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In this paper, we propose differentially private algorithms
for the problem of stochastic linear bandits in the central,
local and shuffled models. In the central model, we achieve
almost the same regret as the optimal non-private algorithms,
which means we get privacy for free. In particular, we achieve
a regret of Õ(

p
T + 1

" ) matching the known lower bound
for private linear bandits, while the best previously known
algorithm achieves Õ( 1"

p
T ). In the local case, we achieve a

regret of Õ( 1"
p
T ) which matches the non-private regret for

constant ", but suffers a regret penalty when " is small. In the
shuffled model, we also achieve regret of Õ(

p
T+ 1

" ) while the
best previously known algorithm suffers a regret of Õ( 1"T

3/5).
Our numerical evaluation validates our theoretical results. Our
results generalize for contextual linear bandits with known
context distributions.

I. INTRODUCTION

Stochastic linear bandits offer a sequential decision frame-
work where a learner interacts with an environment over rounds,
and decides what is the optimal (from a potentially infinite set)
action to play to achieve the best possible reward (minimize
her regret). In particular, at each round, the learner may take
into account all past rewards and actions to decide the next
action to play, and in return receive a new reward. This model
has been widely adopted both in theory but also in a number of
applications, including recommendation systems, health, online
education, and resource allocation [1]–[4]. Motivated by the
fact that many of these applications are privacy-sensitive, in this
paper we explore what is the performance in terms of regret we
can achieve, if we are constrained to use a privacy-preserving
stochastic linear bandit algorithm.

In particular, in this paper we aim to design algorithms that
preserve the privacy of the rewards, from an adversary that
can observe all actions that the learner plays. For example,
the central learner may make restaurant recommendations to
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mobile devices, may regulate the operation of on-body sensors
in senior living communities, may decide what educational
exercises to provide to students, or what jobs to allocate to
workers. The actions the clients play - what restaurant is visited,
which sensor is activated, what is the exercise solved, what is
the job performed - may be naturally visible especially in public
environments. What we care to protect are the rewards, that
may capture private information, such as personal preferences
in recommendation systems, health indices in online health,
performance in online education, and income gained in resource
allocation. Our goal is to design algorithms that preserve the
privacy of the rewards, while still (almost) achieve the same
regret as the traditional algorithms that do not take privacy
into consideration.

We do so for three different setups, depicted in Figure 1,
in each case measuring the privacy using Differential Privacy
(DP) measures [5], [6]. In the central DP model, the learner
is a trusted server. The adversary observes the decisions of
the trusted server. The server employs a DP mechanism on
aggregates of the reward realizations she collects, to ensure
that the actions do not reveal information on the rewards. In
the local DP model, the learner is an untrusted server, where
the adversary (including the learner) can access the individual
private rewards of the clients. The clients provide privatized
rewards to the server, who then uses this noisy input to decide
her next actions. In the shuffled model, the learner is still an
untrusted server, but now a trusted node, that can act as a relay
in the communication between the clients and the server, serves
as a shuffler, and can randomly permute the privatized rewards
before making them available to the server. A shuffler offers
a privacy-amplification mechanism that has recently become
popular in the literature, as it is easy to implement (simply
takes a set of inputs and randomly permutes them), and may
enable better privacy-regret performance [7]–[11].

Our main contributions are as follows.
• For the central DP model, we design an algorithm that
guarantees "-DP (see Definition 1 in Section II) and achieves
regret that matches existing lower bounds. In particular, over
T rounds, it achieves regret RT = O

⇣
p
T log T + log2 T

"

⌘

w.h.p., which is optimal within a log T factor: a lower bound
of O(

p
T ) is proven in [12] for non-private linear bandits, while

a lower bound of O( log T
" ) is shown in [13] for "-DP linear

bandits. Note that for " ⇡ 1 (perhaps the most common case)
the dominant term O(

p
T log T ) matches the regret of the best

known algorithms for the non-private case (eg., LinUCB [12],
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Fig. 1: In case (a) the server is trusted, and we ensure that the publicly observable actions maintain privacy of the rewards. In
(b) and (c) we maintain privacy from an untrusted server.

[14]), and hence, we get privacy for free.
• For the local DP model, we design an algorithm that
guarantees "0-LDP (see Definition 2 in Section II) and achieves
regret RT = O

⇣p
T log(T )/"0

⌘
w.h.p.; this regret matches

the non-private regret for constant "0, but suffers a regret
penalty when "0 is small. Although our algorithm does not
improve the regret order as compared to the best-known
algorithm for private (contextual) linear bandits in [15], it
offers an alternative approach that serves as a foundation for
the shuffled case.
• For the shuffled model, we leverage the help of a trusted
shuffler to ensure both that the output of each client sat-
isfies "0-LDP and that the output of the secure shuffler
satisfies "-DP requirements. Our algorithm achieves regret
RT = O

⇣p
T log(T ) + log(T )

"

⌘
w.h.p. that matches the

regret of the best non-private algorithms, same as the central
model. Furthermore, our algorithm outperforms the best known
algorithm for private (contextual) linear bandits in [16], [17]
that use shuffling.

Our results are summarized in Table I, where we also
provide known results in the literature (see also discussion
next). Our work is the first to study DP stochastic linear
bandits. We provide order optimal algorithms for stochastic
linear bandits under central, local, and shuffled DP models.
Furthermore, we extend our results to DP contextual bandits
with known context distribution achieving large improvements
in regret bounds over state-of-the-art schemes in the central,
local, and shuffled models1. We believe that this idea opens
new techniques/directions to design private algorithms for
contextual bandits. Our algorithms are simple and solve
important problems: linear bandits, unstructured bandits with
finitely many arms (a special case of linear bandits), and
contextual linear bandits with known context distribution.
In particular, the DP unstructured bandit problem has rich
literature [18]–[20].

Our Work vs. Related Work. Differential Privacy (DP)
algorithms have been proposed for the generic multi-armed
bandits (MAB) problems [18]–[20], yet these algorithms would
not work well for linear bandits, as linear bandits allow for
an infinite set of actions while generic MAB have a regret
that increases with the number of actions. Closer to ours is
work on DP for contextual linear bandits [13], [15], [16], [21];
indeed, linear bandits can be viewed as (a special case of)

1This is the reason why we compare against contextual bandit work.

contextual linear bandit setup with a single context. The work
in [13] considers contextual linear bandits with DP and shows
that linear regret is unavoidable. Instead, the work considers a
weaker notion of privacy, JDP (joint differential privacy), in a
centralized setting and proposes an algorithm that achieves a
regret of Õ(

p
T/"). This does not match the best known lower

bound for the centralized setting of ⌦(
p
T + log(T )/") [13].

Our work considers the stronger DP notion and achieves the
lower bound of ⌦(

p
T + log(T )/") up to logarithmic factors

for the special case of stochastic linear bandits. Recent work
shows that contextual linear bandits can be reduced to stochastic
linear bandits if the context distribution is known [22], which
is the case for many application [22]. This implies direct
generalizations of our algorithms to contextual linear bandits
with DP and known context distribution without affecting
the regret bounds. The work in [21] considers contextual
linear bandits with LDP, where the contexts can be adversarial.
The work proposes an algorithm that achieves a regret of
Õ(T 3/4

/"0) and conjectures that the regret is optimal up to
a logarithmic factor. The authors in [15] consider a special
case, where the contexts are generated from a distribution,
and propose a method that achieves a regret of Õ(

p
T/"0)

under certain assumptions on the context distribution. Our
algorithm for the local model achieves the same regret order
using an alternative method. The works in [16], [17] consider
contextual linear bandits in the shuffled model where the best-
known algorithm achieves a regret of Õ(T 3/5). Our proposed
algorithms achieve a regret of Õ(

p
T + 1/"), matching the

information-theoretic lower bound in [13], for stochastic linear
bandits in the shuffled model. A summary of the best results
for DP contextual linear bandits and our results is presented
in Table I.

We mention two works in the literature studying the DP
stochastic linear bandits problem, which are related to our
work. After our initial posting of the paper on arxiv [23], and
the completion of our work, we recently found two works
[24], [25] which are closely related. The work in [24], which
was published after our paper [23], proposed DP mechanisms
for stochastic linear bandits using a similar approach to the
batched algorithm. The main difference between their schemes
and our proposed schemes is that the work in [24] focuses on
designing communication-efficient schemes for DP stochastic
linear bandits. This has some relationship with our results but
is quite different. In particular, [24] assumes different clients
with different bandit parameters that deviate from ✓? by a
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zero mean noise. To handle this, a large number of clients is
sampled at each time slot. To get its regret result of a form
similar to ours (in a different setting) [24] needs to sample
⌦(T ) clients, and hence, observe ⌦(T ) rewards, in some time
slots. On the other hand, our work considers a setup where
we can observe a single reward at each time slot. As the setup
is different, the corresponding privacy guarantees in [24] are
also not applicable to our setup. Furthermore, they consider
the Gaussian mechanism to privatize the rewards that gives
approximate DP guarantees. They need to do this as they have
clients with different parameters and need to average, and
they use the infinite divisibility of Gaussians for their privacy
analysis, which is not true for Laplace mechanisms. On the
other hand, we consider the Laplace mechanism to provide
pure DP guarantees which is a stronger DP notion.

