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Abstract

In this paper, we investigate the possibility of performing Gaussian elimination for arbitrary binary matrices on hardware.
In particular, we presented a generic approach for hardware-based Gaussian elimination, which is able to process both
non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular
ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric
codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require
performing Gaussian elimination for random matrices regardless of the singularity. We accordingly implemented an optimized
and parameterized Gaussian eliminator for (singular) matrices over binary fields, making the intense computation of linear
algebra feasible and efficient on hardware. To the best of our knowledge, this work solves for the first time eliminating
a singular matrix on reconfigurable hardware and also describes the a generic hardware architecture for rank-code based
cryptographic schemes. The experimental results suggest hardware-based Gaussian elimination can be done in linear time

regardless of the matrix type.

Keywords Post-quantum cryptography - Gauassian elimination - FPGA

1 Introduction

From computational efficiency point of view, Gaussian elim-
ination on an n X n matrix requires O(n?) divisions, O(n?)
multiplications, O(n?) additions, and O (n?) subtractions, for
a total of O(n?) arithmetic operations. There are numerous
applications of Gaussian elimination in nearly any area of
computer science. Cryptology is no exception, with matrix
problems arising both in cryptanalysis and cryptography. In
the introductory part, we briefly outline the areas where our
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hardware-based Gaussian elimination is of the most rele-
vance.

Algebraic cryptanalysis of symmetric-key ciphers.
Cryptanalysis of symmetric-key ciphers frequently involves
systems of linear equations (SLEs), which can be efficiently
solved using Gaussian elimination. This is because the major-
ity of deterministic symmetric ciphers can be represented
as finite state machines whose output can be described by
a (sometimes rather complicated) boolean function of the
initial internal state and input values (if any) giving rise to
SLEs over IF,. For instance, linearization methods [1, 2] have
gained lots of attention during the last decade and are widely
used nowadays. Here, the nonlinear system is first simplified,
then linearized and solved as an SLE. To make cryptanaly-
sis with linearization methods feasible, one is reliant upon
efficient SLE solvers.

Implementing asymmetric cryptography. Gaussian elim-
ination also plays a central role in some cryptographic
applications. For example, the performance of digital sig-
nature schemes based on multivariate quadratic polynomials
highly depends on the efficiency of solving small SLEs over
finite extension fields. This class of digital signature schemes
is of special interest due to its resistance to quantum computer
attacks. For the generation of a signature using the Rainbow
signature scheme [3] with recently recommended parameter
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sets, two SLEs of dimension 12 x 12 over [F,s need to be
solved. In [4], a generic hardware architecture for this kind
of signature schemes is proposed, with an SLE solver being a
major building block. Furthermore, Gaussian elimination is
the most compute-intensive and also a distinguishing oper-
ation in rank metric cryptography and particularly in the
context of ROLLO [5]. For example, ROLLO-II PKE.encrypt
generates a random matrix over [, to represent the error vec-
tor space E, which requires performing Gaussian elimination
to getits reduced-row-echelon form. ROLLO-IT PKE.decrypt
also requires Gaussian elimination to intersect the secret syn-
drome spaces S; = fi—1 S for finding the linearly independent
bases of the secret error vector space E.

Contributions. Based on the parallel nature of hardware,
we propose a new approach that could Gaussian-eliminate
arbitrary matrices over a binary field in constant ® (n) steps,
which remains unsolved prior to this work. Our work differs
from the previous work in two aspects:

e The new design presents a new mechanism called dual-
mode switch to determine the pivot position on the fly and
thus can Gaussian-eliminate a singular matrix, whereas
the previous designs assume the input matrix is non-
singular and cannot return a correct answer for a singular
matrix.

e The new design is constant-time, fully parameterized and
open-sourced .! The HDL codes for our hardware design
are auto-generated by a Python script and thus can be
easily adapted for different matrix sizes used in numerous
cryptographic applications.

This paper is roughly structured as follows. We start with
a brief discussion of previous work on hardware-based Gaus-
sian elimination. Then, we provide a high-level review of the
ROLLO specification, which is later used as a case study for
our Gaussian elimination design. We then present our new
algorithm, which guides the hardware implementation of a
Gaussian elimination design. The novel algorithm and the
new hardware design can Gaussian-eliminate both singular
and non-singular matrices. After that, further applications of
the hardware architecture are discussed, including how to
Gaussian-eliminate a medium-sized binary matrix using the
proposed design and reuse this new module for any large-
sized matrices. We also showcase how to adapt our new
Gaussian eliminatation module to ROLLO hardware design.
Finally, we show our proof-of-concept implementations on
contemporary low-cost FPGAs.

! The automation tools and reference implementations can be found at
https://github.com/davidhoo1988/gaussian-elimination-hardware.
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2 Related work

From a geometric point of view, the hardware architectures
for Gaussian elimination over a finite field fall into two
groups: triangular and linear, each of which is subdivided
into three types: systolic array, systolic network, and systolic
line.

2.1 Triangular-shaped array

A triangular-shaped array is a two-dimensional array, where
all nodes in the array shape a triangle. This array is triangular
because Gaussian elimination causes all nodes except the
pivot node to be zero for each column of the matrix, and
these zeros are unnecessary to be saved. In 1989, Hochet et
al. described for the first time the triangular systolic array for
doing Gaussian elimination of a matrix over I, [6]. This work
was further adapted for faster processing using triangular
systolic network (TSN) [7] and triangular systolic line (TSL)
[8]. In general, a triangular-shaped array sets the priority
for time complexity while sacrificing space complexity. It
typically completes one Gaussian elimination for a k x [
matrix in ®(k + /) of time and ® (k/) of space.

2.1.1 Linear-shaped array

A linear-shaped array is a one-dimensional array, where all
nodes in the array form a horizontal line as described in [8].
It only preserves the first line of the triangular array while all
intermediate results are pushed to an array of shift registers
waiting for the next round of processing. A linear systolic
array is more area-efficient than the triangular-shaped array
if the Gaussian elimination is performed on a matrix over an
extended finite field Fom . It typically completes one Gaussian
elimination for a k x [ matrix in ® (k/) of time and ®(/) of
space.

