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Abstract—As network bandwidth struggles to keep up with
rapidly growing computing capabilities, the efficiency of col-
lective communication has become a critical challenge for
exa-scale distributed and parallel applications. Traditional ap-
proaches directly utilize error-bounded lossy compression to
accelerate collective computation operations, exposing unsatisfy-
ing performance due to the expensive decompression-operation-
compression (DOC) workflow. To address this issue, we present
a first-ever homomorphic compression-communication co-design,
hZCCL, which enables operations to be performed directly on
compressed data, saving the cost of time-consuming decompres-
sion and recompression. In addition to the co-design framework,
we build a light-weight compressor, optimized specifically for
multi-core CPU platforms. We also present a homomorphic
compressor with a run-time heuristic to dynamically select
efficient compression pipelines for reducing the cost of DOC
handling. We evaluate #ZCCL with up to 512 nodes and across
five application datasets. The experimental results demonstrate
that our homomorphic compressor achieves a CPU throughput
of up to 379.08 GB/s, surpassing the conventional DOC workflow
by up to 36.53x. Moreover, our 2ZCCL-accelerated collectives
outperform two state-of-the-art baselines, delivering speedups of
up to 2.12x and 6.77x compared to original MPI collectives
in single-thread and multi-thread modes, respectively, while
maintaining data accuracy.

Index Terms—Collective Communication, Homomorphic Com-
pression, Distributed Computing, Parallel Algorithm

I. INTRODUCTION

In the era of exascale computing, optimizing collective
communications for large messages becomes a pivotal aspect
of enhancing the performance of high-performance computing
clusters. This necessity is especially pronounced in scientific
applications like molecular dynamics simulations [1] and
seismic modeling [2], alongside data analysis, visualization
applications [3], and deep learning tasks [4]. These fields,
characterized by intensive data processing and exchange, un-
derscore the importance of refining collective communication
strategies to transfer large messages efficiently [5], [6].

The internode communications, limited by the network
bandwidth is always the major concern for the efficiency of
collective communications. For the large message collectives,
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the networks are easily saturated, making it especially chal-
lenging to get a high overall collective performance. Prior
researchers are actively working on minimizing the overall
communication volume to mitigate the network saturation [7],
[8], [9]. Recently, with the development of high-speed error-
bounded lossy compression techniques [10], [11], [12], it be-
comes possible to utilize error-bounded lossy compression for
significantly decreasing the message sizes and thus mitigating
the performance issue while maintaining the data quality.

The current error-bounded lossy compression-integrated
collective frameworks have achieved significant speedups with
well-controlled error propagation compared with the pre-
vious approaches without compression integrated. Specifi-
cally, the state-of-the-art C-Coll framework that realizes high-
performance with bounded errors for all collective operations
outperforms the original MPI collectives by 1.8-2.7x [13].
However, it is subjected to a traditional decompression-
operation-compression (DOC) workflow, in which each node
has to fully decompress the compressed data before applying
operations, and then recompress the operated data into the
compressed format. This process causes an inevitable huge
cost in the compression-accelerated collective communication
and thereby affecting the overall collective performance.

In order to further improve the overall reduction throughput
in the compression-accelerated collective communications, we
need to address a series of challenges. (1) How to develop
an ultra-fast error-bounded lossy compressor for CPU archi-
tectures to achieve both high compression throughput and
quality? (2) How to design a new workflow to deal with
the DOC more efficiently in the collective communication
scenario? (3) How to co-design and implement a general
communication framework to effectively utilize the new DOC-
handling workflow?

To address the aforementioned challenges, in this pa-
per, we present hZCCL, a high-performance homomorphic
compression-accelerated collective communication library,
which enables performing operations directly on compressed
datasets without requiring the costly decompression and re-
compression process. To the best of our knowledge, hZCCL
is the first-ever high-performance co-design for homomorphic

icensed useQ%r(nll%édItlg:Egniv of Calif Merced. Downloaded on December 30,2024 at 00:17:12 UTC from IEEE Xplore. Restrictions apply.




compression and collective communication. More specifically,
our contributions include:

o To address challenge (1), we present an optimized block
partitioning scheme. This tiling strategy enables a more
efficient memory footprint and lesser outlier storage space
for each CPU thread. We also employ a bit-shifting
fixed-length encoding scheme to further squeeze the
performance from compressing pipeline. The STREAM
benchmark validates our optimized compressor, fZ-light,
achieves up to 94.5% of the peak memory throughput for
decompressing and compressing operations.

e To address challenge (2), we design and implement
our communication-targeted homomorphic compressor
hZ-dynamic based on fZ-light. hZ-dynamic features a
dynamic homomorphic compression pipeline, which is
able to select the most light-weight compression pipeline
based on the properties of compressed data inputs to
directly operate on compressed data.

« To tackle challenge (3), we carefully co-design a homo-
morphic compression-accelerated collective framework
for collective computation operations, by leveraging
the unique advantages of our designed homomorphic
compressor—hZ-dynamic. For all the collective compu-
tation operations, we redesign the compression-enabled
communication workflow to significantly improve the
compression and computation runtime with homomorphic
compression. We further optimize the performance for
the widely-used Allreduce operation in particular, by
eliminating the decompression step in its Reduce_scatter
stage and the compression step in the Allgather stage.

« We evaluate our optimized fZ-light and 2Z-dynamic with
five application datasets. Compared with the ompSZp
(multi-threaded CPU version of cuSZp [14]), our fZ-light
achieves the compression ratio improvement of up to
37.65. Regarding performance, fZ-light brings up to
9.71x and 28.33x speedups in compression and decom-
pression, respectively. Notably, our dynamic homomor-
phic compression pipeline of hZ-dynamic reaches the
overall compression throughput of up to 379.08 GB/s,
which is 36.53x faster than the 10.38 GB/s of traditional
DOC workflow.

o We utilize up to 512 Intel Broadwell nodes to evaluate
both the performance and accuracy of our AZCCL-
accelerated collectives. Experiments demonstrate that our
hZCCL-accelerated Reduce_scatter achieves up to 1.9x
and 5.85x performance improvements and our hZCCL-
accelerated Allreduce reaches up to 2.12x and 6.77x
speedups compared with the original MPI without com-
pression in the single-thread and multi-thread modes,
respectively. We also employ a practical use case — image
stacking analysis, to showcase the real-world efficacy of
the hZCCL-accelerated Allreduce. Our h”ZCCL outper-
forms C-Coll and realizes 1.81x and 5.02x performance
enhancements compared with MPI with satisfying oper-
ational results in both statistical and visual analyses.

The rest of this paper is structured as follows: Section II
provides an overview of background and related work. Our
design and optimization strategies are elaborated in Section
III. The evaluation findings are disclosed in Section IV. We
provide a conclusion and future work in Section V.

II. BACKGROUND AND RELATED WORK

Error-bounded lossy compression can achieve a much
higher compression ratio than lossless compression while the
difference between original data and decompressed data is
strictly bounded by the user-required error-bound [15], [16],
[17]. Thus, it has been effective in various fields, from climate
science, exemplified by the CESM project at NCAR [18],
to Quantum Monte Carlo with QMCPACK at US National
labs [19], and geophysical explorations with RTM used by
Saudi Aramco [2]. Many researchers have focused on de-
signing high-speed lossy compressors [12], [11], [20]. Among
these, SZx [11] stands out as the fastest CPU compressor.
However, its constant block design may severely degrade
data reconstruction quality, limiting its usability across several
domains, as demonstrated in [14]. In contrast, the GPU-
based compressor cuSZp showcases significantly improved
data quality over SZx, yet its parallelism strategies fall short
when applied to CPU architectures. In comparison, our fZ-light
achieves a remarkably high throughput (e.g., a 28.33x speedup
over ompSZp in decompression) while providing slightly
better reconstructed data quality. This high throughput is
attributed to the very high memory bandwidth efficiency in
our design, validated by STREAM benchmarks [21].

