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Abstract—We consider personalized estimation for heteroge-
neous data under communication constraints. In many appli-
cations, distributed users have heterogeneous local data with
distinct statistics, and want to estimate individual (personalized)
properties of the local data. However, they have limited local data
and we explore how collaboration (even over communication-
limited links) can enable better personalized estimation. We study
this for the Gaussian Bayesian model for heterogeneity with
unknown parameters and a worst-case total regret criterion. We
characterize (order-wise) the worst-case regret for personalized
mean estimation by devising novel lower bounds and achievability
schemes, which also demonstrates the value of collaboration.

I. INTRODUCTION

In many applications (e.g., medical) the data of each client
could have distinct characteristics (statistics), and naturally one
wants to estimate parameters related to the individual data.
However, there might not be enough local samples to obtain a
good individual (personalized) estimate. Therefore a natural
question is whether collaboration with other clients with
different data statistics could help personalized estimation.
In order to address this question sysematically, one needs to
formulate the statistical question, and a framework advocated
recently [5] is to use a hierarchical model to capture the data
heterogeneity. In this, there is a population distribution from
which local parameters are sampled, and in turn, local data
is generated with these local parameters capturing statistical
heterogeneity. It has been shown in [5] that this model captures
the most practical methods for personalized estimation and
learning, as well as suggests new ones.

In addition, in applications such as federated (distributed)
learning, the local data resides in remote clients which have
constrained communication links for collaboration. Therefore
this leads to the question of the fundamental trade-off between
communication constraints and personalized estimation. We
formulate these questions through the criterion of a total regret
formalization (see for precise definition), which is the
difference in loss between the estimator which has access to
the population distribution and an estimator which does not
have this knowledge, where nature gets to maximize regret by
choosing the population distribution.

We focus on the case where the population distribution
G is a vector Gaussian with unknown mean p, and un-
known co-variance o2I;. The local parameters {6;}™ , are
generated from G and in turn generate local n data samples
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Fig. 1. An illustrative
figure of the person-
alized estimation un-
der a Bayesian model
with m users and
each user having n
samples.
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mean 6; and known covariance ¥,. The goal is to find a
personalized estimator éi, which can depend on the local data
x"™ and potentially collaborative messages {Z;};; from
the other clients. We consider the communication-constrained
case where the messages {Z;} have a given entropy bound.
Contributions: We first examine the problem without com-
munication constraints and develop both information-theoretic
lower bounds and a scheme to completely characterize the
total regret in Theorem Perhaps of interest is that the
lower bound is developed through a hyper-prior technique,
which gives a sharper bound than the more conventional
Le Cam bounding technique. Next, we extend this to the
case with communication constraints and characterize (order-
wise) total regret in Theorem In this case as well, we
develop information-theoretic lower bounds (Theorem
as well as a scheme (Theorem which uses a functional
representation result introduced in [4].

Organization: We first formally state the problem and setup
notations in Section We give the results without com-
munication constraints in Section [ and the results with
communication constraints in Section Many of the proof
details are given in supplementary appendices.

II. PROBLEM SETTING

There are a total of m users, and each user-i aims to
estimate an unknown vector 8; € R? by local observations
xgl), xgz), ... ,xz(-") b N(0;,%,). We here consider the case
of spherical Gaussian with covariance matrix X, = ag]ld.

We assume there is an unknown population distribution
(a.k.a. prior in Bayesian models) G from a class of the distri-
butions G over R%, such that 81,65, . ...,80,, "~ G. Once G
is known, it becomes a canonical Bayesian model as illustrated
in Fig. Without the knowledge of G, it belongs to the
empirical/hierarchical Bayes setting, and the performance of
local tasks can still be improved by sharing information among
the users. In this work, we consider a Gaussian population



distribution G = N (u, 0%I;) with parameters u € R? and
o2 > 0, which are both unknown.

