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Abstract—We study the problem of group testing with non-

identical, independent priors. So far, the pooling strategies that

have been proposed in the literature take the following approach:

a hand-crafted test design along with a decoding strategy is

proposed, and guarantees are provided on how many tests are

sufficient in order to identify all infections in a population. In this

paper, we take a different, yet perhaps more practical, approach:

we fix the decoder and the number of tests, and we ask, given

these, what is the best test design one could use? We explore

this question for the Definite Non-Defectives (DND) decoder. We

formulate a (non-convex) optimization problem, where the objec-

tive function is the expected number of errors for a particular

design. We find approximate solutions via gradient descent, which

we further optimize with informed initialization. We illustrate

through simulations that our method can achieve significant

performance improvement over traditional approaches.

I. INTRODUCTION

Group testing has recently attracted significant attention in
the context of COVID [1]–[6], and several countries (includ-
ing India, Germany, US, and China) have already deployed
preliminary group-testing strategies [7], [8].

Group testing has a rich history in academia and a number
of variations and setups have been examined so far [9]–
[12]. Simply stated, group testing assumes a population of
N individuals out of which some are infected, and the goal
is to design testing strategies and corresponding decoding
algorithms to identify the infections from the test results.
Most works revolve around proposing a particular hand-
crafted test design (e.g., random Bernoulli design) coupled
with a decoding strategy (e.g. Definite Defectives, Definite
Non-Defectives), and guarantees are provided on the number
of tests required to achieve vanishing probability of error.
Additionally, order-optimality results have been proved for the
asymptotic regime, where the population size tends to infinity.

This paper examines instead the following complementary
question: Given a fixed decoding strategy and a given number
of tests T (perhaps smaller than what is needed to achieve zero
error), what is the best test design one may use? 1 We examine
this question in the context of nonadaptive group testing, and
under the assumption of a Definite Non-Defectives (DND)
decoder, which eliminates false negatives by construction.

Our main contribution in this paper is to derive a novel
to way to approach group test matrix design: we reduce
the matrix design problem to a non-convex continuous-time
optimization problem that can be solved using gradient descent

1Interestingly, a discussion of one of the authors with the General Secretary
of Public Health in an EU state has revealed that this question is perhaps the
most relevant in practice, as both private and public lab facilities have limited
testing capacity per day, and what actually matters is how to use the available
tests most efficiently.

methods. We believe this approach is interesting, because it
provides an easy way to construct test matrices tailored to
particular scenarios, such as specific number of tests, known
prior probabilities of infection, and/or other parameters.

More specifically, our problem requires finding a test-design
matrix G that minimizes the expected number of erroneous
identifications (i.e. false positives). This, however, presents
two challenges: (a) the analytical computation of the expected
number of false positives turns out to be computationally
difficult; and (b) because G 2 {0, 1}T⇥N , we are faced with
a combinatorial optimization problem.

To address these challenges, we proceed as follows: First,
we provide a lower bound on the expected number of errors,
which we use as a proxy in the optimization problem; that
bound can be computed in O(N2) runtime. We then relax the
combinatorial optimization problem based on an equivalence
result; the objective function in that relaxed formulation as
well as its gradient can be computed in O(N2), thus enabling
the use of Gradient Descent (GD). To further improve the
performance of our method, we propose two approaches
to GD: (i) an informed initialization with information from
classic test designs, such as the Constant Column Weight
(CCW) design and the Coupon Collector Algorithm (CCA);
(ii) a stochastic re-initialization of the state of the solution
every few gradient iterations (e.g. 100 iterations), in a way that
allows GD to explore across various neighborhoods, while also
ensuring that the objective value does not increase by much
with each re-initialization.

Numerical evaluations show that the GD based approaches
can significantly outperform classical test designs, achieving
up to 58% fewer errors with the DND decoder on simu-
lated infection models. Rather surprisingly, GD based designs
also significantly outperform classical test designs when the
decoder is switched to definite defectives (DD), indicating
transferability to other decoders.

We underline that our contribution is not the specific matri-
ces design, but the novel approach to design them. As we
discuss in the conclusion section, given that this is a first
paper proposing this approach, we hope that it can be extended
beyond the cases we already examine in this paper - to other
decoders, other group test models, even to the design of the
group test decoders themselves.

II. RELATED WORK

We here give a brief overview of group testing; the exact
problem we consider is detailed in Section III-A.

Three infection models are usually studied in the group
testing literature: (i) in the combinatorial priors model, a fixed
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number of individuals k (selected uniformly at random), are
infected; (ii) in i.i.d probabilistic priors model, each individual
is i.i.d infected with some probability p; (iii) in the non-

identical probabilistic priors model, each item i is infected
independently of all others with prior probability pi, so that
the expected number of infected members is k̄ =

P
N

i=1 pi.
Infection models (i) and (ii) have received attention from
researchers for the most part (see for example, [13]–[23]).
Infection model (iii) is the least studied one [24]; we refer
the reader to [10] for an excellent summary of existing work
on the above infection models. Tangentially, recent works have
considered correlated infection models; see, for example, [25]–
[31].