In addition to the systolic architectures, a different hard-
ware approach realizing Gaussian elimination including
backward-substitution over F,«, called GSMITH, is pre-
sented in [8]. It consists of a rectangular array of simple cells
exhibiting local as well as some global connections. The run-
ning time of GSMITH is non-constant-time, depending on
the probability distribution of the matrix entries. The imple-
mentation results suggest the timing performance is close to
that of TSL but uses more hardware resources.

For cryptographic purposes, Gaussian elimination hard-
ware for n x n square matrices over [y, also known as
linear system of equations (LSE) solver [4, 9, 10], is explored
in multivariate cryptosystems. If the LSE solver encounters
under-determined equations, i.e., the matrix associated with
the linear system of equations is not full-rank, the solver
throws out an exception and halts. Note that the LSE solver
can identify the under-determined equations without fully
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performing the Gaussian elimination. It suffices to make such
a decision whenever one of the pivots along the diagonal of
the matrix is zero. In other words, the LSE solver in the open
literature cannot eliminate singular matrices.

On the other hand, the only two hardware implementations
of Gaussian elimination used in Hamming-metric-code-
based cryptography that are closely related to our work are
presented in [11, 12]. They are used in the key genera-
tion of the classic Niederretier code-based scheme. These
designs are capable of eliminating a binary matrix of the
size k x [, with k # [, which removes the shape limit exist-
ing in the LSE solver mentioned above. The pre-requisite
for successful Gaussian elimination is that the input matrix
must be full-rank. For rank-metric-code-based cryptography
like ROLLO and RQC, Gaussian elimination is the most
computing-intensive and also a distinguishing operation.
However, these rank-code-based schemes require performing
Gaussian elimination on medium-size and large-size matri-
ces over a binary field, and most importantly, these matrices
can be rank-deficient. Unfortunately, the current state-of-the-
art designs cannot process such type of matrices.

3 Preliminaries of ROLLO

This section introduces the rank-metric code based cryp-
tographic scheme—ROLLO [5] which heavily relies on a
universal Gaussian elimination utility. The requirement for
universal Gaussian elimination utility posts a new chal-
lenge for cryptographic hardware designers. ROLLO is a
compilation of two cryptographic schemes, ROLLO-I and
ROLLO-II, which are among 26 round-2 candidates to the
NIST’s process for post-quantum cryptography standardiza-
tion. It is worth mentioning that the actual implementation
of ROLLO introduces a new challenge for hardware-based
Gaussian-elimination: the computation in ROLLO requires
Gaussian-eliminating a matrix with an unknown rank, and
it is most likely that the matrix under operation is singular.
Effective manipulation for such a matrix goes beyond the
applicability of the existing Gaussian elimination hardware.

Let S} (F,m) stand for the set of vectors of length n and
rank weight w over Fym and Sf’w(Iqu) stand for the set of
vectors of length n and rank weight w, such that its support
contains 1:

Sy (Fgm) = {x € Fyn : dim Supp(x) = w}
{’,w(qu) ={xe FZm : dim Supp(x) = w, 1 € Supp(x)}

3.1 ROLLO-I

ROLLO-I, formerly known as LAKE, is a CPA-secure Key
Encapsulation Mechanism (KEM) running in the category

“post-quantum key exchange”. A Key-Encapsulation scheme
KEM = (KeyGen, Encap, Decap)is atriple of probabilistic
algorithms together with a key space K. The key generation
algorithm KeyGen generates a pair of public and secret key
(pk, sk). The encapsulation algorithm Encap uses the pub-
lic key pk to produce an encapsulation ¢ of a key K € K.
Finally Decap using the secret key sk and an encapsulation
¢, recovers the key K € /C or fails and returns L.
ROLLO-Iis formally described in Algorithm 1. The RSR
algorithm is the rank support recover algorithm proposed in
[13] to recover the rank support of the error vector from the
secret syndrome. P is an irreducible polynomial of IF, [ X] of
degree n and constitutes a parameter of the cryptosystem.

1 KeyGen(l*): Pick (x, y) <$— Sﬁ”(qu). Seth = x‘ly mod P,
and return pk = &, sk = (x, y).

2 Encap(pk): Pick (eg, e3) <$— 8,2” (Fym), set E = Supp(ey, €2),
¢ = e; + ezh mod P. Compute the shared secret key
K = Hash(FE) and return c.

3 Decap(c, sk): Set s = x¢ mod P, F = Supp(X,y) and
E < RSR(F,s,r).Recover K = Hash(E).

Algorithm 1: Formal Description of ROLLO-I

It is worthwhile to mention that in the encapsulation/en-
cryption step, two random polynomials of degree n over Fom,
i.e., e1 and ey have rank support Supp(er, e2) = r. In other
terms, e; (i = 1, 2) formulates a vector space represented by
a n x m matrix with small rank r. This is where universal
Gaussian elimination comes into play.

3.2 ROLLO-II

ROLLO-II, formerly known as LOCKER, is a CPA-secure
Public Key Encryption (PKE) running in the category “post-
quantum public-key encryption” and can be adapted for
CCA2 security via the HHK framework for the Fujisaki-
Okamoto transformation [14]. A PKE scheme is defined
by three algorithms: the key generation algorithm KeyGen,
which takes on input the security parameter A and outputs
a pair of public and private keys (pk,sk); the encryption
algorithm Encrypt(M,pk), which outputs the ciphertext
C corresponding to the message M and the decryption algo-
rithm Decrypt(C,sk), which outputs the plaintext M.

A formal description of ROLLO-II'is given in Algorithm 2.
P is an irreducible polynomial in F,;[X] of degree n and
constitutes a parameter of the cryptosystem. The symbol
@ denotes the bitwise XOR. It is worth noting that at the
core of the decapsulation/decryption step, the rank support
recovery (RSR(-)) algorithm requires computing the inter-
section of two vector spaces F and s, which is equivalent to
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Gauss-eliminating a large-sized matrix. This type of matrix
is inevitably singular and very large such that the previous
designs in the open literature are inapplicable.

