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Abstract—We consider personalized estimation for heteroge-

neous data under communication constraints. In many appli-

cations, distributed users have heterogeneous local data with

distinct statistics, and want to estimate individual (personalized)

properties of the local data. However, they have limited local data

and we explore how collaboration (even over communication-

limited links) can enable better personalized estimation. We study

this for the Gaussian Bayesian model for heterogeneity with

unknown parameters and a worst-case total regret criterion. We

characterize (order-wise) the worst-case regret for personalized

mean estimation by devising novel lower bounds and achievability

schemes, which also demonstrates the value of collaboration.

I. INTRODUCTION

In many applications (e.g., medical) the data of each client
could have distinct characteristics (statistics), and naturally one
wants to estimate parameters related to the individual data.
However, there might not be enough local samples to obtain a
good individual (personalized) estimate. Therefore a natural
question is whether collaboration with other clients with
different data statistics could help personalized estimation.
In order to address this question sysematically, one needs to
formulate the statistical question, and a framework advocated
recently [5] is to use a hierarchical model to capture the data
heterogeneity. In this, there is a population distribution from
which local parameters are sampled, and in turn, local data
is generated with these local parameters capturing statistical
heterogeneity. It has been shown in [5] that this model captures
the most practical methods for personalized estimation and
learning, as well as suggests new ones.

In addition, in applications such as federated (distributed)
learning, the local data resides in remote clients which have
constrained communication links for collaboration. Therefore
this leads to the question of the fundamental trade-off between
communication constraints and personalized estimation. We
formulate these questions through the criterion of a total regret
formalization (see (1) for precise definition), which is the
difference in loss between the estimator which has access to
the population distribution and an estimator which does not
have this knowledge, where nature gets to maximize regret by
choosing the population distribution.

We focus on the case where the population distribution
G is a vector Gaussian with unknown mean µ, and un-
known co-variance �2Id. The local parameters {✓i}mi=1 are
generated from G and in turn generate local n data samples
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i
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which are generated as Gaussian with
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Fig. 1. An illustrative
figure of the person-
alized estimation un-
der a Bayesian model
with m users and
each user having n
samples.

mean ✓i and known covariance ⌃o. The goal is to find a
personalized estimator ✓̂i, which can depend on the local data
x(1:n)
i

and potentially collaborative messages {Zj}j 6=i from
the other clients. We consider the communication-constrained
case where the messages {Zj} have a given entropy bound.
Contributions: We first examine the problem without com-
munication constraints and develop both information-theoretic
lower bounds and a scheme to completely characterize the
total regret in Theorem III.3. Perhaps of interest is that the
lower bound is developed through a hyper-prior technique,
which gives a sharper bound than the more conventional
Le Cam bounding technique. Next, we extend this to the
case with communication constraints and characterize (order-
wise) total regret in Theorem IV.1. In this case as well, we
develop information-theoretic lower bounds (Theorem IV.4)
as well as a scheme (Theorem IV.3) which uses a functional
representation result introduced in [4].
Organization: We first formally state the problem and setup
notations in Section II. We give the results without com-
munication constraints in Section III and the results with
communication constraints in Section IV. Many of the proof
details are given in supplementary appendices.

II. PROBLEM SETTING

There are a total of m users, and each user-i aims to
estimate an unknown vector ✓i 2 Rd by local observations
x(1)
i

,x(2)
i

, . . . ,x(n)
i

i.i.d.⇠ N (✓i,⌃o). We here consider the case
of spherical Gaussian with covariance matrix ⌃o = �2

o
Id.

We assume there is an unknown population distribution
(a.k.a. prior in Bayesian models) G from a class of the distri-
butions G over Rd, such that ✓1,✓2, . . . ,✓m

i.i.d.⇠ G. Once G
is known, it becomes a canonical Bayesian model as illustrated
in Fig. 1. Without the knowledge of G, it belongs to the
empirical/hierarchical Bayes setting, and the performance of
local tasks can still be improved by sharing information among
the users. In this work, we consider a Gaussian population



distribution G = N (µ,�2Id) with parameters µ 2 Rd and
�2 � 0, which are both unknown.

The communication protocol is defined as follows. Each
user-i encodes the local observations x(1:n)

i
into a message

Zi = fi(x
(1:n)
i

, Ui) according to some encoding function
fi and randomness Ui independent of data. The message
is distributed/broadcast to other users. After receiving the
messages Z�i , Z1:i�1,i+1:m, user-i estimates the unknown
vector of interests ✓i by some estimator ✓̂i(x

(1:n)
i

, Z�i). We
consider the case that sup

G2G HG(Zi)  B, where HG(Zi)
is the entropy under the prior G.

A. Performance metric
We consider the mean square error (MSE). The MSE of an

estimator ✓̂ of the unknown vector ✓ is L(✓̂;G) = EG[k✓̂ �
✓k2], where EG indicates that the expectation is taken under
the Bayesian model with prior G.