Typically, the goal of this line of research is dual: (a)
compute lower bounds for the number of tests T that is
needed to identify the infection statuses of all individuals;
and (b), provide test designs that can achieve zero- or small-
error recovery by also asymptotically matching the lower
bounds or at least being order-optimal in particular asymptotic
regimes for k (or k̄). Perhaps, the most representative (non-
adaptive) designs, which we also use as baselines in our
numerical evaluation, are the well-known Constant column
weight (CCW) design [17], [32], and the Coupon Collector
Algorithm (CCA) [24]. CCW has been proved to be order-
optimal2 in model (ii) and in a sparse regime, where k̄ =
⇥(N↵) and ↵ 2 [0, 0.409] [17], [20], [23]. CCA has been
shown to achieve a vanishing error probability in infection
model (iii) of non-identical priors, given that the number of
tests used satisfies T = !

⇣
4e lnN

P
N

i=1 pi
⌘

[15], [24].
Our work is closely related to these test designs, but takes a

different approach: instead of focusing on asymptotic regimes,
we consider a fixed number of tests, which may also be lower
than the lower bound for exact recovery and we are interested
in minimizing the overall error rate via gradient descent. We
examine this in the context of infection model (iii) with non-
identical probabilistic priors, which accepts (ii) as a special
case and in our opinion resembles better the information avail-
able in practice – the prevalence/prior infection probability
varies across individuals depending on many factors such as
age, geographical location, health condition, contact with other
infected individuals, etc.

III. PRELIMINARIES

In this section, we first precisely formulate the problem
of interest, and then state a simple lemma on combinatorial
optimization that is used in our work.

A. Problem formulation

We consider the noiseless nonadaptive group testing prob-
lem with non-identical priors. There are N individuals in the
population, where individual i is infected independently with
probability pi. We assume that the value of pi is known a
priori3. Let Ui be the infection status of individual i: Ui =

2In fact, in the same regime, [20] has provided the precise constants for
optimal non-adaptive group testing.

3This is a standard assumption in group testing. Otherwise, epidemiological
models for disease spread can be used to estimate these probabilities ( [33]–
[35]).

{Individual i is infected}. As a result, Ui ⇠ Ber(pi). We
will denote by U = (U1, U2, ..., UN ) the vector of infection
statuses.

Testing matrix: A testing matrix G 2 {0, 1}T⇥N is a
T ⇥N binary matrix. Row t in the testing matrix represents
the individuals participating in test t, i.e., Gti = 1 represents
individual i participating in test t. The test results correspond-
ing to a particular realization of U = (U1, U2, ..., UN ) and G
are defined as the vector Y = (Y1, Y2, ..., YT ) where

Yt = 1�
NY

i=1

(1�GtiUi). (1)

In words, the test t gives a positive result if any of the
individuals participating in the test are infected, otherwise it
gives a negative result4. In (1) Yt = 1 if and only if there
exists i such that both Gti = 1 and Ui = 1 (individual i is
infected). In order to infer U from Y , a decoding algorithm

r : {0, 1}T ! {0, 1}N constructs an estimate bU of the
infection statuses from the test results. In this work, we fix
the decoding algorithm, which we describe next.

DND decoder: The definite non-defective (DND) decoder
is a well-known decoding algorithm that forms an estimate
of U by identifying those individuals who have participated
in at least one negative test as healthy and labeling every
other individual as infected – i.e., it operates under the
principle “every item is defective unless proved otherwise”.
More precisely, it outputs an estimate bU where

bUi =
TY

t=1

Y Gti
t

. (2)

bU has zero false negatives by construction – it can be seen
that bUi = 1 whenever Ui = 1. The number of errors
(false positives) that the DND decoder makes for a particular
realization U is given by

NX

i=1

{bUi 6= Ui} =
NX

i=1

{Ui = 0} {bUi = 1|Ui = 0},

and as a result the expected number of errors E(G) under the
DND decoder for a given G is

E(G) , E
"

NX

i=1

{bUi 6= Ui}
#

=
NX

i=1

Pr(Ui = 0)Pr
⇣
bUi = 1|Ui = 0

⌘

=
NX

i=1

(1� pi)E
h
bUi|Ui = 0

i
. (3)

Further, when Ui is fixed to be 0, bUi is a function of G and
U\{i}, where U\{i} , (U1, ..., Ui�1, Ui+1, ..., UN ) denotes

4Most works in group testing express the right-hand side of (1) as a Boolean
expression. However, we use this particular form (similar expression was given
in [21]) as it easily admits continuous-valued relaxations of the composing
variables.
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the vector U without its ith entry. Thus, fixing Ui = 0, and
using (1) and (2) we have,

bUi =
TY

t=1

0

BB@1�
NY

j=1:
j 6=i

(1�GtjUj)