1 KeyGen(l*): Pick (x, y) <$— Sj”(qu). Seth = x‘ly mod P,
and return pk = &, sk = (x, y).

2 Encrypt(M,pk): Pick (ej, e2) <$— 8,2” (Fym), set
E = Supp(ey, e2), ¢ = e; + ezh mod P. Compute
cipher = M @ Hash(E) and return the ciphertext
C = (c, cipher).

3 Decrypt(C,sk): Sets = xc mod P, F = Supp(x, y) and
E < RSR(F,s,r). Return M = cipher @ Hash(E).

Algorithm 2: Formal Description of ROLLO-II

4 A new approach for hardware-based
Gaussian elimination

This section describes a new approach for Gaussian elimi-
nation on a systolic array. Based on this method, we design
a constant-time and flexible Gaussian elimination module
to overcome the difficulty of implementing Guassian elim-
ination for arbitrary matrices which are useful for many
cryptographic schemes, e.g., ROLLO, in which intensive
linear-algebra-related computations are required.

4.1 Gaussian elimination on a systolic array

In this work, we use the terms ‘triangularization’ to denote
the operation of putting the input matrix into its row-
echelon form, aka Gaussian elimination, and ‘systemization’
to denote the operation of putting a row-echelon formed
matrix into its reduced-row-echelon form. The combination
of triangularization and systemization is also referred to as
Gauss-Jordan elimination. We are facing a new challenge
in rank-code based cryptosystem, namely, triangularizing a
singular matrix in ROLLO/RQC. In this subsection, we will
detail our generalized approach, which not only solves this
new problem but is also applicable to the Gaussian elimina-
tion cases used in the classic Niederreiter cryptosystem and
multi-variate cryptosystem.

4.1.1 Core idea—pivot/non-pivot mode switch

In our work, we focus on Gaussian elimination for matrices
over ;. As mentioned before, the most challenging part for
universal Gaussian elimination hardware is that the position
of pivot nodes in our Gaussian elimination architecture is
flexible. Our new idea of implementing Gaussian elimina-

@ Springer

tion is to assign pivot-node functionality or non-pivot-node
functionality on the fly: Each node is configured to have dual
functionalities for every iteration of Gaussian elimination.
The node can be converted to either pivot node or basic(non-
pivot) node depending on the data input from the above node
and the control input from the left-hand-side node. The pivot
node behaves actively as the pivot in that particular row and
propagates the operational signal to its right-hand-side basic
nodes. The basic node operates passively based on the opera-
tion signal received, namely PASS, ADD, or SWAP, to execute
elementary row operations. Gaussian elimination involves a
sequence of elementary row operations, which can be broken
down into row switching, row multiplication, and row addi-
tion. Therefore, organizing and executing row switchings,
row multiplications, and row additions properly is sufficient
for computing Gaussian elimination. Row switching is exe-
cuted using the SWAP instruction, row addition using the
ADD instruction, and row multiplication over [, is achieved
by simply retaining the row, thus requiring the Pass instruc-
tion.

A systematic exposition of the proposed node is shown
in Fig. 1. The node uses an internal register r for storage. It
also has 9 signals and 6 of them are identical to the ports of
classic nodes presented in the literature [11, 12], including
3 input ports data_in, start_in, op_in and 3 output
ports data_out, start_out, op_out. The difference
is that a new pair of signals, pivot_in and pivot_out
is used to determine whether the current node is pivot or
not and broadcast this message to its right neighboring node.
Also, an additional input signal mode_in is augmented to
switch between matrix triangularization process and matrix
systemization process. All input signals drive a centralized
control logic module CTRL which outputs selector signals
including r_sel, op_out_sel, pivot_out_sel, and
data_out_sel. Then, these selector signals accordingly
select the output values of r, op_out, pivot_out, and
data_out.

With this new mechanism of dual-mode switch, the node
can dynamically switch between the pivot and non-pivot
functionality for each input data update, as shown in Fig. 2, to
perform matrix triangularization with the node mode signal
mode_in setto 1’b0: The entire process can be split into two
stages, initial phase and normal phase. In the initial phase, the
input data flushes into the node internal register r for the first
time by asserting the signal start_in; In the normal phase, the
node acts as either the pivot node or the basic(non-pivot) node
to update the value of r depending on the 2-bit signal {r,
pivot_in}: if {r, pivot_in}== 2'b10, it means that
the internal register r is for the first time updated to a nonzero
value and thus the node acts as pivot. Otherwise, it means that
the pivot has been found already (since pivot_in== 1'b1)
and thus it acts as basic node by executing passively the
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|
|
|
data_in -

Pivot in — . —> pivot out
op_i [—> op_out ! :

data_out

Fig. 1 A versatile node proposed to solve non-fixed-pivot row excep-
tions in Gaussian elimination. The node can operate three types of
transformations including: 1. PASS: The node passes the input data
data_in onto the output port data_out and retains the data stored
inthe internal register r;2. ADD: The node adds the inputdatadata_in

- . mode_in o— —
- ———- lstart inc>

I start outlpivot_ine>

| data inE=
op in £

l— r_sel

O
data out_sel

pivot inc>—)
l’b0—>§ pivot out:
1'b1 = .

data_out_sel

|
|
data_in I
|
|

and the internal register data r, and then outputs sum onto data_out.
Meanwhile, the node retains the internal register data r; 3. SWAP: The
node swaps the inputdata data_ in and the internal register data r, i.e.,
the node outputs r onto data_out and then updates r withdata_in

2'bl0 ?

NO

YES r <= data_in;
e g e (init phase)| data out = 1'b0;
N - - - - - - - - ¢ op_out = ‘SWAP’ ;

pivot_out = pivot_in 2 1'bl :
data_in ? 1'bl :

1'b0;

(normal phase) |
|

YES
(pivot node,
ork actively)
{r,pivot_in} ==

r <= 1;

i
i
i YES
X (pivot not found,

pivot_out = 1'blj

data_in == data out = data_in"r;

op_out = ‘ADD’ ;

|
} NO
|

perform ‘SWAP’ )

r <= data_in;

{r,pivot_in} ==

pivot_out = data_inj|
data_out = r;
op_out = ‘SWAP’ ;

data_out = data_in;
op_out = ‘PASS’ ;

NO
(basic node,
work passively)

op_out = op_in;
pivot_out = pivot_in;

o data_out = r;
r <= data_in;

| data_out = data in"r;
r <= r;

data_out = data_in;
r <= r;

Fig. 2 Behavior description of the node used in the proposed systolic array for small/medium matrix triangularization (by setting the node mode

signal mode_1in=1"b0), written in Verilog-like pseudocode

instruction (SWAP, ADD, or PASS) passed from the signal
op_in.