The performance of personalized distributed estimators is
measured by the total regret

TotReg(✓̂1:m;G) =
mX

i=1

(L(✓̂i;G)� L(✓̂G;G))

(a)
=

mX

i=1

EG

h
k✓̂i � ✓̂Gk2

i
,

where ✓̂G = EG[✓i|x(1:n)
i

] is the Bayes optimal estimator
under prior G, a.k.a. minimum MSE (MMSE) estimator. The
total regret is non-negative and measures the loss due to
not knowing the true population distribution G, as the first
equation shows that it is the difference between the MSE
of the estimator without the knowledge of G and the MSE
of the MMSE estimator with the knowledge of G. Equation
(a) is by the orthogonality of the optimal estimator that
E[(✓̂i � ✓̂G)>(✓̂G � ✓i)] = 0, and it interprets the regret as
MSE w.r.t. the Bayes estimator ✓̂G.

With a slight abuse of notation, we define the worst-case
total regret and minimax total regret as

TotReg(✓̂1:m;G) = sup
G2G

TotReg(✓̂1:m;G),

TotReg(G, B) = inf
✓̂1:m

sup
G2G

TotReg(✓̂1:m;G). (1)

The infimum is taken over the estimator (as well as the encod-
ing functions f1:m) that satisfies the required communication
constraints of B. Without the communication constraints, i.e.,
B = 1, we simply let TotReg(G) = TotReg(G,1). We
assume m > 3 and in the vector case d > 3.

B. Related works
The estimation with single one-dimensional local observa-

tion and without constraints, i.e., n = 1 and Zi = x(1)
i

2 R,
has been studied in the nonparametric setting, i.e., G can
be any sub-Gaussian distribution, where the state-of-the-art
results of a total regret of O((logm)5) is achieved by the
nonparametric maximum likelihood estimator (NPMLE) in [3]
and a lower bound of ⌦((logm)2) is achieved by Assouad’s

method [6]. The estimation with multiple observations without
constraints has been studied in the Gaussian population dis-
tribution with known variance setting [5]. Our work considers
more general d-dimensional observations in the Gaussian
population distribution with both unknown mean and variance
setting with limited communication.

The empirical Bayes method is powerful for large through-
put data, i.e., m and d are large. Considering a hierarchical
Bayesian model can indeed motivates the design of estimators,
which will be illustrated in this paper, e.g., the proposed
hierarchical James-Stein estimators in Eq (7) and Eq (8).

III. PERSONALIZED ESTIMATION WITHOUT CONSTRAINTS

We first present new results for the classic Gaussian mean
estimation under the empirical Bayes model, where the mes-
sage Zi from user-i can be its local data x(1:n)

i
without com-

munication constraints, illustrating the effect of aggregating
information among users and introduce estimators that are
useful under communication constraints.

A. Scalar case

The parameter ✓i 2 R has a Gaussian population G =
N (µ,�2). We here simply consider one observation, e.g., n =
1, and hence change x(1)

i
to xi for notational convenience. It

is straightforward to generalize it to the setting with multiple
local samples, since their sample average is a sufficient statistic
for parameter ✓i. In this case, the MMSE estimator is

✓̂G(x) = EG[✓|x = x] = x+
�2
o

�2 + �2
o

(µ� x), (2)

with MMSE L(✓̂G;G) = �
2
�
2
o

�2+�2
o
= �2

o
� �

4
o

�2+�2
o

.
First, we consider the simplest case of Gaussian population

distribution N (µ,�2) with known variance �2 but unknown
mean µ. The following theorem characterizes the minimax
regret of this case. This case has been previously studied
in [5]. We use a general hierarchical-Bayes-with-hyper-prior
approach, which motivates the estimators for the vector case.

Theorem III.1. Given a known variance �2 and the family
of population distributions G = {N (µ,�2) : µ 2 R}, the
minimax regret w.r.t. to the family G is

TotReg(G) = �4
o

�2 + �2
o

.

Proof of Theorem III.1. The upper bound is achieved by esti-
mator

✓̂i(x1:m) = xi +
�2
o

�2 + �2
o

(x̄1:m � xi), (3)

where x̄1:m =
Pm

i=1 xi

m
. We have TotReg(✓̂1:m;N (µ,�2)) =

�
4
o

�2+�2
o

, and thus TotReg(G)  �
4
o

�2+�2
o

.
The exactly tight lower bound is proved by considering a

hierarchical Bayes model with hyper prior µ ⇠ N (⌫, s2) for
some ⌫, s2. We can calculate that ✓i|x1:m ⇠ N (✓̂H

i
, (�̂H)2),



where the posterior mean ✓̂H
i

is the Bayesian optimal estimator
of ✓i with closed-form

✓̂H
i

= xi +
�2
o

�2 + �2
o

(x̄1:m � xi)

+
�2
o

�2 + �2
o

�
2+�

2
o

m

s2 + �2+�2
o

m

(⌫ � x̄1:m) .

(4)

and the posterior variance (�̂H

i
)2 is

(�̂H

i
)2 =

�2�2
o

�2 + �2
o

+
�4
o

�2 + �2
o

s2

ms2 + �2 + �2
o

.