The integration of compression to speed up communica-
tion within high-performance computing clusters has garnered
considerable attention in recent research [22], [23], [24],
[25], [26], [13], [27]. Among them, the error-bounded lossy
compression-accelerated approaches [13], [27] are particularly
valued for their ability to precisely control error propagation,
as proved by [13] through both theoretical & experimental
analyses. While the C-Coll framework stands as a leading solu-
tion for CPU-centric collective operations, it is hindered by the
inefficiencies associated with the traditional decompression-
operation-compression workflow, which has to decompress the
compressed data before operating on them [13]. In contrast,
our hZCCL effectively co-designs collective communication
with our optimized homomorphic compression method, reach-
ing a significant performance improvement over C-Coll, to be
shown in Sections IV-C and IV-D.

III. hZCCL DESIGN AND OPTIMIZATION

This section details the design and optimization of hZCCL,
illustrated in Figure 1 with newly designed modules in green,
cyan, and pink. Central to our approach is the dynamic homo-
morphic compressor, hZ-dynamic, described in Section III-B.
We then co-design the homomorphic compression-accelerated-
collectives with hZ-dynamic, as detailed in Section III-C.
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Fig. 1: hZCCL design architecture.

A. Analysis of existing compression-accelerated collectives

In this section, we examine the shortcomings of pre-
vious solutions and offer a thorough analysis of perfor-
mance to pinpoint potential bottlenecks. The existing error-
bounded lossy compression-accelerated collectives [13], [27]
have achieved significant speedups compared with traditional
no-compression collectives but their costly decompression-
operation-compression workflow is still a significant bot-
tleneck. DOC is a critical step in the compression-
accelerated collective communications, including the state-
of-the-art C-Coll framework [13]. Generally, C-Coll pre-
compresses the original data and transfers the compressed
bytes in the collective data movement operations, and overlaps
the compression with communication to reduce the overall
collective runtime. Specifically, in its collective computation
framework, each node needs to decompress the received data
before operating on them and then compress the operated
data before sending them, which is referred to as the DOC
workflow. This design can achieve prominent performance
gains over the CPR-P2P method [25], while its entire runtime
is still substantially limited to the DOC workflow.

We demonstrate the significant DOC bottleneck of the
traditional design in Figure 2, which presents a meticulous
performance breakdown for the C-Coll-accelerated ring-based
Allreduce. The widely-used ring-based Allreduce [28], [8]
contains both collective data movement (Allgather) and collec-
tive computation (Reduce_scatter), which have been optimized
in C-Coll [13]. Our experiments are conducted on 16 Intel
Broadwell nodes interconnected via Intel Omni-Path Architec-
ture. In this context, DPR+CPT+CPR denotes the time spent
for decompression, compression and computation, MPI sig-
nifies the communication time, and OTHER encompasses all
additional runtime consumed. Observations reveal that in the
single-thread mode of C-Coll, DPR+CPT+CPR dominates the
runtime, accounting for 78.18%, while MPI communication
constitutes only 21.56%. This trend persists in the multi-thread
mode of C-Coll, with DPR+CPT+CPR remaining the primary
time consumer at 52.26%, followed by MPI at 47.02%. The

MPI
47.02%

(a) C-Coll (ST)

(b) C-Coll (MT)

Fig. 2: Performance breakdown of Allreduce using the single-
thread (ST) mode and multi-thread (MT) mode of C-Coll.

compression-related cost is high because the traditional lossy
compressor has to fully decompress the compressed bytes
before any calculations and then recompress the operated data
to compressed format.

To address the DOC bottleneck, we need to design a
new DOC-handling workflow that is able to avoid the full
compression and decompression. Besides, the existing opti-
mization strategies and frameworks in C-Coll are specifically
designed for the traditional DOC workflow, which prevents
the integration of other DOC-handling workflows that can
result in better overall performance. Thus, we also need to
redesign the compression-accelerated collective framework to
effectively utilize the newly designed DOC-handling method.

B. Designing a high-performance homomorphic compressor
for collective communication

As previously mentioned, the traditional DOC workflow
utilized in the C-Coll framework leads to sub-optimal perfor-
mance in collective computation operations. Consequently, in
this section, we describe our approach to designing a high-
performance dynamic homomorphic compressor, aimed at
significantly enhancing the efficiency of compression-enabled
collective communication.

1) Analysis of existing high-speed compression pipelines

To develop a high-performance homomorphic compressor,
identifying the optimal high-speed compression pipeline is
the initial step. Various pipelines offer rapid compression on
CPUs, including SZx, ZFP, and SZ3 [11], [12], [29]. SZx
stands out for its superior compression speed and favorable
compression ratio on CPUs [11], [13]. Nonetheless, its use of
a constant block design, which reduces data points in smooth
regions to a constant value, can significantly degrade the
quality of reconstructed data [14]. Another promising pipeline,
cuSZp, boasts potential for high compression throughput and
compression quality but is primarily optimized for GPU usage.
Its current parallelism strategy may not deliver optimal perfor-
mance on CPUs. Therefore, it is imperative to revise the design
of cuSZp to enhance its efficiency on CPU architectures.

2) Optimizing compression workflow for multithreading

in CPU

The first primary design distinction between fZ-light and
cuSZp emerges in the stage of block partitioning. As depicted
in the left part of Figure 3, cuSZp utilizes single-layer block
partitioning to segment input data into smaller blocks. Then,
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each block undergoes block-wise quantization and prediction.
Notably, the first quantized value of a block is stored as the
outlier in the compressed bytes.

In contrast, our optimized methodology within fZ-light
segments the input data through a multi-layered partition-
ing approach, as depicted in the right portion of Figure 3.
Initially, the data is divided into several large chunks, with
each thread processing one chunk where the chunk length
is D/N, D being the total length of the input data and
N the number of threads. The last D%N data points are
managed by the (IN—1)-th thread. Each large threadblock is
then subdivided into smaller blocks as per the user-defined
block length. Within each threadblock, the fused quantization
and prediction process converts floating-point data into integer
prediction values, with only the first quantized value or the
outlier of each threadblock being preserved in the compressed
data. Consequently, unlike cuSZp, where threads hop between
distant small blocks, threads in our fZ-light consistently work
on contiguous memory segments, enhancing memory access
efficiency. Moreover, our fused quantization and prediction
reduce the number of memory accesses compared to the
unfused version, thereby further enhancing performance. It is
worth noting that fZ-light stores merely a single outlier (four
bytes) for each large threadblock, whereas cuSZp stores one
outlier for every small block. Thus, fZ-light can reach higher
compression ratios than cuSZp.
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Fig. 3: Compare compression workflows of fZ-light & cuSZp.

3) Ultra-fast fixed-length encoding scheme

Another major design difference between fZ-light and
cuSZp is evident in the fixed-length encoding phase. cuSZp
first stores the block-wise sign bits and obtain the code-
length, followed by a global synchronization. Subsequently, it
employs a bit-shuffle technique to rearrange the compressed,
fixed-length encoded integers and store them based on the
indices derived from global synchronization.