1

CCA

Gti

(a)
=

TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�GtjUj)

1

CCA ,

where (a) follows because of the following fact: (1 �
x)y = 1 � xy if y 2 {0, 1}. Now, denoting �t,i ,✓
1�Gti

Q
N

j=1:
j 6=i

(1�GtjUj)

◆
in the above expression, we

rewrite (3) as:

E(G) =
NX

i=1

(1� pi)EU\{i}

TY

t=1

�t,i. (4)

Our Goal: We want to minimize E(G) across all
binary matrices G of size T ⇥N , i.e., solve

Gopt = argmin
G2{0,1}T⇥N

E(G). (5)

Discussion: We first observe that �t,i is not independent
of �t0,i for t 6= t0 as they potentially share common Uj

terms. As a result, the expectation of the product term in (4)
is not trivially the product of expectations, which makes the
computation of E(G) intractable in general (indeed one could
estimate E(G) using Monte-Carlo methods, belief propagation
etc., but this is, in general, computationally expensive and
hence possible only for small values of T and N , which are
not realistic in our context.). In Section IV we provide a lower
bound for E(G) which can be computed efficiently, and which
we use as a proxy for E(G). Our numerics show that the lower
bound is a very good approximation to E(G).

We also note that in principle, (5) could be formulated
for any decoder, not just the DND decoder. However, the
particular nature of E(G) for the DND decoder admits a nice
form, for which we can propose an approximate solution using
lower bounding techniques (Section IV).

Finally, note that (4) shows something which is also intu-
itively correct: the lower the T (for fixed N ) or the larger
the N (for fixed T ), the larger the expected number of errors
E(G).

B. A combinatorial relaxation result

We now take a detour to prove a simple result that allows
one to relax combinatorial optimization problems that aim to
optimize over the vertices of an n-dimensional hypercube. One
could extend this technique for optimization over other finite
sets as well.

Lemma 1. In order to solve

argmin
x2{0,1}n

g(x), (6)

it is sufficient to solve
argmin
q2[0,1]n

f(q), (7)

where f(q) , EX⇠Ber(q) g(X)

can be envisioned as a continuous extension of g(x). The ex-

pectation in the above expression is taken w.r.t the distribution

where each Xi ⇠ Ber(qi), and the Xis are independent of

each other.

We refer the reader to Appendix A for the proof but provide
an intuition next. First, we observe that (6) aims to minimize
a function g over the vertices of the n-dimensional unit
hypercube. Instead, what Lemma 1 says is that one could
minimize a different continuous-valued function f over the
entire n-dimensional unit hypercube and obtain a solution to
the discrete optimization problem. To do this, it is sufficient
to ensure that f satisfies the following properties:

1) The value taken by f in the hypercube is always greater
or equal to the minimum value taken by g.

2) The value taken by f at each vertex of the hypercube is
equal to the value taken by g.

3) If f attains minima at q⇤, one can easily obtain a
corresponding minima x⇤ of g. This point is just for
algorithmic convenience as we essentially would like to
easily transform a minima of f to a minima of g.

If the above 3 properties are satisfied by a function f , it is
clear that one could minimize f in the hypercube and obtain
a solution to the combinatorial optimization problem (6).

One choice of f that satisfies the above conditions is the
following: at each point q in the interior of the hypercube,
represent f(q) as a convex combination of the values taken
by g, i.e.,

f(q) =
X

x

↵q,x g(x),

for some ↵q,x that are non-negative and sum to 1. This ensures
that property 1 above is satisfied. Additionally, whenever q is
a vertex, we fix ↵q,q = 1 so that f(q) = g(q), ensuring
property 2. Moreover, for any minimizer q⇤ of f , pick any x
such that ↵q⇤,x > 0 – such an x minimizes g. This is precisely
what Lemma 1 does, where instead of defining f by explicitly
picking coefficients ↵q,x, we just define it via an expectation5.

Example: To see an example of what f looks like, assume
that n = 2 in (6). Then, we have

f(q1, q2) , q1q2g(1, 1) + q1(1� q2)g(1, 0)

+ (1� q1)q2g(0, 1) + (1� q1)(1� q2)g(0, 0).

Remark: There is a long history of using relaxation tech-
niques to approximate solutions of combinatorial optimization
problems (see [38] for an overview). Most of these focus
on linear programming relaxation techniques. In Lemma 1,
there is no assumption on g(·) whatsoever and the resulting
relaxation may not be a linear program. Moreover, it may not
be easy to compute f(·) in all cases and it may also not be easy
to compute the gradient rf(·) as well. In cases where exactly

5A similar but more restricted version of Lemma 1 was presented in [36],
[37] in the context of deletion channels, where we proved the result for a
particular example of g(·) that arose in the context of deletion channels.
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computing or approximating the gradient is easy (as is indeed
the case in this work), one can use first-order optimization
techniques such as GD.