It is straightforward to see that (�̂H

i
)2 is the mean square

error and actually the minimum mean square error given
hyper prior N (⌫, s2). We know TotReg(G) � E[L(✓H1:m;G)�
mL(✓̂G;G)] �

P
m

i=1(�̂
H

i
)2�m �

2
�
2
o

�2+�2
o

for any arbitrary ⌫, s2,
where the expectation is taken w.r.t. µ ⇠ N (⌫, s2). We then
conclude the lower bound that

TotReg(G) � sup
⌫,s2

�4
o

�2 + �2
o

ms2

ms2 + �2 + �2
o

=
�4
o

�2 + �2
o

, (5)

where the supremum is taken by any finite ⌫ and s2 ! 1.

Remark: A lower bound of TotReg(G) � �
4
o

8(�2+�2
o)

can be
proved via Le Cam’s two-point method in Appendix A, while
such a method, though can give an order-wise optimal bound,
does not characterize the exact multiplicative constant.

According to Theorem III.1, larger �2 leads to smaller
regret. It is slightly counter-intuitive since the overall error
is increasing as �2 increases. But it is also easy to interpret,
since the impact of others’ observations on the local estimation
is based on the prior and is getting weaker with larger �2, thus
the estimator is more competitive with the MMSE.

We then consider the general case in which the variance �2

is also unknown to the estimator. James-Stein estimator [2] is
✓̂JS
1:m(x1:m) with

✓̂JS
i
(x1:m) = xi +

�2
o
(m� 3)

kx1:m � 1mx̄1:mk2 (x̄1:m � xi), (6)

where 1m is a m-length vector with all ones. It resembles (3)
by estimating a contraction factor �

2
o

�2+�2
o

by �
2
o(m�3)

kx1:m�1x̄k2 .

Theorem III.2. James-Stein estimator, without the knowledge
of �2, is minimax order-optimal with regret

TotReg(✓̂JS
1:m;G) = 3�4

o

�2 + �2
o

.

Proof of Theorem III.2. The MSE of James-Stein estimator is
L(✓̂JS

1:m;G) = m�
2
o�

2

�2
o+�2 + 3�4

o
�2
o+�2 . It is calculated by Stein’s

unbiased risk estimator (SURE) and the detailed computation
is given in the Appendix C. Since the MSE of the MMSE
estimator (2) is L(✓̂G;G) = �

2
o�

2

�2
o+�2 , the total regret is thus

3�4
o

�2
o+�2 . The upper bound matches the lower bound for the

known variance case in Eq (5) within a constant factor of
3 and thus minimax order-optimal. Moreover, JS estimator
is actually minimax (in terms of µ) order-wise optimal in a
universal manner (in terms of �2).

B. Vector case
The unknown parameter ✓i 2 Rd with a Gaussian pop-

ulation distribution G = N (µ,�2Id). We have observations
xi|✓1:m ⇠ N (✓i,�2

o
Id) for each i = 1, . . . ,m. Similar to

the scalar case, the MMSE estimator given G is ✓̂G(x) =

x+ �
2
o

�2+�2
o
(µ� x), with MSE L(✓̂G;G) = d �

2
�
2
o

�2+�2
o

.
We start from the simple case of multivariate Gaussian

population distribution N (µ,�2Id) with known �2 and char-
acterize the minimax regret of this case in the theorem below.

Theorem III.3. Given a known variance �2 and the family
of population distributions G = {N (µ,�2Id) : µ 2 Rd}, the
minimax regret w.r.t. the family G is

TotReg(G) = d
�4
o

�2 + �2
o

.

Proof of Theorem III.3. The lower bound of the worst-case
total regret TotReg(G) � d �

4
o

�2+�2
o

can be obtained applying (5)
at each coordinate. A naive estimator is applying the estimator
Eq (3) at each coordinate and it is indeed minimax optimal. We
here propose a hierarchical James-Stein estimator with known
variance �2, which is more adaptive and dominates this naive
estimator by aggregating the information across coordinates in
James-Stein’s manner, as follows. For user-i at coordinate k,

✓̂HJS,�2

i,k
= xi,k +

�2
o

�2 + �2
o

(x̄k � xi,k)

+
�2
o

m

d� 3

kx̄1:d � x̄1dk2
(x̄� x̄k) ,

(7)

where x̄k =
Pm

i=1 xi,k

m
is the sample average of coordinate

k and x̄ =
Pd

k=1 x̄k

d
=

P
i,k xi,k

md
is the overall average.

The estimator ✓̂HJS,�2

i,k
is motivated by the hierarchical Bayes

estimator in Eq (4), as they share the same first and sec-
ond terms and the last term is a resemble of the last term

�
2
o

�2+�2
o

�2+�2
o

m

s2+
�2+�2

o
m

(⌫ � x̄1:m) = �
2
o

m

m

ms2+�2+�2
o
(⌫ � x̄1:m) of

Eq (4) by estimating m

ms2+�2+�2
o

by d�3
kx̄1:d�x̄1dk2 in James-

Stein manner across coordinates and ⌫ by x̄. The MSE of
this estimator can be calculated as

L(✓̂HJS,�2

1:m ;N (µ,�2Id)) = md
�2�2

o

�2 + �2
o

+ d
�4
o

�2 + �2
o

� d� 3

m
E


(d� 3)�4
o

kx̄1:d � x̄1dk2

�
,

and thus its regret is TotReg(✓̂HJS,�2

1:m ;N (µ,�2Id)) =

d �
4
o

�2+�2
o
� d�3

m
E
h

(d�3)�4
o

kx̄1:d�x̄1dk2

i
.