The work in [25], which was published concurrently to
our work [23], primarily focuses on deriving lower bounds
for differentially private contextual bandits in the central DP
model, matching our upper bound in the central case and
thereby showing the optimality of our scheme. Moreover, our
contributions go well beyond the central DP model to include
local DP and shuffled DP models as well.

Paper organization. We present the problem formulation
in Section II. We design and analyze privacy-preserving linear
bandit algorithms for the central model in Section III, for
the local model in Section IV and for the shuffled model in
Section V. We provide numerical results in Section VI.

II. NOTATION AND PROBLEM FORMULATION

Stochastic Linear Bandits. In stochastic linear bandits
a learner interacts with clients over T rounds by taking a
sequence of decisions and receiving rewards. In particular, at
each round t 2 [T ], the learner plays an action at from a set
A ⇢ Rd and receives a reward rt 2 R. The reward rt is a noisy
linear function of the action, i.e., rt = h✓⇤, ati+ ⌘t, where h.i
denotes inner product, ⌘t is an independent zero-mean noise
and ✓⇤ 2 Rd is an unknown parameter vector. The goal of
the learner is to minimize the total regret over the T rounds,
which is calculated as:

RT = T max
a2A
h✓⇤, ai �

TX

t=1

h✓⇤, ati. (1)

The regret captures the difference between the reward for the
optimal action and the rewards for the actions chosen by the
learner. The basic approach in all algorithms is to play actions
that enable the learner to learn ✓⇤ well enough to identify a
(near) optimal action. The best known algorithms (for example,
LinUCB [12], [14]) achieve a regret of order O(

p
T log T ),

which is the best we can hope for (matches existing lower
bounds [12]).

Contextual Linear Bandits. In contextual bandits, the
learner observes the context of the client at time t, ct, plays an
action at 2 A, and receives a reward rt = h✓?,�(at, ct)i+ ⌘t,
where � is a known feature map and ⌘t is noise. In this case the
regret RT is defined as RT =

PT
t=1 maxa2Ah✓⇤,�(a, ct)i �

h✓⇤,�(at, ct)i. Equivalently, contextual linear bandits can be
seen as linear bandits with action set that changes over time
At = {�(a, ct)|a 2 A}.

In this paper, we make the following standard assumptions
(see, e.g., [13], [14]).

Assumption 1. We consider stochastic linear bandits with:
1. Sub-Gaussian noise: E[⌘t+1|Ft] = 0 and
E[exp(�⌘t+1)|Ft]  exp(�

2

2 )8� 2 R, where
Ft = �(a1, r1, ..., at, rt) is the �-field summarizing the
information available before round t.
2. Bounded actions, unknown parameter, and rewards:
kak2  1 8a 2 A, k✓⇤k2  1 and |rt|  1.

Privacy Goal and Measures. Our goal in this paper is to
achieve the minimum possible regret in (1) while preserving
privacy of the rewards {rt}t2[T ] (as discussed in Section I
the rewards can represent sensitive information of the clients).
To measure privacy, we use the popular central and local
differential privacy definitions that we provide for completeness
next. For simplicity, we assume that a different client plays
each action (e.g., visits a recommended restaurant).
Differential Privacy (DP). We say that two sequences of
rewards R = (r1, . . . , rT ) and R

0 = (r01, . . . , r
0
T ) are

neighboring if they differ in a single reward, i.e., there is
a round t 2 [T ] such that rt 6= r

0
t, but rj = r

0
j for all j 6= t. To

preserve privacy, we use a randomized mechanism M designed
for stochastic linear bandits, that observes rewards and outputs
publicly observable actions.

Definition 1. (Central DP [5], [6]): A randomized mechanism
M for stochastic linear bandits is said to be (", �) Differentially
Private ((", �)-DP) if for any two neighboring sequences of
rewards R = (r1, . . . , rT ) and R

0 = (r01, . . . , r
0
T ), and any

subset of output actions O ⇢ A
T , M satisfies:

Pr[M (R) 2 O]  e
" Pr[M (R0) 2 O] + �. (2)

When � = 0, we say that the mechanism M is pure
differentially private ("-DP). The DP mechanisms maintain
that the distribution on the output of the mechanism does not
significantly change when replacing a single client with reward
rt with another client with reward r

0
t. Thus, the adversary

observing the output of the DP mechanism does not infer the
clients rewards.

Local Differential Privacy (LDP). If the central learner is
untrusted, we need a local private mechanism M whose output
is all the information available to the central learner. We denote
the range of the output of the local mechanism by Z .

Definition 2. (LDP [26]) A randomized mechanism M :
[�1, 1]! Z is said to be ("0, �0) Local Differentially Private
(("0, �0)-LDP) if for any rewards rt and r

0
t, and any subset of

outputs O ⇢ Z , the algorithm M satisfies:

Pr[M (rt) 2 O]  e
"0 Pr[M (r0t) 2 O] + �0. (3)

Similar to the DP definition, we say that M is pure locally
differentially private ("0-LDP) when �0 = 0. Observe that the
input of the LDP mechanism is a single reward, and hence,
each client preserves privacy of her observed reward rt, even if
the adversary knows what is the action she plays and observes
a function of her reward.

In contextual linear bandits, the context ct and the reward
rt are considered sensitive information about the client. Hence,
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Algorithm Regret Bound Context Privacy Model
Central DP Local DP

Central DP [13] Õ

⇣p
T
"

⌘
Adversarial (", �) N/A

LDP [21] Õ

⇣
T3/4

"0

⌘
Adversarial (" = "0, �) ("0, �)

LDP+shuffling [16] Õ

⇣
T2/3

"1/3

⌘
Adversarial (", �)

�
"0 = "2/3T 1/6, �

�

LDP [15] Õ

⇣p
T

"0

⌘
Stochastic (" = "0, �) ("0, �)

Central DP (Theorem 1) Õ

⇣p
T + 1

"

⌘
Free (", 0) N/A

LDP (Theorem 2) Õ

⇣p
T

"0

⌘
Free (" = "0, 0) ("0, 0)

LDP+shuffling(Theorem 3) Õ

⇣p
T + 1

"

⌘
Free (", �)

�
"0 = "T 1/4, 0

�

TABLE I: Upper part: known results. Lower part: our results. The Õ notation hides the dependencies on the dimension d,
privacy parameter � and log factors.

the goal of private contextual bandits is to keep both the context
and the reward private. Unfortunately, a linear regret bound is
unavoidable in contextual bandits under DP constraints [13].
Therefore, Shariff et al. in [13] have presented the notion of
joint differential privacy (JDP) for contextual bandits. For any
two sequences S = {(A1, r1), (A2, r2), . . . , (AT , rT )} and
S
0 = {(A0

1, r
0
1), (A

0
2, r

0
2), . . . , (A

0
T , r

0
T )}, we say that S and

S
0 are t-neighbors if it holds that (Aj , rj) = (A0

j , r
0
j) for all

j 6= t.

Definition 3. (JDP [13]) A randomized algorithm M for the
contextual bandit problem is (", �)-jointly differentially private
(JDP) under continual observation if for any t and any t-
neighboring sequences S and S

0, and any subset S>t ⇢ At+1⇥

· · ·⇥AT , it holds that:

Pr[M (S) 2 S>t]  e
" Pr[M (S 0) 2 S>t] + �. (4)

Thus, changing the pair (ct, rt) of a single client cannot have
a significant impact on determining future actions.

System Model. We consider three different models for
private stochastic linear bandits. In all three cases, our setup is
that of a learner, who asks clients to play publicly observable
actions, and collects the resulting rewards (see Figure 1). The
models differ on whether the learner is a trusted or untrusted
server, and whether a shuffler is available or not. A shuffler
simply performs a random permutation on its input.
1) Central DP model: The learner is a trusted server who
can collect the clients’ rewards and take actions. Thus, the
trusted server can apply a DP mechanism (see Definition 1)
to preserve the privacy of the collected rewards against any
adversary observing the actions of the clients.
2) LDP model: The learner is an untrusted server. Hence,
each client needs to privatize her own reward by applying an
LDP mechanism (see Definition 2) before sending it to the
untrusted server. The server takes decisions on next actions
using the collected privatized rewards.
3) Shuffled model: Similar to the LDP model, the learner is
an untrusted server. However, we consider that there exists a
trusted shuffler that collects the LDP responses of the clients
and randomly permutes them before passing them to the server,
see Figure 1.