The communication protocol is defined as follows. Each
user-i encodes the local observations xZ(-lzn) into a message
Z; = fi(xz(-lm),U,;) according to some encoding function
fi and randomness U, independent of data. The message
is distributed/broadcast to other users. After receiving the
messages Z_; £ Z1:i—1,i+1:m, User-i estimates the unknown
vector of interests 8; by some estimator éi(xﬁl‘"% Z_;). We
consider the case that supgcg Ha(Z;) < B, where Hg(Z;)
is the entropy under the prior G.

A. Performance metric

We consider the mean square error (MSE). The MSE of an
estimator @ of the unknown vector 6 is L(8;G) = Eg[[|6 —
0|?], where E¢ indicates that the expectation is taken under
the Bayesian model with prior G.

The performance of personalized distributed estimators is
measured by the total regret

m

TotReg(01.mm; G) = Z(L(éw G) - L(6¢; G))
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where g = ]Eg[0i|x§1:”)] is the Bayes optimal estimator
under prior G, a.k.a. minimum MSE (MMSE) estimator. The
total regret is non-negative and measures the loss due to
not knowing the true population distribution G, as the first
equation shows that it is the difference between the MSE
of the estimator without the knowledge of G and the MSE
of the MMSE estimator with the knowledge of GG. Equation
(a) is by the orthogonality of the optimal estimator that
E[(0; — 6c)T (6 — 6;)] = 0, and it interprets the regret as
MSE w.r.t. the Bayes estimator ég.

With a slight abuse of notation, we define the worst-case
total regret and minimax total regret as

TotReg(OAl:m; G) = sup TotReg(élzm; QG),
Geg

TotReg(G, B) = inf sup TotReg(81.,;G). (1)
01.., GEG
The infimum is taken over the estimator (as well as the encod-
ing functions f7.,,) that satisfies the required communication
constraints of B. Without the communication constraints, i.e.,
B = oo, we simply let TotReg(G) = TotReg(G,c0). We
assume m > 3 and in the vector case d > 3.

B. Related works

The estimation with single one-dimensional local observa-
tion and without constraints, i.e., n = 1 and Z; = xl(-l) € R,
has been studied in the nonparametric setting, i.e., G can
be any sub-Gaussian distribution, where the state-of-the-art
results of a total regret of O((logm)®) is achieved by the
nonparametric maximum likelihood estimator (NPMLE) in [3]]
and a lower bound of Q((logm)?) is achieved by Assouad’s

method [6]. The estimation with multiple observations without
constraints has been studied in the Gaussian population dis-
tribution with known variance setting [5]. Our work considers
more general d-dimensional observations in the Gaussian
population distribution with both unknown mean and variance
setting with limited communication.

The empirical Bayes method is powerful for large through-
put data, i.e., m and d are large. Considering a hierarchical
Bayesian model can indeed motivates the design of estimators,
which will be illustrated in this paper, e.g., the proposed
hierarchical James-Stein estimators in Eq (7) and Eq ().

III. PERSONALIZED ESTIMATION WITHOUT CONSTRAINTS

We first present new results for the classic Gaussian mean
estimation under the empirical Bayes model, where the mes-
sage Z; from user-i can be its local data xz(-lm) without com-
munication constraints, illustrating the effect of aggregating
information among users and introduce estimators that are

useful under communication constraints.

A. Scalar case

The parameter #; € R has a Gaussian population G =
N (i1, 5%). We here simply consider one observation, e.g., n =
1, and hence change xgl) to x; for notational convenience. It
is straightforward to generalize it to the setting with multiple
local samples, since their sample average is a sufficient statistic

for parameter 6;. In this case, the MMSE estimator is

2

~ g,
0 =Easl0x = 2] = —2 (- 2
c(x) clx = 7] m+02+gg(,u x), (2
A o202 ot
with MMSE L(0c; G) = 7552 = 02 — 55857

First, we consider the simplest case of Gaussian population
distribution N(p1, o) with known variance o but unknown
mean pu. The following theorem characterizes the minimax
regret of this case. This case has been previously studied
in [5]. We use a general hierarchical-Bayes-with-hyper-prior
approach, which motivates the estimators for the vector case.