Further suppose that the mean vector µ = (µ1, . . . , µd)

satisfies µ1, . . . , µd

i.i.d.⇠ N (⌫, s2) as in the hierarchical Bayes
model, we then have E⌫,s2

h
(d�3)�4

o
kx̄1:d�x̄1dk2

i
= m �

4
o

ms2+�2+�2
o
,

which implies

E⌫,s2

h
L(✓̂HJS,�2

1:m ;N (µ,�2Id))
i
= md

�2�2
o

�2 + �2
o

+ d
�4
o

�2 + �2
o

✓
1� �2 + �2

o

ms2 + �2 + �2
o

◆
+ 3

�4
o

ms2 + �2 + �2
o

.



When s = 0, i.e., µ1 = · · · = µd, we know

E⌫,s2

h
L(✓̂HJS,�2

1:m ;N (µ,�2Id))
i
=

md�2�2
o

�2 + �2
o

+
3�4

o

�2 + �2
o

.

When s ! 1, we know

E⌫,s2 [L(✓̂
HJS,�2

1:m ;N (µ,�2Id))] =
md�2�2

o

�2 + �2
o

+
d�4

o

�2 + �2
o

,

which achieves the worst-case lower bound suggested by
applying hierarchical Bayes at each coordinate.

Remark: Note that the proposed ✓̂HJS,�2

is more adaptive
than using estimator Eq (3) for each coordinates. Though they
both achieve the minimax optimal regret in worst-case, when
the unknown variance of the hyper prior s is small (coordinates
µ1, . . . , µd are close), ✓̂HJS,�2

can have smaller dimension-
independent regret while the latter fails to take advantage of
the structure among coordinates with regret linear in d.

We then consider the case where �2 is unknown to the
estimator. Motivated by the hierarchical James-Stein estimator
with known variance in Eq (7), we propose the hierarchical
James-Stein estimator below

✓̂HJS
i,k

= xi,k +
�2
o
(d(m� 1)� 2)

P
d

h=1 kx1:m,h � x̄h1mk2
(x̄k � xi,k)

+
�2
o

m

d� 3

kx̄1:d � x̄1dk2
(x̄� x̄k) ,

(8)

where the second term is an estimate of �
2
o

�2+�2
o
(x̄k � xi,k) in

James-Stein manner.

Theorem III.4. Hierarchical James-Stein estimator, without
the knowledge of �2, is minimax order-optimal with regret

TotReg(✓̂HJS
1:m;N (µ,�2Id))

= d
�4
o

�2 + �2
o

+ 2
�4
o

�2 + �2
o

� d� 3

m
E


(d� 3)�4
o

kx̄1:d � x̄1dk2

�
.

The detailed calculation is in the Appendix E. Since the
last term of the regret is negative, the extra regret due
to not accessing �2 is within 2 �

4
o

�2+�2
o

, which is dimension
independent, and thus it is minimax order-optimal. Moreover,
suppose µ1, . . . , µd ⇠ N (⌫, s2), we have

E⌫,s2

h
TotReg(✓̂HJS

1:m;N (µ,�2Id))
i

= d
�4
o

�2 + �2
o

+ 2
�4
o

�2 + �2
o

� (d� 3)
�4
o

ms2 + �2 + �2
o

.

When s ! 0, even though the estimator does not have
access to s, the expected regret is dimension-independent
5 �

4
o

�2+�2
o

. In contrast, the estimator without taking advantage
of collaboration among coordinates will scale linearly w.r.t. d.

IV. PERSONALIZED ESTIMATION WITH COMMUNICATION
CONSTRAINTS

We consider the vector case with the unknown parameter
✓i 2 Rd following population distribution G = N (µ,�2Id),
and each user-i has n local observations x(1:n)

i
|✓1:m

i.i.d.⇠

N (✓i,�2
o
Id), i = 1, . . . ,m. Moreover, we have communica-

tion constraints that the codeword Zi = fi(x
(1:n)
i

, Ui) 2 Z ✓
{0, 1}⇤ from any user-i has expected length at most B.

Let xi =
Pn

j=1 x(j)
i

n
be the average of data x(1:n)

i
. Since xi

is a sufficient statistic for ✓i and Zi is a function of x(1:n)
i

,
we have the Markov chain ✓i�xi�x(1:n)

i
�Zi. Thus without

loss of generality, we simply consider xi as user-i’s data with
xi ⇠ N (✓i,�2

o
/n) and Zi = fi(xi, Ui).