IV. MAIN RESULTS

In this section, we delineate our approach to find an ap-
proximate solution to (5). Following the discussion at the end
of Section III-A, our approach is three-fold: First, we lower
bound E(G) by another function ELB(G), whose computation
turns out to be tractable; we then use ELB(G) as a proxy for
E(G). Next, we use Lemma 1 to show that it is sufficient to
consider a continuous relaxation of the resulting combinatorial
optimization problem. Finally, we show that the objective
function in the continuous relaxation and its gradient can also
be computed efficiently, thus enabling gradient descent.

A. A lower bound for E(G)

As a first step, the following theorem states and proves a
lower bound for E(G).

Theorem 1. Consider a random vector U = (U1, U2, ..., UN )
where Ui ⇠ Ber(pi). For a given testing matrix G, and under

the DND decoder, the expected number of errors (see (4))
satisfies

E(G) � ELB(G),

where

ELB(G) ,
NX

i=1

(1� pi)
TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA .

Proof. First we recall the expression for E(G) in (4):

E(G) =
NX

i=1

(1� pi)EU\{i}

TY

t=1

�t,i.

Using the FKG inequality (see [39]–[41] or proof of Lemma
4 in [18]) one could show that

EU\{i}

TY

t=1

�t,i �
TY

t=1

EU\{i}�t,i.

A rigorous proof of the above statement can be found in Ap-
pendix B. The idea is to show that �t,i is an increasing function
on U (assuming a partial ordering); using this observation, the
result follows as an application of the FKG inequality. Thus,
we have

E(G) �
NX

i=1

(1� pi)
TY

t=1

EU\{i}�t,i

=
NX

i=1

(1� pi)
TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA

= ELB(G)

In all numerical evaluations we performed, E(G) (as es-
timated via Monte-Carlo simulations) and the lower bound
ELB(G) were close – we provide example scatter plots in

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Fig. 1: Scatter plot of E(G) (on y-axis) vs. ELB(G) (on x-
axis) normalized by the blocklength N . E(G) is estimated via
Monte-Carlo simulations while ELB(G) is computed exactly.
For a fixed prior distribution, we pick a variety of G matrices
and plot the two metrics – the left figure plots for every G 2
{0, 1}2⇥4 while the right figure plots for 1000 choices of G
sampled from {0, 1}300⇥500.

Figure 1 – which indicates that minimizing ELB(G) is a viable
alternative to minimizing E(G). Recall that computing E(G) is
computationally difficult, which motivates the use of ELB(G)
as its proxy.

B. A continuous optimization formulation

Given the above discussion, we now propose using ELB(G)
as a proxy for E(G) – more precisely we propose to solve the
following optimization problem:

argmin
G2{0,1}T⇥N

ELB(G). (8)

We next use Lemma 1 to argue that a continuous relaxation of
(8) is equivalent to (8). Before stating the main result, we give
a definition: we say that a random matrix G ⇠ Ber(Q) (read
as “G is parameterized by the Bernoulli matrix Q”) if each
Gti ⇠ Ber(Qti) 8 t, i and the Gti variables are independent
of each other.

Corollary 1. Suppose Ui ⇠ Ber(pi) 8 i. In order to solve the

optimization problem

argmin
G2{0,1}T⇥N

ELB(G), (9)

it is sufficient to solve

argmin
Q2[0,1]T⇥N

EG⇠Ber(Q)ELB(G). (10)
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This is a direct corollary of Lemma 1, where the objective
function is ELB(G) and we associate a parameter Qti corre-
sponding to each Gti (see Appendix D for a complete proof).

Thus, we now have the following approximate formulation
for which the objective function (and its gradient) can be
computed in O(N2) time complexity (see Section IV-C). The
hope is that solving (11) gives sufficiently good choices of
G ⇠ Ber(Q⇤); our experimental results in Section VI indicate
that this is indeed the case.

Approximate formulation: Solve for

Q⇤ = argmin
Q2[0,1]T⇥N

f(Q), (11)

where f(Q) , EG⇠Ber(Q)ELB(G).

Given the above formulation, we can now use techniques
such as gradient descent (GD) to select the testing matrix
G. In essence, we are searching over the continuous space
of distribution matrices Q. If the gradient of f(Q) can be
efficiently computed, one could use GD to converge to a local
minima Q⇤ and pick a G ⇠ Ber(Q⇤).

C. Expression for f(Q)

We now give a closed-form expression for f(Q) and briefly
discuss the computational complexity of computing f(Q)
and its gradient; the details are deferred to Appendix C,
Appendix E and Appendix F. We have,

f(Q) , EG⇠Ber(Q)ELB(G)

= EG⇠Ber(Q)

NX

i=1

(1� pi)
TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA

(a)
=

NX

i=1

(1� pi)
TY

t=1

EG⇠Ber(Q)

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA

=
NX

i=1

(1� pi)
TY

t=1

0

BB@1�Qti

NY

j=1:
j 6=i

(1�Qtjpj)

1

CCA , (12)

where in (a) the expectation is pushed inside the product terms
as ELB(G) is linear when viewed as a function of a single Gti.