Theorem IIL1. Given a known variance o® and the family
of population distributions G = {N(u,0?) : p € R}, the
minimax regret w.r.t. to the family G is

4
o

o2+ 02’

Proof of Theorem The upper bound is achieved by esti-
mator

g

TotReg(G) =

A o2

— . __°
Hi(xl:m) =x; + o2 + 0'(2,

(jl:m - xi)7 3)
where Z1.,, = # We have TotReg(él;m;N(u,ag)) =
4 4
172074172, and thus TotReg(G) < ﬁ
The exactly tight lower bound isoproved by considering a
hierarchical Bayes model with hyper prior p ~ /\[ (v,s?) for
some v, s2. We can calculate that 6;|x1.,, ~ N (01, (67)?),



where the posterior mean éZH is the Bayesian optimal estimator
of 0; with closed-form
2

O = x; + oo (X1:m — Xi)

! 02+ o2
0_2 02-&-0(2, (4)
o m <
UV — X1. .
T+ o2 g g aeg VT Km)
m
and the posterior variance (67)? is
& H)2 o202 ol s2
o, = .
! o2+02 o024+ 02ms?+02+02

It is straightforward to see that (57

)2 is the mean square
error and actually the minimum mean square error given
hyper prior A/ (v, s?). We know TotReg(g) > E[L(OF ;G)—
mL(0q; G)) > S0 (612 m:2+ 7 for any arbitrary v, 52
where the expectation is taken w.r.t. g ~ N (v, s%). We then
conclude the lower bound that

TotReg(g) > : e )
otRe su = ,
g *y75502+03m82+02+02 o2+ o2

where the supremum is taken by any finite v and s> — co. [

Remark: A lower bound of TotReg(G) > Seriszy can be
proved via Le Cam’s two-point method in Appendix [A], while
such a method, though can give an order-wise optimal bound,
does not characterize the exact multiplicative constant.

According to Theorem larger o2 leads to smaller
regret. It is slightly counter-intuitive since the overall error
is increasing as o2 increases. But it is also easy to interpret,
since the impact of others’ observations on the local estimation
is based on the prior and is getting weaker with larger o2, thus
the estimator is more competitive with the MMSE.

We then consider the general case in which the variance o
is also unknown to the estimator. James-Stein estimator [2] is

2

0% (X1.m) with
A 2(m —3)
QJS m) — Xq JO(m X m T X§ 6
P () = xi+ [1X1:m — 1mil‘m”2(X1. x) ®
where 1,, is a m-length vector with all ones. It resembles

by estimating a contraction factor 02 57 by Hx1

Theorem IIL.2. James-Stein estimator, without the knowledge

of 02, is minimax order-optimal with regret
30
TotReg (6% :G) = ——2 _.
g( 1:m g) 0_2 T 0_2

Proof of Theorem The I\A(ISE of James-Stein estimator is

(91 i G) = ZL20+Z2 + 2+ 5. It is calculated by Stein’s
unbiased risk estimator (SU!RE) and the detailed computation
is given in_the Appendlx (@ Smce the MSE of the MMSE

estimator (2)) is L(Hg,G) = 2 + >, the total regret is thus
30 4

prEvg The upper bound matches the lower bound for the
known variance case in Eq (5) within a constant factor of
3 and thus minimax order-optimal. Moreover, JS estimator
is actually minimax (in terms of u) order-wise optimal in a
universal manner (in terms of o2). O]

B. Vector case

The unknown parameter 8; € R? with a Gaussian pop-
ulation distribution G = AN (u, 0%[,). We have observations
X;|01.m ~ N(0;,021;) for each i = 1,...,m. Similar to
the scalar case, the MMSE estimator given G is g (x) =
X + 2+O_2 (u — x), with MSE L(0g;G) = d e

2+0-2
We start from the simple case of multlvarlate Gaussian
population distribution A (p, 021) with known o2 and char-

acterize the minimax regret of this case in the theorem below.