This following theorem shows that it is both sufficient and
necessary to have communication B = ⇥̃(d) to achieve the
best total regret as in an unconstrained setting, and thus with
B bits of message from each user, the collaboration among
users improves personalized estimation.

Theorem IV.1. Given a family of population distributions
G = {N (µ,�2Id) : kµk2  d} with some bounded �2, the
minimax regret w.r.t. the family G for some B = ⇥̃(d) is

TotReg(G, B) = ⇥

✓
d

(�2
o
/n)2

�2
o
/n+ �2

◆
.

Remark: The achievability (Theorem IV.3) takes B = ⌦̃(d),
and the lower bound (Theorem IV.4) explicitly depends on B
with a wider range. The characterization of the regret for the
entire range of (n,�2, d, B) is left for future work.

A. Estimation via Poisson representation
We use the Poisson functional representation proposed by

Li and Gamal [4]. User-i sends a message of expected finite
length to a receiver (i.e., other users) and the receiver can
“simulate" a noisy version of the the user’s local observation
xi. We take one user-i as an example and omit the index
i for simplicity. Specifically, the external noise U , encoding
function f at the sender side, and the decoding at the receiver
side are illustrated as follows with two coefficients �2

q
,� > 1

specified later.
• External randomness U = {(Yk, Tk)}k�1 is a marked

Poisson point process (PPP), where 0  T1  T2  · · ·
is a PPP with rate 1 and Y1, Y2, . . .

i.i.d.⇠ N (0,�2
q
Id). It is

a common randomness generated on both the sender and
receiver sides.

• Encoding Z = f(x, U), where x is the sender’s local
observation, is by two steps.

1) Compute an index K = argmink Tk ·
N (yk;0,�

2
q Id)

N (yk;x,�2
sId) .

2) Encode K into Z by an optimal prefix-free code for
the Zipf distribution q(k) / k�� for k � 1.

• Decoding y = g(Z,U) = YK with K decoded from Z.

Lemma IV.2 (Channel simulation [4]). Transmitting x ac-
cording to the above procedure with any �2

q
and � > 1, the

recovered signal y follows distribution N (x,�2
s
Id).

The lemma above characterizes the quality of the decoded
signal yi if user-i holds local observation xi. As discussed in
[4], the above procedure can be viewed as channel simulation,
i.e., the receiver simulates the output y of a Gaussian channel
with input x.



We present the total MSE of different estimators as follows. The first two are MMSE estimators with population distribution
G = N (µ,�2Id) or hyper prior µ i.i.d.⇠ N (⌫, s2). The middle three MSE’s are taken expectation w.r.t. to the hyper prior, and

they decrease as s2 decreases. The maximum likelihood estimator (MLE) at the bottom is ✓̂i =
Pn

j=1 x(j)
i

n
without

collaboration. From top to bottom, the MSE is increasing, and thus collaboration improves personalized estimation.

L(✓̂MMSE,G
1:m ;G) =

md�2
o

n
� md�4

o

n2�2 + n�2
o

E⌫,s2 [L(✓̂
MMSE,N (⌫,s2)
1:m ;G)] =

md�2
o

n
� md�4

o

n2�2 + n�2
o

+
md�4

o
s2

(n�2 + �2
o
)(mns2 + n�2 + �2

o
)

E⌫,s2 [L(✓̂
HJS,�2

1:m ;G)] =
md�2

o

n
� md�4

o

n2�2 + n�2
o

+
md�4

o
s2

(n�2 + �2
o
)(mns2 + n�2 + �2

o
)
+

3�4
o
/n

(ms2 + �2)n+ �2
o

E⌫,s2 [L(✓̂
HJS
1:m;G)] =

md�2
o

n
� md�4

o

n2�2 + n�2
o

+
md�4

o
s2

(n�2 + �2
o
)(mns2 + n�2 + �2

o
)
+

3�4
o
/n

(ms2 + �2)n+ �2
o

+
2�4

o

n2�2 + n�2
o

L(✓̂MLE
1:m ;G) =

md�2
o

n

Theorem IV.3. For the family of population distribution
G = {N (µ,�2Id) : kµk2 

p
dD} with �  S,

and under communication budget B = ⌦̃(b) where b =
d

2 log
⇣
1 + (�2

o/n+D
2+S

2)S2

�4
o

n2m
⌘

, the minimax regret w.r.t. G
is upper bounded by

TotReg(G, B) = O

✓
d

(�2
o
/n)2

�2
o
/n+ �2

◆
.

Proof of Theorem IV.3. Let �2
n

:= �2
o
/n. Take �2

s
= �

4
n

S2m
,

�2
q
= �2

s
+ �2

n
+ D2 + S2 and � = 1 + 1/(b + e�1 log e +

1) for the Poisson functional representation communication
procedure. Transmitting each user’s local observations {xi :
i = 1, . . . ,m} to other users, and each user can recover signals
{yi : i = 1, . . . ,m}. Note that yi ⇠ N (✓i, (�2

n
+ �2

s
)Id)

by Lemma IV.2, the difference between the minimum MSEs
w.r.t. data y1:m and x1:m normalized by d is �

2(�2
n+�

2
s)

�2+�2
n+�2

s
�

�
2
�
2
n

�2+�2
n
= �

2
s

�2+�2
n

�
4

�2+�2
n+�2

s
 S

2
�
2
s

�2+�2
n
 �

4
n/m

�2+�2
n

. We can apply
✓̂HSJ Eq (8) by data {yi}, and the corresponding regret upper
bound w.r.t. data y1:m can be calculated as in Theorem III.4 by
replacing the observation noise from �2

o
to �2

n
+�2

s
= O(�2

n
).