In Appendix C we discuss an O(N2) algorithm that simpli-
fies the computation of f(Q) above, under the assumption of
T = O(N). Given (12), one could derive an expression for the
gradient rf(Q) by calculating each partial derivative @f(Q)

@Qlm
.

The details of the derivation can be found in Appendix E.
Moreover, in Appendix F, we discuss the computation of
rf(Q) in O(N2) runtime.

V. ALGORITHMS

Leveraging the approximate formulation in (11), we here
explore a GD approach to find good choices of G. Our pro-
posed approach uses informed initialization with information

provided by traditional group test designs. Thus, it can be
viewed as a way to refine and improve existing designs via
local search. Moreover, we propose a variation of GD that
numerically seems to converge to good choices of G in many
situations even without informed initialization.

A. Baseline test designs

We use the following two group test design algorithms as
baselines for comparison:
• Constant column weight (CCW) design (see [17], [32]).

This design was introduced in the context of group testing
for identical priors6, but we adapt it to be applicable for non-
identical priors as well, in addition to identical priors. Here we
construct a randomized G assuming that all individuals have
the same prior probability of infection pmean (this assumption
is trivially true if the priors are identical), where pmean is
defined as the mean prior probability of infection 1

N

P
N

i=1 pi.
The testing matrix G is constructed column-by-column by
placing each individual in a fixed number ( 0.69T

Npmean
) of tests,

uniformly at random.
• Coupon Collector Algorithm (CCA) from [24]. The

CCA algorithm was introduced in [24] for the case of non-
identical, independent priors. In short, the CCA algorithm
constructs a random non-adaptive test design G by sampling
each row independently from a distribution (we refer the reader
to [24] for the exact description of this distribution). The idea
is to place objects which are less likely to be infected in more
number of tests and vice-versa.

B. Test designs based on gradient descent

We are now ready to describe the gradient descent (GD)
approaches to search for G. The high-level idea for our
algorithms is as follows:
• We consider the approximate formulation in (11). Pick an

initial point Q(0).
• At each gradient iteration l, update Q(l)  Q(l�1) �

✏rQf(Q), where ✏ is the step size. Project Q(l) onto [0, 1]T⇥N

by resetting negative entries to 0 and entries greater than 1 to
1.
• Stop based on some stopping criteria (e.g. limit number

of gradient steps or check for convergence).
• Let Q⇤ be the resulting output. Sample a matrix G⇤ where

G⇤ ⇠ Ber(Q⇤) and return it.
As it turns out, in our experiments, the choice of initializa-

tion plays a significant role in finding good choices of G. We
propose the following initializations.
• GD + CCW init. We first sample a testing matrix

according to the CCW testing matrix and set Q(0) as this
matrix. The GD proceeds with this initialization.
• GD + CCA init. We first sample a testing matrix

according to the CCA testing matrix and set Q(0) as this
matrix. The GD proceeds with this initialization.

6Most of these were proposed in the context of combinatorial priors.
However, Theorem 1.7 and Theorem 1.8 from [10] imply that any algorithm
that attains a vanishing probability of error on the combinatorial priors, also
attains a vanishing probability of error on the corresponding i.i.d probabilistic
priors.



6

Notably, any other state-of-the-art test design could have
been used as initialization. In principle, the above approach
can be perceived as a way to refine existing test designs via
local search. Alternatively, we also propose a modification to
the GD approach called GD + sampling that helps avoid
getting stuck in a local minima by encouraging GD to ex-
plore multiple neighborhoods. The idea is use stochastic re-
initialization of the solution state every few gradient iterations,
while ensuring that the value of the objective function is
approximately preserved. First note that the objective value
f(Q) is the mean of f(G) with G ⇠ Ber(Q). Therefore, it is
reasonable to expect that typical realizations of G will be such
that f(G) is close to f(Q). Given this idea, we propose the
following: start from the all 0 initialization. However, every
few gradient iterations, we replace the current solution state
Q(l) by Gs where Gs is sampled from the distributed matrix
Q(l), i.e., Gs ⇠ Ber(Q(l)). This encourages GD to explore
different neighborhoods while (approximately) preserving the
monotonicity of GD.

VI. NUMERICAL RESULTS

In this section, we show simulation results to demonstrate
the improvement our GD based approaches provides.

Test designs compared: We compare the testing matrices
G obtained via each of the following methods: CCW, CCA,
GD + CCW init., GD + CCA init., GD + sampling. For
completeness, we consider also the trivial all 0-initialization
for GD (which we call GD + 0 init), where the initial point
Q(0) is set to all zeros.