4.1.2 Triangular systolic array design

With the new design of node for Gaussian elimination, the
next decision we need to make is the selection of systolic

array. First, consider the triangular-shaped arrays. Trian-
gular systolic line (TSL) and triangular systolic network
(TSN) have lower cycle latency and lower resource usage
but they are not suitable for our case: TSN only maintains its
efficiency for small matrices as its critical path propagates
throughout the whole network. The critical path latency of
TSL is a good candidate for the previous Gaussian elimina-
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Fig.3 Overview of the two
dimensional array for Gaussian

elimination. Each node is - -
pipelined to reduce the critical milx mi
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proposed Gaussian elimination 1 g (1] 0 1 1
hardware by triangularizing a 00 0 0 1 0 0 0 1 1
4 x 4 matrix over [F> using the 0 1 0 0 0 0 0 1 0 0 0 1 1
node logic shown in Fig. 2. Her 0 0 0 1 0 0 0 0 0 Lo 01 !
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the input matrix into its « s
. )
row-echelon form. The signals 0¥ 0<%0 05050
‘S’, ‘P’, and ‘A’ stand for 0?,‘
‘SWAP’, ‘PASS’ and ‘ADD’, (0) (1) (2) (3) (4) (5)
respectively
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- -
0 03530 o0 0 0 @Y o0 0 0@ o0 0@ o0 0@
« «
05 0% 0 050¥ 0 0 030 o 0 0o o 0 0 0 o

(6)

tion work but not for ours. Specifically, the horizontal latency
(i.e. the total delay along one row of the computation array)
of previous work is affected merely by wiring. However, the
horizontal latency of the new node in the array is much longer
and involves propagating data from the leftmost node to the
rightmost one. Therefore, TSL can only be useful for small
matrices. On the other hand, the clock frequency of triangular
systolic array (TSA) remains as high as 200 MHz despite the
matrix dimension increasing from 20 to 90 [8]. Secondly, the
linear-shaped arrays, linear systolic array (LSA), and linear
systolic line (LSL) are efficient for matrix over Fo» but not
for matrix over I [8]. Based on the above discussion, TSA is
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(7)

chosen as the basic architecture for implementing Gaussian
elimination in this work.

Figure 3 presents an overview of the Gaussian elimination
systolic array for any matrices over [, including singular and
non-singular ones. The basic structure is arranged in a rect-
angular shape such that every signal of the node is pipelined,
allowing all data and control signals to be propagated in a
systolic manner. It is worthwhile to mention that in order
to make this systolic array works correctly for matrix trian-
gularization, in the initial phase as discussed in Fig. 2, the
signal pivot_in of the first node in every row of the sys-
tolic array must be de-asserted (indicating that the pivot is
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not yet found). Moreover, an improvement of this architec-
ture is that all r registers in the nodes below the diagonal of
the systolic array are always zero independently of the input
matrix after the Gaussian elimination. Therefore, these nodes
can be removed and are drawn with a dotted line.

4.2 Cryptographic applications for the proposed
Gaussian elimination

This subsection describes how to leverage the proposed
Gaussian elimination method for accelerating Gaussian elim-
ination for any matrix size. The architectures presented in
this subsection are two-fold: The Gaussian elimination mod-
ule for medium-sized matrices is based on the systolic array
design and the new dual-mode switching node for process-
ing a (singular) matrix; the Gaussian elimination module
for large-sized matrices reuses the former to process any
large-sized matrices while preserving constant resource uti-
lization. The proposed method for Gaussian elimination is
constant-time and thus is secure against timing attacks. This
characteristic is important for security concerns since the
Gaussian elimination used in cryptographic context may
directly operate on the secret sensitive information and any
vulnerability exploited from the timing information might
endanger the cryptosystem. In addition, the proposed sys-
tolic array for Gaussian elimination is fully parameterized
at compile-time to support rapid configurations for different
sets of parameters without the need to re-write the hardware
code. This is a great advantage for implementers to sketch
Gaussian elimination modules for different sizes of matrices
used in different cryptographic applications.

4.2.1 Gaussian elimination for medium-sized matrices

We first consider how to Gaussian-eliminate a matrix of rel-
atively small size. For example, in the ROLLO encryption
part, the matrix has relatively small dimension of r x m, e.g.,
r=17,8,9and m = 67,79, 97 are used in ROLLO-I. In
this case, it is natural to realize the entire Gaussian triangu-
larization/systemization using a single systolic array. Note
that not only matrix triangularization but also matrix sys-
temization is necessary to acquire a unique representation of
error vector space E such that the subsequent hash function
always outputs a correct shared key. To better understand
the mechanism of the proposed Gaussian elimination archi-
tecture, Fig. 2 describes a flow chart of the behavior of the
node in triangularization: The symbol ‘=’ indicates block-
ing assignment, and the symbol ‘<=’ indicates nonblocking
assignment in Verilog, respectively. The blue circle shape
denotes the start of the algorithm; the yellow diamond shape
denotes branch condition, and the green rectangular shape
denotes the end of the algorithm.