The regret is thus upper bounded by O
⇣
d (�2

o/n)
2

�2
o/n+�2

⌘
.

Let Q(·) = N (·; 0,�2
q
Id) and Py|x(·|x) = N (·;x,�2

s
Id).

It has been shown in [4, Sketch of the proof of Theorem 1]
that the computed index K = argmink Tk ·

Py|x(Yk|x)
Q(Yk)

satisfies
E[logK]  E[KL(Py|x(·|x)||Q)] + e�1 log e+ 1. Note that

KL(Py|x(·|x)||Q) =

✓
kxk2

2�2
q

+
d�2

s

2�2
q

� d

2

◆
log e+

d

2
log

�2
q

�2
s

.

Since x ⇠ N (µ, (�2+�2
n
+�2

s
)Id) and �2

q
= �2

s
+�2

n
+D2+S2,

we have

E[KL(Py|x(·|x)||Q)]

=

✓
kµk2 + d�2 + d�2

n
+ d�2

s

2�2
q

� d

2

◆
log e+

d

2
log

�2
q

�2
s

 d

2
log

�2
q

�2
s

=
d

2
log

✓
1 +

(�2
n
+D2 + S2)S2

�4
o

n2m

◆
= b,

where the inequality is by kµk  D,�  S and
kµk2+d�

2+d�
2
n+d�

2
s

2�2
q

 d

2 . Then as shown in [4], encoding K
into Z by an optimal prefix-free code for the Zipf distribution
q(k) / k�� with � = 1 + 1/(b + e�1 log e + 1) satisfies
E[|Z|]  b+log(b+ 1)+5. We thus have B � b+log(b+ 1)+
5, i.e., B = ⌦̃(b).

B. Lower bound of regret under communication constraints

The lower bound analysis of the regret follows a similar
logic as that in [8] with important definitions such as strong
data processing inequalities. Zhang et. al. [8] considered the
setting where each user holds i.i.d. samples from a common
distribution parameterized by ✓, and the goal is to estimate
this parameter ✓. In our work, the data across users are
heterogeneous and the goal is personalized estimation where
each user-i is estimating a local parameter ✓i. The proof of
Theorem IV.4 is given in Appendix F.

Theorem IV.4. Given a known variance �2 and the family of
population distributions G = {N (µ,�2Id) : kµk2  d}, the
minimax regret TotReg(G, B) under communication budget B
is lower bounded by

⌦

 
d

(�
2
o
n
)2

�2
o
n

+ �2
min

 
m

�2
o
n

+ �2
,

m

logm
,

d

min(B logm, d)

!!
.

V. CONCLUSION

We study the personalized Gaussian mean estimation under
communication constraints. The worst-case regret is charac-
terized exactly without communication constraints when the
variance of the population distribution is known and order-wise
optimal regret upper bounds up to multiplicative constant 3 are
provided. We show that when the message sent by each user
has B = ⇥̃(d) bits, the order-wise optimal worst-case regret
O
⇣
d (�2

o/n)
2

�2
o/n+�2

⌘
is the same as that without communication

constraints.
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APPENDIX

DETAILED CALCULATION FOR THE SCALAR CASE

A. Lower bound via Le Cam’s method for Thm III.1
As discussed in the Proof of Theorem III.1, we can also

use the Le Cam’s two-point method [7] to prove the lower
bound. Given the separation condition w.r.t. G = N (µ,�2)
and G0 = N (µ0,�2),

inf
a1:m

n
ka1:m � ✓̂G(x1:m)k2 + ka1:m � ✓̂G0(x1:m)k2

o

� 1

2
k✓̂G(x1:m)� ✓̂G0(x1:m)k2

=
m�4

o
(µ� µ0)2

2(�2 + �2
o
)2

=: �.

We then have

TotReg(✓̂1:m;G) � max
G2{N (µ,�2),N (µ0,�2)}

TotReg(✓̂1:m;G)

� �

2
(1� kPx1:m(·;G)� Px1:m(·;G0)kTV)

� m�4
o
(µ� µ0)2

4(�2 + �2
o
)2

 
1�

r
1

2
KL (N (µ,�2 + �2

o
)⌦m;N (µ0,�2 + �2

o
)⌦m)

!

=
m�4

o
(µ� µ0)2

4(�2 + �2
o
)2

 
1�

s
m(µ� µ0)2

4(�2 + �2
o
)

!
.