Theorem IIL3. Given a known variance o® and the family
of population distributions G = {N (u,%1y) : p € R}, the
minimax regret w.r.t. the family G is

0.4
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Proof of Theorem [[I.3] The lower bound of the worst-case
total regret TotReg(G) > d—2~ 2 can be obtained applying
at each coordinate. A naive estlmator is applying the estimator
Eq (3) at each coordinate and it is indeed minimax optimal. We
here propose a hierarchical James-Stein estimator with known
variance o2, which is more adaptive and dominates this naive
estimator by aggregating the information across coordinates in
James-Stein’s manner, as follows. For user-i at coordinate k,

TotReg(G)

2
AHIS, o2 ° _
0, =Xk + 5" (X —Xi)
o+ o0;
2 (7
ol d—3 _
*_7_12 (X - Xk) ,
m [|X1:a — X1
where X, = % is the sample average of coordinate
_ ik Xik -
k and X = T 1xk = Zl;fld " is the overall average.

The estimator HHJS o is motivated by the hierarchical Bayes

estimator in Eq (E]) as they share the same first and sec-
ond terms and the last term is a resemble of the last term
oc“+o

2 o
g = [og m (
o m _ — o —
02402 52 o2+02 (V X1~m) m ms?+o02+02 v
™

Eq by estimating

)_clzm) of

m d—3 :
P s by TRou %147 in James-

Stein”manner across coordinates and v by X. The MSE of
this estimator can be calculated as
2 2 4
AHIS, o2 o 0g, g
(0 N(H‘aaﬂd)) md 2+0,(2)+d0_2 _:O_g
d—3E[ (d—3)o2 }

m ||)_(1.d — )_(].dH2 ’
and thus its regret is 4TotReg( ]fj,io N (p,0%1y)) =
d o, _ dng (d—3)o,,

02402 m [[%1.0a—%14]?

Further suppose that the mean vector gt = (u1,. .., 1d)
satisfies i1, ..., jtq " >3 "N (v, s?) as 1n4 the h1erarchica1Payes
model, we then have E, ;- [% Py
which implies

2 2
HIS, o 070,
E, s [L(O N (w0 Hd))} = dm

Lg% (1o
ms? + o2 + o2 m32+02+02'

02+02 f)‘
02+ o2



When s =0, ie., 1 = -+ = g, we know
1S, 02 9 B me’QUg 30’(%
IEI/,S2 [L(Olm 7N(“7 g Hd)) - 0_2 + O'g 0_2 + 0‘3 .
When s — 0o, we know
2 2 4
SHIS 02 5 _ mdo“o; do
By o2 [L(Orm” N (w0 la))] = 5 o2 o2+02’

which achieves the worst-case lower bound suggested by
applying hierarchical Bayes at each coordinate. O

Remark: Note that the proposed 615:7” is more adaptive
than using estimator Eq (3) for each coordinates. Though they
both achieve the minimax optimal regret in worst-case, when
the unknown variance of the hyper prior s is small (coordinates
1, ..., g are close), 61" can have smaller dimension-
independent regret while the latter fails to take advantage of
the structure among coordinates with regret linear in d.

We then consider the case where o2 is unknown to the
estimator. Motivated by the hierarchical James-Stein estimator
with known variance in Eq (7), we propose the hierarchical
James-Stein estimator below

A o2(d(m—1)—2
Oﬂsixi,kJr y ol )_ ) z(ik*Xi,k)
Zh:l ||X1¢m7h - Xhlm” (8)
crg d—3 _
Xk) s

7_7_2 X —
m ||X1:q — X14]|
. . 0-2 _ .
where the second term is an estimate of P (Xk — X4 ) In

James-Stein manner.