Following [13], [15], [19], we consider a model where each
client appears only once, hence, we have T clients in total.
This assumption is practical for many applications, e.g., online

shopping and ads, where there are millions of clients interacting
only one time with the algorithm.

III. STOCHASTIC LINEAR BANDITS WITH CENTRAL DP

In this section we consider the case where the learner is
a trusted server. We present an algorithm that offers "-DP
(see Definition 1) for stochastic linear bandits, with no regret
penalty: we achieve the same order regret performance as the
best algorithms that operate under no privacy considerations.

Algorithm 1 "-DP algorithm for stochastic linear bandits:
central model

1: Input: set of actions A, time horizon T , and privacy
parameter ".

2: Let A1 be a ⇣-net for A as in Lemma 1, with ⇣ = 1
T .

3: q  (2T )1/ log T .
4: for i = 1 : log(T )� 1 do
5: �i  

q
4d
qi log (4|Ai|T

2) +
2Bd2+2d log(4|Ai|T 2)

"qi .
6: For Ai ✓ Rm, m  d, let Ci be a core set of size at

most Bm as in Lemma 2 and ⇡i the associated distribution.
7: Pull each action a 2 Ci, nia = d⇡i(a)qie times to get

rewards r
(1)
ia , ..., r

(nia)
ia .

8: r̄ia  
Pnia

k=1 r
(k)
ia , r̂ia  r̄ia + zia 8a 2 Ci, where

zia is an independent noise that follows Lap( 1" ).
9: V  

P
a2Ci

niaaa
>
, ✓̂i  V

�1
P

a2Ci
r̂iaa.

10: Ai+1  {a 2 Ai|ha, ✓̂ii � max↵2Ah↵, ✓̂ii � 2�i}

11: Play action argmax↵2Alog(T )�1
h↵, ✓̂log(T )�1i for the re-

maining time.

Main Idea. Our algorithm follows the structure of elimina-
tion algorithms: it runs in batches, where we maintain a “good
set of actions” Ai, in each batch i that almost surely contain
the optimal one, and gradually eliminate sub-optimal actions,
shrinking the sets Ai as i increases. As is fairly standard in
elimination algorithms, in our case as well, during batch i,
the learner plays actions in Ai, calculates an updated estimate
✓̂i of the unknown parameter vector ✓⇤, and eliminates from
Ai actions if their estimated reward is 2�i from the estimated
reward of the arm that appears to be best, where �i is the
confidence of the reward estimates.

We note that our adversary observes actions generated
through the estimate of ✓i. Since, the ✓̂i is generated from the
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private rewards, all functions of ✓̂i (including estimate of next
actions) is "-DP from post-processing [6]. Our new observation
on how to achieve this is as follows. If by playing a smaller
number of distinct actions we are able to identify the
optimal action, we need to overall add a smaller amount of
noise to guarantee privacy than if we play a larger number
of distinct actions. Indeed, if an action a is played for na

times, the learner, to estimate ✓⇤, only needs to use the sum
of these na rewards. To offer "-DP we can perturb this sum
by adding independent Laplacian noise (Lap( 1" )); clearly, the
smaller the number of distinct actions we play, the smaller the
overall amount of noise we need to add. Thus our algorithm, at
each batch iteration i, plays actions from a carefully selected
subset of Ai, of cardinality as small as possible. The technical
question we address is, starting from a continuous action space
A, how to select at each batch iteration a small cardinality
subset that maintains the ability to identify the optimal action.

We next describe the steps in implementing this idea. Recall
that our actions come from a set A ✓ Rd, and we assume they
are bounded, namely, kak2  1, 8a 2 A (see Assumptions 1
in Section II).
1. Our first step is to reduce the continuous action space
to a discrete action space problem. To do so, we finely
discretize A to create what we call a ⇣-net, a discrete set
of actions N⇣ ✓ A such that distances are approximately
preserved. Namely, for any a 2 A, there is some a

0
2 N⇣ with

ka
0
� ak2  ⇣. Lemma 1, proved in [27, Cor. 4.2.13], states

that we can always find such a discrete set with cardinality at
most ( 3⇣ )

d + d. As a result, all the “good sets” Ai will also
be discrete.

Lemma 1. ( ⇣-net for A [27]) For any set A ✓ {x 2

Rd
|kxk2  1} that spans Rd, there is a set N⇣ ✓ A (zeta-net)

with cardinality at most ( 3⇣ )
d + d such that N⇣ spans Rd, and

for any a 2 A, there is some a
0
2 N⇣ with ka0 � ak2  ⇣.

2. We introduce the use of a core set Ci, a subset of the
actions of the set of “good actions” Ai. During batch i, the
learner only plays actions in Ci, each with some probability
⇡i(a). Lemma 2, proved in [28, Ch.21], states that if Ai spans
some space Rk, we can find a core set of size at most Bk

(with B a constant) and an associated probability distribution
⇡, so that, playing actions only from Ci enables to calculate a
good estimate of ha, ✓⇤i for each a 2 Ai .

Lemma 2. (Core set for A [28]) For any finite set of actions
A ⇢ {x 2 Rd

|kxk2  1} that spans Rd, there is a constant
B, a subset C and a distribution ⇡ on C, that can be computed
in polynomial time, such that |C|  Bd, C spans Rd, and for
any a 2 A

a
>

 
X

↵2C
⇡(↵)↵↵>

!�1

a  2d. (5)

The computation of C,⇡ can be formulated as a convex
optimization problem with many efficient approximation algo-
rithms available [28], [29]. For completeness, we present the
Frank-Wolfe Algorithm in Appendix A, where we use it to
construct the core set in our numerics in Section VI.

3. To preserve the privacy of rewards, we perturb the sum
rewards of each action by adding Laplace noise. Adding
noise affects the confidence of the reward estimates � (step 5
in Algorithm 1 shows that � increases as " decreases), and
thus delays the elimination of bad actions and increases the
regret by an additive term of Õ( 1" ). Replacing a possibly large
set Ai with the smaller core set Ci effectively decreases the
cumulative noise affecting the estimate of ✓⇤.

Algorithm Pseudo-Code. Algorithm 1, starts by initializing
the good action set A1 to be an 1

T -net of A according
to Lemma 1. Then, the algorithm operates in batches that
grow exponentially in length, where the length of batch i is
approximately q

i and q = (2T )1/ log T 2. In each batch i, we
construct the core set Ci and the associated distribution ⇡i as
per Lemma 2. Each action in Ci is pulled nia = d⇡(a)qie times,
where the length of batch i is ni =

P
a2Ci

nia. To preserve
privacy, the sum of the rewards of each action is perturbed
with Lap(1/") noise. The learner uses these privatized sum
rewards to compute the estimate of ✓⇤, ✓̂i. At the end of batch
i, the learner eliminates from Ai the actions with estimated
mean reward, ha, ✓̂ii, that fail to be within 2�i from the action
that appears to be best, where �i is our confidence in the mean
estimates. After the iteration i = log T � 1 is completed, the
learner simply plays the action that appears to be best.

Algorithm Performance. We next prove that Algorithm 1
is "-DP and provide a bound on its regret.

Theorem 1. Algorithm 1 is "-differentially private. Moreover,
it achieves a regret

RT  C

✓p
T log T +

log2 T

"

◆
, (6)

with probability at least 1 � 1
T , where C is a constant that

does not depend on ", T .

Proof Outline. The privacy result follows from the Laplace
mechanism [6]. To bound the regret, we first argue that with
probability at least 1 � 1

T , and for all i and all a 2 Ai, we
have that |ha, ✓̂ii�ha, ✓̂?i|  �i. Conditioned on this event, an
action with gap �a is eliminated when, or before, �i < �a/2.
Hence, all actions in batch i have a gap that is at most 4�i.
The regret bound follows by summing 4�ini for all batches.
The complete proof is provided in Section VII. ⇤
Remark 1. We note that the high probability bound in
Theorem 1 implies a bound in expectation

E[RT ]  C

✓p
T log T +

log2 T

"

◆
. (7)

The regret is trivially O(T ) and the failure probability is 1
T ,

which overall contributes O(1) to E[RT ].

Remark 2. The regret in Theorem 1 is optimal up to log T
factor; a lower bound of ⌦(

p
T ) is proven in [12] for the

non-private case, while a lower bound of log T
" is shown in

[13] for private case.

Remark 3. We observe that the privacy parameter " is typically
⇡ 1. In this case, the dominating term in (11) is O(

p
T log T )

2We note that e  q  e2.
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which matches the regret of the best-known algorithm for the
non-private case (see LinUCB in [12], [14]), and hence, we
get privacy for free.