Taking µ0 = µ +
q

�2+�2
o

m
concludes the proof that

TotReg(✓̂1:m;G) � �
4
o

8(�2+�2
o)

, which is order optimal.
Note if we have more local samples from each user,

e.g., Px(1:n)
i

(·;G) = N (µ,�2
o
In + �211>). We can still

calculate KL-divergence KL
⇣
Px(1:n)

i
(·;G);Px(1:n)

i
(·;G0)

⌘
=

(µ�µ
0)2

2(�2+�2
o/n)

and then derive a lower bound of (�2
o/n)

2

8(�2+�2
o/n)

.

B. Calculation for the hierarchical Bayesian model in (4)
We consider a hierarchical Bayesian model with hy-

per prior µ ⇠ N (⌫, s2) for some ⌫, s2. We can calcu-

late that µ|x2:n ⇠ N
 

s
2

�2+�2
o

m�1 +s2

Pm
i=2 xi
m�1 +

�2+�2
o

m�1

�2+�2
o

m�1 +s2
⌫,↵s

!
,

where ↵s =
⇣

m�1
�2+�2

o
+ 1

s2

⌘�1
. Thus ✓1|x2:n = x2:n ⇠

N
 

s
2

�2+�2
o

m�1 +s2

Pm
i=2 xi

m�1 +
�2+�2

o
m�1

�2+�2
o

m�1 +s2
⌫,↵s + �2

!
, and the pos-

terior mean E[✓1|x1:m] can be calculated as in Eq (9).
Denote by ✓̂H1:m(x1:m) = E[✓1:m|x1:m], which is the optimal

estimator given access to the hyper prior µ ⇠ N (⌫, s2). Taking
s ! 1 while ⌫ fixed gives

✓̂H1 (x1:m) = x1 +
�2
o

�2 + �2
o

✓Pm

i=1 xi
m

� x1
◆

=
�2

�2 + �2
o

x1 +
�2
o

�2 + �2
o

x̄1:m,

which is valid estimator without relying on any unknown
parameters and coincides with the estimator in the upper
bound. Taking s = 0 gives

✓̂H1 (x1:m) = x1 +
�2
o

�2 + �2
o

(⌫ � x1) , (10)

which is ✓̂G with G = N (⌫,�2).
Moreover, the posterior variance can be calculated as

Var(✓1|x1:m) = ((↵s + �2)�1 + ��2
o

)�1

=
(↵s + �2)�2

o

↵s + �2 + �2
o

= �2
o

 
1� �2

o
/↵s

1 + �2+�2
o

↵s

!

= �2
o

0

@1�
�2
o

⇣
m�1
�2+�2

o
+ 1

s2

⌘

m+ �2+�2
o

s2

1

A

= �2
o
� �4

o

�2 + �2
o

m� 1

m+ �2+�2
o

s2

� �4
o

ms2 + �2 + �2
o

= �2
o
� �4

o

�2 + �2
o

✓
1� s2 + �2 + �2

o

ms2 + �2 + �2
o

◆
� �4

o

ms2 + �2 + �2
o

=
�2
o
�2

�2 + �2
o

+
�4
o

�2 + �2
o

s2

ms2 + �2 + �2
o

= �2
o
� �4

o

�2 + �2
o

+
1

m

�4
o

�2 + �2
o

✓
1� �2 + �2

o

ms2 + �2 + �2
o

◆
.

Taking s = 0 gives Var(✓1|x1:m) = �
2
o�

2

�2+�2
o

, which is the Bayes
risk for knowing µ = ⌫. Taking s = 1 gives Var(✓1|x1:m) =
�
2
o�

2

�2+�2
o
+ 1

m

�
4
o

�2+�2
o

, which is the Bayes risk of the estimator
under improper prior of µ. The regret is then lower bounded
by 1

m

�
4
o

�2+�2
o

. Thus, the estimator is indeed exactly minimax
optimal.

C. Omitted calculation in the proof of Theorem III.2
The MSE of James-Stein estimator is calculated by Stein’s

unbiased risk estimator (SURE) as in Eq (11) - Eq (12).
Since the first three equalities do not rely on the prior
distribution of ✓1:m, we have E✓1:m [k✓1:m � ✓̂JS

1:m(x1:m)k2] =
m�2

o
��4

o
(m�3)2E✓1:m

h
1

kx1:m�1mx̄k2

i
, where E✓1:m indicates

taking expectation w.r.t. the randomness of data following
distributions {N (✓i,�2

o
)}. It is also known as (frequentist’s)

risk. The James-Stein estimator thus dominates the maximum
likelihood estimator with risk m�2

o
.

