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Multi-Message Shuffled Privacy in Federated
Learning

Antonious M. Girgis and Suhas Diggavi

We study the distributed mean estimation (DME) problem
under privacy and communication constraints in the local
differential privacy (LDP) and multi-message shuffled (MMS)
privacy frameworks. The DME has wide applications in both
federated learning and analytics. We propose a communication-
efficient and differentially private algorithm for DME of
bounded `2-norm and `1-norm vectors. We analyze our pro-
posed DME schemes showing that our algorithms have order-
optimal privacy-communication-performance trade-offs. Our
algorithms are designed by giving unequal privacy assignments
at different resolutions of the vector (through binary expansion)
and appropriately combining it with coordinate sampling. These
results are directly applied to give guarantees on private
federated learning algorithms. We also numerically evaluate
the performance of our private DME algorithms.

Index Terms—Differential privacy, mean estimation, federated
learning, shuffled model.

I. INTRODUCTION

Federated learning (FL) is a distributed system approach
to build machine learning models from multiple clients with-
out directly sharing the local data [2], [3]. In standard FL
algorithms, the central server sends the global model to a
set of sampled clients at each round. The server aggregates
the local updates (stochastic gradients) of the participated
clients to update the global model towards the next round.
In FL, communication becomes a bottleneck for training high
dimensional model as the communication is performed over a
limited-bandwidth networks [3]–[5]. To address this challenge,
there are several work for designing communication-efficient
FL algorithms [6]–[8]. Besides communication, the clients’
data might contain sensitive information, and hence, each client
wants to preserve privacy of her own local data. Although, the
local data doesn’t leave the client’s device, FL algorithm cannot
provide a provable privacy guarantees, where sensitive data
can be reconstructed from observing the global model and/or
the local updates [9]–[12]. Differential privacy (DP) [13] has
become a standard definition of privacy in privacy-preserving
data analysis. DP ensures that the participation of a single client
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in a database does not change the probability of an outcome
by much. Thus, providing DP guarantees for FL algorithms
has received a considerable attention from academia as well
as industry [14]–[21].

To accommodate privacy of locally held data, a more
appropriate notion is local differential privacy (LDP) [22],
[23], where each client randomizes her own message before
sending it to the (untrusted) server. However, LDP mechanisms
suffers from poor performance comparing with the central
DP mechanisms [22], [23]. To improve the performance of
LDP mechanisms, an intermediate trusted model called shuffled
model has been proposed [24]–[26]. In the shuffled model, there
exists a trusted shuffler that randomly permutes the randomized
messages of the clients before passing them to the server. The
shuffled model amplifies the privacy guarantees of the LDP
mechanism and achieves better privacy-utility performance
in different statistical and learning problems [27]–[29]. The
goal of this paper is to design communication-efficient and
private mechanisms for federated learning in the LDP and the
multi-message shuffled models.

A. Contributions and Techniques
At the core of FL algorithms, the server wants to estimate

the mean of local update vectors at each round. Therefore, we
study the problem of distributed mean estimation (DME) under
privacy and communication constraints in both LDP and MMS
privacy models.

We propose simple and effective mechanisms for DME of
bounded `1-norm and `2-norm vectors. We prove that our
proposed mechanisms achieve order optimal mean squared
error (MSE) for all privacy and communication regimes
simultaneously for the multi-message shuffled (MMS) model.
We show that there exists an (", �)-DP mechanism in the
MMS model that has MSE O

⇣
d

n2 min{"2,"}

⌘
, and requires

O

⇣
d log

⇣
nmin{"2,"}

d

⌘⌘
bits per client when d  nmin{"2, "}

and O

⇣
nmin{"2, "} log

⇣
d

nmin{"2,"}

⌘⌘
bits per client when

d > nmin{"2, "} to estimate the mean of n bounded
`2-norm vectors. We believe our mechanism is the first
scheme to achieve simultaneously the order optimal privacy-
communication-accuracy trade-offs that which matches the best
known lower bound.

Observe that our proposed scheme has significant savings in
communication cost to achieve the same privacy and MSE in
MMS model comparing to the best known results in literature.
The results in [30] requires O (d

p
n)-bits of communication

per client to achieve order optimal MSE. In [31], Chang
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et al. proposed a private mechanism in MMS model that
requires O (d log(n))-bits of communication per client. For
example, our proposed scheme achieves a multiplicative
gain of O

⇣
d

nmin{","2}

⌘
in communication per client when

d < nmin{", "2}. Furthermore, our MMS mechanism requires
significantly less amount of communication per client than
used in secure aggregation to achieve the same privacy and
the same order of MSE, where secure aggregation requires
at least O

�
n2"2

�
-bits of communication per client [32] (see

Remark 7 for more details). A similar result is concurrently
and independently proven in [33].

Our proposed schemes can be applied directly in the
LDP model and achieve order-optimal privacy-communication-
accuracy trade-offs. We use the results of communication-
efficient and private DME to analyze privacy-communication-
convergence trade-offs of the DP-SGD algorithm (similar to
algorithms in [17], [30]). In addition, we evaluate the perfor-
mance of our proposed algorithms for scalar and vector private
DME showing that our proposed MMS mechanisms achieve a
significant improvements comparing to single-message shuffle
model.

The core technical idea of our proposed scheme consists of
three stages as follows. Suppose that the i-client holds a vector
xi. In the first stage, each vector xi is represented as a weighted
summation of m binary vectors: xi ⇡

Pm�1
k=1 2�k

b
(k)
i +

2�m+1
u
(m)
i for communication efficiency, where the last binary

vector is dedication for unbiasedness. In the second stage,
for given privacy target ", we apply private-waterfilling to
privatize the binary vectors, where we allocate unequal privacy
for different binary vectors {b

(k)
i }. We assign lower privacy

for most significant bits (MSBs) ("(k) ⇡ 4�k/3" such thatPm
k=1 "

(k) = "). Observe that lower privacy implies better
accuracy. Thus, this gives better performance in terms of mean
squared error (MSE), as MSBs has higher weight. Finally,
we privatize each binary vector using coordinate sampling
and binary randomized response mechanism, where coordinate
sampling helps in reducing the total communication cost.
Furthermore, we track the total privacy of our mechanism using
the Rényi differential privacy (RDP) for careful accounting of
composition.

B. Related Work
We discuss the most relevant work related to the paper and

review their connections to our work.
a) Private DME: Distributed mean estimation (DME) in

the local DP model is well-studied with a characterization of the
optimal privacy-communication-utility trade-off (see [17], [34],
[35] and reference therein). In [34], Chen et al. established the
order optimal private DME under LDP constraints for bounded
`2-norm vectors. In [17], Girgis et al. established order optimal
private DME under LDP constraints for bounded `1-norm and
separately for bounded `2-norm vectors. It also extended its use
in the single-shuffled model and private optimization framework.
In [21], [36], a family of communication-efficient mechanisms
are proposed under LDP constraints in federated learning. Our
scheme also achieves the optimal privacy-communication-utility
trade-offs for LDP framework (see Theorems 4 and 6).

However, LDP mechanisms suffer from high MSE comparing
to the central DP mechanisms. To improve the performance of
the LDP mechanism without a need for a trusted server, the
shuffle model has been proposed [24]–[26], where a secure
shuffler randomly permutes the private messages of the clients
before sending them to the untrusted server. For single-message
shuffle model, Balle et al. presented lower and matching upper
bounds for the scalar private real summation, showing that the
MSE is order ⇥

�
n1/3

�
. his was further enhanced by using

multi-message shufflers in [29], [37]. A MMS mechanism
based on IKOS scheme [38] was proposed in [29], [37] for
scalar summation in which each client needs to send only O(1)
messages to the shuffler, each of size O(log(n)) bits. The
private vector DME has received less attention in the shuffled
model. In [30], a MMS mechanism for vector summation is
proposed which has O(d

p
n) communication bits per client,

where d is the vector dimension. In [31], a MMS mechanism
for vector summation in MMS model is proposed that requires
O (d log(n))-bits of communication per client. In this work, we
establish the fundamental privacy-communication-performance
trade-offs for computing vector sum in the multi-message
shuffle (MMS) model. Our private vector DME results in
Theorem 7 improves the privacy-communication-performance
order-wise, see Table I for comparison.

After the completion of our work and posting on arxiv [39], a
closely related work [40] was posted. This work independently
obtained similar results with different proof techniques. There
are small differences in our results in details, but there are
broad similarities in these independently obtained results.

b) Private optimization in the shuffled model: Local
differentially private optimization has been studied in [17], [41]
and references therein. Recently [17], [42], [43] have proposed
DP-SGD algorithms for federated learning in the shuffled model.
In [44], Girgis et al. studied a private optimization framework
using RDP and additionally evaluated subsampling (of clients)
in the shuffled model. The use of RDP for establishing tight
composition bounds for interactive optimization in the shuffled
model has been studied in [45], [46]. For the multi-message
shuffled (MMS) model, private convex optimization has been
studied in [30], which used at its core the private vector DME
mechanism. We use our results of vector DME to analyze the
convergence of DP-SGD in the MMS model showing that we
can obtain optimal convergence rate with low communication
costs per client per round.

C. Organization

The remainder of the paper is organized as follows. We
provide preliminary background on privacy definitions in
Section II. We present the problem setup in Section III. We
provide the main results of this paper and also present our
proposed algorithms in Section IV. We give numerical results
comparing our proposed multi-message shuffled schemes with
the best known single-message shuffled schemes in Section V.

II. PRELIMINARIES
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(a) Local differential privacy (LDP) model of n clients.
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(b) An L-message shuffled (MMS) model of n clients

In this section, we state some preliminary definitions that
we use throughout the paper and also state some results from
literature. We start by defining different privacy notions.