Theorem IIL.4. Hierarchical James-Stein estimator, without
the knowledge of 02, is minimax order-optimal with regret

TotReg (015 : N (i, 01,))

1:m>
: SR - d— 3)ol
g T 4o %0 3IE 7( 3200
02+ 02 0?2+ 02 m IX1.0 — X14]|2

The detailed calculation is in the Appendix [E. Since the
last term of the regret is negative, the extra regret due
to not accessing o2 is within 2#"0%, which is dimension
independent, and thus it is minimax order-optimal. Moreover,

suppose fi1, .. ., pa ~ N(v, s?), we have
B, | TotReg(6115, N (. 0°1))]
4 4 4
S —r %o (d-3)—nTo
02+ o2 02+ o2 ms? 4 02 + o2

When s — 0, even though the estimator does not have
access to s, the expected regret is dimension-independent
5#"03. In contrast, the estimator without taking advantage
of collaboration among coordinates will scale linearly w.r.t. d.

IV. PERSONALIZED ESTIMATION WITH COMMUNICATION
CONSTRAINTS

We consider the vector case with the unknown parameter
0; € R? following population distribution G = N (p, 021y),
. . : ii.d.

and each user-¢ has n local observations xgl'")|01:m "R

N(6;,0%1,), i = 1,...,m. Moreover, we have communica-

tion constraints that the codeword Z; = f;(x\"™ U;) € Z C

{0,1}* from any user-i has expected length at most 5.

E?:l XEJ) (
n

1:n .
i ). Since x;

is a sufficient statistic for 8; and Z; is a function of xgl’"),
we have the Markov chain 6; —x; — xl(-lm) — Z;. Thus without
loss of generality, we simply consider x; as user-¢’s data with
X; ~ N(Ql,ag/n) and Zz = fi(Xi, Uz)

This following theorem shows that it is both sufficient and
necessary to have communication B = é(d) to achieve the
best total regret as in an unconstrained setting, and thus with
B bits of message from each user, the collaboration among

users improves personalized estimation.

Let x; = be the average of data x

Theorem IV.1. Given a family of population distributions
G = {N(w,0%a) : ||pl|* < d} with some bounded o2, the
minimax regret w.r.t. the family G for some B = ©(d) is
(03/n)”
TotR B)=06(d—*—= ).

Remark: The achievability (Theorem [[V.3) takes B = €(d),
and the lower bound (Theorem [[V.4) explicitly depends on B
with a wider range. The characterization of the regret for the
entire range of (n, 02, d, B) is left for future work.

A. Estimation via Poisson representation

We use the Poisson functional representation proposed by
Li and Gamal [4]. User-¢ sends a message of expected finite
length to a receiver (i.e., other users) and the receiver can
“simulate” a noisy version of the the user’s local observation
X;. We take one user-¢ as an example and omit the index
1 for simplicity. Specifically, the external noise U, encoding
function f at the sender side, and the decoding at the receiver
side are illustrated as follows with two coefficients 02, A>1
specified later.

o External randomness U = {(Yj,T))}r>1 is a marked
Poisson point process (PPP), where 0 <77 <Th < ---
is a PPP with rate 1 and Y7, Y5, ... i (0, O’?Hd). It is
a common randomness generated on both the sender and
receiver sides.

e Encoding Z = f(x,U), where x is the sender’s local
observation, is by two steps.

. . N (k30,021
1) Compute an index K = arg miny, T} - %

2) Encode K into Z by an optimal prefix-free code for
the Zipf distribution q(k) oc k= for k > 1.
e Decoding y = ¢g(Z,U) = Yk with K decoded from Z.

Lemma IV.2 (Channel simulation [4]). Transmitting x ac-
cording to the above procedure with any 03 and \ > 1, the
recovered signal y follows distribution N'(x, o21,).

The lemma above characterizes the quality of the decoded
signal y; if user-¢ holds local observation x;. As discussed in
[4], the above procedure can be viewed as channel simulation,
i.e., the receiver simulates the output y of a Gaussian channel
with input x.



We present the total MSE of different estimators as follows. The first two are MMSE estimators with population distribution

G = N (u,0%1,) or hyper prior p L A (v, s%). The middle three MSE’s are taken expectation w.r.t. to the hyper prior, and

they decrease as s? decreases. The maximum likelihood estimator (MLE) at the bottom is éi =

nox@
Zi=L without

collaboration. From top to bottom, the MSE is increasing, and thus collaboration improves personalized estimation.