A. Stochastic Contextual Bandits with Central DP
In this section, we extend our results to the contextual linear

bandits with known context distribution. In the following, we
focus on the stochastic context setting where the context ct
is generated from a distribution P independently from other
iterations. We assume that the distribution P is known to the
learner3. The main idea is to use the reduction proposed in [30]
to represent the contextual linear bandits with known context
distribution as a stochastic linear bandits problem, and then,
we apply our DP algorithm for stochastic linear bandits.

First, we briefly review the reduction for the case of known
context distribution and refer the reader to [30] for a detailed
description. The basic idea in [30] is to establish a linear bandit
action for each possible parameter vector ✓ of the contextual
bandit instance.

This is achieved through the use of the function g : Rd
! Rd,

which computes the expected best action under the context
distribution P with respect to the parameter ✓: g(✓) =
Ect⇠P [argmaxa2Ah�(a, ct), ✓i]. As stated in [30, Theorem 1],
when at = argmaxa2Ah�(a, ct), ✓ti for some ✓t 2 Rd, then
the reward generated by the contextual bandit instance can
be expressed as rt = hg(✓t), ✓?i + ⌘

0
t, where ⌘

0
t is noise

with zero mean conditioned on the history. Consequently, the
reward can be viewed as generated by pulling action g(✓t) in
a linear bandit instance with an action set X = {g(✓)|✓ 2 ⇥}.
Moreover, the same theorem demonstrates that if a linear
bandit algorithm is employed to choose g(✓t) 2 X at
round t and thus play action at = argmaxa2Ah�(a, ct), ✓ti,
then |RT � R

L
T | = Õ(

p
T ) with high probability, where

R
L
T =

PT
t=1 sup✓2⇥hg(✓) � g(✓t), ✓?i is the regret of the

algorithm on the linear bandit instance.
As a result, if the context distribution is known, then the

function g is known to the learner as well as the users. Thus,
we can construct a contextual bandits algorithm under joint
differential privacy (JDP) constraints to privatize the contexts
and rewards using our Algorithm 1 as follows. We apply
our Algorithm 1 with action set A , X , {g(✓) : ✓ 2 ⇥}.
When a client receives an action xt , g(✓t) (from linear
bandits), the client chooses an actual action at by solving
at = argmaxa2A h�(a, ct), ✓ti, where ✓t = g

�1(xt) with
ties broken arbitrarily. The client observes a reward rt and
sends it to the learner. Following Algorithm 1, at the end of
the batch, the learner privatizes the aggregated rewards and
updates the action set Xi+1 to the next batch, see Steps 8� 10
in Algorithm 1.

Corollary 1. There exists an (", 0)-JDP algorithm for stochas-
tic contextual bandits with known context distribution with
bounded regret:

RT  C

✓p
T log T +

log2 T

"

◆
, (8)

3The knowledge of the distribution P can be practical in multiple cases,
e.g., known age, and gender distribution. The extension to unknown context
distribution is a future direction of our work.

with probability at least 1 � 2
T , where C is a constant that

does not depend on ", T .

Proof. The results are obtained by applying the algorithm ex-
plained above which is a combination of the reduction from [30]
and our Algorithm 1. Observe that at any iteration t 2 [T ], all
the past history of context-reward pairs {(ct0 , rt0) : t0 < t} are
encoded in the returned reward set {rt0 : t0 < t}. Furthermore,
the past sequence rewards are (", 0)-DP from Theorem 1,
where the learner uses only these private rewards to estimate
the unknown parameter ✓? and decides the new action of the
next iteration. Thus, the presented algorithm is (", 0)-JDP.

The regret of our algorithm of stochastic linear bandits is
bounded by C

0
⇣
p
T log T + log2 T

"

⌘
from Theorem 1 with

probability at least 1� 1
T . Furthermore, from [30, Theorem 1],

the difference between the regrets of the linear and contextual
bandits instances |RT � R

L
T | = Õ(

p
T ) with probability at

least 1� 1/T . By the triangle inequality and the union bound,
it follows that the regret of the algorithm is bounded by
C

⇣
p
T log T + log2 T

"

⌘
with probability at least 1�2/T . This

completes the proof of Corollary 1. ⌅
Remark 4. In this section, we showed that our Algorithm 1
for DP stochastic linear bandits can be extended to give a JDP
algorithm for contextual bandits with known distribution. A
similar argument can be applied to the local DP model and
the shuffled model in the next sections.

IV. STOCHASTIC LINEAR BANDITS WITH LDP
In this section, the learner is an untrusted server, and thus

we design a linear bandit algorithm (Algorithm 2) that operates
under LDP constraints.

Main Idea. As in Algorithm 1, we here also utilize a core set
of actions; the difference is that, since the server is untrusted,
each client privatizes her own reward before providing it to
the server. Our algorithm offers an alternative approach to [15]
that achieves the same regret, while using operation in batches,
which may in some applications be more implementation-
friendly (e.g., multi-stage clinical trials and online marketing
with high response rates) [31], [32], and also forms a foundation
for the Algorithm 3 we discuss in the next section.

Algorithm Pseudocode. Algorithm 2 operates like Algo-
rithm 1, except for the addition of Lap(1/"0) noise for each
reward individually as opposed to adding Lap(1/") to the
sum of the rewards of each arm in the central model. The
value of �i is adjusted to account for this change. Algorithm
Performance. The following Theorem 2 presents the privacy-
regret tradeoffs of the LDP stochastic bandits Algorithm 2.
The proof is deferred to Section VIII and follows the same
main steps as the proof of Theorem 1, but with the modified
values of �i.

Theorem 2. Algorithm 2 is "0-LDP. Moreover, it achieves a
regret

RT  C(1 +
1

"0
)
⇣p

T log T
⌘
, (9)

with probability at least 1 � 1
T , where C is a constant that

does not depend on "0 and T .
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Algorithm 2 "0-LDP algorithm for stochastic linear bandits:
local model

1: Input: set of actions A, time horizon T , and privacy
parameter "0.

2: Let A1 be a ⇣-net for A as in Lemma 1, with ⇣ = 1
T .

3: q  (2T )1/ log T .
4: for i = 1 : log(T )� 1 do
5: Client side:
6: Receive action a from the server. Play action a and

receive a reward r.
7: Send r̂ = r + Lap( 1

"0
).

8: Server side:
9: Let Ci be a core set for Ai as in Lemma 2 with

distribution ⇡i, and nia = d⇡i(a)qie.
10: Send each action a 2 Ci to a set of nia clients to

get rewards r̂
(1)
ia , ..., r̂

(nia)
ia .

11: ni  
P

a2Ci
nia.

12: �i  
p

log (4|Ai|T
2)(
q

4d
qi + 2d

p
ni

qi"0
).

13: r̂ia  
Pnj

k=1 r̂
(1)
ia 8a 2 Ci.

14: V  
P

a2Ci
niaaa

>
, ✓̂i  V

�1
P

a2Ci
r̂iaa.

15: Ai+1  {a 2 Ai|ha, ✓̂ii � max
↵2Ai

h↵, ✓̂ii � 2�i}.

16: Play action argmax↵2Alog(T )�1
h↵, ✓̂log(T )�1i for the re-

maining time.

Remark 5. When "0 > 1, the regret RT would be
O

⇣p
T log(T )

⌘
that matches the non-private case. However,

the constants of the regret convergence are larger than that of
the non-private case.

Remark 6. (Comparison to the central (", �)-DP model.)
Observe that when "0 < 1, the dominating term in the regret
is RT = O

⇣
T log(T )

"0

⌘
. In other words, we obtain the regret

of the non-private case divided by the LDP parameter "0. In
contrast, the central DP parameter " appears as an additive term
in the regret of the central model. This difference is because,
in the local model noise is added on every reward, while in
the central model directly on the reward aggregates; thus the
noise variance of the aggregate rewards and the confidence
parameter �i increases in the local model.

In the high privacy regimes; for example, assume that "0 =
O
�

1
T↵

�
for some 0 < ↵ 

1
2 , we get a regret RT of order

O

⇣
T

1
2+↵

⌘
that becomes linear function of T as "0 !

1p
T

.

V. STOCHASTIC LINEAR BANDITS IN THE SHUFFLED
MODEL

In this section, we consider the case of an untrusted server
and a trusted shuffler. We propose Algorithm 3 that (almost)
achieves the same regret as the best non-private algorithms.