Definition 1 (Local Differential Privacy - LDP [22]). For
"0 � 0, a randomized mechanism R : X ! Y is said to be
"0-local differentially private (in short, "0-LDP), if for every
pair of inputs d, d0 2 X , we have

Pr[R(d) 2 S]  e"0 Pr[R(d0) 2 S], 8S ⇢ Y . (1)

Let D = {d1, . . . , dn} denote a dataset comprising n points
from X . We say that two datasets D = {d1, . . . , dn} and
D

0 = {d01, . . . , d
0
n} are neighboring (and denoted by D ⇠ D

0)
if they differ in one data point, i.e., there exists an i 2 [n] such
that dj = d0j for all j 6= i.

Definition 2 (Central Differential Privacy - DP [47], [48]). For
", � � 0, a randomized mechanism M : Xn

! Y is said to
be (", �)-differentially private (in short, (", �)-DP), if for all
neighboring datasets D ⇠ D

0
2 X

n and every subset S ✓ Y ,
we have

Pr [M(D) 2 S]  e" Pr [M(D0) 2 S] + �. (2)

Definition 3 ((↵, "(↵))-RDP (Rényi Differential Privacy) [49]).
A randomized mechanism M : Xn

! Y is said to have
"(↵)-Rényi differential privacy of order ↵ 2 (1,1) (in short,
(↵, "(↵))-RDP), if for any neighboring datasets D ⇠ D

0
2 X

n,
we have that D↵(M(D)||M(D0))  "(↵), where D↵(P ||Q)
denotes the Rényi divergence between two distributions P and
Q defined by:

D↵(P ||Q) =
1

↵� 1
log

✓
E✓⇠Q

✓
P (✓)

Q(✓)

◆↵�◆
, (3)

The RDP provides a tight privacy accounting of interactive
mechanisms. The following results state the composition of
RDP mechanisms and the conversion from RDP to approximate
DP.

Lemma 1 (Adaptive composition of RDP [49]). For any ↵ > 1,
let M1 : X ! Y1 be a (↵, "1(↵))-RDP mechanism and
M2 : Y1⇥X ! Y be a (↵, "2(↵))-RDP mechanism. Then, the
mechanism defined by (M1,M2) satisfies (↵, "1(↵)+ "2(↵))-
RDP.

Lemma 2 (From RDP to DP [50], [51]). Suppose for any
↵ > 1, a mechanism M is (↵, " (↵))-RDP. For any � > 0, the
mechanism M is ("�, �)-DP, where "� is given by:

"� = min
↵

" (↵) +
log (1/�)

↵� 1
+ log (1� 1/↵)

In our algorithms, we use an unbiased version of the classical
binary randomized response (2RR ) [52] whose input is a bit
b 2 {0, 1} and the output is b�p

1�2p w.p. 1� p and 1�b�p
1�2p w.p.

p, where p 2 [0, 1/2) controls the privacy-utility trade-off (see
Algorithm 7 in Section X).

Theorem 1. For any p 2 [0, 1/2), the 2RR is "0-LDP, where
"0 = log

⇣
1�p
p

⌘
. The output y of the 2RR mechanism is an

unbiased estimate of b with bounded MSE:

MSE2RR = sup
b2{0,1}

E
⇥
kb� yk22

⇤
=

p(1� p)

(1� 2p)2
. (4)

Theorem 1 gives an upper bound on the mean square error
(MSE) of the 2RR mechanism. For completeness, we present
its proof in Section X.

III. PROBLEM FORMULATION

We study federated learning (FL) framework, where a set
of n clients are connected to an untrusted server to solve the
empirical risk minimization (ERM) problem:

min
✓

F (✓) =
1

n

nX

i=1

Fi (✓) , (5)

where ✓ 2 Rd denotes the global model. Fi (✓) =
Edi⇠Di [Fi (✓, di)] denotes the loss function of the i-th client,
where Di is the local dataset of the ith client. Our goal is to
construct communication-efficient and private FL algorithm via
stochastic gradient descent (SGD). At each round, the server
updates the global model by aggregating the local updates.
Therefore, at each round, the server applies distributed mean
estimation (DME) of the local model updates. To isolate this
problem we define DME under privacy and communication
constraints.

a) Distributed Mean Estimation (DME):: Suppose we
have a set of n clients. Each client has a d dimensional vector
xi 2 X for i 2 [n], where X ⇢ Rd denotes a bounded subset
of all possible inputs. For example, X , Bd

2(r2) denotes
the d dimensional ball with radius r2, i.e., each vector xi

satisfies kxik2  r2 for i 2 [n]. Furthermore, each client has
a communication budget of b-bits. The clients are connected
to an (untrusted) server that wants to estimate the mean x =
1
n

Pn
i=1 xi. we consider two distributed privacy models, where

the server is untrusted:(i) Local DP (LDP) model (ii) Multi-
message shuffled (MMS) model.
LDP-model: In the LDP model, we design two mechanisms as
depicted in Figure 1a: (i) Client-side mechanism R : X ! Y
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and (ii) Server aggregator A : Yn
! Rd. The local randomizer

R takes an input xi 2 X and generates a randomized output
yi 2 Y . In LDP model, the local randomizer R satisfies
privacy and communication constraints as follows. The output
yi = R (xi) can be represented using only b-bits, as well as,
it satisfies "0-LDP. Each client sends the output yi directly
to the server, which applies the aggregator A to estimate the
mean x̂ = A (y1, . . . ,yn) such that the estimated mean x̂ is
an unbiased estimate of the true mean x.
MMS-model: The multi-message shuffled model is similar to
the LDP model but with secure shufflers which anonymize the
clients’ identities to the server. Precisely, the L-message shuf-
fled model consists of three parameters (R,S,A) as depicted
in Figure 1b: (i) Encode: a local randomizer R : X ! Y

L,
where the output yi = R(xi) = (y(1)

i , . . . ,y(L)
i ) consists

of L messages. The local randomizer satisfies communica-
tion constraints in which the output yi can be represented
using b communication bits. (ii) Shuffle: a single shuffler
S
(k) : Yn

! Y
n, for k 2 [L], generates a random permutation

of the received n reports: y(k) = S
(k)
⇣
y(k)1 , . . . , y(k)n

⌘
, where

the kth message of each client is sent to the kth shuffler. (iii)
Analyze: a server aggregator A :

�
Y

L
�n
! Rd is applied

to the received messages from the L shufflers to estimate
the mean x̂ = A

�
y
(1), . . . ,y(L)

�
. We say that the shuffled

model is (", �)-DP if the view of the output of the shufflers
{y

(1), . . . ,y(L)
} satisfies (", �)-DP.

Remark 1 (parallel shufflers vs single shuffler). Observe
that we describe the multi-message shuffled model using L
independent shufflers, where each shuffler receives a single
message from each client. We can also represent the multi-
message shuffled model with a single shuffler that receives the
total nL messages from all clients by indexing the messages
of each client with a slight increase of the communication cost,
see [29, Sec. 2.4] for more details.

In the two privacy models, the performance of the estimator
x̂ is measured by the expected mean squared error (MSE):

MSE = sup
{x1,...,xn2X}

E
⇥
kx̂� xk

2
2

⇤
, (6)

where the expectation is taken over the randomness of the pri-
vate mechanisms. Hence, our goal is to design communication-
efficient and private schemes to generate an unbiased estimate
of the true mean x while minimizing the expected loss (6).
We propose a local mechanism R and a server aggregator A
showing that these mechanisms achieve simultaneously optimal
privacy and communication efficiency in both privacy models
(LDP and MMS models). We start by studying the DME
problem of binary vectors, where X , {0, 1}d. Next, we study
the DME for bounded `1-norm, i.e., kxik1  r1 for all
i 2 [n], and for bounded `2-norm vectors where kxik2  r2.

IV. OVERVIEW AND MAIN THEORETICAL RESULTS

In this section we give an overview of our algorithmic
solution for private DME and the theoretical guarantees of our
proposed algorithms. We consider the private DME of binary
vectors in Section IV-A, bounded `1-norm vectors in Section

Algorithm 1 : Local Randomizer RBin
v,s

1: Public parameter: Privacy parameter v, and communica-
tion budget s.

2: Input: bi 2 {0, 1}d.
3: If d

s is not integer, add (sdds e � d) dummy zeros to the
binary vector b. Let a d

s .
4: p 1

2

⇣
1�

q
v2/s2

v2/s2+4

⌘

5: for j 2 [s] do
6: Choose uniformly at random one coordinate aij  

Unif ({(j � 1)a+ 1, . . . , ja}).
7: yij  aR2RR

p (bi[aij ])

8: Return: The client sends s messages Yi  

{(ai1, yi1) , . . . , (ais, yis)}.

IV-B, and bounded `2-norm vectors in Section IV-C. We will
use these results to provide the guarantees for solving the
trade-off for the ERM problem in Theorem 9 in Section IV-D.

A. Binary Vectors

In this section, we consider binary vectors: bi 2 {0, 1}d.
The server wants to estimate the mean b = 1

n

Pn
i=1 bi. The

binary vector mechanism is the main building block of the next
algorithms. This problem is a generalization to the scalar binary
summation problem studied in [26]. A straightforward solution
is to apply the scalar mechanism in [26] per coordinate that
requires d bits per client. Our private mechanisms require
O (min{"0, d}) and O

�
min{nmin{"2, "}, d}

�
communica-

tion bits per client in the LDP and shuffled models, respectively.
The client-side mechanism is presented in Algorithm 1,

where the parameter s determines the communication budget
per client and the parameter v determines the total privacy
budget (see Theorem 2). For given s 2 {1, . . . , d}, each
client splits the binary vector bi into s sub-vectors, each with
dimension a = dds e. Then, the client chooses uniformly at
random one coordinate from each sub-vector and privatizes its
bit using the binary randomized response (2RR ) Algorithm 7
in Section X. Observe that the output of Algorithm 1 can
be represented as a sparse d-dimensional vector with only s
non-zero coordinates.