A do? mdo?
L(OMMSEG, ) _ maog, o
( 1:m ’ ) n n202 + 77/0'3
o 2 do? do? dots?
Ey s [L(OII/-[ZSE’N(V’S )§G)] =22 2 77; - 2 2 2 - 0025 2 2
’ m n n?0? +no2  (no? + o2)(mns? + no? + o2)
E z[L(éHJS’UZ'G)] _ mdo? 3 mdo? mdo?s? 30t /n
Vs Limo n n?024+no?2  (no?+o2)(mns?+no?+o02) (ms?+o02)n+ o2
E z[L(éHJS'G)] _ mdo? 3 mdo? mdo?s? 30t /n 204
v,s Lim:s n n?02 4+ no2  (no? 4+ o2)(mns? +no?+02)  (ms?2+o0?)n+o02  n20? +no?
- mdo?
L(6Y;G) = —=2
' n

Theorem IV.3. For the family of population distribution
G = {Np,o’La) : lpll: < VdD} with o < 8,
and under communication budget B = Q(b) where b =

2 2 2 2
%log 1+ Wn%n), the minimax regret w.r.t. G
is upper bounded by

TotReg(G, B) = O (d(ag/n)z> .

o3 /n+o?
4
Proof of Theorem [IV.3| Let o2 := o2/n. Take 02 = <,

ol =040, +D*+S%and A =1+1/(b+e 'loge+
1) for the Poisson functional representation communication
procedure. Transmitting each user’s local observations {x; :
i =1,...,m} to other users, and each user can recover signals
{y: : i = 1,...,m}. Note that y; ~ N(8;, (02 + 02)I4)
by Lemma the difference between the minimum MSEs

o’(or+0d)

w.rt. data yp.,, and xj., normalized by d is e

2 2 2 4 2 2 4
90y _— _9s S7og o, /m W,
2402 7402 o7 Fol 02 = oPFol = oi4oz- YO Cal apply

gHs! Eq (I§I) by data {y;}, and the corresponding regret upper
bound w.r.t. data y.,, can be calculated as in Theorem [lI1.4|by
replacing the observation noise from o2 to o2 + 02 = O(02).

The regret is thus upper bounded by O (d (ga/n)” )

o2 /n+o?
Let Q(-) = N(~;0,0'3Hd) and Py (-]x) = N(x,0%,).
It has been shown in [4, Sketch of the proof of Theorem 1]
that the computed index K = arg miny 7% - W satisfies

Ellog K] < E[KL(Pyx(-|x)]|Q)] + ¢ ' loge + 1. Note that
do? d

JI<]* 5 d,
i ~ %) loge + Slog 2L,
202 202 2) ¢T3 %5

KL(Py 1 (12)]1Q) = (

Since x ~ N (p, (02 +02+02)ly) and 0} = 02405+D?+5,
we have

E[KL(Pyx(-[x)[IQ)]

|| + do? + do? + do?  d d, o2
- nT4% 2 Y og 2a
( 207 3) BT 5% 5
d o2 d 2 1 D2 2\ 02
< —log - = Zlog 1—1—(0”+ + )5 n*m ) =b,
2 "oz 2 o4

where the inequality is by |ju|] < D,0 < S and
””“2+d‘7;;dai+dgg < 4. Then as shown in [4], encoding K
into Z by an optimal prefix-free code for the Zipf distribution
q(k) o< k= with A = 1 +1/(b+ e tloge + 1) satisfies
E[|Z]] < b+log(b+ 1)+5. We thus have B > b+log(b+ 1)+
5, ie., B=Q(b). O

B. Lower bound of regret under communication constraints

The lower bound analysis of the regret follows a similar
logic as that in [8]] with important definitions such as strong
data processing inequalities. Zhang et. al. [8]] considered the
setting where each user holds i.i.d. samples from a common
distribution parameterized by 6, and the goal is to estimate
this parameter 6. In our work, the data across users are
heterogeneous and the goal is personalized estimation where
each user-i is estimating a local parameter ;. The proof of