Main idea. To use shuffling, we need to use an algorithm
that operates over batches of actions, so as to be able to shuffle
them. The use of a core set is critical to enable a selection of
actions that lead to a good estimate for ✓?. For example, if
the original set A contains a large number of actions along
one direction in the space, but only a few actions along other

Algorithm 3 DP algorithm for stochastic linear bandits:
shuffled model

1: Input: actions A, horizon T , privacy parameters (", �).
2: Let A1 be a ⇣-net for A as in Lemma 1, with ⇣ = 1

T .
3: q  (2T )1/ log T .
4: for i = 1 : log(T )� 1 do
5: Client side:
6: Receive action a and the value ni from shuffler.
7: Play action a and receive a reward r.
8: "

(i)
0  f

�1
ni,�

(").
9: Send r̂ = r + Lap( 1

"(i)0

) to the shuffler.
10: Shuffler:
11: Send action a⇡(j) and ni to client j, j = [ni], where

⇡ is a random permutation of [ni].
12: Receive the action-reward pairs {(aj , r̂iaj )}

ni
j=1, and

send them to the server.
13: Server side:
14: Let Ci be a core set for Ai as in Lemma 2 with

distribution ⇡i.
15: Let nia = d⇡i(a)qie, ni  

P
a2Ci

nia.
16: Let ACi be a list of ni actions where action a 2 Ci

is repeated nia times.
17: Let a1, ..., ani be an enumeration of ACi . Send them

to the shuffler
18: Receive the action-reward pairs from the shuffler.
19: �i  

p
log (4|Ai|T

2)(
q

4d
qi + 2d

p
ni

qi"(i)0

).

20: r̂ia  
Pnj

k=1 r̂
(1)
ia 8a 2 Ci.

21: V  
P

a2Ci
niaaa

>
, ✓̂i  V

�1
P

a2Ci
r̂iaa.

22: Ai+1  {a 2 Ai|ha, ✓̂ii � max
↵2A
h↵, ✓̂ii � 2�i}.

23: Play action argmax↵2Alog(T )�1
h↵, ✓̂log(T )�1i for the re-

maining time.

directions, then pulling each action in A once will not result in
a good estimate of ✓?. Use of the core set and the associated
distribution ⇡ will balance such assymetries and enable to
explore multiple directions of the space a sufficient number of
times to acquire a good estimate of ✓?.

Accordingly, we follow the same approach as in Algorithm 2
with two changes: we use a shuffler (in a manner tailored to
bandits) to realize privacy amplification gains, and we adjust
the amount of Laplace noise we add in each batch, depending
on the batch size.

We use the trusted shuffler as follows. The actions to be
played in the ith batch are shuffled by the trusted shuffler at
the beginning of the batch. The shuffler asks clients to play
actions in the shuffled order. Then, at the end of the batch,
the shuffler reverses the shuffling operation, associates every
action with its observed LDP reward, and conveys it to the
untrusted learner.4

We adjust the amount of added Laplace noise per batch as
follows. To offer privacy guarantees, we want to add noise to the
rewards so that the output of the shuffler is (", �)-DP for each

4The server cannot directly observe which action is played by which client,
for instance due to geographical separation.
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batch i 2 [log(T )]. This implies that the entire algorithm will be
(", �)-DP since we assume that each client contributes to only
one of the batches. The privacy amplification of the shuffling
depends on the size of the batch (see e.g. [10, Theorem 1]);
thus the larger the batch size, the less noise needs to be added
to the rewards of the clients. To ensure that the output of
batch i is (", �)-DP, it is sufficient to add to each reward noise
Lap( 1

"(i)0

), where "
(i)
0  f

�1
ni,�

("), and ni is the size of batch i.
The function fn,� : R+

! R+ captures privacy amplification
via shuffling [10], [11] and is defined as follows

fn,�("0) = log

 
1 +

e
"0 � 1

e"0 + 1

 
8
p
e"0 log(4/�)
p
n

+
8e"0

n

!!
.

(10)
Since the noise added to the rewards varies for each batch
i, we modify the confidence bounds, �i, to reflect this. The
pseudo-code is provided in Algorithm 3.

Algorithm Performance. The following theorem proves
that Algorithm 3 is (", �)-DP and provides an upper bound on
its regret that matches the information theoretic lower bound
for " = Õ( 1p

T
).

Theorem 3. Algorithm 3 is (", �)-differentially private. More-
over, if " is O(

q
log(1/�)

T ) it achieves a regret

RT  C

 
p
T log T +

p
log(1/�) log3/2 T

"

!
, (11)

with probability at least 1 � 1
T , where C is a constant that

does not depend on " and T .

Proof Outline. The proof of Theorem 3 is deferred to
Section IX. The privacy guarantee is proved by reducing the
scheme to one that shuffles the rewards but does not shuffle
the corresponding actions and using results from [10], [11].
The regret analysis follows similar ideas as in Theorem 1 and
Theorem 2.

Remark 7. Note that in our proposed shuffled model, we
randomly permute the actions. We can achieve a similar regret
by shuffling the rewards of each action separately by using the
shuffled mechanism for scalar summation in [33]. Please see
Appendix C for more details.

Remark 8. Algorithm 3 almost achieves the same order regret
as the best non-private algorithms. Indeed, Theorem 3 proves
that Algorithm 3 achieves a regret that matches the regret
of the central DP Algorithm 1 for the high privacy regimes
" = O(

p
log(1/�)/T ). For the low privacy regime " > 1,

the shuffling does not offer privacy gains, "
(i)
0 ⇡ " for all

i 2 [log(T )] and the regret of Algorithm 3 is similar to the
regret of Algorithm 2 of the local DP model. However, for
the low privacy regime, the local DP model also achieves the
same regret as non-private algorithms up to constant factors
(see Remark 5). Hence in both cases, Algorithm 3 achieves
the same order regret as Algorithm 1 which almost matches
the regret of non-private algorithms.

Remark 9. Algorithm’s 3 improved regret performance over
Algorithm 2 is thanks to the smaller amount of noise added to

rewards. In particular, the noise added in Step 9 of Algorithm 3
has variance 2

"(i)0

2 ⇡
2

ni"2
for small ".

Remark 10. Observe that the Gaussian noise satisfies similar
concentration properties as proven in Lemma 4. Thus, we can
use the Gaussian mechanism in our central and local DP model
to achieve approximate DP. However, the Gaussian mechanism
is not directly applied to the shuffled model algorithm, since
the privacy amplification by shuffling results in [10], [11]
requires a pure local DP mechanism. The privacy analysis with
approximate local DP mechanisms in the shuffled framework
is an open question.

VI. NUMERICAL RESULTS

We here present indicative results on the performance of
our proposed Algorithms 1, 2 and 3. In our numerical results,
we use the Frank-Wolfe Algorithm presented in AppendixA to
construct the coreset.

Data Generation. We generate synthetic data generated as
follows. The set of actions A contains K actions, where each
action a 2 A is a d = 2-dimensional vector. The actions
a 2 A and the optimal parameter ✓⇤ are generated uniformly
at random from the unit sphere S

d�1 = {x 2 Rd : ||x||2 = 1}.
A similar method is considered in [15]. Figure 2 plots the total
regret RT over a horizon T = 106 as a function of the privacy
budget (" or "0 in the case of LDP mechanisms).

Comparison of Algorithms 1, 2 and 3. In Figure 2, the set
of actions A contains K = 10 actions. Figure 2 shows that the
regret achieved by all three algorithms, Algorithm 1 (central
model), Algorithm 2 (local model), and Algorithm 3 (shuffled
model) converges to the regret of non-private stochastic linear
bandit algorithms [28, Ch. 22] as " ! 1 ("0 ! 1), albeit
at different rates. As predicted from the theoretical analysis,
Algorithms 1 (central) and 3 (shuffled) offer privacy (almost)
for free, closely following the non-private regret. Furthermore,
the central Algorithm 1 is close to the non-private case and
significantly outperforms the LDP Algorithm 2. We observe
that the shuffled model has a performance close to the central
algorithm and outperforms the regret of the LDP Algorithm 2.

Usefulness of Core Set. In Figure 2b, we explore potential
benefits on the performance of Algorithm 1 that use of the
core set can offer. We consider K = 1000 and T = 107, and
plot the regret of Algorithm 1 for two cases: (i) when we use
a core set of size 2-3 actions, similar to the dimension of our
space (labeled as Alg. 1), and (ii) when no core set is used,
and instead the good set of actions of the batched algorithm
is the whole action set (labeled as Alg. 1 no-core-set). The
good action set (in line 10 of Algorithm 1) is used with the
uniform distribution as our exploration policy. We find that, as
expected from our theoretical analysis, using a core set enables
to achieve performance very close to that of a non-private
batched algorithm that adds no noise. In contrast, using (and
adding noise to) the entire action space significantly degrades
the performance.
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(a) Central, local and shuffled models, K = 10, T = 106. (b) Effect of core set size, K = 1000, T = 107.

Fig. 2: Regret-privacy trade-offs for stochastic linear bandits algorithms.