DETAILED CALCULATION FOR THE VECTOR CASE

D. Omitted calculation in the proof of Theorem III.3
We analyze the MSE of the Hierarchical JS estimator with

known variance ✓̂HJS,�2

i,k
by Stein’s unbiased risk estimator

(SURE). Since
X

i,k

@

@xi,k

✓
�2
o

m

d� 3

kx̄1:d � x̄1dk2
(x̄ � x̄k)
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(d� 3)2
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,

we have by SURE that

EG[k✓1:m � ✓̂HJS,�2

1:m k2] = E
h
md�2

o
+ k✓̂HJS,�2

1:m,1:d � x1:m,1:dk2
i
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E. Omitted calculation in the proof of Theorem III.4

We analyze the MSE of the Hierarchical JS estimator with
unknown variance ✓̂HJS

i,k
by Stein’s unbiased risk estimator

(SURE). Since

X
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@
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we have Eq (13) - Eq (15).
Since L(✓̂G;G) = d �
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Further discussion. Note that it has been verified that the
James-Stein estimator outperforms the maximum likelihood
estimator in terms of smaller MSE, which indicates that
collaboration is always better for this problem. The standard
James-Stein estimator in this vector case is

✓̂JS
i,k

= xi,k +
�2
o
(dm� 3)P

j,h
(xj,h � x̄)2

(x̄ � xi,k),

with MSE

L(✓̂JS
1:m;G) = md�2

o
� EG

"
�4
o
(dm� 3)2P

j,h
(xj,h � x̄)2

#

= md�2
o
� EG

"
�4
o
(dm� 3)2P

j,h
(xj,h � x̄h)2 +

P
h
(x̄h � x̄)2

#
.

F. Omitted proofs in communication constrained estimation

Proof of Theorem IV.4. We first create a class of distributions
G = {N (µv,�2Id) : v 2 V} by auxiliary vector v 2 V =
{±1}d, where µv = �v.

For any estimator ✓̂1:m(xi, Z�i), let Ĝ(xi, Z�i) =
argminG2G k✓̂i(xi, Z�i) � ✓̂G(xi)k be a prior distribution
estimator. We know

2k✓̂i(xi, Z�i)� ✓̂G(xi)k
� k✓̂i(xi, Z�i)� ✓̂

Ĝ(xi,Z�i)
(xi)k+ k✓̂i(xi, Z�i)� ✓̂G(xi)k

� k✓̂
Ĝ(xi,Z�i)

(xi)� ✓̂G(xi)k,

and it follows that

TotReg(✓̂1:m;G) = sup
G2G

EG

"
mX

i=1

k✓̂i(xi, Z�i)� ✓̂G(xi)k2
#

� 1

4
sup
v2V

EG

"
mX

i=1

k✓̂
Ĝ(xi,Z�i)

(xi)� ✓̂G(xi)k2
#
.

Let V̂ (xi, Z�i) be the corresponding auxiliary vector of
Ĝ(xi, Z�i), and since ✓̂G(x) = x + �

2
o/n

�2+�2
o/n

(µ � x), we
know

TotReg(✓̂1:m;G)

� 1

4
sup
v2V

Eµv

"✓
�2
o
/n

�2
o
/n+ �2

◆2 mX

i=1

kµ
V̂ (xi,Z�i)

� µvk2
#

� max
v2V

Eµv

"
�2
✓

�2
o
/n

�2
o
/n+ �2

◆2 mX

i=1

dham(V̂ (xi, Z�i), v)

#
,

where dham is hamming distance. Let V uniformly distributed
over V , we then have

TotReg(✓̂1:m;G)

� �2
✓

�2
o
/n

�2
o
/n+ �2

◆2 mX

i=1

E[dham(V̂ (xi, Z�i), V )]

� �2
✓

�2
o
/n

�2
o
/n+ �2

◆2

(btc+ 1)
mX

i=1

P(dham(V̂ (xi, Z�i), V ) > t),

where the first inequality is by replacing the maxv2V by
expectation and the second inequality is by Markov in-
equality. By distance-based Fano’s inequality [1], [8] that
P(dham(V̂ (xi, Z�i), V ) > t) � 1 � I(V ;xi,Z�i)+log 2

log |V|
maxv |{v0:dham(v,v0)t}|

and taking t = d/6 gives

TotReg(✓̂1:m;G) �
mX

i=1

�2
✓

�2
o
/n

�2
o
/n+ �2

◆2

(bd/6c+ 1)

✓
1� I(V ;xi, Z�i) + log 2

d/6

◆
.

Since xi, {Zj}j 6=i are conditionally independent given V , we
have I(V ;xi, Z�i)  I(V ;xi) +

P
j 6=i

I(V ;Zj).
Note that xi|V = v ⇠ Pv := N (µv, (�2 + �2

o
/n)Id). Let

V 0 be an independent copy of V , we have

I(V ;xi) 
1

22d

X

v,v0

KL(Pv||Pv0)

 �2

2(�2
o
/n+ �2)

E [dham(V, V
0)] =

�2d

4(�2
o
/n+ �2)

.

It requires �2  �
2
o/n+�

2

100 to imply I(V ;xi)  d/400.
I(V ;Zj) is then bounded by strong data processing inequality
as in [8, Lemma 5], which requires

�2  min

(
1,

�2
o
/n+ �2

400 log(m)
,

d(�2
o
/n+ �2)

100
P

j 6=i
min(25 · 128Bj logm, d)

)
,



to make
P

j 6=i
I(V ;Zj)  d/40. When � satisfies all the

above requirements,
⇣
1� I(V ;xi,Z�i)+log 2

d/6

⌘
� 1

2 and the
lower bound is thus concluded.
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