Theorem is given in Appendix

Theorem IV.4. Given a known variance o2 and the family of
population distributions G = {N(u,c%1,) : |p|* < d}, the
minimax regret TotReg(G, B) under communication budget B
is lower bounded by

2
Q|d (%)2 min mn mn d
% 4 2 % 4 52" logm’ min(Blogm,d) | |

V. CONCLUSION

We study the personalized Gaussian mean estimation under
communication constraints. The worst-case regret is charac-
terized exactly without communication constraints when the
variance of the population distribution is known and order-wise
optimal regret upper bounds up to multiplicative constant 3 are
provided. We show that when the message sent by each user
has B = ©O(d) bits, the order-wise optimal worst-case regret

2 2
O (dg(f ;’7{ 1272) is the same as that without communication

constraints.
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APPENDIX
DETAILED CALCULATION FOR THE SCALAR CASE
A. Lower bound via Le Cam’s method for Thm

As discussed in the Proof of Theorem [IIL1} we can also
use the Le Cam’s two-point method [[/] to prove the lower

bound. Given the separation condition w.rt. G = N(p,0?)
and G' = N (¢, 0?),

nf {||a1:m — 0 (%) I* + laram — éc'(X1:m)||2}

a1:m

1 .
S(xm)

_moglp—p)? |
A +o2?
We then have

%

— b (x1m)|?

TotReg(1:m; G) > TotReg(f1.m; G)

= max
Ge{N(n,02) N (u',02)}
A
> 5 (1= P (5G) = P (5 G 1v)
may(n— 1)

.

S
\/;KL (N(p, 0% 4 02)2™ N (1,02 + 0§)®’")>

_moglp—p)? [ mp—p)?
4(02 + 02)2 4(02+02) |’
o+ %
TotReg(OAl:m; G)> ﬁ, which is order optimal.
Note if we have more local samples from each user,
eg. Pam(5G) = N(u,02l, + 0?117). We can still
calculate KL-divergence KL (ngl;r,L>(-;G);PXQWL)(-;G’)) =

(05/n)?
8(c2+402/n)"

Taking p/ = concludes the proof that

(p—p)?

2670 /n) and then derive a lower bound of

B. Calculation for the hierarchical Bayesian model in ()

We consider a hierarchical Bayesian model with hy-

per prior u ~ N(v,s?) for some v,s?. We can calcu-
R > R )
2+6 p——| + 7102 LV s |
m—1 > +s m—1 ts
-1
T+012 +s2) . Thus 91|X2:n = To2an ~
02402

m—1

2 2
+
THE 452

late that p|xo., ~ N

where a, = (

N 52 Do T +
02+c;2+82 m—1

v,a, + 02 |, and the pos-
S

terior mean ]E[91|x1 m) can be calculated as in Eq @])

Denote by 91 H (X1:m) = E[01.m|X1.m], Which is the optimal
estimator given access to the hyper prior ;1 ~ A (v, s?). Taking
s — oo while v fixed gives

N o2 'Y
afI(Xl:m) =X1+ ° <X:Z1 L - X1>

o2+ 02 m
o? o2

PO
X1 + X1:m
o? + o2 o2+ o2

which is valid estimator without relying on any unknown
parameters and coincides with the estimator in the upper
bound. Taking s = 0 gives

2

0{{()(1:771) = X1 +

(v —x1), (10)

02+02

which is f¢ with G = N (v, 02).
Moreover, the posterior variance can be calculated as

2)71
_ (a5 +0%)o2 — 21— a5/ as
as+ 02+ o2 © 14 &9 2+"2
2 ( m=1 1
2, %° ("ZL*"E + 572)

02402
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4 4
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(o] o
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2 03 52 + o2 +U 03
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olo? ol 52
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_2__9% 1 o

° 02402 mo?+o02

o —_
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o’ +o
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Taking s = 0 gives Var(61|x1.m) = 2+02 , which is the Bayes
risk for knowmg = v. Taking s = oo gives Var(01|x1.m) =
2 4
= fgz + L :02 , which is the Bayes risk of the estimator
under i improper prior of p. The regret is then lower bounded
1o,
by oo
optimal.