When s = d, each client applies the 2RR mechanism on
each coordinate separately. On the other hand, when s = 1,
each client chooses uniformly at random one coordinate and
applies the 2RR mechanism. Thus, we get trade-offs between
privacy-communication and accuracy. The server aggregator
A

Bin is simply aggregating the received randomized bits. For
completeness, we present the aggregator ABin in Algorithm 4
in Section VII

Below, we state the bound on the MSE of the proposed
mechanisms in the LDP and shuffled models. The proofs
are presented in Section VII. Furthermore, we present RDP
guarantees of our mechanisms for both LDP and shuffled
models in the detailed proofs in Section VII.

Theorem 2 (LDP model). The output of the local mechanism
R

Bin
v,s can be represented using s (log (dd/se) + 1)-bits. By
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choosing v = "0, the mechanism R
Bin
v,s satisfies "0-LDP. Let

b̂ be the output of the analyzer A
Bin. The estimator b̂ is an

unbiased estimate of b with MSE:

MSEBin
ldp = O

✓
d2

n
max

⇢
1

s
,
s

"20

�◆
. (7)

Now, we move to the shuffled model, where we assume
there exists a secure shuffler that randomly permutes the set
of messages {Yi : i 2 [n]} from the n clients.

Theorem 3 (MMS model). The output of the local mechanism
R

Bin
v,s can be represented using s (log (dd/se) + 1) bits. For

every n 2 N, "  s, and � 2 (0, 1/e), shuffling the outputs
of n mechanisms R

Bin
v,s satisfies (", �)-DP by choosing v2 =

snmin{"2,"}
c log(1/�) , where c = 2, 304 is constant. Let b̂ be the output

of the analyzer A
Bin. The estimator b̂ is an unbiased estimate

of b with MSE:

MSEBin
shuffle = O

✓
d2

n2
max

⇢
n

✓
1

s
�

1

d

◆
,
log (1/�)

min{"2, "}

�◆
.

(8)

Observe that the MSE in (7) and (8) consists of two terms.
The first term represents the communication cost for sending s
coordinates out of d coordinates. The second term represents the
cost of privacy to randomize the randomly chosen s coordinates.
Theorem 2 shows that each client has to send s = min{d"0e, d}

communication bits to achieve MSE O

⇣
d2

nmin{"0,"20}

⌘
in the

LDP model. Similarly, Theorem 3 shows that each client has
to send s = O

�
min{n{"2, "}, d}

�
communication bits to

achieve MSE O

⇣
d2

n2{"2,"}

⌘
that matches the MSE of central

DP mechanisms. For the scalar case when d = 1, our results
in Theorem 3 match the optimal MSE as in [26].

B. Bounded `1-norm vectors

In this Section, we consider the DME problem for bounded
`1-norm vectors, where kxik1  r1 for i 2 [n]. For ease of
operation, we will scale each vector such that each coordinate
becomes bounded in range [0, 1], and then re-scale it at the
server-side. Let zi = xi+r1

2r1
, where the operations are done

coordinate-wise. Thus, we have that zi[j] 2 [0, 1] for all j 2 [d]
and i 2 [n], where zi[j] denotes the jth coordinate of the
vector zi. Observe that the vector zi can be decomposed into a
weighted summation of binary vectors b

(k)
i 2 {0, 1}d, 8k � 1

as follows:

zi =
1X

k=1

b
(k)
i 2�k, (9)

where b
(k)
i = b2k

⇣
zi � z

(k�1)
i

⌘
c, k � 1 such that z(0)i = 0

and z
(k)
i =

Pk
l=1 b

(l)
i 2�l. To make our mechanism commu-

nication efficient, each client approximates the vector zi by
using the first m binary vectors {b

(k)
i : 1  k  m}. Note

that the first m binary vectors together give an approximation
to the real vector zi with error kzi � z

(m)
i k

2
2  d/4m, where

z
(m)
i =

Pm
k=1 b

(k)
i 2�k. However, this mechanism creates a

biased estimate of zi. Hence, to design an unbiased mechanism,

Algorithm 2 : Local Randomizer R`1
v,m,s

1: Public parameter: Privacy budget v, communication levels
m, and coordinate sampling per level s.

2: Input: xi 2 Bd
1 (r1).

3: zi  (xi + r1) /2r1
4: z

(0)
i  0

5: for k = 1, . . . ,m� 1 do
6: b

(k)
i  b2k(zi � z

(k�1)
i )c

7: vk  
4

�k
3✓Pm�1

l=1 4
�l
3 +4

�m+1
3

◆v

8: Y
(k)
i  R

Bin
vk,s(b

(k)
i )

9: z
(k)
i  z

(k�1)
i + b

(k)
i 2�k

10: Sample ui  Bern
⇣
2m�1

⇣
zi � z

(m�1)
i

⌘⌘

11: vm  
4

�m+1
3✓Pm�1

l=1 4
�l
3 +4

�m+1
3

◆v

12: Y
(m)
i  R

Bin
vm,s(ui)

13: Return: The client sends Yi  

n
Y

(1)
i , . . . ,Y(m)

i

o
.

the client approximates the vector zi using the first m � 1
binary vectors {b

(k)
i : 1  k  m � 1} of the binary

representation above and the last binary vector (ui) is reserved
for unbiasedness as follows:

ui[j] = Bern
⇣
2m�1(zi[j]� z

(m�1)
i [j])

⌘
, (10)

where z
(m�1)
i =

Pm�1
k=1 b

(k)
i 2�k and Bern(p) denotes

Bernoulli random variable with bias p. For completeness,
we prove some properties of this quantization scheme in
Section VI. Then, we estimate the mean of binary vectors
{b

(k)
i 2 {0, 1}d : i 2 [n]} using Algorithm 1 with different

privacy guarantees for each level k 2 [m], where we allocate
lower privacy (higher privacy parameter vk) for the most
significant bits (MSBs) (lower k) in order to get better
performance in terms of the MSE.

The private DME mechanism is given in Algorithm 2, where
v controls the total privacy of the mechanism. There are two
communication parameters: m controls the number of levels for
quantization and s controls the number of dimensions used to
represent each binary vector. In Theorems 4 and 5, we present
how the privacy and communication parameters v,m, s affects
the accuracy of the mechanism. The server aggregator A`1 is
presented in Algorithm 5 in Section VIII, where the server first
estimates the mean of each binary vectors {b(k)i : i 2 [n]} for
k 2 [m� 1] and decodes the messages to generate an estimate
of the true mean z = 1

n

Pn
i=1 zi. Then, the server scales the

vector z to generate an unbiased estimate of the mean x. We
prove the bound on the MSE of our proposed mechanism for
the LDP and MMS models in the following theorems. We
defer the proofs to Section VIII.

Theorem 4 (Local DP model). The output of the local mech-
anism R

`1
v,m,s can be represented using ms (log (dd/se) + 1)

bits. By choosing v = "0, the mechanism R
`1
v,m,s satisfies "0-

LDP. Let x̂ be the output of the analyzer A
`1 . The estimator



6

x̂ is an unbiased estimate of x = 1
n

Pn
i=1 xi with bounded

MSE:

MSE`1
LDP = sup

{xi2Bd
1(r1)}

E
⇥
kx̂� xk

2
2

⇤

= O

✓
r21d2

n
max

⇢
1

d4m
,
1

s
,
s

"20

�◆
.

(11)

Theorem 5 (MMS model). The output of the local mechanism
R

`1
v,m,s can be represented using ms (log (dd/se) + 1) bits.

For every n 2 N, "  ms, and � 2 (0, 1/e), shuffling the
outputs of n mechanisms R`1

v,m,s satisfies (", �)-DP by choosing
v2 = snmin{"2,"}

c log(1/�) , where c = 2, 304 is constant. Let x̂ be the
output of the analyzer A

`1 . The estimator x̂ is an unbiased
estimate of x = 1

n

Pn
i=1 xi with bounded MSE:

MSE`1
MMS = sup

{xi2Bd
1(r1)}

E
⇥
kx̂� xk

2
2

⇤

= O

✓
r21d2

n2
max

⇢
n

d4m
, n

✓
1

s
�

1

d

◆
,
log (1/�)

min{"2, "}

�◆
.

(12)

Observe that the MSE in (11) and (12) consists of three terms.
The first term is the communication cost of quantizing the real
vector zi using m binary vectors. The second term represents
the communication cost of sending s out of d coordinates
from each binary vector. The third term is the privacy cost to
randomize the binary vectors. Theorem 4 shows that each client
has to set m = 1 and s = d"0e of total O (d"0e) communication
bits to achieve MSE O

⇣
d2

nmin{"0,"20}

⌘
when "0  d. Sim-

ilarly, by setting m = max{1, dlog
�
nmin{"2, "}/d

�
e} and

s = O
�
min{n{"2, "}, d}

�
in Theorem 5, the MSE is bounded

by O

⇣
d2

n2 min{"2,"}

⌘
, which matches the MSE of central

differential privacy mechanisms with total communication
cost of O

⇣
d log

⇣
nmin{"2,"}

d

⌘⌘
when d  nmin{"2, "} and

O

⇣
n{"2, "} log

⇣
d

n{"2,"}

⌘⌘
when d > n{"2, "}.