Contrastingly, our approach integrates the acquisition of
sign bits and the determination of the code length for each
small data block with the process of threadblock-wise quan-
tization and prediction, resulting in a more efficient pattern

of memory access. Subsequently, we employ an ultra-fast bit-
shifting technique to encode both the sign bits and the fixed-
length bits of the integer block into a byte array. The core con-
cept involves initially storing the complete bytes of the input
unsigned integer array, followed by the residual bits. Specif-
ically, the algorithm calculates the count of complete bytes
(byte_count) for the given code length and then determines
the remaining bit count (remainder_bit), excluding the full
bytes. If the byte_count > 0, the full bytes of the unsigned
integer array are stored into a byte array utilizing the ultra-fast
bit-shifting method. Moreover, if the remainder_bit > 0 and
the byte_count > 0, each element of the unsigned integer
array undergoes a left shift by 32 — remainder_bit and
then a right shift by the same amount to eliminate all bits
to the left of the residual bits. This process allows these
remaining bits to be accurately stored in the output byte array
using the designated ultra_fast_bit_shifting x function
for varying counts of residual bits, denoted by x (with x
spanning from 1 to 7). By adopting this lightweight bit-
shifting methodology, we achieve substantial enhancements in
the efficiency of fixed-length encoding on CPU architectures.

4) Dynamic homomorphic compressor—-hZ-dynamic

In this section, we elaborate on the design of the dy-
namic homomorphic compressor—iZ-dynamic. Building upon
our optimized fZ-light, hZ-dynamic dynamically selects the
most light-weight compression pipeline to perform reduction
operations directly on compressed data inputs. This dynamic
approach offers dual advantages: (1) It avoids full decompres-
sion and recompression in the DOC workflow, thereby saving
time. (2) It dynamically selects the most light-weight pipeline
based on the properties of compressed data inputs, offering a
much more lightweight solution than the static homomorphic
compression pipeline, which always requires ‘partial’ data
decompression and recompression [30].

We use the most widely used ‘sum’ operation as an il-
lustrative example of our homomorphic designs, though the
principles are applicable to other reduction operations as well.
Figure 4 contrasts our dynamic homomorphic compression
pipeline with the static approach. In the latter, each data block
of the two compressed data inputs undergoes inverse fixed-
length encoding (IFE) to revert to integer prediction data, a
process considered as ‘partial’ decompression. Subsequently,
a specific reduction operation (e.g., sum) operates on these
integer blocks in the computation (CPT) phase. The integer
array output of CPT, containing all integer prediction blocks,
undergoes ‘partial’ recompression through fixed-length encod-
ing (FE) to form homomorphic compressed blocks.

Unlike the fixed approach of static homomorphic compres-
sion that consistently requires ‘partial’ data decompression and
recompression, our dynamic pipeline dynamically selects the
most lightweight compression pipeline based on the nature of
the compressed data blocks to optimize throughput. Initially,
the process involves adding the outliers from two large com-
pressed threadblocks and storing the resultant outlier in the
homomorphic output. The thread then sequentially processes
corresponding blocks from the two compressed data inputs.
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As illustrated in Figure 4, for two compressed blocks C B
and CB%; with code-lengths = and y, the process varies: @ If
both x and y are zero, indicating ‘constant’ blocks, only the ‘0’
code-length is recorded in the homomorphic output, simplify-
ing the process significantly compared to static methods. @ If
=0 but y=£0, meaning C B}, is ‘constant’ and C' B%; is ‘non-
constant’, only the bytes of CB% are copied to the output,
reflecting its non-zero code-length and encoded bits. This
method is similarly lightweight. € A reversal of @, where
CBj, is ‘non-constant’ and C'B%; is ‘constant’, necessitates
copying only the bytes of CBJ for similar reasons. @ If
both z and y are non-zero, indicating ‘non-constant’ blocks,
both compressed blocks are partially decoded into integer
prediction blocks via inverse fixed-length encoding (IFE).
These prediction integers are then summed and re-encoded
with fixed-length encoding (FE) to produce a new code-length
z and encoding bits for the homomorphic compressed output.
This procedure resembles the static homomorphic compression
pipeline but improves memory efficiency by eliminating the
need for allocating a large integer prediction array required
by the static approach.

As discussed in Section III-B2, the quantization stage is
the sole source of bounded compression error. Thus, our
hZ-dynamic does not introduce additional errors beyond those
inherent to the original compression process, as it does not
involve a quantization phase.

The Nth compressed data block for data i Inverse fixed-length encoding
@ Computation The ith integer prediction block Fixed-length encoding
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Fig. 4: Compare our dynamic homomorphic compression
pipeline with the static homomorphic compression pipeline.

C. Co-designing the homomorphic compression-accelerated
collective communication framework

To optimize performance in collective communication using
homomorphic compression, it is essential to redesign the
compression-accelerated collective framework, as the current
one is designed for traditional DOC workflow and can not
be used with homomorphic compression [13]. We utilize two

widely used collective computation operations—Reduce_scatter
and Allreduce—to showcase our co-design strategies.

1) Reduce_scatter

In this section, we detail how AZCCL substantially en-
hances the efficiency of Reduce_scatter operation by reduc-
ing compression and computation costs with homomorphic
compression. Figure 5 contrasts the C-Coll framework with
our hZCCL framework with the Reduce_scatter operation. In
Round j of C-Coll, Node i compresses its designated data
block 37 _, ., B;F/~" and sends the compressed data block
to the next node, then decompresses the received compressed
data block (Z?:lz_ e Bi*7)o from the previous node be-
fore reducing it with its corresponding block B:t; +1- This
process repeats for every round across all nodes, incurring
three DOC-related costs per round: compression cost (C'PR),
decompression cost (DPR), and computation cost (C' PT) for
a single data block, leading to a total cost for Reduce_scatter in
C-Coll of TS ,=(N—1)CPR+(N—1)DPR+(N-1)CPT,
where N refers to the total node count.

Conversely, in the h”ZCCL framework, Node i compresses
all N data blocks {B]'|1<n<N} only once in the Round
1, then sends one compressed block - _, ;. (B, )¢
to the next node. Upon receiving a compressed block
S j12(Bit7)c, Node i applies the homomorphic com-
pression to directly reduce two compressed blocks with-
out decompressing. The cost of processing one compressed
block homomorphically is noted as HPR. This makes
the total compression and computation costs of the first
round NxCPR+DPR. For subsequent Round j, the com-
pressed data blocks are transferred between nodes in in-
tensive communications, and homomorphic compression is
utilized to reduce the compressed data blocks as in the
first round. Consequently, the compression and computation
costs for each of these rounds are quantified as 1xHPR.
In the final Round N-1, each node employs homomor-
phic compression to produce the final compressed block,
which is then decompressed to restore the final reduced
data block. Thus, the compression and computation costs
for this concluding round amount to 1xHPR+1xDPR.
The total cost for Reduce_scatter in AZCCL becomes
T2, =(N)CPR+(1)DPR+(N—1)H PR, making the dif-
ference between C-Coll and h”ZCCL TES | —TES ., = (N —
1)(DPR+CPT — HPR)—1CPR—1DPR. Given that our
homomorphic compressor—hZ-dynamic—is significantly faster
than the conventional DOC workflow due to its lightweight
design, the DPR+CPT greatly exceeds HPR, and this
performance difference is even magnified by (N—1) times.
Therefore, h”ZCCL soundly diminishes the runtime associated
with compression and computation compared to C-Coll, ele-
vating overall efficiency.