Figure 4 illustrates a step-by-step procedure for a single
0

000
systolic array to transform a 4 x 4 matrix |:8 (]) 8 (l)i| to its

0101
0100
row echelon form [8 904 ] within 10 clock cycles. The data
0000

colored in red indicates the value stored in the r register
of the node. The data colored in blue indicates the buffered
data_out signal in the pipeline register (i.e., the solid flat
rectangular shape in Fig. 3) between two neighboring nodes.
The circled value indicates it is the current pivot of that par-
ticular row. Note that the input matrix must be fed into the
array in a skewed form via pipeline buffering for systolic pro-
cessing, as shown in step-(0), i.e., at the first clock cycle, the
systolic array takes one bit ‘0’ as input; at the second clock
cycle, the systolic array takes two bit ‘00’ as inputs, and so
forth:

e In step-(0), the signal start_in attached to the upper-
left node in the systolic array is assertive, and thus the
internal register r will be updated to ‘0’ in the next clock
cycle (see the red-colored ‘0’ in step-(1), Fig. 4);

e In step-(1), the update propagates to the node positioned
at the upper-left corner of the systolic array. Given the
inputsignals r,pivot_in==2"b00, this specific node
performs the SWAP operation. Consequently, r is updated
to ‘0’, and the node outputs ‘0’. Moreover, it propagates
the ‘SWAP’ signal along with pivot_out = 0 to its
right neighbor in the subsequent cycle. Notably, as the
node currently does not represent a pivot, it broadcasts
the message "pivot not found’;

e In step-(2), consider the first row of the systolic array,
the leftmost node has updated ‘0’ to the buffer regis-
ter (colored in blue) and executes SWAP again since {r,
pivot_in} ==2'b00, and the second node executes
‘SWAP’, which is passed from the leftmost node in step-
(1). Consider the second row of the systolic array, the
start_in signal attached to the first node is assertive
and thus ready to accept the value ‘0’ stored in the (blue)
buffer register in the next cycle;

e In step-(3), examination of the first row reveals that the
second node acts as the pivot due to r, pivot_in
==2'pb10. As a pivot, this node disregards the SWAP’
signal from the previous step and instead executes PASS’.
In contrast, considering the second row, the first node has
been updated to ‘0’ and also emits the SWAP signal due
to r,pivot_in ==2'b00;

e An analogous pattern can be found in step-(4), where the
pivot node in the first row ignores ‘SWAP’ but executes
‘ADD’ since the input data is ‘1°.

Eventually, when all input data are flushed into the inter-

nal registers of all nodes distributed at four distinct rows as
shown in step-(10), the input matrix has been successfully
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eliminated in the desired row echelon form. Further, a care-
ful calculation shows the total delay for triangularizing a k x/
binary matrix is:

2k +1-2

and the following proposition proves the correctness of the
proposed method.

Proposition 1 The proposed Gaussian elimination systolic
array can triangularize any k x 1 matrix over Fy correctly.

Proof We prove here the correctness of matrix triangulariza-
tion, by induction on the rows of the systolic array. Let M
represent the input k x/ matrix. Initially, consider the first row
of the systolic array when the start_in signal is active.
At this time, the first row of M denoted as M; is loaded. In
the subsequent clock cycles when start_in is inactive,
the logic specified in the systolic array nodes will update M
by j-th row of the matrix M; whenever the pivot element in
M lays ahead of M. This logic guarantees that the first row
of the systolic array will eventually find the matrix row with
the most significant ‘1°.

Next, consider the i-th row of the systolic array. Suppose
at some time, the i-th row finds the matrix row with i-th
significant ‘1. In this case, the 1-st significant, 2-nd, up to
i — 1-th significant matrix rows should reside in the above
i — 1 rows of the systolic array such that the data stored in
the first i rows of the systolic array are in a triangular shape.
This triangular shape filters every row of the target matrix M
and let the i + 1-th, i 4 2-th, up to k-th significant row pass
(note that the k-th significant row might be a null vector if M
is not full-rank). Therefore, the logic specified in the i + 1
row of the systolic array will eventually find the matrix row
with the i 4+ 1-th significant ‘1’, which is equivalent to finding
the matrix row with the most significant ‘1’ in the remaining
k — i unsorted rows of M. Following this induction, the sys-
tolic array always re-arranges the matrix M in a triangular
shape. O

On the other hand, the Gaussian systemization is required
immediately after the triangularization process to shape the
matrix to the systematic form. Figure 5 describes the behav-
ior logic of the node for matrix systemization, and Fig. 6

illustrates a toy example of how to systemize a 4 x 4 binary
1100

matrix |:8(1)?(1)j| within 7 clock cycles. Compared with the

0001
triangularization process shown in Fig. 4, the node in the

systemization process behaves in two different ways: First,
at the initial stage (step-(0)), the leftmost node in each of
the four rows is triggered by the signals op_in=‘SWAP’
and pivot_in=1'b0 where ‘SWAP’ here slightly differs
from the previous one by retaining the value in the internal
register, meanwhile, outputing this valuetodata_out. Sec-
ond, whenever the node cannot determine the pivot position,

@ Springer

ie., {r,pivot_in}==2"b00,italways performs ‘PASS’.

During step-(1) and step-(7), the systolic array gradually out-
1000

puts the result matrix |:8 (1) (]) 8

0001
format: it first outputs the last row [0001], then [0010] and

[0100], and finally the first row [1000].

The correctness of systemization can be proven using the
similar arguments shown in Proposition 1 and we skip the
details in this paper. In summary, the total delay for £ x [
matrix systemization is a linear function of the matrix size
as:

in reversed order and skewed

k+1

4.2.2 Gaussian elimination for large-sized matrices

Some cryptographic applications require eliminating large

matrices. Processing large matrices is essential and performance-

critical in these applications. For example, the ROLLO
decryption requires to calculate the intersection of two vector
spaces in the rank support recovery algorithm and later to sys-
temize the intersected vector space to reconstruct the secret
shared key K, which dominates the performance of ROLLO
decryption. Such intersection uses the Zassenhaus algorithm,
in which the Gaussian elimination for a large 2n x 2m matrix
over I, is performed. In this case, it is infeasible to real-
ize the large-scale elimination on a single systolic array by
the method we proposed for medium-size matrices since the
resource utilization has exceeded the maximum capacity of
most Xilinx FPGAs. The new solution proposed for large
matrices in this work is to divide the large matrix into several
smaller blocks and to conquer each submatrix using a rela-
tively small systolic array. There exists a tradeoff between
hardware utilizaiton and processing time: we use a smaller
Gaussian elimination hardware which can be tolerated on
most FPGA platforms to Gauss-eliminate a large matrix but
the price we pay is the increase of processing time of Gaus-
sian elimination. In this work, we are particularly interested
in such a tradeoff (or division) where our Gaussian elimina-
tion hardware can directly process a smaller matrix which
shares the same column width as the large matrix does. This
requirement removes the storage of intermediate operation
codes (op_ in signals from each Gaussian elimination node).