Remark 2 (Scalar case). When d = 1, i.e., scalar case, our
MMS algorithm achieves the central DP error O

⇣
1

n2 min{"2,"}

⌘

using m = max{1, dlog
�
nmin{"2, "}

�
e} bits per client. This

result covers the private-communication trade-offs for all
privacy regimes. For example, for " = 1p

n
, each client needs

only a single bit to achieve the central DP error. On the other
hand, the multi-message shuffled mechanism based on IKOS
protocol [38] proposed in [29], [37] requires O (log (n))-bits
of communication for all privacy regimes, where it doesn’t
provide any guarantees for any small communication cost [29,
Sec. 1.2]. Even when particular regimes of order-optimality
are achieved for the MMS, the communication bound is in
expectation [53], whereas ours is deterministic.

Remark 3 (Scalar summation with sampling/sketching). Ob-
serve that when d < nmin{"2, "}, it is not possible to combine
the scalar summation scheme [29], [37] with coordinate
sampling due to the following. When each client independently
chooses a set of s coordinates, we might loose the amplification
gain from shuffling, as not all the n clients will choose the same
set of s coordinates. When choosing the same s coordinates for
all clients, the MSE is bounded below by ⌦

�
r21(d� s)

�
. Thus,

Algorithm 3 : Local Randomizer R`2
v,m,s

1: Public parameter: Privacy budget v, communication levels
m, coordinate sampling per level s, and confidence term
�.

2: Input: xi 2 Bd
2 (r2).

3: Let U = 1p
d
HD, where H denotes a Hadamard matrix

and D is a diagonal matrix with i.i.d. uniformly random
{±1} entries.

4: wi  Wxi

5: r1  10r2

q
log(dn/�)

d
6: for j = 1, . . . , d do
7: wi[j] = min {r1,max {wi(j),�r1}}

8: Yi  R
`1
v,m,s(wi)

9: Return: The client sends Yi.

the scalar summation in MMS cannot be directly combined
with coordinate sampling.

Remark 4. After the completion of our work [39], we were
directed to [54], where the idea of unequal privacy allocation
had also been proposed to obtain pure DP for scalar summation
in the shuffled model. There are some differences between our
proposed scheme and the scheme in [54]. First, the focus in [54]
was for pure privacy for scalar problems that requires a higher
communication budget, whereas our overall scheme is for vector
MMS problem. There is also a small difference in the privacy
allocation strategies. In our proposed scheme, we assign privacy
"(k) ⇡ 4�k/3" for the k-th bit, while "(k) ⇡ max{0.9k, "/m}

in [54]. The reason behind our privacy allocation "(k) ⇡ 4�k/3"
is that the k-th bit has a weight 2�k in the real summation,
and hence, the error in estimating this bit contributes with 4�k

term in the MSE. To the best of our knowledge, the unequal
privacy allocation scheme in [54] is analyzed for pure-DP
scalar summation in the shuffled model. On the other hand, our
proposed scheme achieves order optimal MSE for (", �)-DP
scalar summation in the shuffled model. In addition, we show
that our scheme can be exploited to achieve order optimal MSE
in the LDP model and the MMS model for vector summation.
The simple combination of coordinate sampling and the MMS
scheme for scalar summation cannot achieve the optimal MSE
(see Remark 3 for more details.). Our proposed scheme achieves
order optimal MSE and saves communication cost by carefully
applying coordinate sampling in the shuffled model.

C. Bounded `2-norm Vectors

In this section, we consider the DME problem for bounded
`2-norm vectors, where kxik2  r2 for i 2 [n]. We first use
the random rotation proposed in [19] to bound the `1-norm
of the vector with radius r1 = O

⇣
r2p
d

⌘
. Then, we apply the

bounded `1-norm algorithm in Section IV-B. The client-side
scheme is presented in Algorithm 3 and the server-side scheme
is presented in Algorithm 6 in Section IX.

Theorem 6 (LDP model). The output of the local mechanism
R

`2
v,m,s can be represented using ms (log (dd/se) + 1) bits.

By choosing v = "0, the mechanism R
`2
v,m,s satisfies "0-LDP.
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MMS model (this work) MMS (Cheu et al. [30]) MMS (Chang et al. [31]) SecAgg( [18], [32])
d < n"2 O

⇣
d log

⇣
n"2

d

⌘⌘
O

�
d
p
n
�

O (d log(n)) O (d log(n))

n"2 < d < n2"2 O

⇣
n"2 log

⇣
d

n"2

⌘⌘
O

�
d
p
n
�

O (d log(n)) O (d log(n))

d > n2"2 O

⇣
n"2 log

⇣
d

n"2

⌘⌘
O

�
d
p
n
�

O (d log(n)) O
�
n2"2 log(d)

�

TABLE I: Comparison on the communication cost of several schemes to design (", �)-DP mechanism achieving MSE O

⇣
r22d
n2"2

⌘

for " = O(1).

Let x̂ be the output of the analyzer A
`2 . With probability

at least 1 � �, the estimator x̂ is an unbiased estimate of
x = 1

n

Pn
i=1 xi with bounded MSE:

MSE`2
LDP = Õ

✓
r22d

n
max

⇢
1

d4m
,
1

s
,
s

"20

�◆
, (13)

where Õ hides log (nd/�) factor.

Theorem 7 (MMS model). The output of the local mechanism
R

`2
v,m,s can be represented using ms (log (dd/se) + 1) bits.

For every n 2 N, "  ms, and � 2 (0, 1/e), the shuffling the
outputs of n mechanisms R`2

v,m,s satisfies (", �)-DP by choosing
v2 = snmin{"2,"}

c log(1/�) , where c = 2, 304 is constant. Let x̂ be the
output of the analyzer A

`2 . With probability at least 1��, the
estimator x̂ is an unbiased estimate of x = 1

n

Pn
i=1 xi with

bounded MSE:

MSE`2
MMS =

Õ

✓
r22d

n2
max

⇢
n

d4m
, n

✓
1

s
�

1

d

◆
,
log (1/�)

min{"2, "}

�◆
,

(14)

where Õ hides log (nd�) factor.

Remark 5 (Kashin’s represention). Observe that the MSE
in (13) and in (14) is achievable with probability (1 � �),
and has a factor of (log(nd/�)) due to the random rotation
matrix. We can remove this factor by using the Kashin’s
representation [55] to transform the bounded `2-norm vector
into a bounded `1-norm vector with radius r1 = cr2p

d
, where

c is constant (see e.g., [34], [56], [57]). However, Kashin’s
representation has large constants in practice [58].

Next we present a lower bound for the MSE of the DME
under privacy and communication constraints.

Theorem 8 (Lower Bound For central DP model [ [32]& [59]).
] Let n, d 2 N, " = O(1), r2 � 1, and � = o( 1n ). For any
x1, . . . ,xn 2 Bd

2(r2), the MSE is bounded below by:

MSE`2
central = ⌦

✓
r22d

n2
max

⇢
log(1/�)

"2
,

n

d4b/d

�◆
(15)

for any unbiased algorithm M that is (", �)-DP with b > d-
bits of communication per client. Furthermore, when b < d
bits per client, the MSE is bounded below by:

MSE`2
central = ⌦

✓
r22d

n2
max

⇢
log(1/�)

"2
,
n

b

�◆
. (16)

Remark 6. (Optimality of our mechanism) When the commu-
nication budget b > d, we can see that our MSE in Theorem 7
matches the lower bound in Theorem 8 (up to logarithmic
factor) by choosing s = d and m = b/d. Furthermore, when the

communication budget b < d, our algorithm achieve the lower
bound by choosing s = b and m = 1. Thus, our algorithm for
MMS is order optimal for all privacy-communication regimes.

Remark 7 (Comparison with SecAgg). When d < n"2, our
MMS algorithm requires O

⇣
d log

⇣
n"2

d

⌘⌘
bits per client to

achieve the central DP error O
�

d
n2"2

�
. Furthermore, it requires

only O
�
n"2 log

�
d

n"2

��
-bits when d > n"2. In contrast, the

DDG algorithm [18] needs O (d log (n))-bits when d < n2"2

and O
�
n2"2 log (d)

�
-bits when d > n2"2 [32] to achieve the

same order MSE. Hence, the MMS saves communication in
comparison with SecAgg.

In Table I, we present comparison on the communication
cost of several schemes in the literature to design (", �)-DP
mechanism and to achieve MSE O

⇣
r22d
n2"2

⌘
that matches the

optimal MSE of the central DP mechanisms. We can see
that our proposed mechanism saves a significant amount of
communication cost when d > n"2 comparing to the MMS
schemes in [30], [31]. Furthermore, our MMS mechanism saves
a gain of O (n) of communication cost comparing with the
secure aggregation scheme [32] when d > n"2.

D. Application to Multi-Message Shuffled Federated Learning

In this section, we exploit our private mechanisms for DME
to give convergence guarantees for DP-SGD algorithm in the
multi-message shuffled model. We consider a standard SGD
algorithm, where the server initialize the model by choosing
✓0 2 C. At the t-th round, the server sends the current model
✓t to the n clients. Each client computes the local gradient
rFi (✓t) for i 2 [n]. Then, the client applies our private R`2

v,m,s

mechanism before sending it to the shufflers. The sever receives
the shuffled messages and aggregates the private gradients and
updates the model as follows:

✓t+1 = ✓t � ⌘gt, (17)

where gt = A
`2 ({Yi : i 2 [n]}) denotes the private estimate

of the true average gradients ht =
1
n

P
i2[n]rFi (✓t). In the

following theorem, we derive the convergence of the DP-SGD
algorithm described above.

Theorem 9 (DP-SGD convergence in the MMS model). Let F
be L-smooth and 8✓krF (✓) k2  D. Let ✓0 satisfies F

�
✓0
�
�

F (✓⇤)  DF . Let R`2
v,m,s be our private-compression scheme

and ⌘ = min

⇢
L�1,

p
2DF

⇣
�
p
LT
⌘�1

�
. By choosing m =

max{1, log(nmin{"2,"}
Td )}, s = max{1,min{d, nmin{"2,"}

T }},
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(a) Comparison of our LDP mechanism
R`1

v,m,s with Laplace mechanism for d = 1,
n = 1, and m 2 {1, 2, 3, 4}.

