the Appendix in [32].

Lemma 1: Let X = [X1, X2, ..., Xn] be a dX -dimensional
random vector, dX =

Pn
i=1 dXi , with zero mean and covari-

ance matrix ⌃. For any vectors a, b 2 RdX , we have that

a>X = b>X almost surely, if and only if a>⌃ = b>⌃.

Corrollary 1: There is a subset I ✓ {1, ..., dX} such that
|I| = rank(⌃X), and XI ?? Y |(V,W ) if and only if X ??
Y |(V,W ).

Therefore, without loss of generality, we assume that
⌃X and ⌃Y are non-degenerate, which implies that dX =
rank(⌃X), and dY = rank(⌃Y ).

Let N 2 Rr(N)⇥(dX+dY ) be a basis of the left null space
of ⌃X,Y . We next show some properties for the matrix N
that will help us to prove the theorem. By definition of N ,
we have the following facts

Fact 1. N⌃X,Y = 0. (12)
Fact 2. rank(N) = dX + dY � rank(⌃X,Y )

= rank(⌃X) + rank(⌃Y )� rank(⌃X,Y ).
(13)

Using Lemma 1 and (12), we have that N
⇥
X> Y >⇤> =

0 almost surely. We partition N as
⇥
NX �NY

⇤
, where

NX 2 Rr(N)⇥dX and NY 2 Rr(N)⇥dY . Then we have that

NXX = NY Y. (14)
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N is full-row-rank by definition; in the following, we show
that NX (and similarly NY ) are also full-row-rank.

Lemma 2: Let [X,Y ] be a random vector with covari-
ance matrix ⌃X,Y and N =

⇥
NX �NY

⇤
be a basis

for the null space of ⌃X,Y , where N 2 Rr(N)⇥(dX+dY ),
NX 2 Rr(N)⇥dX , and NY 2 Rr(N)⇥dY . If ⌃X ,⌃Y are
non-degenerate, we have that

rank(NX) = rank(NY ) = rank(N). (15)

Next, we define two square non-singular matrices MX and
MY as MX =

⇥
N>

X N 0>
X

⇤> 2 RdX⇥dX and MY =⇥
N>

Y N 0>
Y

⇤> 2 RdY ⇥dY , where N 0
X ,N 0

Y are a basis
for the complementary space of NX and NY , respectively.
Lemma 3, and Lemma 4 show two properties of the quantities
MX ,MY ,N 0

X ,N 0
Y which we prove in the Appendix A in

[32].
Lemma 3: Let MX 2 RdX⇥dX ,MY 2 RdY ⇥dY be full-

rank matrices, and X,Y, V,W be random vectors of dimension
dX , dY , dV , and dW respectively. We have that

MXX ?? MY Y |(V,W ) if and only if X ?? Y |(V,W ).

Lemma 4: Let NX ,NY ,N 0
X ,N 0

Y be as defined
in (9) and (10). Conditioned on NXX , we have that⇥
(N 0

XX)> (N 0
Y Y )>

⇤> has full-rank covariance matrix.
We are now ready to prove Theorem 2. We first show

that the common information dimension is upper bounded as
d(X,Y )  rank(⌃X) + rank(⌃Y ) � rank(⌃X,Y ). Consider
NXX as a possible W . Conditioned on NXX , both NXX
and NY Y are deterministic, since NXX = NY Y from (14).
Hence, conditioned on NXX , breaking the dependency be-
tween MXX and MY Y reduces to breaking the dependency
between N 0

XX and N 0
Y Y conditioned on NXX .

From Lemma 4, we have that conditioned on NXX ,⇥
(N 0

XX)> (N 0
Y Y )>

⇤> is jointly Gaussian with full-rank
covariance matrix. Hence, by the result in [24], there is a
VW with H(VW ) < 1 such that N 0

XX ?? N 0
Y Y |(W,VW ),

where W = NXX . Since the covariance matrix of⇥
(N 0

XX)> (N 0
Y Y )>

⇤> conditioned on NXX does not de-
pend on the value of NXX and is only a function of the
covariance matrix of NXX , VW can be the same for all W ,
and we can refer to VW as V . This shows that MXX ??
MY Y |(NXX,V ). By Lemma 3, X ?? Y |(NXX,V ). Thus,

d(X,Y )  dNXX
(i)
= rank(NX)

(15)
= rank(N)

(12)
= rank(⌃X) + rank(⌃Y )� rank(⌃X,Y ),

(16)

where (i) follows since NX is full rank by Lemma 2.
Next, we prove in Lemma 5 the other direction, that

d(X,Y ) � rank(N). At the heart of the lemma, we prove
that if there is a common function that can be extracted from
both X,Y , namely, fX(X) = fY (Y ) a.s. for some fX , fY ,
then for (V,W ) to break the X,Y dependency, fX(X) (and
hence fY (Y )) is a deterministic function of (V,W ). We also
show that if fX , fY are linear and W = A

⇥
X> Y >⇤> for

some A, then dW � dfX(X).