Thus, the estimator is indeed exactly minimax

C. Omitted calculation in the proof of Theorem

The MSE of James-Stein estimator is calculated by Stein’s
unbiased risk estimator (SURE) as in Eq (II) - Eq (12).
Since the first three equalities do not rely on the prior
distribution of y.,,, we have Eg,  [||01.m — 015, (x1.m)||?] =
ma2—at(m—3)%Ey,. m , where g, indicates
taking expectation w.r.t. the randomness of data following
distributions {N\(6;,02)}. It is also known as (frequentist’s)
risk. The James-Stein estimator thus dominates the maximum
likelihood estimator with risk mo?2.

DETAILED CALCULATION FOR THE VECTOR CASE

D. Omitted calculation in the proof of Theorem

We analyze the MSE of the Hierarchical JS estimator with

HJS
known variance 6; o by Stein’s unbiased risk estimator

(SURE). Since

> L (B ) -
i [X1:q — X142 k

we have by SURE that
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~ 2 ~ 2
Eg[101m — 657" |2) = E [mdo? + 612557 — X1m, 1.0l
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Further discussion. Note that it has been verified that the 1 2/ n 2
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James-Stein estimator outperforms the maximum likelihood 4, 02/n+ o2
. . . . . =
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F. Omitted proofs in communication constrained estimation

Proof of Theorem We first create a class of distributions
G = {N(uy,0%ly) : v € V} by auxiliary vector v € V =
{£1}4, where 1, = v.

For any estimator élzm(xi,Z_i), let é(xi,Z_i) =
arg mingeg ||0;(xi, Z_;) — O (x;)| be a prior distribution
estimator. We know

216:(xi, Z-3) — O ()|
2 [10i(xi, Z-i) = O, 7 (Xi) | + 110i(xi, Z—4)

> 00, 2 (x5) — Bc(x2)]l
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and it follows that
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4 veyY

x), we

TotReg(élzm; g)

where dp,, is hamming distance. Let V' uniformly distributed
over V, we then have

TOtReg(élzm; g)

0_3 n 2 m
252(0%/+Uz> > Eldhn (¥ 3,2, V)
o2/n g
> (i) “ZM“’“ sy

where the first inequality is by replacmg the max,cy by
expectation and the second inequality is by Markov in-
equality. By distance-based Fano’s inequality [1] [8] that
P(dpa(V (X3, Z_3), V) > t) > 1 — —LVx.Z)loe

W\
maxy 1107 idnam (0,07 ) <t1]

log
and taking t = d/6 gives

m

TotReg( 91 m; G) > 252 (

a?/n

2
7)) (L))

1 I(Vix;, Z_;) +1og2
(- )
Since x;,{Z;};»; are conditionally independent given V, we
have I(Vix;, Z_;) < I(Vixi) + >, 1(V; Zj).

Note that x;|V = v ~ P, := N(p,, (0 + 02/n)]1d) Let
V' be an independent copy of V, we have

1
1(Vixi) < 337 ) KL(Pu[|P)
52 52d
<—  Eldam(V, V)] = —————.
= 2(62/n + 0?) [ (V V) 4(2/n + o?)

It requires 62 < 05/116302 to imply I(V;x;) < d/400.
I(V; Z;) is then bounded by strong data processing inequality

as in [[8, Lemma 5], which requires

o%/n+o? d(o2/n+ a?)

§2 <mind1
S mln{ " 4001og(m)’ 100 Z#i min(25 - 128B; logm, d)

2



to make ., I(V;Z;) < d/40. When ¢ satisfies all the
above requirements, (1 — W) > % and the

lower bound is thus concluded. O
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