���� ���� ���� ���� ���� ���� ���� ���� ����
3ULYDF\�SDUDPHWHU͉

��ಜ�0
6(

606��/DSODFH�>)07��@�
2XU�006��P ��
2XU�006��P ��

(b) Comparison of our MMS mechanism
R`1

v,m,s with SMS (Laplace+[FMT21]) for
d = 1, n = 1000, and m 2 {4, 6}.

��� ��� ��� ��� ��� ��� ��� ��� ���
3ULYDF\�SDUDPHWHU͉

��ಜ�

���

0
6(

606��SULYXQLW�>)07��@�
2XU�006��V ����
2XU�006��V ����

(c) Comparison of our MMS mechanism
R`2

v,m,s with SMS (privunit+[FMT21]) for
d = 300, n = 1000, and s 2 {200, 250}.

and v2 = snmin{"2,"}
cT log(1/�) , then after T rounds, the total algorithm

is (", �)-DP. Furthermore, we get:

Et⇠Unif(T )

⇥
rF

�
✓t
�⇤
 O

 
L

s
dDF log (1/�)

n2"min{"2, "}

!
, (18)

for any T >
q

nmin{"2,"}DF

d with O (ms log (d/s)) commu-
nication bits per client per round.

The proof of Theorem 9 is presented in Appendix A. Note
that in our DP-SGD algorithm, we assume that each client
compute the full gradient rFi (✓t) and then applies the private-
compression mechanism R

`2
v,m,s. Hence, our privacy guarantees

in Theorem 9 is user-level privacy, i.e., it satisfies (", �)-DP by
replacing the entire local dataset associated with certain client
(not only a single datapoint in the item-level privacy). Also,
we assume that all clients contribute in each round t 2 [T ]. We
can extend the results in Theorem 9 to client sampling at each
round by using the privacy amplification via sub-sampling [60]
and shuffling [44].

In [61], Girgis et al. proposed a communication-efficient
and private DP-SGD mechanism in the single-message shuffled
model. However, the results in [61, Theorem 1] is order optimal
for high privacy regime (" = O(1)). In the high privacy regime,
the privacy parameter per round is of order "t ⇡ O

⇣
1p
n

⌘
,

and hence, the single-message shuffled model is order optimal.
Our result in Theorem 9 generalizes the result in [61] for all
privacy regimes.

In [30], Cheu et al. studied the stochastic convex optimization
in the multi-message shuffled model. However, their algorithm
requires O (d

p
n) communication bits per client, while our

algorithm requires much smaller amount of communication
per client per round.

V. NUMERICAL RESULTS

In this section, we compare the performance of our proposed
algorithm with the Laplace mechanism in the LDP model.
Furthermore, we compare our algorithms for multi-message
shuffled model with the best known algorithms for the single-
message shuffled model for both scalar and vector summation.

Local DP model: We start by comparing the performance
of our algorithm R

`1
v,m,s with the performance of the Laplace

mechanism [32] in the local model for scalar case, i.e., d = 1,

where the elements xi 2 [�r1, r1] and r1 = 0.5. Observe
that the Laplace mechanism has infinite communication bits.
In Figure 2a, we plot the MSE of our R

`1
v,m,s with different

communication budget s = 1 and m 2 {1, 2, 3, 4} for a single
client n = 1. We can observe that our mechanism achieves MSE
closer to the MSE of the Laplace mechanism. Furthermore, we
only need at most m = 3 bits to achieve similar performance
as Laplace mechanism.

Shuffled model: We consider two cases in the shuffler model:
1) The scalar case when d = 1 to evaluate the performance of
our R`1

v,m,s mechanism in the multi-message shuffled model. 2)
The vector case when d = 1000 to evaluate the performance of
our R`2

v,m,s mechanism in the multi-message shuffled model.
Scalar: In Figure 2b, we plot the MSE of two different
mechanisms versus the central privacy " for fixed � = 10�5.
The first mechanism is single message shuffled (SMS) model
obtained using Laplace mechanism with privacy amplification
results in [62]. Observe that Laplace mechanism is the optimal
LDP mechanism for "0 = O(1) and the privacy amplification
results in [62] is approximately optimal for computing the (", �)-
DP of the shuffled model. Hence, we expect that this is the best
that an SMS mechanism can achieve. The second mechanism
is our multi-message shuffled (MMS) mechanism R

`1
v,m,s

mechanism for d = 1 and m 2 {4, 6}. Since we have MMS,
we use the RDP results of privacy amplification by shuffling
in [45] which is better for composition to compute the RDP
of our mechanism. Then, we transform from RDP bound to
approximate (", �)-DP. We choose number of clients n = 1000.
We can see that our multi-message shuffled algorithm achieve
lower MSE than the single message shuffled especially for
large value of central DP parameter ".
Bounded `2-norm vectors Similar to the scalar case, we con-
sider two mechanisms. The first mechanism SMS is obtained
by using privunit mechanism with the privacy amplification
results in [62], where privunit [63] is asymptotically
optimal LDP mechanism [35]. We choose n = 1000 and
d = 300. For our MMS R

`2
v,m,s, we choose s 2 {200, 250}. It

is clear from Figure 2c that our MMS mechanism has better
performance compared to SMS mechanism.

VI. PROPERTIES OF THE QUANTIZATION SCHEME

In this section, we prove some properties of the quantization
scheme proposed in Section IV-B for vector zi 2 [0, 1]d. We
first prove some properties for a scalar case when x 2 [0, 1],
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and then, the results of the bounded `1 will be obtained directly
from repeating the scalar case on each coordinate.

Let x 2 [0, 1] and x(k) =
Ps

l=1 bl2
�l for k � 1, where

x(0) = 0 and bk = b2k(x � xk�1)c. For given m � 1, we
represent x using m bits as follows: x̃(m) =

Pm�1
k=1 bk2�k +

u2�m+1, where u = Bern
�
2m�1(x� x(m�1)[j])

�
. This esti-

mator needs only m communication bits.

Lemma 3. For given x 2 [0, 1], let x̃(m) be the quantization of
x presented above. We have that x̃(m) is an unbiased estimate
of x with bounded MSE:

MSEquan
scalar = sup

x2[0,1]
E
h
kx� x̃(m)

k
2
2

i


1

4m
, (19)

where the expectation is taken over the randomness in the
quantization scheme.

Proof. First, we show that x̃(m) is an unbiased estimate of x:

E [x̃m] =
m�1X

k=1

bk2
�k + E [u] 2�m+1

(a)
=

m�1X

k=1

bk2
�k + 2m�1(x� x(m�1))2�m+1

= xi,

(20)

where step (a) is obtained from the fact that u is a Bernoulli
random variable with bias p = 2m�1(x� x(m�1)). We show
that the estimator x̃(m) has a bounded MSE by 4�m:

MSEquan
scalar = sup

x2[0,1]
E
h
kx� x̃(m)

k
2
2

i

= sup
x2[0,1]

E
h
kx� x(m�1)

� u2�m+1
k
2
i

= sup
x2[0,1]

4�(m�1)E
h
k2�(m�1)(x� x(m�1))� uk2

i

(a)


1

4m
,

(21)
where the inequality (a) is obtained from the fact that u is a
Bernoulli random variable, and hence, it has a variance less
that 1/4. This completes the proof of Lemma 3. ⌅

Corollary 1. For given a vector zi 2 [0, 1]d, let z̃(m)
i be the

quantization of zi by applying the above scalar quantization
scheme on each coordinate zi[j] for j 2 [d]. Then, z̃(m)

i is an
ubiased estimate of zi with bounded MSE:

MSEquan
vector = sup

zi2[0,1]d
E
h
kzi � z̃

(m)
i k

2
2

i


d

4m
, (22)

where the expectation is taken over the randomness in the
quantization scheme.

VII. PROOFS OF THEOREM 2 AND THEOREM 3 (BINARY
VECTORS)

In this section, we prove Theorem 2 and Theorem 3 for
estimating the mean of binary vectors in the LDP and MMS
models, respectively.

Algorithm 4 : Analyzer ABin

1: Inputs: Y1, . . . ,Yn, where Yi consists of s messages of
a pair (aij , yij) for j 2 [s] and i 2 [n].

2: b̂ 0d

3: for i 2 [n] do
4: for j 2 [s] do
5: b̂[aij ] b̂[aij ] + yij .
6: b̂ 

1
n b̂

7: Return: The server returns b̂.

A. Communication Bound for Theorem 2 and Theorem 3
Observe that each client sends s messages; each message

consists of a pair (aij , yij), where aij is drawn uniformly at
random from dds e values and yij is a binary element. Hence,
each message requires log

�
d
d
s e
�
+ 1 bits. As a result the total

communication bits per client is given by s
�
log
�
d
d
s e
�
+ 1
�
-

bits.

B. Privacy of the LDP model in Theorem 2
In the mechanism R

Bin
v,s, each client sends s messages of

the 2RR mechanism ((ai1, yi1) , . . . , (ais, yis)) with parameter
p = 1

2

⇣
1�

q
"20/s

2

"20/s
2+4

⌘
. Hence, from Lemma 6, each message

is "0
s -LDP. As a results, the total mechanism R

Bin
v,s is "0-LDP

from the composition of the DP mechanisms [48] when v = "0.
In addition, we can bound the RDP of the mechanism R

Bin
v,s

in the LDP model by using the composition of the RDP (see
Lemma 1). From the proof of Theorem 1 in Section X, the
2RR mechanism is (↵, " (↵))-RDP, where " (↵) is bounded
by:

" (↵) =
1

↵� 1
log
�
p↵(1� p)1�↵ + p1�↵(1� p)↵

�
, (23)

In the mechanism R
Bin
v,s, each client sends s messages of the

2RR mechanism. Hence, the mechanism R
Bin
v,s is (↵, s" (↵))-

RDP, where " (↵) is given is (23).