Set-up: We first fix the prior probabilities of infection
(p1, p2, ..., pN ) – each pi is sampled from an exponential
distribution with mean 0.05; if pi > 1, we set it to 1. We
repeat for 10 such prior distributions. For each design, we
estimate E(G) via Monte-Carlo simulations.

Metrics: We use the false positive (FP) rate (defined as the
fraction of uninfected individuals incorrectly determined to be
infected) to measure the performance w.r.t the DND decoder.
Recall that the DND decoder results in 0 false negatives (FN)
by construction.

Transferability to other decoders: As our GD methods
aim for optimal designs with the DND decoder, a natural
follow-up question is how they perform with other decoders.
We compare the performance of each of the test designs w.r.t
the Definite Defective (DD) decoder. One could also consider
other decoders, such as ones based on belief propagation,
but these result in both FP and FN, and consequently the
comparison between different methods is not trivial; it requires
weighing FP against FN, which can be application specific. We
refer the reader to Section 2.4 in [10] for a precise description
of DD decoder. Consequently, DD has 0 FP by construction.
In this case, we use as performance measure the false negative
(FN) rate.

Observations: In Figure 2a, we plot the FP rate for each
test design w.r.t DND decoder, as a function of T . We
observe that the GD based methods significantly outperform
CCW and CCA7. Notably, the improvement of our enhanced

GD with informed initialization or sampling seems inversely
proportional to T , which is of practical importance.

Next, we plot the FN rate of each test design w.r.t the DD
decoder, as a function of T in Figure 2b. The performance
trend here is similar to what was observed with the DND
decoder, which further supports the usefulness of our GD
based approach and its transferability to other decoders.

Figures 3a, 3b, 4a and 4a depict our results for two other
cases, where the priors are sampled from a discrete bimodal
distribution. The performance trend for the GD based approach
is similar, while the performance gap from the well-established
CCW and CCA algorithms increases. This indicates the use-
fulness of our method in more realistic scenarios, where priors
are expected to be drawn from few distinct values.

VII. CONCLUSIONS AND OPEN QUESTIONS

In this work, we formulated the search for good group-test
designs, under the assumption of a DND decoder, as a non-
convex optimization problem, and we proposed a solution via
enhanced gradient descent. Our solution is approximate in the
sense that it minimizes a lower bound on the expected number
of identification errors (as opposed to the exact expectation).
But, our numerical evaluation, over various infection scenarios,
demonstrated that our approach can significantly outperform
state-of-the-art designs (up to 58% in the best case). Moreover,
our designs performed well with the DD decoder, which
allows us to claim that test designs are transferable to other
decoders. Finally, our results indicate that there is still space
for improvement in the traditional nonadaptive group-testing
setting and new test designs (similar to the ones obtained
through optimization) as well as their properties may be worth
exploring in the future.

This is a first paper proposing this approach, and we believe
that, given the promising first results, there are a number of
open questions worth exploring. These include: 1. How do
we use the continuous optimization formulation with other
decoders? For decoders such as the definite defective decoder
or belief propagation based ones, E(G) does not admit a nice
form and we currently do not have an approach to calculate
a non-trivial lower bound; this remains a challenging open
problem. 2. Can we use this approach with noisy group
testing? 3. Can we use this approach with other (non-binary
output) group test models? 4. One could also ask if the
continuous optimization formulation can be used to design a
separate decoder, by formulation the decoding problem as a
combinatorial optimization problem.
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Fig. 2: Priors sampled from an exponential distribution with mean 0.05, N = 1000. We average over 10 such instances.
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Fig. 3: Priors sampled from a discrete bimodal distribution (priors take value 0.02 or 0.3) with mean 0.1, N = 1000. We
average over 10 such instances.
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average over 10 such instances.
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APPENDIX

A. Proof of Lemma 1

Proof. We first note that for any q 2 [0, 1]n we have,

EX⇠Ber(q)g(X) � min
x2{0,1}n

g(x),

since the expectation of a random variable is at least as large
as its minimum value over its support. Since the above holds
for any q, as a result we have

min
q2[0,1]n

EX⇠Ber(q)g(X) � min
x2{0,1}n

g(x). (13)

Let x⇤ be a minimizer of g(x) in (6). The choice of q⇤ = x⇤

(i.e. X = x⇤ with probability 1) gives

f(q⇤) = EX⇠Ber(q⇤)g(X) = g(x⇤) = min
x2{0,1}n

g(x). (14)

From (13) and (14) we conclude that

min
q2[0,1]n

EX⇠Ber(q)g(X) = min
x2{0,1}n

g(x).