2) Allreduce

This section focuses on optimizing the Allreduce oper-
ation, highlighting strategies that further boost its perfor-
mance beyond the improvements made in the Reduce_scatter
stage. Unlike Reduce_scatter, which solely focuses on col-
lective computation, the ring-based Allreduce operation in-
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Fig. 5: High-level design of our ”ZCCL in the ring-based
Reduce_scatter algorithm. This algorithm completes in N—1
rounds, where [V is the number of processes.

volves both collective data movement (Allgather) and com-
putation (Reduce_scatter). The original Allgather design in
the C-Coll framework requires each node to compress its
data chunk and synchronize the compressed data size with
others. Following synchronization, the compressed data are
communicated among the nodes in a ring pattern. After
N—1 communication rounds, each node decompresses the
received compressed data chunks to obtain the gathered data,
resulting in a total compression and computation cost of
TAG ,=CPR+(N—1)DPR. This design notably diminishes
the compression cost compared with the compression-enabled
point-to-point communication method [25], [13], however, it
is limited to the conventional DOC workflow and suffers
from the suboptimal performance as the Reduce_scatter case
detailed in the last section.

To further optimize the Allreduce operation, h”ZCCL frame-
work leverages the direct operation capability of homomorphic
compression on compressed data. This approach eliminates the
decompression step in the last round of the Reduce_scatter
algorithm. Instead of decompressing the data for Allgather,
the compressed data and their sizes are directly fed into the
redesigned Allgather stage. This results in a compression and
computation cost of T/%2, =(N)CPR+(N—1)HPR for the
Reduce_scatter stage. In the Allgather stage, the nodes do
not compress the input data since it is already compressed.
The nodes proceed to directly synchronize the sizes of these
compressed data chunks with one another, ensuring all ensuing
data exchanges occur in this compressed format. The final
decompression of the N—1 compressed data chunks in the last
round leads to a compression cost of T3, =(N—1)DPR.
Accordingly, the total cost for the Allreduce operation in
the hZCCL framework is T/&, TEZ . + ThG
(N)CPR+ (N —1)DPR+ (N — 1)HPR. In comparison,

the C-Coll framework incurs a total cost of TAE , = TES | +
TAS, = (N)CPR + 2(N—1)DPR + (N—1)CPT. The
time difference between the two frameworks in executing the
Allreduce operation, TAE , — T3E, = (N — 1)(DPR —
HPR)+(N—1)CPT, highlights the efficiency of the "ZCCL
framework which co-designs homomorphic compression with
collective communication for reducing both compression and

computation costs significantly.

IV. EXPERIMENTAL EVALUATION
We present and discuss the evaluation results as follows.

A. Experimental Setup

For our experiments, we leverage a 512-node cluster, as-
signing one process per node, as inter-node communication
is the major bottleneck in collectives. Each node is equipped
with two Intel Xeon E5-2695v4 Broadwell processors and we
utilize only one socket (18 threads) for compression in all
collective experiments. These nodes are connected via Intel
Omni-Path Architecture, providing 100 Gbps bandwidth. The
absolute error bound for compression is set at 1E-4 by default.

Five real-world scientific applications from different do-
mains are utilized in the evaluation as shown in Table I.
They are: two distinct RTM application datasets [2], which
are generated under two different simulation settings of the
real-world 3D SEG/EAGE Overthrust model, the NYX appli-
cation dataset, which is from a cosmological hydrodynamics
simulation based on adaptive mesh [31], the CESM-ATM
application dataset, which is from the atmosphere model of
a climate simulation package CESM [18], and the Hurricane
application dataset, which is from the simulation of hurricane
Isabel from the National Center for Atmospheric Research
[32]. The last three application datasets can be downloaded
from SDRBench [33]. We summarize all the compression and
collective communication solutions evaluated in Table II.

TABLE I: Information of the application datasets in evaluation.

Application  # fields Dims per field Total Size Domain
Sim. Set. 1 3601 449x449x235 635.5 GB Seismic Wave
Sim. Set. 2 151 849x849x235 95.3 GB Seismic Wave
NYX 6 512x512x512 3.1 GB Cosmology
CESM-ATM 79 1800x3600 2.0 GB Climate Simu.
Hurricane 13 100x500x500 1.3 GB Weather Simu.

TABLE II: Compression and collective communication solu-
tions.

Solution Description

ompSZp CPU version of cuSZp’s parallelism strategy (baseline)
fZ-light Our brand new ultra-fast error-bounded lossy compressor
hZ-dynamic fZ-light with dynamic homomorphic compression pipeline

Original Collectives (MPI)
C-Coll (single-thread)
C-Coll (multi-thread)
hZCCL (single-thread)
hZCCL (multi-thread)

No compression involved (baseline)
Single-thread mode of C-Coll (baseline)
Multi-thread mode of C-Coll (baseline)
Single-thread mode of h”ZCCL
Multi-thread mode of h”ZCCL

B. Evaluating the Homomorphic Compressor—hZ-dynamic

The hZ-dynamic homomorphic compressor consists of two
key components: our fZ-light, a brand new optimized lossy
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compressor for CPU architectures that we made from scratch,
and a dynamic homomorphic compression pipeline that adapts
to data in real-time for efficient processing. The hZ-dynamic
is specifically designed to boost both the speed and ratio of
compression, making it exceptionally suited for distributed
computing scenarios. To ensure consistency across various
tests, the number of threads utilized in compression is fixed
at 36 for all subsequent experiments.

1) Optimized compression workflow

In our evaluation, we compare the compression ratio and
quality of fZ-light against ompSZp (CPU version of cuSZp)
across different application datasets with various relative error
bounds to highlight the advantages of our optimized com-
pression workflow. The comparison, detailed in Table III,
reveals that fZ-light consistently outperforms ompSZp in terms
of compression ratio across various relative error bounds
(REL) and simulation settings. Notably, fZ-light achieves the
maximum compression ratio improvements of up to 37.65 in
CESM-ATM application dataset. This increase is attributed to
the efficient outlier storage management in the workflow of
fZ-light. Furthermore, the minimal improvement is achieved
in the Simulation Setting 1 application dataset, where fZ-light
reaches a 5.94 compression ratio improvement with the 1E-
1 REL and is even 1.20 worse than ompSZp at the 1E-2
REL. This is because ompSZp benefits from its design to
omit the ‘zero’ blocks in the original dataset and Simulation
Setting 1 contains a considerable proportion of such blocks.
Additionally, fZ-light exhibits a slightly better NRMSE (nor-
malized root mean square error) than ompSZp in all cases,
indicating that our workflow enhances compression ratios
without compromising quality.

2) Ultra-fast fixed-length encoding scheme

Figure 6 showcases a speed comparison between fZ-light
and ompSZp (CPU version of cuSZp), focusing on both
compression and decompression throughput across various
relative error bounds and application datasets. The data re-
veals that fZ-light markedly surpasses ompSZp in speed,
achieving up to 9.71x and 28.33x speedups in compression
and decompression, respectively, for the simulation setting 2.
The smallest though still significant speedups are achieved
in the CESM-ATM application dataset, reaching 2.62x for
compression and 10.09x for decompression. This substantial
performance improvement stems primarily from the ultra-
fast fixed-length encoding scheme of fZ-light, which employs
efficient bit-shifting techniques for encoding integer prediction
values into compressed bytes. The enhanced throughput of
JfZ-light significantly reduces compression-related runtime in
compression-accelerated collectives, demonstrating its effec-
tiveness in improving overall system performance.