C. Privacy of the MMS model in Theorem 3
In the mechanism R

Bin
v,s, each client sends s messages of

the 2RR mechanism ((ai1, yi1) , . . . , (ais, yis)). For simplicity,
assume that there exist s shufflers, where the kth shuffler
randomly permutes the set of messages {(aik, yik) : i 2 [n]}
from the n clients. Hence from composition of the RDP, it is
sufficient to bound the RDP of shuffling n outputs of the 2RR
mechanism.

We use the recent results of privacy amplification by shuffling
to analyze the RDP of the shuffled model, which states the
following

Lemma 4. [45] For any n 2 N, "0 > 0, and ↵ such that
↵4e5"0  n

9 , the output of shuffling n messages of an "0-LDP
mechanism is (↵, " (↵))-RDP, where " (↵) is bounded by:

" (↵) 
1

↵� 1
log

 
1 + ↵(↵� 1)

2 (e"0 � 1)2

n

!

 2↵
(e"0 � 1)2

n

(24)
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Recently [46] improved the dependence on "0 of the result
in [45] by showing the following.

Lemma 5. [46, Corollary 7.2] For any n 2 N, "0 > 0, and
↵  n

32"0e"0
, the output of shuffling n messages of an "0-LDP

mechanism is (↵, " (↵))-RDP, where " (↵) is bounded by:

" (↵)  ↵
768 (e"0 � 1)2

ne"0
. (25)

The exact constants in Lemma 5 is obtained from [46,
Appendix B].

From Theorem 1, each single message of the client is "0 =

log
⇣

1�p
p

⌘
-LDP. Hence, from Lemma 5, the output of a single

shuffler is (↵, "̃ (↵))-RDP, where "̃ (↵)  768↵ (1�2p)2

np(1�p) . Thus,
from composition, the output of the s shufflers is (↵, " (↵))-
RDP, where " (↵) is bounded by:

" (↵)  768↵
s(1� 2p)2

np(1� p)
. (26)

Observe that (26) gives a closed form bound on the RDP of
the mechanism R

Bin
v,s in the shuffled model. However, we can

numerically provide better bound on the RDP of the shuffle
model using [45], [46]. By setting p = 1

2

⇣
1�

q
v2/s2

v2/s2+4

⌘
, we

get that (1�2p)2

p(1�p) = v2/s2, and hence, " (↵)  768↵v2/(sn).
Now, we use Lemmas 7 in Section X to convert from RDP
to approximate DP, where ⇢ = 768v2/(sn). For given � > 0,
shuffling the outputs of n mechanisms RBin

v,s is (", �)-DP, where
" is bounded by

"  3max

(
768v2

sn
log (1/�) ,

r
768v2

sn
log (1/�)

)
. (27)

By setting v2 = snmin{"2,"}
c log(1/�) , we can easily show that (27) is

satisfied, where c = 2, 304 is constant. Hence, the output of
the shufflers is (", �)-DP.

Observe that we choose ↵ = 1 +
q

log(1/�)
⇢ when applying

Lemma 7 to transform from RDP to approximate DP, where
⇢ = 768 (e"0�1)2

ne"0 = 768v2

s2 . On the other hand, the RDP in (26)
is valid for ↵  n

32"0e"0
from Lemma 5. Thus, we need 1 +q

log(1/�)
⇢ 

n
32"0e"0

such that (27) is satisfied. Thus, we have

1 +

s
log(1/�)

⇢


n

32"0e"0

1 +

s

ne"0
log(1/�)

c1(e"0 � 1)2


n

32"0e"0
r

(e"0 � 1)2

ne"0
+

s
log(1/�)

c1


s
n(1� e�"0)2

c2"20
,

(28)

where c1 = 768 and c2 = 1, 024 are constants. Note that (28)
is satisfied for e"0  n. Thus, we need e"0  2 + v2

s2  n
which is valid for any min{"2, "}/s  1 or equivalently, "  s.
Thus, the transformation in (27) is valid for any "  s.

D. MSE bound of the local DP model (Theorem 2) and shuffle
model (Theorem 3)

For ease of analysis, we assume in the remaining part that
d
s is integer, otherwise, we can add dummy sdds e � d zeros to
the vector bi to make the size of the vector divisible by s.

Now, we show that the output of the mechanism R
Bin
v,s is

unbiased estimate of bi. Let Yi be the output of Algorithm 1
and a = d

s . We can represent the output Yi as a vector
of dimension d that has s non-zero elements as follows:
yi = [yi1, . . . ,yis], where yij = aR2RR

p (bi[aij ]) eaij is a
sub-vector of a dimensions that has only one non-zero element.
Then, we have

E [yij ] =
1

a

jaX

aij=(j�1)a+1

aeaijE
⇥
R

2RR
p (bi[aij ])

⇤

(a)
=

jaX

aij=(j�1)a+1

eaijbi[aij ]

= bi[(j � 1)a+ 1 : ja],

(29)

where ej denotes the jth basis vector and (a) follows from the
fact that the mechanism R

2RR
p shown in Theorem 1 is unbiased.

bi [l : m] denotes the values of the coordinates l, l+ 1, . . . ,m.
As a result, we have that E [yi] = [E [yi1] , . . . ,E [yis]] = bi.
Hence, Algorithm 1 is an unbiased estimate of the input bi.
Furthermore, the variance of Algorithm 1 is bounded by:

E
⇥
kyi � bik

2
2

⇤
=

sX

j=1

E
⇥
kyij � bi[(j � 1)a+ 1 : ja]k22

⇤

=
sX

j=1

1

a

jaX

aij=(j�1)a+1

E
"���aeaijR

2RR
p (bi[aij ])

� bi[(j � 1)a+ 1 : ja]
���
2
#

=
1

a

sX

j=1

jaX

aij=(j�1)a+1

E
"���eaijaR

2RR
p (bi[aij ])� eaij

abi[aij ] + eaijabi[aij ]� bi[(j � 1)a+ 1 : ja]
���
2
#

(a)
=

1

a

sX

j=1

jaX

aij=(j�1)a+1

E
"���eaijaR

Bin
p (bi[aij ])� eaij

abi[aij ]
���
2
#
+ keaijabi[aij ]� bi[(j � 1)a+ 1 : ja]k2

(b)
=

sa2p(1� p)

(1� 2p)2
+

1

a

dX

j=1

�
(a� 1)2 + (a� 1)

�
b
2
i [j]

=
sa2p(1� p)

(1� 2p)2
+

(a� 1) ((a� 1) + 1)

a

dX

j=1

b
2
i [j]

=
a2sp(1� p)

(1� 2p)2
+ (a� 1)kbik

2

(c)


sa2p(1� p)

(1� 2p)2
+ (a� 1)d
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(d)
=

s3a2

v2
+ (a� 1)d = d2

✓
1

s
�

1

d
+

s

v2

◆
, (30)

where (a) follows from the fact that the 2RR mechanism
R

2RR
p is unbiased and (b) from the variance of the 2RR

mechanism R
2RR
p (see Theorem 1). Step (c) follows from

the fact that kbik
2
 d. Step (d) follows from the fact that

p = 1
2

⇣
1�

q
v2/s2

v2/s2+4

⌘
. Hence, we can bound the MSE in

the local DP model and the shuffle model as follows.
MSE for the local DP model (Theorem 2): Observe that the

output of the server b̂ = A
Bin (Y1, . . . ,Yn) can be represented

as b̂ = 1
n

Pn
i=1 yi, where yi is the sparse representation of

the i-th client private message discussed above. By setting
v2 = "20, we have that:

MSEBin
ldp = sup

{bi2{0,1}d}
E
h
kb̂� bk

2
2

i

(a)
=

1

n2

nX

i=1

E
⇥
kyi � bik

2
2

⇤

(b)


d2

n

✓
1

s
�

1

d
+

s

v2

◆

(c)
=

d2

n

✓✓
1

s
�

1

d

◆
+

s

"20

◆

= O

✓
d2

n
max

⇢
1

s
,
s

"20

�◆
,

(31)

where (a) follows from the i.i.d of the random mechanisms
R

Bin
v,s. Step (b) follows from the variance of the mechanism

R
Bin
v,s in (30). Step (c) follows from substituting v2 = "20. This

completes the proof of Theorem 2.
MSE for the MMS model (Theorem 3): Observe that the

output of the server b̂ = A
Bin (Y1, . . . ,Yn) can be represented

as b̂ = 1
n

Pn
i=1 yi, where yi is the sparse representation of

the i-th client private message discussed above. By setting
v2 = snmin{"2,"}

c log(1/�) , we have that:

MSEBin
shuffle = sup

{bi2{0,1}d}
E
h
kb̂� bk

2
2

i

(a)
=

1

n2

nX

i=1

E
⇥
kyi � bik

2
2

⇤

(b)


d2

n

✓
1

s
�

1

d
+

s

v2

◆

(c)
=

d2

n2

✓
n

✓
1

s
�

1

d

◆
+

c log(1/�)

min{"2, "}

◆

= O

✓
d2

n2
max

⇢
n

✓
1

s
�

1

d

◆
,

log(1/�)

min{"2, "}

�◆
,

(32)
where (a) follows from the i.i.d of the random mechanisms
R

Bin
v,s. Step (b) follows from the variance of the mechanism R

Bin
v,s

in (30). Step (c) follows from substituting v2 = snmin{"2,"}
c log(1/�) ,

where c = 2, 304 is constant. This completes the proof of
Theorem 3.