VII. REGRET AND PRIVACY ANALYSIS OF THE CENTRAL
DP MODEL (PROOF OF THEOREM 1)

In this section, we prove the regret bound and the privacy
guarantees of the central DP algorithm. We present the
privacy analysis in Section VII-A and the regret analysis in
Section VII-B.

A. Privacy Analysis

We first show that Algorithm 1 is "-DP. Let r̄i =
[r̄ia1 , ..., r̄ia|Ci|

], r̂i = [r̂ia1 , ..., r̂ia|Ci|
] = r̄i + zi, zi =

[zia1 , ..., zia|Ci|
], where a1, ..., a|Ci| is an enumeration of

the elements of Ci. We construct the concatenated reward
vector denoted by r̄ = [r̄1, ..., r̄log(T )�1], and let r̂ =
[r̂1, ..., r̂log(T )�1] = r̄ + z, z = [z1, ..., zlog(T )�1].

Now consider two neighboring sequence of rewards R,R
0,

that only differ in rk, r
0
k, with corresponding concatenated

reward vectors r̄, r̄
0. We notice that each reward in R appears

once in r̄, and similarly for R0
, r̄

0. Thus, we get:

kr̄ � r̄
0
k1  max

rk,r0k
|rk � r

0
k|  1, (12)

where the last inequality follows from Assumption 1 with
bounded rewards |rk|  1. Then, from [5, Theorem 3.6], r̂
is "-DP. We notice that the output of Algorithm 1 depends
on r1, ..., rT only through r̂. Hence, by post processing,
Algorithm 1 is "-DP.

B. Regret Analysis

We next prove the regret bound of Algorithm 1 for stochastic
linear bandits.

Our analysis follows the known confidence bound technique
in [34] by designing confidence intervals (in step 5) that take
into consideration the privacy effect.

Let K = (3T )d be the size of the 1
T -net set N1/T from

Lemma 1. We first bound the following regret:

R̃T = T max
a2N1/T

ha, ✓⇤i �

TX

t=1

hat, ✓⇤i, (13)

where a1, a2, . . . , aT 2 N1/T . We then bound the regret RT

by showing that we only loose a constant term when we choose
actions from N1/T instead of the bigger set A.

We start with a set of actions A0 = N1/T with cardinality
|A0| = K. Furthermore, we have |Ai|  |Ai�1|, and hence,
we get |Ai|  K for all i 2 [log(T )].

For given batch i 2 [log(T )], let Ci be the core set of Ai that
has at most Bd actions. At the ith batch, each action a 2 Ci is
picked nia times, where nia = d⇡i(a)qie. Let G be the good
event

n���ha, ✓̂i � ✓⇤i
��� < �i 8i 2 [log T ] 8a 2 Ai

o
. Lemma 3

shows that the event G holds with probability at least 1� 1
T .

In the remaining part of the proof, we condition on the event
G.

We first show that the best action a⇤ =
argmaxa2N1/T

ha, ✓⇤i will not be eliminated at any
batch i 2 [log T ]; this is because the elimination criterion will
not hold for the optimal action a⇤:

ha, ✓̂ii � ha⇤, ✓̂ii < (ha, ✓⇤i+ �i)� (ha⇤, ✓⇤i � �i)  2�i

8a 2 Ai 8i 2 [log T ].
(14)

For each sub-optimal action a 2 A0 with �a = ha⇤ � a, ✓⇤i,
let i be the smallest integer for which �i <

�a
4 . From the

triangle inequality, we get that

ha⇤, ✓̂ii�ha, ✓̂ii � (ha⇤, ✓̂⇤i��i)�(ha, ✓̂ii+�i) = �a�2�i > 2�i.
(15)

This implies that a will be eliminated before the beginning of
batch i+ 1. Hence, each action a 2 Ai+1 at batch i+ 1 has a
gap at most 4�i. Let ni =

P
a2Ci

nia  Bd + q
i denote the

total number of rounds at the i-th batch. Note that the number
of batches is upper bounded by log T since

Plog T
i=1 q

i
� T .

When q
i
< Bd, the regret can be bounded by 2Bd, and when

q
i
� Bd, we bound ni  2qi. Thus, there is universal constants

C
0
, C such that the total regret in (13) can be bounded as

R̃T  2Bd log(T ) +
log TX

i=1

4ni�i�1 (16)

 2Bd log(T ) +
log TX

i=1

8qi
 s

4d

qi�1
log (4KT 2)+
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2Bd
2 + 2d log

�
4KT

2
�

"qi�1

!

 C
0

 
d log(T ) + d

p
log T

log TX

i=1

q
(i�1)/2 +

d
2 log2 T

"

!
q

(a)
 C

0
q

✓
d log(T ) + d

p
log Tqlog T/2 +

d
2 log2 T

"

◆

(b)
 C

0
q

✓
d log(T ) + d

p
T log T +

d
2 log2 T

"

◆

(c)
 C

✓
d

p
T log T +

d
2 log2 T

"

◆
, (17)

where step (a) follows from the sum of a geometric series
and q > 1, step (b) uses q = (2T )1/ log T , and step (c) follows
from the facts q  e

2
, log T = O(

p
T ).

Hence, with probability at least 1� 1
T the regret in (13) is

bounded as

R̃T  C

✓
d

p
T log T +

d
2 log2 T

"

◆
. (18)

Next, we bound the exact regret RT . Observe that the first
step in our Algorithm is to use the finite 1

T -net set N1/T of
actions. Thus, for any round t 2 [T ] and any action a 2 A,
there exists an action a

0
2 N1/T such that ka� a

0
k 

1
T . As

a result, we get ha, ✓⇤i � ha0, ✓⇤i  ka� a
0
kk✓⇤k 

1
T , where

k✓⇤k  1. Hence, there is a universal constant C such that we
can bound the regret RT as

RT = T max
a2A
ha, ✓⇤i �

TX

t=1

hat, ✓⇤i

=


T max

a2A
ha, ✓⇤i � T max

a02N1/T

ha
0
, ✓⇤i

�

+

"
T max

a02N1/T

ha
0
, ✓⇤i �

TX

t=1

hat, ✓⇤i

#

 T
1

T
+ R̃T

= 1 + R̃T .

(19)

Hence, with probability at least 1� 1
T the regret RT is bounded

as

RT  C

✓
d

p
T log T +

d
2 log2 T

"

◆
. (20)

This concludes the proof of Theorem 1.

Lemma 3. Let ✓̂i be the least square estimate of ✓⇤ at the end
of the ith batch of Algorithm 1. Then, we have that

Pr
h���ha, ✓̂i � ✓⇤i

��� > �i 8i 2 [log T ]8a 2 Ai

i


1

T
, (21)

where �i =
q

4d
qi log (4KT 2) +

2Bd2+2d log(4KT 2)
"qi .

Proof. Let ✓̂i = V
�1
i

P
a2Ci

r̂iaa be the private estimate of ✓⇤
and ✓i = V

�1
i

P
a2Ci

riaa be the non-private estimate of ✓⇤ as
{ria} are the non-private rewards, where Vi =

P
a2Ci

niaaa
>.

From [Chapter 21, Eqn 21.1], for each a 2 Ai, we get:

Pr

"
ha, ✓i � ✓⇤i �

s

2kak2
V �1
i

log

✓
1

�

◆#
 �, (22)

where � 2 (0, 1) and kak2
V �1
i

= a
>
V

�1
i a. Let Vi(⇡i) =

P
a2Ci

⇡i(a)aa> and hence we have

Vi =
X

a2Ci

niaaa
>
� q

i
X

a2Ci

⇡i(a)aa
> = q

i
Vi(⇡i). (23)

Observe that for any symmetric random variable x if Pr[x �
t]  �, then Pr[|x| � t] = Pr[x � t] + Pr[�x � t]  2�.
Thus, from lemma 2, we have kak2

V �1
i

= 1
qi a

>
Vi(⇡i)�1

a 
2d
qi

for each a 2 Ai. By setting � = 1
4KT 2 and kak2

V �1
i


2d
qi for

each a 2 Ai in (22), we get that:

Pr

"
��ha, ✓̄i � ✓⇤i

�� �

s
4d

qi
log (4KT 2)

#


1

2KT 2
, (24)

for each a 2 Ai. Now, we compute the effect of the privacy
in estimating ✓⇤ by bounding difference ha, ✓̄i � ✓̂ii. Observe
that r̂ia = r̄ia + zia, where zia ⇠ Lap( 1" ), and hence, we can
write ✓̂i � ✓̄i = V

�1
i

P
a2Ci

ziaa. Thus, for any ↵ 2 Ai, we
have that:

h↵, ✓̂i � ✓̄ii =
X

a2Ci

↵
>
V

�1
i azia, (25)

where ↵
>
V

�1
i a  maxb2Ai kbk

2
V �1
i


2d
qi for each a 2 Ci

that holds from the fact that Vi is positive semi-definite. From
Lemma 4 presented at the end of the section, by setting b = ",
n = Bd, c = 2d

qi
p
n, and t = 2Bd2

"qi +
2d log(4KT 2)