3) Memory bandwidth efficiency evaluation

Our fZ-light features an optimized compression workflow
and an ultra-fast fixed-length encoding scheme, outperforming
ompSZp regarding its GPU-centric parallelism strategies. To
underscore the efficiency of our optimizations, we showcase
the average memory bandwidth efficiency as percentages in
Table IV. According to this table, fZ-light achieves up to
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94.5% of the maximum memory bandwidth with a relative
error bound of 1E-4 in the NYX application dataset, marking a
17.82x efficiency improvement over ompSZp. This highlights
the effectiveness of our parallelism strategies in fZ-light.
Notably, we determine the system peak memory throughput
using the STREAM benchmark suite [21], selecting the highest
throughput among the four provided by STREAM to calculate
our memory utilization efficiency.

4) Dynamic homomorphic compression pipeline

In Table VI, we compare the average overall compression
throughput, quality, and ratio of hZ-dynamic with fZ-light
when conducting the reduce operation on two compressed data
inputs. Unlike fZ-light, which necessitates decompressing data
before the reduce operation and recompressing afterwards,
hZ-dynamic directly operates on compressed data through
an adaptive homomorphic compression pipeline, significantly
enhancing speed. We can see that our 2Z-dynamic outperforms
our fZ-light in terms of performance in every application
dataset. Specifically, hZ-dynamic achieves up to 379.08 GB/s
of overall throughput in NYX, making a 36.53 X improvement
over the throughput (10.38 GB/s) of fZ-light. In simulation
setting 2, the speedup is up to 31.43x. The smallest but
also significant speedup is witnessed in the CESM-ATM,
where hZ-dynamic is up to 11.03x faster than fZ-light.
This significant performance boost stems from the ability
of hZ-dynamic to (1) operate on compressed data directly,
bypassing the decompression and recompression in the tradi-
tional DOC workflow of fZ-light, and (2) dynamically select
the most lightweight homomorphic compression pipeline for
data processing, outperforming static homomorphic compres-
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TABLE III: Compression quality (NRMSE) with standard deviation (STD) and compression ratio (Ratio). The higher

compression ratios and lower NRMSEs are underlined.

| Simulation Settlng 1 | Simulation Setting 2 | NYX | CESM-ATM | Hurricane
REL ‘ Ratio NRMSE TD ‘ Ratio NRMSE STD ‘ Ratio NRMSE STD ‘ Ratio NRMSE STD ‘ Ratio NRMSE STD
1E-1 111.82  1.01E-02 8E-03 | 129.64 4.62E-03  3E-03 107.83  2.17E-02  2E-02 | 69.45 3.74E-02 2E-02 | 73.74 2.29E-02 2E-02
fZ-light 1E-2 40.79 2.13E-03  2E-03 107.06  6.41E-04 SE-04 27.00 3.20E-03 3E-03 | 21.76  4.88E-03 1E-03 | 25.76  3.07E-03  2E-03
g 1E-3 20.29 2.93E-04 2E-04 81.04 8.12E-05  7E-05 14.97 4.03E-04 3E-04 12.61 5.30E-04  9E-05 13.65 343E-04 2E-04
1E-4 10.83 3.65E-05 2E-05 61 51 8.85E-06  7E-06 7.81 4.69E-05  2E-05 7.18 5.36E-05  8E-06 8.12 3.57E-05  2E-05
1E-1 105.89  1.09E-02 8E-03 | 118.36 4.87E-03 4E-03 85.27 2.38E-02 3E-02 | 31.80 4.00E-02 2E-02 | 4694 245E-02 2E-02
ompSZ 1E-2 41.99 2.25E-03  2E-03 100.20  6.60E-04  SE-04 20.25 3.27E-03  3E-03 11.33  5.12E-03 1E-03 17.91 3.15E-03  2E-03
PSEP g3 19.98 3.01E-04 2E-04 77.75 8.39E-05  7E-05 9.59 4.18E-04  3E-04 6.10 5.32E-04  8E-05 9.73 347E-04 2E-04
1E-4 10.71 3.74E-05  2E-05 60.21 8.94E-06  7E-06 5.69 4.73E-05  2E-05 3.98 5.37E-05  8E-06 6.34 3.58E-05 2E-05

TABLE IV: Mem. bandwidth efficiency of fZ-light & ompSZp.

| ompSZp | fZ-light
REL | Compr. Decom. | Compr. Decom.
Sim. Set. 2 1E-3 6.64% 3.55% 59.33% 91.13%
. . 1E-4 6.63% 3.57% 59.12%  87.51%
NYX 1E-3 6.58% 5.08% 44.83% 94.45%
1E-4 6.72% 5.30% 52.66% 94.50%

sion methods which often involve partial data decompression
and recompression.

To highlight the benefits of the dynamic homomorphic
compression pipeline in AZ-dynamic, we detail the utilization
percentages of four different pipelines when homomorphically
compressing two fields/snapshots from various application
datasets with a 1E-3 relative error bound in Table V. Notably,
in the NYX application dataset, hZ-dynamic achieves a re-
markable 537.41 GB/s throughput and a 50.01 x speedup over
JfZ-light, primarily because 99.36% of the compression tasks
leverage pipeline 1. This pipeline is exceptionally efficient,
since it only copies the ‘0’ code-length into the homomorphi-
cally compressed data. In Simulation Setting 2, performance
slightly decreases to 156.36 GB/s, with a 25.95x speedup
compared with fZ-light, as the percentage of pipeline 1 drops
to 53.84% and the proportion of pipelines 2 and 3 increases
to 46.16%. This demonstrates that although pipelines 2 and 3
are efficient, they are more expensive than pipeline 1 because
they require copying all compressed bytes of a block to
the homomorphically compressed data. For the CESM-ATM
application dataset, the predominance of pipeline 4 at 88.64%
correlates with a decrease in performance to 9 GB/s, though
it remains 2.62x faster than fZ-light. This underscores the
higher cost of pipeline 4, necessitating partial decompression
and recompression of compressed data blocks, unlike the
more lightweight pipelines 1-3. This comparison illustrates
the significant time savings offered by the dynamic pipeline
of hZ-dynamic over the static homomorphic compression
methods, which are similar to pipeline 4.

Moreover, hZ-dynamic slightly surpasses fZ-light in PSNR
and NRMSE, attributed to the data accuracy loss of fZ-light
during recompression—a step 2Z-dynamic circumvents with its
efficient design. This design difference also causes a minor
compression ratio difference between hZ-dynamic and fZ-light
since lost accuracy results in less compressed bytes.

TABLE V: Performance (GB/s) and pipeline selection per-
centages of dynamic homomorphic compression pipeline in
hZ-dynamic. The speedups are based on fZ-light.

|| Speedups  hZ-dynamic Throu. | Pipeline 1 ~ Pipeline 2 Pipeline 3  Pipeline 4
NYX 50.01 537.41 99.36% 0.05% 0.40% 0.19%
Sim. Set. 1 25.95 156.36 53.84% 0.00% 46.16% 0.00%
Hurricane 20.58 79.49 0.75% 0.00% 99.25% 0.00%
Sim. Set. 2 8.87 71.56 84.46% 11.14% 1.53% 2.86%
CESM-ATM 2.62 9.00 1.20% 5.10% 5.06% 88.64%

C. Evaluating the co-designed homomorphic compression-
accelerated collective algorithms

In this section, we evaluate the performance of our h”ZCCL
collective operations against C-Coll, utilizing 64 Intel Broad-
well nodes.