In order to obtain a solution to (6), we obtain a solu-
tion q⇤ of (7) and simply sample from X ⇠ Ber(q⇤)
(sample Xi ⇠ Ber(qi)). Any such value taken by X is
guaranteed to be a solution of (6). To see this, first note
that from the definition, f(q⇤) can be written as f(q⇤) =P

x:x2Supp(X⇠Ber(q⇤)) Pr(X = x)g(x). Basically, f(q⇤) is
a convex combination of some g(x) terms. But from (14),
we know that f(q⇤) = g(x⇤), the minimum value taken by
g(x). For this to hold true, we need g(x) = g(x⇤) for every
x 2 Supp(X ⇠ Ber(q⇤)), otherwise f(q⇤) > g(x⇤).

B. Theorem 1 proof: filling in the gaps

In the proof of Theorem 1 we claimed the following:

EU\{i}

TY

t=1

�t,i �
TY

t=1

EU\{i}�t,i.

where �t,i ,
✓
1�Gti

Q
N

j=1:
j 6=i

(1�GtjUj)

◆
. We prove this

using the Fortuin–Kasteleyn–Ginibre (FKG) inequality (see
[39]–[41] or proof of Lemma 4 in [18]), restated here for
convenience.

Lemma 2 (FKG inequality). Consider a finite distributive

lattice � with partial ordering � and meet (^) and join

operators (_). Consider a probability measure µ on � that

is log-supermodular, i.e.,

µ(a)µ(b)  µ(a ^ b)µ(a _ b) 8 a, b 2 �.

Then, any two functions f and g which are non-decreasing on

� are positively correlated, i.e.,

Eµ(fg) � Eµ(f)Eµ(g).

Remark: Consider � = {0, 1}N with partial ordering �,
where a � b if every coordinate of b is at least as large as

a. When the meet and join operators coincide with logical
AND and logical OR respectively, this is a distributive lattice.
It can be verified that any product measure µ on � is log-
supermodular. As a result, any two functions f and g which are
non-decreasing on � are positively correlated, i.e., Eµ(fg) �
Eµ(f)Eµ(g). Consequently, given any M non-negative, non-
decreasing functions f1, f2, ..., fM one could inductively apply
FKG inequality to obtain

Eµ(
MY

i=1

fi) �
MY

i=1

Eµfi. (15)

Given (15) what remains to be shown is that each �t,i(U)
is non-negative and non-decreasing as a function of U 2
{0, 1}N . To see that it is non-negative is straight-forward
– we have GtjUj � 0 and hence (1 � GtjUj)  1.
Therefore, the product

Q
N

j=1:
j 6=i

(1 � GtjUj)  1 and the non-

negativity follows. To see that �t,i(U) is non-decreasing, we
first consider U � U0, i.e., Uj  U 0

j
8 j. Then we have

(1�GtjUj) � (1�GtjU 0
j
) 8 t, j and

Q
N

j=1:
j 6=i

(1�GtjUj) �
Q

N

j=1:
j 6=i

(1 � GtjU 0
j
) 8 t. Thus, �t,i(U)  �t,i(U0) and �t,i is

non-decreasing. Applying (15), we have

EU\{i}

TY

t=1

�t,i �
TY

t=1

EU\{i}�t,i.

C. Computing the objective function f(Q)

Here we give a O(N2) algorithm to compute the objective
function f(Q) in (11). We assume T  N so T = O(N)
throughout. We first restate the expression for f(Q) in (12):

f(Q) =
NX

i=1

(1� pi)
TY

t=1

(1�Qti

NY

j=1,j 6=i

(1�Qtjpj)).

Note that this can be rewritten as:

f(Q) =
NX

i=1

(1� pi)F [i],

where the intermediate terms are defined as

F [i] ,
TY

t=1

(1�QtiG[t, i])

and

G[t, i] ,
NY

j=1,j 6=i

(1�Qtjpj).

Thus, we first compute and store G[t, i] 8 t, i, which is
then used to compute F [i] 8 i in O(N2) time (assuming
T = O(N)). Subsequently, f(Q) can be computed from F [i]
in O(N). Computing G[t, i] takes O(N2) as one can first
compute H[t] , Q

N

j=1(1 � Qtjpj)) 8 t in O(N2) time and
obtain G[t, i] = H[t]/(1�Qtipi) in O(N2). The overall time
complexity of computing f(Q) is O(N2).
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D. Proof of Corollary 1

The proof is similar to Lemma 1. We first note that for any
Q we have,

EG⇠Ber(Q)E(G) � min
{G : Gti2{0,1},8t,i}

E(G) 8 Q,

since the expectation of a random variable is at least as large
as its minimum value over the support. As a result,

min
{Q : Qti2[0,1],8t,i}

EG⇠Ber(Q)E(G) � min
{G : Gti2{0,1},8t,i}

E(G).

Moreover, the choice of Q = Gopt gives

EG⇠Ber(Q)E(G) = E(Gopt) = min
{G : Gti2{0,1},8t,i}

E(G),

and as a result we have

min
{Q : Qti2[0,1],8t,i}

EG⇠Ber(Q)E(G) = min
{G : Gti2{0,1},8t,i}

E(G).