Again, we describe our idea with the same example used
0000
in Fig. 4 to transform a 4 x 4 matrix [8(1)8(1)] to its row

0101
0100

echelon form [ 0008 ] . An additional function we add to the

0000
node is the signal swap_ in, which permits to load the sorted

rows out of the systolic array to external memory at desired
timing. We assume here the 4 x 4 matrix is too ‘large’ to
process and the 2 x 4 systolic array is exploited to do this task.
The triangularization is done within two rounds of Gaussian
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Fig.5 Behavior description of
the node used in the proposed
systolic array for matrix
systemization (by setting the
node mode signal
mode_in=1"bl), written in
Verilog-like pseudocode

NO }
(normal phase):

{r,pivot_in} ==

{r,pivot_in} ==
2'000 2

NO

|
(basic node, !

work passively)l

op_out = op_in;
pivot_out = pivot_in;

YES

(init phase)

YES

(pivot node,
work actively

YES

(pivot not found
perform ‘PASS’ )

r <= r;

data_out = r;

op_out = ‘SWAP’ ;

pivot_out = pivot_in ? 1'bl :
r ? 1'bl : 1'b0;

r <=r;
pivot_out = 1'bl;

data_in ==
1'bl 2

data_out = data_in’r;
op_out = ‘ADD’ ;

r <= r;

pivot_out = 1'b0;
data_out = data_in;
op_out = ‘PASS’ ;

data_out = data_in;
op_out = ‘PASS’ ;

data_out = data_in’r;
r <= r;

data_out = data_in;
r <= r;

Fig.6 A toy example for the S@O 1 0 o @1 0 o @ 10 o @ 1 o0-o0 @ 1 0 o
: E : -« «
proposed Gaussian elimination ) R N N
hardware by transforming a ?0 @ o o;,: ot 0;\,3 ot e 031 C) 031
. . Py P
4 x 4 matrix over I using the >0 0 @o 20 @ o 0:’?‘”® 0 05 080 o ox(@Bo
) 1

node logic shown in Fig. 5. S0 0 0@ 0450 0 @ 0050 @ ok 025 0D 085025 05(DY
Systemization refers to
transforming a row-echelon
matrix into its (0) (1) (2) (3) 4
reduced-row-echelon form

D 1 0 o @ 1 0 o0 @ 1 0 o0

o @® o 1 o @® o 1 o @® o 1

0 o0 0 o 0 0 o 0

@0, @ ®
0 o&o(d 0 o oBD& o 0o 0o @

(5)

elimination. In Round-1, the systolic array sorts (Gaussian-
eliminates) the first two rows of the matrix into [8 (1) 8 (1)] and
then loads them out. In Round-2, the systolic array sorts the
remaining unsorted two lines of the matrix and then loads
them out.

In more details, the node behavior mode must be modified
such that the node can correctly load data in or load data off to
the external memory. Therefore, we add a new feature, called
swap__in, to the input signal lists of the node as shown in the
red colored texts in Fig. 9. swap_in is triggered to output

(6) (7)

the data within the internal register r and, meanwhile, update

:| to its row echelon form [ :| on a2 x4 systolic

the register by the input data at the specific timing when the
systolic array requires to load the register data off to the
memory. A simple example, i.e., to transform a 4 x 4 matrix

0000 0100
|: 0100 0001

0001 0000

0101 ) L0000 .
array is depicted step-by-step in Fig. 10. The entire process
requires two rounds of Gaussian eliminations: The first round
costs 10 steps which manipulate the entire four rows of the
input matirx and eliminate the first two rows, and finally load
the four rows back to memory; The second round costs 8 steps
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Fig.7 ROLLO encryption
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Generator
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Systemizer
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Polynomial
Generator

message_in

Gaussian
Systemizer

Fig.8 ROLLO decryption
hardware
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cipher_in i
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(a) Hardware architecture for ROLLO-I key decapsulation

cipher_in
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sk_in

Gaussian
Triangularizer;

cipher_in .
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(b) Hardware architecture for ROLLO-II data decryption
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Fig.9 Behavior description of
the node used in the proposed
systolic array for large matrix
triangularization (by setting the
node mode signal

mode_ in=1"b0), written in
Verilog-like pseudocode

NO '
(normal phase)!|

{r,pivot_in)

2'b00 ?

(basic node, |

work passively)|

op_out = op_in;

which manipulate only the last two rows of the input matrix
and then load back to memory.
Specifically, in Round-1, initially at step-(0), the input
0000

0100

matrix 0001

is prepared in skewed form and fed to

the array;oz}&? ;tep—(l), the upperleft node accepts ‘0’ to its
internal register and {r, pivot_in}==2'b00 triggers
‘SWAP’ signal; At step-(2), on the one hand, the upperleft
node outputs ‘0’ to the buffer register due to the ‘SWAP’
signal from step-(1), and again performs ‘SWAP’ since {r,
pivot}==2"b00. On the other hand, the second node in
the first row of the array receives ‘SWAP’ passed by the
leftmost node in the previous step and therefore, executes
‘SWAP’ accordingly; At step-(3), the second node in the first
row acts as a pivot since {r, pivot_in}==2'b10; At
step-(4), the swap_ in is externally triggered on the upper-
left node for loading-off to external memory storage; Starting
from step-(5), the swap_ in signals of the two leading nodes

pivot out = pivot in;|

YES

(init phase)

YES

(pivot node,
work actively)|

YES
(pivot not found
perform ‘SWAP’ )

r <= data_in;

data_out = 1'b0;

op_out = ‘SWAP’ ;

pivot out = pivot_in ? 1'bl :
data_in ? 1'bl : 1'bO0;

<= data_in;

data_out = r;

op_out = ‘SWAP’ ;

pivot_out = pivot in ? 1'bl :
data_in ? 1'bl : 1'bO0;

r <=r;
pivot_out = 1'bl;

data_in ==
1'bl 2

data_out = data_in”"r;
op_out = ‘ADD’ ;

i
| NO
i
4

r <= data_in;
pivot_out = data_in;
data_out = r;
op_out = ‘SWAP’ ;

data_out = data_in;
op_out = ‘PASS’ ;

data_out = r;
r <= data_in;

| data_out = data_in"r;
r <= r;

data_out = data_in;
r <= r;

of the respective rows of the systolic array keep assertive until
the array finally loads all effective data out to the external

memory at step-(10). It is worth mentioning that the systolic

0100
0001
0000
) ) 0000

i.e, firstly, it outputs the last row, then second last one, and

eventually the first one. It is easily seen that the first two rows
of the result matrix has been sorted correctly at the end of
Round-1.