1) Reduce_scatter

In Figure 7, we detail the performance comparison of
our hZCCL against C-Coll across two scientific application
datasets using the Reduce_scatter operation. In Simulation
Setting 1, hZCCL (multi-thread) outperforms all counter-
parts, including h”ZCCL in single-thread mode, with up to
2.01x speedup over C-Coll (multi-thread). Similarly, hZZCCL
(single-thread) reaches a 1.82x speedup compared to C-Coll
(single-thread). These performance trends hold in Simula-
tion Setting 2, where AZCCL in multi-thread and single-
thread modes achieve performance enhancements of 1.64x
and 1.31x, respectively. The notable speedups stem from co-
designing our homomorphic compressor, hZ-dynamic, with
the compression-accelerated Reduce_scatter algorithm, effec-
tively reducing the DOC-handling time. Additionally, the
improvement tends to increase with data size, highlighting the
advantages of hZCCL’s efficiency in handling larger datasets
by optimizing compression and computation runtime.

2) Allreduce

Figure 8 demonstrates that our h”ZCCL (single-thread) sig-
nificantly outperforms C-Coll in (single-thread), with speedups
of 1.78x in Simulation Setting 1 and 1.55x in Simula-
tion Setting 2. Furthermore, ”ZCCL in multi-thread mode
achieves even greater speedups of 2.10x and 2.00x over
C-Coll in multi-thread mode for Simulation Settings 1 and
2, respectively. Allreduce operation consists of both collective
data movement (Allgather) and collective computation (Re-
duce_scatter). The remarkable improvement in performance is
attributed not only to the gains in the Reduce_scatter operation
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TABLE VI: Overall compression performance (GB/s). The higher performance is underlined.

| Simulation Setting 1 | Simulation Setting 2 | NYX | CESM-ATM | Hurricane
REL ‘ Throu. Ratio NRMSE STD ‘ Throu. Ratio NRMSE STD ‘ Throu. Ratio NRMSE STD ‘ Throu. Ratio NRMSE STD ‘ Throu. Ratio NRMSE STD
1E-1 210.04 102.67 1.0E-02 8E-03 331.32 124.71 4.6E-03 3E-03 379.08 97.99 2.2E-02 2E-02 55.19 57.56 3.7E-02 2E-02 99.03 62.01 2.3E-02 2E-02
hZ-dynamic 1E-2 98.66 32.22 2.1E-03 2E-03 254.66 99.19 6.4E-04 5SE-04 248.48 20.43 3.2E-03 3E-03 15.67 16.31 4.9E-03 1E-03 21.08 20.13 3.1E-03 2E-03
-dynamic 1E-3 | 6943 1651  29E-04 2E-04 | 207.11 7393  8.1E-05 7E-05 | 10939 1154 40E-04 3E-04 | 942 9.69  53E-04 9E-05 | 1343 1121 34E-04 2E-04
1E-4 64.30 9.21 3.7E-05 2E-05 174.79 56.62 8.9E-06 7TE-06 32.50 6.57 4.7E-05 2E-05 7.90 6.01 5.4E-05 8E-06 10.71 7.13 3.6E-05 2E-05
1E-1 8.35 107.40 1.1E-02 8E-03 10.54 126.20 5.6E-03 4E-03 10.38 99.69 2.2E-02 2E-02 5.00 60.84 4.3E-02 2E-02 6.69 65.70 2.8E-02 3E-02
fZ-light (DOC 1E-2 7.02 33.12 2.6E-03 2E-03 10.03 99.70 8.4E-04 TE-04 8.44 20.82 4.1E-03 4E-03 4.14 16.77 7.2E-03 2E-03 5.49 20.92 4.4E-03 3E-03
light ( ) 1E-3 6.20 16.76 3.9E-04 3E-04 9.57 74.69 1.2E-04 1E-04 6.71 11.77 6.2E-04 4E-04 3.40 9.78 7.3E-04 2E-04 4.37 11.32 5.0E-04 3E-04
1E-4 5.50 9.26 4.7E-05 3E-05 9.13 56.72 1.2E-05 1E-05 5.63 6.66 6.6E-05 3E-05 3.22 6.03 7.8E-05 2E-05 421 7.14 5.6E-05 4E-05
significantly outperform the corresponding versions of C-Coll,
4 T T - - - - 5 - - - - - . . .
—— C-Coll (single-thread) —— C-Coll (single-thread) 3.60 achieving speedups of up to 1.58x and 4.04x respectively,
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Fig. 7: Evaluation of h®ZCCL with Reduce_scatter.

discussed previously but also to our tailored optimization that
removes the need for decompression in the Reduce_scatter
phase and compression in the Allgather phase, further elevat-
ing the efficiency of Allreduce operation.
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Fig. 8: Evaluation of h”ZCCL using Allreduce.

D. Comparisons of hZCCL with other collective libraries

In this section, we present the performance evaluation
of our hZCCL-accelerated collective operations, utilizing
up to 512 Intel Broadwell nodes. We compare our results
against two baselines: the compression-accelerated collectives
from C-Coll [13] and the traditional collectives offered by
MPICH [28], as outlined in Table II.

1) Reduce_scatter

In this section, we assess the performance of our hZCCL-
accelerated Reduce_scatter operation across various data sizes
and node counts.

Evaluation with different message sizes.

In Figure 9, we evaluate the performance of hZCCL-
accelerated Reduce_scatter operation across various data sizes,
employing 64 Intel Broadwell nodes. The results demonstrate
that both single-thread and multi-thread versions of hZCCL

momorphic compression, showcasing superior DOC-handling
throughput than the traditional DOC workflow, as detailed in
Section IV-B4. Moreover, the performance enhancement ob-
served tends to grow with increasing data sizes. This is because
the larger the data size is, the more congested the network
is, which benefits more from the decreased communication
volume in our h”ZCCL.

6 —
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Fig. 9: Performance evaluation of AZCCL-accelerated Re-
duce_scatter against MPI and C-Coll in different data sizes.

Evaluation with different node counts.

Figure 10 showcases the scalability evaluation of our
hZCCL-accelerated Reduce_scatter operation using the com-
plete RTM application dataset of 646 MB, tested on up to 512
Intel Broadwell nodes. Consistent with previous findings, both
single-thread and multi-thread modes of hZCCL outperform
their C-Coll counterparts, achieving speedups of up to 1.9x
and 5.85 %, respectively, over traditional MPI implementations.
A notable trend observed is that performance improvement
initially increases as the node count rises, but eventually
decreases and stabilizes. This initial performance boost occurs
as network congestion grows with more nodes participating in
collective communication. Our hZCCL effectively reduces the
message size, thereby mitigating the impact of network con-
gestion. However, the nature of Reduce_scatter as a ‘Scatter’-
like operation leads to a diminishing output data size with

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on December 30,2024 at 00:17:12 UTC from IEEE Xplore. Restrictions apply.



an increasing number of nodes, elevating the frequency of
communication and compression while only marginally grow-
ing the overall communication volume. Consequently, the
advantage of reduced communication volume is somewhat
offset by the increased compression latency. Even so, with
512 nodes, h®ZCCL in both single-thread and multi-thread
modes still secures substantial performance gains of 1.46x
and 4.12x, respectively, compared to the MPI baseline.
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Fig. 10: Scalability evaluation of hZCCL-accelerated Re-
duce_scatter against MPI and C-Coll in different node counts.