"qi , we get
that:

Pr

"���ha, ✓̄i � ✓̂ii

��� � 2
Bd

2

"qi
+

2d log
�
4KT

2
�

"qi

#


1

2KT 2
,

(26)
Then, by the union bound and triangle inequality we have

that

Pr
h���ha, ✓̂i � ✓⇤i

��� > �i 8i 2 [log T ]8a 2 Ai

i


1

T
, (27)

where �i =
q

4d
qi log (4KT 2) +

2Bd2+2d log(4KT 2)
"qi . This

concludes the proof of Lemma 3. ⌅
Lemma 4. Let xi = lizi for i 2 [n], where zi ⇠ Lap(1/b) and
li, c are constants such that c2 �

Pn
i=1 |li|

2. Let x̄ =
Pn

i=1 xi.
We have that

Pr[x̄ � t] 

8
<

:
exp

⇣
�

t2b2

2c2

⌘
if t 

c2

blmax

exp
⇣

c2

2l2max
�

b
lmax

t

⌘
if t >

c2

blmax

, (28)

where lmax = maxi li.

The proof is provided in App. B.

VIII. REGRET AND PRIVACY ANALYSIS OF THE LOCAL DP
MODEL (PROOF OF THEOREM 2)

In this section, we present the privacy and regret analysis
of stochastic linear bandits under local DP constraints.

A. Privacy Analysis
The privacy proof is straightforward. For any client, since

the reward is bounded by |r|  1, the output r̂ = r+Lap(1/"0)
is "0-LDP from [5, Theorem 3.6].
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B. Regret Analysis
We next prove the regret bound of Algorithm 2 for

stochastic linear bandits with LDP. Our proof is similar to the
proofs of the central DP Algorithm presented in Section VII-B.
Let R̃T be the regret defined in (13).
Let G be the good eventn���ha, ✓̂i � ✓⇤i

��� < �i 8i 2 [log T ]8a 2 Ai

o
. Lemma 5

shows that the event G holds with probability at least 1� 1
T .

In the remaining part of the proof we condition on the
event G. When q

i
< max{Bd, 2 log(4KT

2)}, the regret
can be bounded by max{Bd, 2 log(4KT

2)}, and when
q
i
� max{Bd, 2 log(4KT

2)}, we bound ni  2qi, and hence,

�i 

s
4d

qi
log (4KT 2) +

2d

"0

s
log(4KT 2)

qi

 (1 +
1

"0
)2d

s
log(4KT 2)

qi
.

By following similar steps as in the central DP, we can show
that there is universal constants C

0
, C such that the total regret

in (13) can be bounded as

R̃T  (Bd+ 2 log(4KT
2)) log(T ) +

log TX

i=1

4ni�i�1

 (Bd+ 2 log(4KT
2)) log(T )

+ (1 +
1

"0
)2d

log TX

i=1

8qi
r

1

qi�1
log (4KT 2)

 C
0(1 +

1

"0
)
⇣
d

p

d log2(T )

+ d

p
d log T

log TX

i=1

q
(i�1)/2

⌘
q

(a)
 C

0(1 +
1

"0
)q
⇣
d

p

d log2(T ) + d

p
d log Tqlog T/2

⌘

(b)
 C

0(1 +
1

"0
)q
⇣
d

p

d log2(T ) + d

p
dT log T

⌘

(c)
 C(1 +

1

"0
)
⇣
d

p
dT log T

⌘
, (29)

where step (a) follows from the sum of a geometric series
and q > 1, step (b) uses q = (2T )1/ log T , and step (c) follows
from the facts q  e

2
, log2 T = O(

p
T ).

Hence, following similar steps as in the proof of the central
DP algorithm, with probability at least 1 � 1

T the regret is
bounded as

RT  R̃T + 1  C(1 +
1

"0
)
⇣
d

p
dT log T

⌘
. (30)

Lemma 5. Let ✓̂i be the least square estimate of ✓⇤ at the end
of the ith batch of Algorithm 2. Then, we have that

Pr
h���ha, ✓̂i � ✓⇤i

��� > �i 8i 2 [log T ]8a 2 Ai

i


1

T
, (31)

where �i =
q

4d
qi log (4KT 2) + 1

qi"0

p
2dni log(4KT 2).

Proof. Let ✓̂i = V
�1
i

P
a2Ci

r̂iaa be the private estimate of ✓⇤
and ✓i = V

�1
i

P
a2Ci

riaa be the non-private estimate of ✓⇤ as

{ria} are the non-private rewards, where Vi =
P

a2Ci
niaaa

>

and r̂ia =
Pnia

j=1 r̂
(j)
ia . Similar to the central DP in Section III,

we have that

Pr

"
��ha, ✓̄i � ✓⇤i

�� �

s
4d

qi
log (4KT 2)

#


1

2KT 2
, (32)

for each a 2 Ai. Now, we compute the effect of the LDP
in estimating ✓⇤ by bounding difference ha, ✓̄i � ✓̂ii. Observe
that r̂ia =

Pnia

j=1 r̂
(j)
ia = r̄ia + zia, where r̄ia =

Pnia

j=1 r
(j)
ia and

zia =
Pnia

j=1 z
(j)
ia , where z

(j)
ia ⇠ Lap( 1

"0
). Hence, we can write

✓̂i � ✓̄i = V
�1
i

P
a2Ci

ziaa. Thus, for any ↵ 2 Ai, we have
that:

h↵, ✓̂i � ✓̄ii =
X

a2Ci

niaX

j=1

↵
>
V

�1
i az

(j)
ia , (33)

where ↵
>
V

�1
i a  maxb2Ai kbk

2
V �1
i


2d
qi for each a 2 Ci

that holds from the fact that Vi is positive semi-definite. We
also have that

X

a2Ci

niaX

j=1

(↵>
V

�1
i a)2 =

X

a2Ci

niaX

j=1

↵
>
V

�1
i aa

>
V

�1
i ↵

= ↵
>
V

�1
i ↵ 

2d

qi
(34)

From Lemma 4 presented in Section III, by setting b = "0,
n = ni, c

2 = 2d
qi , and t = 1

qi"0

p
2dni log(4KT 2), we get

that:

Pr

���ha, ✓̄i � ✓̂ii

��� �
1

qi"0

p
2dni log(4KT 2)

�


1

2KT 2
,

(35)
Then, by the union bound and triangle inequality we have that

Pr
h���ha, ✓̂i � ✓⇤i

��� > �i 8i 2 [log T ]8a 2 Ai

i


1

T
, (36)

where �i =
q

4d
qi log (4KT 2) + 1

qi"0

p
2dni log(4KT 2). This

concludes the proof of Lemma 5. ⌅

IX. REGRET AND PRIVACY ANALYSIS OF THE SHUFFLED
MODEL (PROOF OF THEOREM 3)

In this section, we provide the proof of Theorem 3.

A. Privacy Analysis

We note that the data of each user j can be represented as
[a2Ci{(a, r

(j)
a )}. We observe that our scheme is equivalent to

performing the following steps
• Each user j 2 [ni] sends its data Dj = [a2Ci{(a, r

(j)
a )}

to the shuffler.
• The shuffler randomly permutes the sets D1, ...,Dni to

get D⇡(1), ...,D⇡(ni).
• The shuffler reveals ni action reward pairs
(a1, r̂ia1), ..., (ani , r̂iani

), where (aj , r̂iaj ) 2 D⇡(j), and
r̂iaj is the LDP version of riaj (r̂iaj = riaj + Lap( 1

"(i)0

)).

Hence, we shuffle the data, then feed it to an LDP mechanism
with LDP parameter "(i)0 (as proved in Theorem 2). As a result,
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it follows from [10], [11] that the output of the shuffler is
("i, �)-DP where

"i = log

0

@1 +
e
"(i)0 � 1

e"
(i)
0 + 1

0

@8
q
e"

(i)
0 log(4/�)
p
ni

+
8e"

(i)
0

ni

1

A

1

A .

(37)
By the choice of "

(i)
0 as an inverse of the function fni,�, we

have that "i = " for all i 2 [log T ].
We observe that for any neighboring datasets D,D

0, there is
only one user data that is different between D,D

0. That user
appears in exactly one batch. It follows that Algorithm 3 is
(", �)-DP.

B. Regret Analysis
We next prove the regret bound of Algorithm 3 for

stochastic linear bandits in the shuffled model. Our proof
is similar to the proofs of the LDP Algorithm presented in
Section VIII-B. Let R̃T be the regret defined in (13).
Let G be the good eventn���ha, ✓̂i � ✓⇤i

��� < �i 8i 2 [log T ]8a 2 Ai

o
. Lemma 5

shows that the event G holds with probability at least 1� 1
T .