Thus it is sufficient to solve (10), and given an optimal solution
Qopt, any G ⇠ Ber(Qopt) is a solution of (5).

E. Expression for each partial derivative in rQf(Q)

Here, we give an expression for the gradient rf(Q) by
calculating each partial derivative @f(Q)

@Qlm
.

@f(Q)

@Qlm

=
@

@Qlm

NX

i=1

(1� pi)
TY

t=1

0

BB@1�Qti

NY

j=1:
j 6=i

(1�Qtjpj)

1

CCA

=
@

@Qlm

NX

i=1:i 6=m

(1� pi)
TY

t=1

0

BB@1�Qti

NY

j=1:
j 6=i

(1�Qtjpj)

1

CCA

+ (1� pm)
@

@Qlm

TY

t=1

0

BB@1�Qtm

NY

j=1:
j 6=m

(1�Qtjpj)

1

CCA

(a)
=

NX

i=1:i 6=m

(1� pi)
@

@Qlm

0

BB@1�Qli

NY

j=1:
j 6=i

(1�Qljpj)

1

CCA

·
TY

t=1:t 6=l

0

BB@1�Qti

NY

j=1:
j 6=i

(1�Qtjpj)

1

CCA

+ (1� pm)
@

@Qlm

0

BB@1�Qlm

NY

j=1:
j 6=m

(1�Qljpj)

1

CCA

·
TY

t=1:t 6=l

0

BB@1�Qtm

NY

j=1:
j 6=m

(1�Qtjpj)

1

CCA

(b)
=

NX

i=1:i 6=m

(1� pi)

0

BB@Qlipm

NY

j=1:
j 6=i,j 6=m

(1�Qljpj)

1

CCA

·
TY

t=1:t 6=l

0

BB@1�Qti

NY

j=1:
j 6=i

(1�Qtjpj)

1

CCA

+ (1� pm)

0

BB@�
NY

j=1:
j 6=m

(1�Qljpj)

1

CCA

·
TY

t=1:t 6=l

0

BB@1�Qtm

NY

j=1:
j 6=m

(1�Qtjpj)

1

CCA , (16)

where in (a) we separate out the term corresponding to t = l
from the product term

Q
T

t=1 and apply the derivative in (b).

F. Computing rQf(Q)

The computation of gradient follows a similar approach as
the computation of the objective function f(Q). We assume
T  N so T = O(N) throughout. We first restate the
expression for the gradient in (16):

rQlmf(Q) =
NX

i=1:i 6=m

(1� pi)

0

BB@Qlipm

NY

j=1:
j 6=i,j 6=m

(1�Qljpj)

1

CCA

·
TY

t=1:t 6=l

0

BB@1�Qti

NY

j=1:
j 6=i

(1�Qtjpj)

1

CCA

+ (1� pm)

0

BB@�
NY

j=1:
j 6=m

(1�Qljpj)

1

CCA

·
TY

t=1:t 6=l

0

BB@1�Qtm

NY

j=1:
j 6=m

(1�Qtjpj)

1

CCA .

As we did in the case of objective function computation, we
first simplify and rewrite this in terms of intermediate terms:

rQlmf(Q) =
NX

i=1:i 6=m

(1� pi)

✓
Qli

pm
1�Qlmpm

G[l, i]

◆

·
TY

t=1:t 6=l

(1�QtiG[t, i])

+ (1� pm) (�G[l,m])

·
TY

t=1:t 6=l

(1�QtmG[t,m])

=
pm

1�Qlmpm

NX

i=1:i 6=m

(1� pi) (QliG[l, i])F [l, i]

+ (1� pm) (�G[l,m])F [l,m]

=
pm

1�Qlmpm

 
NX

i=1

(1� pi)QliG[l, i]F [l, i]
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� (1� pm)QlmG[l,m]F [l,m]

!

+ (1� pm) (�G[l,m])F [l,m]

=
pm

1�Qlmpm

NX

i=1

(1� pi)QliG[l, i]F [l, i]

� (1� pm)G[l,m]F [l,m]

✓
1

1�Qlmpm

◆
,

where the intermediate terms are

F [l, i] ,
TY

t=1:t 6=l

(1�QtiG[t, i])

and

G[t, i] =
NY

j=1,j 6=i

(1�Qtjpj).

As we showed earlier, computing G[t, i] 8 t, i can be done
in O(N2) runtime complexity, and F [l, i] can be obtained
as H[i]

1�QliG[l,i] where H[i] , Q
T

t=1(1 � QtiG[t, i]). Clearly,
H[i] 8 i can be obtained once in O(N2) and reused to
compute F [l, i] 8 l, i in O(N2). Having computed F and
G terms, one could again use a similar trick to pre-compute
J [l] ,P

i=1(1� pi)QliG[l, i]F [l, i] 8 l in O(N2). With this,
one could now compute each gradient term rQlm in O(1)
thus giving an overall time complexity O(N2).
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