2) Allreduce

In this section, we evaluate our hZCCL-accelerated Allre-
duce operation across a variety of data sizes and node counts.

Evaluation with different message sizes.

We assess the performance of our hZCCL-accelerated
Allreduce operation for data sizes up to 600 MB using 64
Intel Broadwell nodes. Figure 11 demonstrates that h”ZCCL
consistently surpasses both C-Coll and MPI for all data sizes.
It is worth noting that, as the data size expands, the speedup of
hZCCL increases, reaching up to 1.96x and 5.35x improve-
ments over MPI. This underscores the efficiency of ”ZCCL in
reducing message sizes and decreasing compression runtime,
enhancing collective performance significantly.
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Fig. 11: Performance evaluation of #ZCCL-accelerated Allre-
duce against MPI and C-Coll in different data sizes.

Evaluation with different node counts.
We evaluate the scalability of our h”ZCCL-accelerated Allre-
duce operation using the full RTM application dataset of 646

MB across up to 512 Intel Broadwell nodes. As depicted
in Figure 12, both the single-thread and multi-thread modes
of hZCCL consistently surpass C-Coll and MPI, achieving
maximum speedups of 2.12x and 6.77x over MPI, respec-
tively. This improvement stems from the reduced communica-
tion volume and lower compression/computation costs in our
homomorphic compression-accelerated Allreduce operation.
Similar to the Reduce_scatter operation, the speedup achieved
by the h”ZCCL-accelerated Allreduce initially increases with
the node count but eventually experiences a slight decrease
before stabilizing. The reason is similar to the Reduce_scatter
case discussed previously in Section IV-DI1. However, the
Allreduce operation differs since it does not ‘scatter’ the
data in the same manner as Reduce_scatter, and the final
output size is always the same as the original data input.
This characteristic helps to maintain the benefits brought from
the decreased communication volume of hZCCL, leading to
significant performance enhancements of 1.88x and 5.58x
compared to MPI, even with 512 nodes.
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Fig. 12: Scalability evaluation of hZCCL-accelerated Allre-
duce against MPI and C-Coll in different node counts.

E. Image Stacking Performance and Accuracy Analysis

In this section, we use the image stacking application to
assess the performance and accuracy of our hZCCL. Image
stacking is a method extensively utilized in diverse scientific
domains, including atmospheric science and geology, to create
high-resolution images by stacking multiple single images.
This procedure inherently performs an Allreduce operation.
As highlighted by Gurhem in [34], researchers leverage MPI
to amalgamate these singular images into final images.

Table VII showcases that our h”ZCCL-accelerated Allreduce
effectively surpasses C-Coll in both single-thread and multi-
thread modes, achieving speedups of 1.81x and 5.02x over
MPI with an absolute error bound of 1E-4. This notable
performance boost is attributed to reduced message sizes
and low DOC-related expenses in ”ZZCCL. In comparison to
C-Coll, hZCCL soundly cuts down the compression and com-
putation (CPR+CPT) runtime, with a percentage decrease from
81.95% to 77.96% in single-thread scenario and a significant
drop from 59.04% to 38.61% in multi-thread context. These
improvements result from our strategic co-design, integrating
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TABLE VII: Image stacking performance analysis (The
speedups are based on MPI. The last three columns are
performance breakdowns).

|| Speedups | CPR+CPT MPI Others

hZCCL (single-thread) 1.81 77.96% 21.76% 0.28%
C-Coll (single-thread) 1.45 81.95% 17.76% 0.29%

hZ.CCL (multi-thread) 5.02 38.61% 60.42% 0.96%
C-Coll (multi-thread) 3.34 59.04% 40.31% 0.65%

homomorphic compression with collective communication to
enable direct operations on compressed data, thus achieving a
more efficient DOC-handling throughput.

Beyond performance metrics, we also present both numer-
ical (PSNR and NRMSE) and visual analyses to showcase
the controlled error propagation achieved by our hZCCL.
With an absolute error bound of 1E-4, hZCCL achieves a
satisfactory PSNR of 62.00 and a sound NRMSE of 8.0E-
4. Figure 13 displays visual comparisons of stacking images
using hZCCL and the original un-compressed MPI method.
The comparison reveals no visual difference between the two
images, indicating that hZCCL preserves excellent image
quality. This combination of high numerical scores and visual
quality underlines the effectiveness of h”ZCCL in delivering
enhanced performance while maintaining precise control over
error propagation.

(a) MPI (lossless)

(b) hZCCL

Fig. 13: Visualization of final stacking image.

V. CONCLUSION AND FUTURE WORK

This paper introduces h”ZCCL, a novel co-design of homo-
morphic compression and collective communication. Through
evaluation on up to 512 nodes and across five application
datasets, our dynamic homomorphic compressor, #Z-dynamic,
has demonstrated impressive compression throughput, reach-
ing as high as 379.08 GB/s, which is 36.53x faster than tradi-
tional DOC workflow. Additionally, collectives accelerated by
hZCCL significantly surpass baselines, achieving performance
gains of up to 2.12x and 6.77x over MPI in single-thread and
multi-thread modes, respectively.

In the future, we plan to integrate hZCCL or its homomor-
phic compression design into applications with communica-
tion bottlenecks to enhance their performance. Additionally,

we will tailor homomorphic compression algorithms to the
specific data characteristics of various applications and use
cases. Furthermore, we will expand hZZCCL’s applicability to
a broader range of hardware platforms.
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Appendix: Artifact Description/Artifact Evaluation

Artifact Description/Evaluation (AD/AE)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions

C7 We present a homomorphic compressor with a run-
time heuristic to dynamically select efficient compres-
sion pipelines for reducing the cost of decompression-
operation-compression (DOC) handling.

Cs We present a homomorphic compression-communication
co-design, hZCCL, which enables operations to be per-
formed directly on compressed data, saving the cost of
time-consuming decompression and recompression.

C3 We evaluate hZCCL with up to 512 nodes and across
five application datasets. The experimental results demon-
strate that our homomorphic compressor achieves a
single-socket CPU throughput of up to 379.08 GB/s,
surpassing the conventional DOC workflow by up to
36.53x.

Cy4 Moreover, our hZCCL-accelerated collectives outperform
two state-of-the-art baselines, delivering speedups of up
to 2.12x and 6.77x compared to original MPI collectives
in single-thread and multi-thread modes, respectively,
while maintaining the data accuracy.

B. Computational Artifacts
hZCCL-artifact (A1) is available at the following link:
Aq DOI: 10.5281/zenodo.13317638.

The Table below illustrates how the contributions of 2ZZCCL
relate to the experimental results presented in the paper.

Artifact ID  Contributions  Related
Supported Paper Elements
A Ch&3 Table III
Ay Cr &4 Figure 11-12

II. ARTIFACT IDENTIFICATION
A. Computational Artifact A,
Relation To Contributions

The artifact enables the execution of key experiments de-
scribed in our paper: (1) a comparison of compression through-
put and quality between our proposed dynamic homomorphic
compressor—referred to as hZ-dynamic—and the conventional
DOC workflow (see Table III); (2) an evaluation of the
performance of the hZCCL-accelerated Allreduce operation in
comparison to other collective libraries, considering various
message sizes and node counts (refer to Figures 11 and 12).