In the remaining part of the proof we condition on the event
G. When q

i
< Bd, the regret can be bounded by Bd. By

following similar steps as in the central DP, we can show that
there is universal constants C

0 such that the total regret in
(13) can be bounded as

R̃T  Bd log(T ) +
log TX

i=1

4ni�i�1

(a)
 Bd log(T ) +

log TX

i=1

8qi

s
4d

qi�1
log (4KT 2)

+ C
0 2d

"

log TX

i=1

8q
p
log (4KT 2) log(1/�)

 C

 
d

p
T log T +

(d log T )3/2
p
log(1/�)

"

!
, (38)

where step (a) follows from the fact that from the privacy
analysis, when "

(i)
0  1, we get that " = O("(i)0

q
log(1/�)

ni
).

Hence, following similar steps as in the proof of the central
DP algorithm, with probability at least 1 � 1

T the regret is
bounded as

RT  R̃T+1  C

 
d

p
T log T +

(d log T )3/2
p
log(1/�)

"

!
.

(39)
This completes the proof of Theorem 3.

X. CONCLUSION

In this paper, we proposed differentially private algorithms
for stochastic linear bandits for different privacy models:
central DP, local DP, and shuffled DP models. We show that
our proposed Algorithms are order optimal and match the
existing lower bounds up to logarithmic factors. In addition, we
extended our algorithms to stochastic contextual bandits with

known context distribution. We believe that this idea opens new
techniques to design private algorithms for contextual bandits
with unknown context distribution and adversarial contexts,
which we leave as a future direction.
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Supplementary Material
APPENDIX A

FRANK-WOLFE ALGORITHM FOR CORE SET

To find the core set in our algorithms we use the FrankWolfe algorithm which starts with an initial distribution ⇡0 that is
uniform over A and updates it according to

⇡k+1(a) = (1� �k)⇡k(a) + �kI{ak = a}, ak = argmax
a2A
kak

2
V (⇡k)�1 ,

�k =
(1/d)kakk2V (⇡k)�1 � 1

kakk
2
V (⇡k)�1 � 1

, V (⇡k) =
X

a2A
⇡(a)aa>.

The algorithm will terminate when kak2V (⇡k)�1  2d 8a 2 A. The complexity of the Frank-Wolfe algorithm is Õ(|A|d
3+d

4),
which is polynomial in the number of actions. Please note that from the termination condition we have that kakk2V (⇡k)�1 > 2d
at each iteration, which implies that �k is always positive.

APPENDIX B
PROOF OF LEMMA 4

Lemma. Let xi = lizi for i 2 [n], where zi ⇠ Lap(1/b) and li, c are constants such that c2 �
Pn

i=1 |li|
2. Let x̄ =

Pn
i=1 xi.

We have that

Pr[x̄ � t] 

8
<

:
exp

⇣
�

t2b2

2c2

⌘
if t 

c2

blmax

exp
⇣

c2

2l2max
�

b
lmax

t

⌘
if t >

c2

blmax

, (40)

where lmax = maxi li.

Proof. The proof follows from the concentration results of the Laplace distribution (e.g., see ). We have that

Pr [x̄ � t] = Pr
⇥
exp (�x̄) � e

�t
⇤

8 � � 0
(a)


E [exp (�x̄)]

e�t

(b)
=

Qn
i=1 E

⇥
e
�xi
⇤

e�t

(c)


Qn
i=1 e

�2 l2i
2b2

e�t
8 0  � 

b

lmax

=
e
�2 c2

2b2

e�t
8 0  � 

b

lmax

(41)

where lmax = maxi li, step (a) follows from Markov’s inequality and step (b) follows from the fact that z1, . . . , zn are
independent Laplace random variables. Step (c) follows from the fact that zi is sub-exponential random variable with proxy
l2i
2b2 . By choosing � = tb2

c2 when t <
c2

blmax
and � = b

lmax
when t >

c2

blmax
, we get that

Pr[x̄ � t] 

8
<

:
exp

⇣
�

t2b2

2c2

⌘
if t 

c2

blmax

exp
⇣

c2

2l2max
�

b
lmax

t

⌘
if t >

c2

blmax

(42)

This completes the proof of Lemma 4. ⌅

APPENDIX C
ALTERNATIVE ALGORITHM FOR THE SHUFFLED MODEL

In this subsection we present an alternative scheme for the shuffled model that achieves the same regret as Algorithm 3. The
algorithm uses the shuffled protocol for summing scalars presented in [33]. The pseudo-code is presented in Algorithm 4

Theorem 4. Algorithm 4 is (", �)-differentially private. Moreover, for " = O(
q

log(1/�)
T ) it achieves a regret

RT  C

 
p
T log T +

p
log(1/�) log2 T

"

!
, (43)

with probability at least 1� 1
T , where C is a constant that does not depend on " and T .
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Algorithm 4 DP algorithm for stochastic linear bandits: shuffled model

1: Input: set of actions A, time horizon T , and privacy parameters (", �).
2: Let A1 be a ⇣-net for A as in Lemma 1, with ⇣ = 1

T .
3: q  (2T )1/ log T .
4: for i = 1 : log(T )� 1 do
5: Let Ci be a core set for Ai as in Lemma 2 with distribution ⇡i.
6: Let nia = d⇡i(a)qie, ni  

P
a2Ci

nia.
7: for a 2 Ci do
8: Let nia users pull arm a and observe a reward r

j
ia, j = 1, ..., nia.

9: Use shuffled protocol for summing scalars in [33] to compute the private sum r̂ia.
10: �i  

q
4d
qi log (4|Ai|T

2) +
2Bd2+2d log(4|Ai|T 2)

"qi

p
180 log(2/�).

11: V  
P

a2Ci
niaaa

>
, ✓̂i  V

�1
P

a2Ci
r̂iaa.

12: Ai+1  {a 2 Ai|ha, ✓̂ii � max↵2Ah↵, ✓̂ii � 2�i}.
13: Play action argmax↵2Alog(T )�1

h↵, ✓̂log(T )�1i for the remaining time.

Proof. The privacy proof follows from Lemma 3.1 in [33]. The regret analysis follows similar steps as in the proofs of the
central DP Algorithm presented in Section VII-B. Let R̃T be the regret defined in (13).
Let G be the good event

n���ha, ✓̂i � ✓⇤i
��� < �i 8i 2 [log T ]8a 2 Ai

o
. Lemma 6 below shows that the event G holds with

probability at least 1� 1
T . In the remaining part of the proof we condition on the event G.

Lemma 6. Let ✓̂i be the least square estimate of ✓⇤ at the end of the ith batch of Algorithm 2. Then, we have that

Pr
h���ha, ✓̂i � ✓⇤i

��� > �i 8i 2 [log T ]8a 2 Ai

i


1

T
, (44)

where �i =
q

4d
qi log (4|Ai|T

2) +
2Bd2+2d log(4|Ai|T 2)

"qi

p
180 log(2/�).

Proof. Let ✓̂i = V
�1
i

P
a2Ci

r̂iaa be the private estimate of ✓⇤ and ✓i = V
�1
i

P
a2Ci

riaa be the non-private estimate of ✓⇤ as
{ria} are the non-private rewards, where Vi =

P
a2Ci

niaaa
> and r̂ia =

Pnia

j=1 r̂
(j)
ia . Similar to the central DP in Section III,

we have that

Pr

"
��ha, ✓̄i � ✓⇤i

�� �

s
4d

qi
log (4KT 2)

#


1

2KT 2
, (45)

for each a 2 Ai. To bound the effect of privacy in the shuffled model in estimating ✓⇤, we bound the difference ha, ✓̄i � ✓̂ii.
By letting zia = r̂ia � r̄ia, we can write ✓̂i � ✓̄i = V

�1
i

P
a2Ci

ziaa. Thus, for any ↵ 2 Ai, we have that:

h↵, ✓̂i � ✓̄ii =
X

a2Ci

↵
>
V

�1
i azia, (46)

where ↵
>
V

�1
i a  maxb2Ai kbk

2
V �1
i


2d
qi for each a 2 Ci that holds from the fact that Vi is positive semi-definite. From

Algorithm 1 in [33], the noise zia is zero mean ( 180 log(2/�)
"2 )-subgaussian random variable. The result follows similar to

Lemma 3 using the concentration of subgaussian random variables, union bound and triangle inequality. ⌅
Following the remaining steps similar to the analysis of the central case, we get that

RT  C

 
p
T log T +

p
log(1/�) log2 T

"

!
, (47)

with probability at least 1� 1
T . ⌅
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