VIII. PROOFS OF THEOREM 4 AND THEOREM 5 (BOUNDED
`1-NORM VECTORS)

Algorithm 5 : Analyzer A`1

1: Inputs: Y1, . . . ,Yn, where Yi =
n
Y

(1)
i , . . . ,Y(m)

i

o
is a

set of m sets.
2: for k = 1, . . . ,m� 1 do
3: b̂

(k)
 A

Bin
⇣
Y

(k)
1 , . . . ,Y(k)

n

⌘

4: û A
Bin
⇣
Y

(m)
1 , . . . ,Y(m)

n

⌘

5: ẑ 
Pm�1

k=1 b̂
(k)2�k + û2�m+1

6: Return: The server returns x̂ 2r1ẑ� r1.

In this section, we prove Theorem 4 and Theorem 5 for
estimating the mean of bounded `1-norm vectors in LDP and
shuffle models, respectively.

A. Communication cost for Theorem 4 and Theorem 5
In the mechanism R

`1
v,m,s, the client sends m binary vectors

b
(1)
i , . . . ,b(m�1)

i ,ui using the private mechanism R
Bin
v,s. From

Theorem 2 and Theorem 3, the private mechanism R
Bin
v,s needs

log
�
d
d
s e
�
+1 bits for communication. Thus, the total communi-

cation of the private mechanism R
`1
v,m,s is ms

�
log
�
d
d
s e
�
+ 1
�
-

bits.

B. Privacy of the local DP model in Theorem 4
In the mechanism R

`1
v,m,s, each client sends m

messages from the private mechanism R
Bin
v,s as follows:n

R
Bin
v1,s(b

(1)
i ), . . . ,RBin

vm�1,s(b
(m�1)
i ),RBin

vm,s(ui)
o

, where

vk = 4
�k
3✓Pm�1

l=1 4
�l
3 +4

�m+1
3

◆v for k 2 [m � 1] and

vm = 4
�m+1

3✓Pm�1
l=1 4

�l
3 +4

�m+1
3

◆v. Hence, from Theorem 2,

the k-th message R
Bin
vk,s(b

(k)
i ) is "(k)0 -LDP, where "(k)0 = vk

for k 2 [m]. As a results, the total mechanism R
`1
v,m,s is

bounded by:

"0 =
mX

k=1

"(k)0 =
mX

k=1

vk =
m�1X

k=1

8
<

:
4

�k
3

⇣Pm�1
l=1 4

�l
3 + 4

�m+1
3

⌘v

9
=

;

+
4

�m+1
3

⇣Pm�1
l=1 4

�l
3 + 4

�m+1
3

⌘v = v,

(33)
from the composition of the DP mechanisms [48]. Observe that
we choose v = "0, and hence, the bound in (33) is satisfied.
In addition, we can bound the RDP of the mechanism R

`1
v,m,s

in the local DP model by using the composition of the RDP
(see Lemma 1). From the proof of Theorem 4 in Section VII,
the mechanism R

Bin
vk,s is

�
↵, "(k) (↵)

�
-RDP, where "(k) (↵) is

bounded by:

"(k) (↵) =
s

↵� 1
log
�
p↵k (1� pk)

1�↵ + p1�↵
k (1� pk)

↵
�
,

(34)

where pk = 1
2

✓
1�

r
v2
k/s

2

v2
k/s

2+4

◆
. Hence, the mechanism

R
`1
v,m,s is (↵, " (↵))-RDP, where " (↵) =

Pm
k=1 "

(k) (↵).
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C. Privacy of the MMS model in Theorem 5
In the mechanism R

`1
v,m,s, each client sends m

messages from the private mechanism R
Bin
p,s as follows:n

R
Bin
v1,s(b

(1)
i ), . . . ,RBin

vm�1,s(b
(m�1)
i ),RBin

vm,s(ui)
o

, where

vk = 4
�k
3✓Pm�1

l=1 4
�l
3 +4

�m+1
3

◆v for k 2 [m � 1] and

vm = 4
�m+1

3✓Pm�1
l=1 4

�l
3 +4

�m+1
3

◆v.

From the proof of Theorem 3 in Section VII, shuffling the
outputs of n mechanisms RBin

vk,s is
�
↵, "(k) (↵)

�
, where "(k) (↵)

is bounded by:

"(k) (↵)  48↵
v2k
sn

, (35)

from (26) by substituting pk = 1
2

✓
1�

r
v2
k/s

2

v2
k/s

2+4

◆
. From

Lemma 1 of the RDP composition, we get that the total RDP
of the mechanism R

`1
v,m,s is bounded by:

" (↵) =
mX

k=1

"(k) (↵) = ↵
48

sn

mX

k=1

v2k

= ↵
48v2

sn

mX

k=1

f2
k  ↵

48v2

sn
,

(36)

where fk = 4
�k
3✓Pm�1

l=1 4
�l
3 +4

�m+1
3

◆ for k 2 [m] and fm =

4
�m+1

3✓Pm�1
l=1 4

�l
3 +4

�m+1
3

◆ . The last inequality is obtained from the

fact that
Pm

k=1 fk = 1 and hence
Pm

k=1 f
2
k  1. Now, we use

Lemma 7 in Section X to convert from RDP to approximate DP,
where ⇢ = 48v2/(sn). For given � > 0, shuffling the outputs
of n mechanisms R

`1
v,m,s is (", �)-DP, where " is bounded by

"  3max

(
48v2

sn
log (1/�) ,

r
48v2

sn
log (1/�)

)
. (37)

By setting v2 = snmin{"2,"}
c log(1/�) , we can easily show that (37) is

satisfied, and hence, the output of the shufflers is (", �)-DP,
where c = 2, 304 is constant.

D. MSE bound of the local DP model (Theorem 4) and MMS
model (Theorem 5)

We first present some notations to simplify the analysis.
For given xi 2 Bd

1 (r1), we define zi = xi+r1
2r1

, where
the operations are done coordinate-wise. Thus, we have that
zi 2 [0, 1]d. For given zi 2 [0, 1]d and m � 1, we
define z̃

(m)
i =

Pm�1
k=1 b

(k)
i 2�k + ui2�m+1, where b

(k)
i =

b2k
⇣
zi � z

(k�1)
i

⌘
c and z

(0)
i = 0 and z

(k)
i =

Pk
l=1 b

(l)
i 2�l

for k � 1. Furthermore, ui is a Bernoulli vector defined by
ui = Bern

⇣
2m�1

⇣
zi � z

(m�1)
i

⌘⌘
. Let b

(k)
= 1

n

Pn
i=1 b

(k)
i ,

u = 1
n

Pn
i=1 ui, and z̃

(m)
= 1

n

Pn
i=1 z̃

(m)
i .

MSE for the local DP model (Theorem 2): Observe that
the output of the server x̂ = A

`1 (Y1, . . . ,Yn) = 2r1ẑ� r1,
where ẑ =

Pm�1
k=1 b̂

(k)2�k + û2�m+1. Thus, we have that:

MSE`1
ldp = sup

{xi2Bd
1(r1)}

E
⇥
kx̂� xk

2
2

⇤

(a)
= 4r21 sup

{zi2[0,1]d}
E
⇥
kẑ� zk

2
2

⇤

= 4r12 sup
{zi2[0,1]d}

E
h
kẑ� z̃

(m)
+ z̃

(m)
� zk

2
2

i

(b)
= 4r21 sup

{zi2[0,1]d}

⇣
E
h
kẑ� z̃

(m)
k
2
2

i
+ E

h
kz̃

(m)
� zk

2
2

i⌘

(c)
 4r21 sup

{zi2[0,1]d}
E
"���

m�1X

k=1

b̂
(k)2�k + û2�m+1

�

m�1X

k=1

b
(k)

2�k + u2�m+1
���
2

2

#
+

d

n4m

(d)
 4r21

 
m�1X

k=1

d24�k

n

✓
1

s
+

s

v2k

◆
+

d24�m+1

n

✓
1

s
+

s

v2m

◆

+
d

n4m

!

(e)
 4r21

 
d2

ns

 
m�1X

k=1

4�k + 4�m+1

!

+
d2s

nv2

 
m�1X

k=1

4�k/3 + 4�(m�1)/3

!3

+
d

n4m

!

(f)
 4r21

✓
4d2

3ns
+

5d2s

n"20
+

d

n4m

◆
(38)

= O

✓
r21d2

n
max

⇢
1

d4m
,
1

s
,
s

"20

�◆
, (39)

where (a) follows from the fact that zi is a linear transformation
of xi. Step (b) follows from the fact that z̃

(m)
is an unbiased

estimate of z from Corollary 1. Step (c) from the bound of the
MSE of the quantization scheme z̃

(m)
in Corollary 1. Step (d)

follows from the MSE of the private mean estimation of binary
vectors in Theorem 2. Step (e) follows from substituting vk =

4
�k
3✓Pm�1

l=1 4
�l
3 +4

�m+1
3

◆v. Step (f) follows from the geometric

series bound. This completes the proof of Theorem 4.
MSE for the MMS model (Theorem 3): Observe that the

output of the server x̂ = A
`1 (Y1, . . . ,Yn) = 2r1ẑ � r1,

where ẑ =
Pm�1

k=1 b̂
(k) + û2�m+1. Thus, we have that:

MSE`1
shuffle = sup

{xi2Bd
1(r1)}

E
⇥
kx̂� xk

2
2

⇤

(a)
= 4r21 sup

{zi2[0,1]d}
E
⇥
kẑ� zk

2
2

⇤

= 4r12 sup
{zi2[0,1]d}

E
h
kẑ� z̃

(m)
+ z̃

(m)
� zk

2
2

i

(b)
= 4r21 sup

{zi2[0,1]d}
E
h
kẑ� z̃

(m)
k
2
2

i
+ E

h
kz̃

(m)
� zk

2
2

i

(c)
 4r21 sup

{zi2[0,1]d}
E
"���

m�1X

k=1

b̂
(k)2�k + û2�m+1

�

m�1X

k=1

b
(k)

2�k + u2�m+1
���
2

2

#
+

d

n4m

(d)
 4r21

 
m�1X

k=1

d24�k

n

✓✓
1

s
�

1

d

◆
+

s

v2k

◆
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Algorithm 6 : Analyzer A`2

1: Inputs: Y1, . . . ,Yn, where Yi =
n
Y

(1)
i , . . . ,Y(m)

i

o
is a

set of m sets.
2: ŵ A

`1 (Y1, . . . ,Yn)
3: Return: The server returns x̂ U�1

ŵ.