Lemma 5: Let [X,Y ] be a jointly Gaussian random vector
and V,W be random variables such that W = A

⇥
X> Y >⇤>

for some matrix A, H(V )  1 and X ?? Y |(V,W ). Let ma-
trix NX be such that NXX has a non-degenerate covariance
matrix. If there exists matrix NY such that NXX = NY Y
a.s., then NXX = A0W a.s. for some matrix A0 and
dW � dNXX .

Proof of Lemma 5: First, we show that NXX is a deter-
ministic function of (V,W ). Suppose towards a contradiction
that there is a set S ✓ Rr(N) such that 0 < P[NXX 2
S|(V,W )] < 1. Since NXX = NY Y a.s., we have that

P[NXX 2 S,NY Y 2 SC |(V,W )] = 0, (17)

where SC is the complement of S . However, from 0 <
P[NXX 2 S|(V,W )] < 1 we get that

P[NXX 2 S|(V,W )]P[NY Y 2 SC |(V,W )]

= P[NXX 2 S|(V,W )]P[NXX 2 SC |(V,W )] 6= 0.
(18)

This implies that

P[NXX 2 S,NY Y 2 SC |(V,W )]

6= P[NXX 2 S|(V,W )]P[NY Y 2 SC |(V,W )].
(19)

However, as functions of independent random variables are
independent, we have that NXX,NY Y are conditionally in-
dependent given (V,W ); being projections of MXX,MY Y .
This contradicts (19).

This implies that for any S ✓ Rr(N) we either have
P[NXX 2 S|(V,W )] = 1 or P[NXX 2 S|(V,W )] = 0.
We show next that this implies that NXX is a deterministic
function of (V,W ).

As the interval from (�1,1) can be partitioned into
countably many sets of the form (0+m, 1+m], by countable
additivity of measures we get that there is a cube of the form
S =

Qr(N)
i=1 (0+mi, 1+mi] that has P[NXX 2 S|(V,W )] =

1. If we repeatedly halve one of the largest dimensions of the
cube we get a sequence of hyper-rectangles ... ✓ R2 ✓ R1

such that P[NXX 2 Ri|(V,W )] = 1, 8i = 1, 2, ... and
\i2NRi contains exactly one member. The last fact is proved
in the following. We notice that \i2NRi contains at most one
member because for any two points x1, x2 2 Rr(N), there
is some i such that the largest dimension of Ri is less than
kx1�x2k2 which implies that at most one point of x1, x2 can
be in Ri. It is also not possible that \i2NRi is empty as by
the continuity from above of finite measures, we have that

P[NXX 2 \i2NRi|(V,W )] = 1. (20)

Therefore, \i2NRi must contain a single member. Let us
denote the unique point in \i2NRi by g(V,W ), where g
is a deterministic function. Then, we have that P[NXX =
g(V,W )|(V,W )] = 1. Hence, we have that

H(NXX|W )  H(NXX,V |W )

= H(NXX|(V,W )) +H(V |W )

= H(V |W )  H(V ) < 1. (21)
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Since W = A
⇥
X> Y >⇤>, we have that (NXX,W ) follows

a jointly Gaussian distribution. As a result, conditioned on W ,
we have that NXX is also jointly Gaussian, whose entropy is
either 0 (for zero variance) or 1. Based on (21), it must be
that H(NXX|W ) = 0. Hence, we have that NXX = BW ,
for some B 2 Rrank(N)⇥dW . And as a result, NX⌃X =
BE(WX>). Then we have that

rank(NX⌃X)
(i)
= rank(NX)

(15)
= rank(N)  rank(B)  dW ,

(22)
where (i) follows from the fact that NXX has full rank
covariance matrix. ⇤
Combining (16) and (22), we conclude that

d(X,Y ) = rank(N)

= rank(⌃X) + rank(⌃Y )� rank(⌃X,Y ). ⇤
We next prove our main result stated in Theorem 1.

Proof Outline of Theorem 1: We here give a proof outline,

Algorithm 1 Algorithm to find (V,W )

1: for i = 1, · · · , n do
2: Find Ai, a basis of the row space of ⌃i|1:i�1.
3: Define Ui = AiXi (remove parts from Xi that can be

obtained from previous X1, · · · , Xi�1).
4: Find Bi, a basis of the row space of ⌃i+1:n|1:i�1.
5: Define Yi = Bi[Xi+1, · · · , Xn] (remove parts from

[Xi+1, · · · , Xn] that can be obtained from previous
X1, · · · , Xi�1).