The Round-2 process mostly repeats what has been
described for Round-1 except that the input matrix has two
rows which are extracted from the last two rows of the
result matrix mentioned in Round-1. In general, it costs D /d
(assume d | D for simplicity) rounds for triangularizing a
D x | matrix with a single d x I[(d < D) systolic array
within about % cycles. The exact results are stated
and proved in Proposition 2.

array outputs the result matrix ] in reversed order,

@ Springer



394

Journal of Cryptographic Engineering (2024) 14:383-397

Fig. 10 A toy example to Round-1
transform 4 x 4 matrix over [F,
by the proposed 2 x 4 systolic
array using the node logic shown
in Fig. 9. Triangularization
refers to putting the input matrix
into its row-echelon form
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Proposition 2 The total number of rounds for one d x I(d <
D) systolic array to triangularize a D x | matrix is D/d; A
particular i-th round costs D +1 — 2 + (3 — i)d cycles to
complete. The total cycle count for one d x 1(d < D) systolic
array to triangularize a D x | matrix is g(% +1+ %d —2).

Proof Each round sorts d rows of the D-rows matrix and thus
the round complexity is D/d. AtRound-i(i =1, ..., D/d),
the first (i — 1)d rows have been sorted already and the sys-
tolic array needs to process the remaining D — (i — 1)d rows.
It takes 2d — 1 cycles for the first output of the systolic array
to appear since the first column of the systolic array consists
of 2d registers; Note that the first output of the systolic array
belongs to the unsorted D —id rows and it takes/ — 1+ D —id
cycles to output the entire D — id unsorted rows; Finally, it
takes d cycles to load out the sorted d rows stored in the nodes
of the systolic array. These three parts contribute to the total
cycle count of Round-i: (2d—1)4+(—1+D—id)+d. There-
fore, the accumulation of all rounds gives the final cycle delay
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4.3 High level description forimplementing ROLLO

This subsection describes the adaptation of the proposed
Gaussian elimination module for the complete ROLLO hard-
ware at a higher level. It is worth mentioning that the
CPA-secure ROLLO can be converted to a CCA2-secure
KEM when the HHK [14] framework for the Fujisaki-
Okamoto transformation is applied. Therefore, we focus on
the CCA2-secure parameter sets and include the core func-
tionalities, e.g., encryption and decryption in this work.

4.3.1 ROLLO encapsulation/encryption

In encryption part, Gaussian elimination is essential to gen-
erate a unique symmetric key K: The error space E, which
is reprensented as a k x [ binary matrix, must be converted
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to reduced row-echelon form E;rer, and thus hashing E;rer
eventually returns the key K. Gaussian elimination on E
includes two phases: first triangularize and then systemize
which costs 2k + [ — 2 and k + [ cycles, respectively.

Hardware architecture

Figure 7 depicts the top-level architecture for the ROLLO
encryption. In ROLLO-I, the RNG provides the necessary ran-
domnesstodrive Low-Rank Polynomial Generator
for generating the error space E and subsequently the
two ‘small’ error vectors e, e». Gaussian Systemizer
transforms E to its reduced row echelon form E..f and then
checks its rank value. Finally, the ciphertext c is calculated
via the polynomial multiplier (Fo»[z] multiplier) and
adder, and K is calculated by hashing E'.t through the SHA3
module. Likewise, the architecture for ROLLO-II encryption
is almost identical to that for ROLLO-I except for the way of
manipulating the final ciphertext: ROLLO-I outputs the hash
value K directly, whereas ROLLO-II encrypts the message
M by XORing K. Moreover, the circuit size for ROLLO-II is
generally larger since ROLLO-II requires an extremely low
decoding failure rate for satisfying the security requirement
and this results in increasing parameter values.

4.3.2 ROLLO decapsulation/decryption

In this subsection, we discuss the implementation details of
ROLLO-I.Decap and ROLLO-II.Decrypt. The most critical
component in the decryption part, is called Rank Support
Recovery (RSR). When the two syndrome spaces, i.e.,
S1 and Sy, are ready in memory, the module RSR will per-
form the RSR algorithm (see Algorithm 3) to retrieve the
intersection as the error vector space £ = S; N S,. The
primary operation in RSR algorithm is the Zaussenhaus algo-
rithm which returns the intersection of two vector spaces
(see Algorithm 4). The most computational-intensive task of
Zaussenhaus algorithm is essentially trianguarization on a
5151 . Note that the dimen-
S$2( 0

sion of E is upper bounded by r - d and therefore E is always
written back to the first 7 -d rows of memory such that the first
dim(E) rows store E and the remaining rd — dim(E) rows
store null vector. Next, S;(i = 3,---,d) is written to the
following n rows of memory to formulate the large matrix

relatively large block matrix |:

E|E
as [?NW} for Zassenhaus algorithm to update a new and
i

further reduced E. The Zaussenhaus algorithm is repeatedly
performed d — 1 times to extract the correct E after which a
final matrix systemization of E is required for hashing.