+
d24�m+1

n

✓✓
1

s
�

1

d

◆
+

s

v2m

◆
+

d

n4m

!

(e)
 4r21

 
d2

n

✓
1

s
�

1

d

◆ m�1X

k=1

4�k + 4�m+1

!

+
d2s

nv2

 
m�1X

k=1

4�k/3 + 4�(m�1)/3

!3

+
d

n4m

!

(f)
 4r21

✓
4d2

3n

✓
1

s
�

1

d

◆
+

5d2 log (1/�)

n2 min{"2, "}
+

d

n4m

◆
(40)

= O

✓
r21d2

n2
max

⇢
n

d4m
, n

✓
1

s
�

1

d

◆
,
log (1/�)

min{"2, "}

�◆
,

(41)

where (a) follows from the fact that zi is a linear transformation
of xi. Step (b) follows from the fact that z̃

(m)
is an unbiased

estimate of z from Corollary 1. Step (c) from the bound of the
MSE of the quantization scheme z̃

(m)
in Corollary 1. Step (d)

follows from the MSE of the private mean estimation of binary
vectors in Theorem 3. Step (e) follows from substituting vk =

4
�k
3✓Pm�1

l=1 4
�l
3 +4

�m+1
3

◆v. Step (f) follows from the geometric

series bound. This completes the proof of Theorem 5.

IX. PROOFS OF THEOREM 6 AND THEOREM 7 (BOUNDED
`2-NORM VECTORS)

In this section, we prove Theorem 6 and Theorem 7 for the
mean estimation of bounded `2-norm vectors in local DP and
shuffle models, respectively.

In the mechanism R
`2
v,m,s, each client applies random

rotation to her vector xi and then applies the private mechanism
R

`1
v,m,s to the bounded `1-norm vector wi. Hence the com-

munication and privacy are the same as the private mechanism
R

`1
v,m,s. Thus, it remains to prove the MSE bound for both

local DP model and shuffle model.

A. MSE bound of the local DP model (Theorem 6) and shuffle
model (Theorem 7)

The proofs are obtained directly from the MSE of the
bounded `1-norm vector in Theorem 4 and Theorem 5 with
the following Theorem about the random rotation matrix.

Theorem 10. [64] Let U = 1p
d
HD, where H denotes

Hadamard matrix and D is a diagonal matrix with i.i.d.
uniformly random {±1} entries. Let x1, . . . ,xn 2 Bd

2 (r2)
be bounded `2-norm vectors and wi = Uxi. With probability
at least 1� �, we have that

max
i2[n]
kwik1 = max

i2[n]
kUxik1  10r2

s
log(nd� )

d
. (42)

From Lemma 10, the vector wi = Uxi is bounded `1-

norm of radius r1 = 10r2

q
log(nd

� )

d with probability at least

1��. Hence, by plugging the radius r1 = 10r2

q
log(nd

� )

d into
Theorem 6, we obtained the MSE in Theorem 6. Similarly, by

plugging the radius r1 = 10r2

q
log(nd

� )

d into Theorem 5, we
obtained the MSE in Theorem 7.

B. Lower bounds

A lower bound for the LDP model was proposed in [34,
Theorem 2.1] and [61, Lemma 1].

Theorem 11 (Lower Bound For LDP model [34], [61]). Let
n, d 2 N and "0 > 0. For any x1, . . . ,xn 2 Bd

2(r2), the MSE
is bounded below by:

MSE`2
LDP = ⌦

✓
r22d

nmin {"20, "0, b}

◆
(43)

for any unbiased algorithm M that is "0-LDP with b-bits of
communication per client.

Our lower bound for the shuffle model in Theorem 8
is a combination of the lower bound on the DME with
communication constraints proposed in [32] and the lower
bound on the DME with central (", �)-DP constraints proposed
in [59].

X. BINARY RANDOMIZED RESPONSE

In this section we review an unbiased version of the classical
binary randomized response (2RR mechanism) presented in
Algorithm 7. We also gather some results on the classical binary
randomized response, which will be useful for our proofs.

Theorem (Restating Theorem 1). For any p 2 [0, 1/2), the
2RR is "0-LDP, where "0 = log

⇣
1�p
p

⌘
. The output y of the

2RR mechanism is an unbiased estimate of b with bounded
MSE:

MSE2RR = sup
b2{0,1}

E
⇥
kb� yk22

⇤
=

p(1� p)

(1� 2p)2
. (44)

Proof. First, we show that the output of Algorithm 7 is
unbiased estimate of b. Let y be the output of the 2RR
Algorithm 7. Then, we have

E [y] =
b� p

1� 2p
(1� p) +

1� b� p

1� 2p
p

= b

✓
1� 2p

1� 2p

◆
�

p(1� p)

1� 2p
+

p(1� p)

1� 2p

= b.

(45)
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Algorithm 7 : Local Randomizer R2RR
p

1: Public parameter: p
2: Input: b 2 {0, 1}.
3: Sample �  Ber (p)
4: if � == 0 then
5: y = b�p

1�2p
6: else
7: y = 1�b�p

1�2p

8: Return: The client sends y.

Hence, the Algorithm 7 is an unbiased estimate of the input b.
Furthermore, the MSE of the 2RR is bounded by:

MSE2RR = sup
b2{0,1}

E
⇥
ky � bk2

⇤
= E

⇥
y2
⇤
� b2

= sup
b2{0,1}

1

(1� 2p)2
⇥
(b� p)2(1� p) + (1� b� p)2p

⇤
� b2

= sup
b2{0,1}

1

(1� 2p)2
⇥
b2 � 4p(1� p)b+ p(1� p)

⇤
� b2

= sup
b2{0,1}

1

(1� 2p)2
⇥
b2 � 4p(1� p)b+ p(1� p)

⇤
� b2

=
1

(1� 2p)2
⇥
b2(4p(1� p))� 4p(1� p)b+ p(1� p)

⇤

=
p(1� p)

(1� 2p)2
.

(46)
The LDP guarantees of the 2RR is obtained from the fact that
e�"0  1  1�p

p  e"0 for any p 2 (0, 1/2]. Furthermore, we
can prove that the 2RR satisfies (↵, "(↵))-RDP, where " (↵)
is given by:

" (↵) =
1

↵� 1
log
�
p↵(1� p)1�↵ + p1�↵(1� p)↵

�
, (47)

where this bound is obtained from the definition of the RDP and
also given in [49]. This completes the proof of Theorem 1. ⌅

Next we present the following lemma which is useful for
bounding the privacy parameter ("0) of our mechanisms which
depend on the binary randomized response.

Lemma 6. (Privacy parameter) For any v > 0, by setting
p = 1

2

⇣
1�

q
v2

v2+4

⌘
, the 2RR mechanism with parameter p

satisfies "0-LDP, where "0  v.

Proof. From Theorem 1, the 2RR mechanism with parameter
p < 1/2 is "0-LDP, where "0 = log

⇣
1�p
p

⌘
. Hence, it is

sufficient to prove that "0 = log
⇣

1�p
p

⌘
 v when choosing

p = 1
2

⇣
1�

q
v2

v2+4

⌘
for any v � 0.

Observe that 1 � p = 1
2

⇣
1 +

q
v2

v2+4

⌘
when p =

1
2

⇣
1�

q
v2

v2+4

⌘
. Let f(v) = v � log

⇣p
v2+4+vp
v2+4�v

⌘
. We have

that
@f

@v
= 1�

p
v2 + 4� v
p
v2 + 4 + v

8
�p

v2 + 4� v
�2p

v2 + 4

= 1�
8

(v2 + 4� v2)
p
v2 + 4

= 1�
2

p
v2 + 4

� 0 8 v � 0.

(48)

Hence the function f(v) is a non-decreasing function for all
v � 0. As a result f(v) � f(0) = 0 for all v � 0. Thus, we
have v � log

⇣
1�p
p

⌘
for all v � 0. This completes the proof

of Lemma 6. ⌅
Now, we prove a useful lemma for conversion from RDP to

approximate DP.

Lemma 7. (Conversion from RDP to approximate DP) For
given ⇢ > 0, let a mechanism M be (↵,↵⇢)-RDP. For any
� 2 (0, 1/e), the mechanism M satisfies (", �)-DP, where " is
bounded by:

"  3max
n
⇢ log(1/�),

p
⇢ log(1/�)

o
. (49)

Proof. The proof is obtained from Lemma 2, where the " is
bounded by:

"  min
↵

⇢↵+
log(1/�)

↵� 1
+ log

✓
1�

1

↵

◆
, (50)

for given � 2 (0, 1/e). By setting ↵ = 1 +
q

log(1/�)
⇢ , we get

that:
"  ⇢+ 2

p
⇢ log(1/�)

 ⇢ log(1/�) + 2
p
⇢ log(1/�)

 3max
n
⇢ log(1/�),

p
⇢ log(1/�)

o
.

(51)

This completes the proof of Lemma 7. ⌅
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