6: Find Ñi = [Ni N̄i], the null space of ⌃UiYi .
7: Let Zi = NiUi (the parts of Xi+1, · · · , Xn that

can be obtained from Xi but cannot be obtained from
X1, · · · , Xi�1).

8: end for
9: Let W = [Z1, · · · , Zn].

10: Find Ci: basis for the covariance matrix of Xi conditioned
on W (the parts of Xi that cannot be obtained from W ).
Let Ti = CiXi.

11: Use [24] to get V that breaks the dependency of
T1, · · · , Tn conditioned on W .

then formally prove our result in App. B [32]. The main part
of the proof is illustrated in Algorithm 1 which constructs
variables Z = [Z1, · · · , Zn] that satisfy: (i) (Lemma 8 [32])
conditioned on Z, the dependency between X1, · · · , Xn can
be broken using finite randomness. This is proved by showing
that after eliminating from X the parts that can be almost
surely determined by Z, the remaining part is jointly Gaussian
with non-degenerate covariance matrix. This shows that CID
is upper bounded by the total number of dimensions of Z.
(ii) (Lemma 9 [32]) for any V,W that break the dependency
between X1, · · · , Xn, we have that Z is a linear function of
W . By showing that Z is jointly Gaussian with non-degenerate
covariance matrix, we prove that the dimension of W is lower
bounded by the dimension of Z, hence, CID is lower bounded
by the number of dimensions of Z.

We build Z gradually as follows. Z1 represents the
information that X1 contains about [X2, · · · , Xn]; namely,

the linearly independent dimensions of [X2, · · · , Xn] that
can be determined from X1. Then, Z2 contains the amount
of information that X2 contains about X3, · · · , Xn that X1

does not contain. Generally, Zi contains the information that
Xi contains about Xi+1, · · · , Xn which is not contained in
any of the previous X1, · · · , Xi�1. ⇤

B. RCID of Jointly Gaussian Random Variables
Our next result shows that for jointly Gaussian random

variables RCID and CID are the same.
Lemma 6: Let [X1, · · · , Xn] be a jointly Gaussian random

vector. Then, the Rényi common information dimension be-
tween X1, · · · , Xn with respect to the class of F of linear
functions is given by

dR(X1, · · · , Xn) = d(X1, · · · , Xn).

IV. GKCID OF JOINTLY GAUSSIAN RANDOM VARIABLES

In this section, we provide a closed form solution for
GKCID of jointly Gaussian random variables and a class of
linear functions, and show that GKCID is not larger than CID.
The result is stated in Theorem 3. The proof of this theorem
also gives a method to construct W , given in (69) in [32], with
the maximum information dimension. The proof is provided
in the Appendix C in [32].

Theorem 3: Let X = [X1, · · · , Xn] be a jointly Gaussian
random vector. The GKCID between X1, · · · , Xn with respect
to the class of linear functions is given by

dGK(X1, · · · , Xn) = r(⌃̃)� rank(⌃̃), (23)

where r(⌃̃) is the number of rows of ⌃̃, with

⌃̃ =

2

666666664

⌃X0
1X

0
2

0 · · · 0
0 ⌃X0

2X
0
3

· · · 0
· · ·

0 0 · · · ⌃X0
n�1X

0
n

01 12 12 03 · · · 0n�1 0n

01 02 02 13 · · · 0n�1 0n

01 02 02 03 · · · 1n�1 0n

3

777777775

, (24)

X 0
i = FiXi, 8i 2 [n], Fi is a basis of the row space of

⌃Xi , 0i 2 R1⇥dX0
i and 1i 2 R1⇥dX0

i are all zeros (and ones
respectively) row vectors with the same dimension as X 0

i .
The following corollary follows from Theorems 1 and 3.
Corrollary 2: For two jointly Gaussian random variables

X1, X2 we have that d(X1, X2) = dGK(X1, X2).
This result does not extend to more than two variables: as the
following example shows, GKCID can be strictly less than
CID. We consider three random vectors X1, X2, X3 with non-
zero variance, X1 = X2 a.s., and X3, [X1, X2] independent.
A W of dimension equal to dX1 is required to break the
dependency, hence, d(X1, X2, X3) = dX1 . However, as X3 is
independent of X1, all functions with f1(X1) = f3(X3) have
zero entropy [2], [20], and zero information dimension. Corol-
lary 3 follows from the proof of Theorem 3 and Lemma 5.

Corrollary 3: Let X = [X1, · · · , Xn] be jointly Gaussian
vectors, then dGK(X1, · · · , Xn)  d(X1, · · · , Xn).
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