Hardware architecture

Figures 8a and b depict the hardware architecture for the
ROLLO decryption/decapsulation. The critical components
include the Fo»[z] multiplier and the Gaussian Elimination

Input: s = (s1,...,s,) € F:’]m a syndrome of an error e of
weight r and of support E
Output: A candidate for the vector space E
// Compute the vector space EF
1 Compute the syndrome vector space S = (sq, ..., Sy)
// Recover the vector space E from S;’'s
2 Compute every S; = fi_lS fori =1tod
3 FE «— 07:151‘ // Repeat d times Zaussenhaus
algorithm
4 return E

Algorithm 3: Constant-Time Rank Support Recover
(RSR) algorithm

input : Vector space S| = (s{.1, -+ ,5.n)" and Vector space
So = (521, , 5207
output: Intersection of vector space S and Sy as S; N $»
. Si|S
1 Create a block matrix as | =1 |.
S>1 0
2 Perform Gaussian elimination (triangularization) on the block
matrix above and obtain an updated block matrix as

S1U S .
0 SINS |-
0 0

3 Return S1 N S5.

Algorithm 4: Zaussenhaus algorithm

systolic array, which contributes the majority of the hardware
utilization. ROLLO-I and ROLLO-II share almost an identi-
cal architecture though the ROLLO-II decryption is relatively
larger due to the larger system parameter n. The only differ-
ence at the top level is that ROLLO-I outputs the hash value
K directly whereas ROLLO-II decrypts the cryptogram by
XORing K.

4.4 Performance and comparisons

We show in Table 1 the scalability of our approach by imple-
menting Gaussian eliminator for three different matrix sizes,
20 x 20, 50 x 50, and 90 x 90, on Xilinx Virtex-5 FPGA.
This FPGA family is selected to enable fair comparison with
previous work presented in [8]. We choose [8] as the pri-
mary comparison target since this work implements various
systolic architectures for Gaussian elimination on the same
device. We also include the experimental data on Xilinx
Spartan-3 FPGA, reported in [15], which is the most recent
hardware-based Gaussian elimination implementation that
we are aware of.

Compared with the triangular architectures, including
TSA, TSL, and TSN, our design mostly retains as high fre-
quency as theirs due to the full pipeline structure. It also
uses almost the same number of clock cycles. The signifi-
cant increase of slice utilization is primarily due to the dual
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Table 1 Gaussian elimination

performance for square k x k Instance k x k Device Freq (MHz) Cycle Slice Slice*Cycle/Freq
binary matrix on Xilinx Virtex-5  ppiswork 2020 Virtex-5 600 60 1228 122
FPGA, compared with the TSA,
TSL, TSN, LSA, LSL presented 50 %50 500 150 6499 1949
in 8, 15] 90 x 90 500 270 21,954 11,855
TSA [8] 20 x 20 Virtex-5 600 80 363 58
50 x 50 200 1727 691
90 x 90 360 5804 4179
TSL [8] 20 x 20 Virtex-5 500 60 161 19
50 x 50 150 912 274
90 x 90 270 3082 1664
TSN [8] 20 x 20 Virtex-5 102 40 160 63
50 x 50 100 715 701
90 x 90 180 2045 17,529
LSA [8] 20 x 20 Virtex-5 550 400 55 40
50 x 50 2500 171 777
90 x 90 8100 291 4286
LSL [8] 20 x 20 Virtex-5 550 400 33 24
50 x 50 2500 78 355
90 x 90 8100 116 1708
TSL [15] 50 x 50 Spartan-3 178 150 3129 2636
Egllizo }I:erg(xgzl;ii()f Instance Freq (MHz) Time (ms) Cycle (x 10%) LUTSs/FFs BRAM
comparison with other ROLLO-Lencap 180 0.016 2.8 24,15411,735 245
code-based PQC hardware,
targeting NIST security level 1 ROLLO-I.decap 148 0.138 24.9 36,772/21,832 23.5
(128-bit pre-quantum security) ROLLO-II.encap 170 0.076 12.9 31,360/16,029 31.5
ROLLO-II.decap 175 0.398 69.6 45,207/26,598 29
McEliece.encap [16] 113 0.3 30 40,018/61,881 177.5
McEliece.decap [16] 0.9 100
HQC.encap [17] 148 0.6 90 20,000/16,000 12.5
HQC.decap [17] 1.3 190

All the designs are synthesized on an Artix-7 FPGA

switching mode used in the node: The conventional triangu-
lar architectures for k x k binary matrices consist of k pivot
nodes along the diagonal of the systolic array and k(k — 1) /2
non-pivot nodes at the remaining positions. Therefore, the
area complexity is determined by the number of non-pivot
nodes, which is quadratic as a function of k. On the contrary,
our design consists of k(k + 1) /2 dual-functional nodes, and
the number of these nodes determines the slice count. The
dual-functional node presented in this work can be roughly
interpreted as a combination of the pivot and non-pivot nodes,
and the pivot utilization outweighs the non-pivot.

In terms of speed, compared with the linear architec-
tures, our design is significantly faster, since it runs in ® (k)
steps, whereas linear architectures run in © (k%) steps. The
linear architectures are advantageous in lightweight appli-
cations since the resource utilization increases linearly with

@ Springer

the dimension k. On top of that, when previous designs are
used as SLE solvers, they cannot return valid solutions for
unsolvable under-determined equations, which are equiv-
alent to Gaussian-eliminating singular matrices. Our new
design, however, overcomes this difficulty (Fig. 10).
Finally, we evaluate the performance of the ROLLO
encapsulation and decapsulation hardware by integrating
the proposed Gaussian elimination module on Xilinx Artix-
7 FPGA. The implementation results are collected and
compared with state-of-the-art code-based scheme imple-
mentations of classic McEliece [16] and HQC [17], as shown
in Table 2. Both [16] and [17] offer lightweight and high-
speed implementations on a unified architecture for key
generation, data encapsulation, and data decapsulation. Since
our work is more oriented towards high performance, we only
list the high-speed implementation results of [16] and [17].
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Compared with McEliece and HQC, ROLLO demonstrates
faster runtime and consumes fewer clock cycles. However,
the unified architecture design of McEliece and HQC offers
advantages in resource utilization, despite McEliece requir-
ing a significant amount of block memory due to the large
public key.

5 Conclusions

This paper explored the possibility of realizing Gaussian
elimination for arbitrary binary matrices on hardware. The
idea stems from the proposed dynamical dual switching
mode, which allows the hardware to determine the position
of pivot elements in each row of the matrix on the fly. The
correctness of the universal Gaussian elimination using this
new type of switching mode is strictly proved. We show-
cased the usefulness of hardware-based Gaussian elimination
for medium-sized and large-sized binary matrices. It is the
first available hardware architecture for Gaussian elimination
that supports quantum-resisting rank-code-based cryptogra-
phy with varying security parameters.
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