Expected Results

Ey hZ-dynamic significantly outperforms fZ-light (DOC)
across all datasets, not only in terms of speed but also
achieving slightly better compression quality.

Ey hZCCL consistently exceeds the performance of both C-
Coll and the original MPI for all tested data sizes and
node counts.

Expected Reproduction Time (in Minutes)

Setting up the artifact may take between 10 to 30 minutes,
depending on your network speed and hardware availability.
The expected execution time of this artifact on Intel Broadwell
nodes is approximately 30 minutes. Analyzing the artifact may
require an additional 10 minutes.

Artifact Setup (incl. Inputs)

Hardware: For our experiments, we utilize a cluster con-
sisting of 512 nodes. Each node is equipped with two Intel
Xeon E5-2695v4 Broadwell processors. The nodes are inter-
connected using Intel Omni-Path Architecture, which provides
a bandwidth of 100 Gbps.

Software: Computational artifact: hZCCL-artifact. Soft-
ware: MPICH 4.1.3, available for download from the official
website at https://www.mpich.org.

Datasets / Inputs:

D, NYX dataset, which can be downloaded from the SDR-
Bench at: Link: NYX-dataset.

Hurricane dataset, which can be downloaded from the
SDRBench at: Link: Hurricane—-dataset.
CESM-ATM dataset, which can be downloaded from the
SDRBench at: Link: CESM-ATM-dataset.

The RTM dataset, derived from proprietary simulations,
is not publicly accessible. Therefore, it is excluded from
this artifact.

D,
D3

D,

Installation and Deployment: In this section, we outline the
necessary steps to build and prepare the computational artifact
for use.

1) Install an MPI implementation:

o We recommend using MPICH 4.1.3, which is avail-
able for download at the official MPICH website:
https://www.mpich.org.

o Comprehensive configuration and building instruc-
tions are provided on the website.

2) Environment setup:

o After installation, add MPICH to your system’s
PATH using the following command: export
PATH=mpich/install/bin:$PATH

o Verify the installation by checking the location of
the MPICH compiler with: which mpicc

« Note: Building MPICH from scratch may take about
30 minutes due to its extensive library components.

3) Download datasets and artifact:

o Download the hZCCL-artifact (computational arti-
fact) and the NYX dataset from the provided links.

o Ensure there is at least 30 GB of available space on
your directory for the datasets.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on December 30,2024 at 00:17:12 UTC from IEEE Xplore. Restrictions apply.



e The download process should take less than 5
minutes with a fast internet connection.

e Optionally, the Hurricane and the CESM-ATM
datasets are also available for download, depending
on your time and space constraints.

4) Configure and build the hZCCL-artifact:

# Decompress the downloaded files

# Change to the artifact directory and set
up the installation directory:

cd hzZCCL-artifact

mkdir install

# Run the configuration script:

./autogen.sh

./configure —--prefix=$ (pwd)/install --
enable-openmp CC=mpicc

# Compile the artifact using multiple
threads:
make -Jj

# Install the compiled artifact:
make install

# Change to the jobs directory to proceed
with running the artifact:
cd Jjobs

By following these instructions, you will set up your
system with the necessary software and datasets to run the
computational artifact efficiently. Make sure all paths and
dependencies are correctly configured before proceeding with
the experiments.

Artifact Execution

Evaluate dynamic homomorphic compressor—hZ-dynamic
and the traditional DOC workflow: Please adhere to the
instructions below to evaluate the compression throughput
and quality of our dynamic homomorphic compressor, hZ-
dynamic, compared to the conventional DOC workflow.

e Modify the evaluate_compressor_NYX.sh shell
script to include the paths for your NYX dataset and the
installation directory. Also, update your Slurm configu-
ration settings as needed. Look for the contents marked
with $XXX to make these changes.

o Submit the updated evaluate_compressor_ NYX.sh
script and wait for the job to complete.

o Optionally, you may alter the script to test additional
datasets.

Evaluate hZCCL with other baselines using different data
sizes: Please follow the instructions below to compare hZCCL
with other baseline methods (C-Coll and MPI) across various
data sizes:

o Please update the different_sizes.sh shell script
with the size of your chosen dataset, the path to your
dataset, and the installation directory. Additionally, con-
figure your own Slurm settings as needed. All segments
requiring your input are marked with $XXX.

o Submit the revised different_sizes.sh script and
wait for the processing to finish.

Evaluate hZCCL with other baselines using various node
counts: Please adhere to the instructions below to evaluate
hZCCL alongside other baselines (C-Coll and MPI) using
different node counts:

o Please modify the different_nodes. sh shell script
to update the dataset path and dataset sizes according to
your chosen dataset. You will also need to update the
installation directory and configure your Slurm settings.
All segments requiring modifications are highlighted with
$XXX.

¢ Submit the updated different_nodes. sh script and
wait for the job to complete.

Artifact Analysis (incl. Outputs)

Evaluate dynamic homomorphic compressor—hZ-dynamic
and the traditional DOC workflow: The expected outputs:

Evaluate hZ-dynamic with traditional DOC workflow

Error bound is 1lE-1

Dataset: $YOUR_DIR/SDRBENCH-EXASKY-NYX-512x512x512/

baryon_density.£32

hZ-dynamic performance: time: 0.000899 s,
597.186776 GBps

Traditional DOC workflow

throughput

(decompressiontoperation+

compression) performance: time: 0.048888 s,
throughput: 10.981650 GBps
hZ-dynamic speedup: 54.38X

Traditional DOC workflow quality:
Min=0.11599393188953399658, Max=231724.578125,
=231724.46875

Max absolute error =
Max relative error = 0.146106
Max pw relative error = 1.000000
PSNR = 79.254, NRMSE= 0.00010897
Compression Ratio = 143.965410

range

33856.3203125000

hZ-dynamic quality:
Error bound is 1lE-2
Error bound is 1E-3

Error bound is 1lE-4

The most important information of the outputs is the
hZ-dynamic speedup, which demonstrates how fast is the
hZ-dynamic compared with the traditional DOC workflow. Ad-
ditionally, the Traditioanl DOC workflow quality
and hz-dynamic quality assess the compression quality
and ratios of the two methods.

Evaluate hZCCL with other baselines using different data
sizes: The expected outputs:

Running compression-accelerated allreduce with
different data sizes

NNODES: 64, DATADIR: $YOUR_DIR, BLOCKSIZE: 36,
ERRORBOUND: 1E-4, KERNELMAX: 4, KERNELMIN: O,
START_SIZE: 52428800, NUMTHREADS: 18

Kernel 0 (52428800,677552940,52428800 or 50MB)
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Compression-accelerated Kernel 0 For datasize:
52428800 bytes, the avg_time is xxx us, the max_time
is xxx us, the min_time is xxx us
Compression—-accelerated Kernel 0 For datasize:
104857600 bytes, the avg_time is xxx us, the
max_time is xxx us, the min_time is xxx us

Kernel 1 (52428800,677552940,52428800 or 50MB)
Kernel 2 (52428800,677552940,52428800 or 50MB)
Kernel 3 (52428800,677552940,52428800 or 50MB)
Kernel 4 (52428800,677552940,52428800 or 50MB)

The different kernels used in our experiments include the
following:

1) Kernel 0: The original MPI_Allreduce.

2) Kernel 1: The multi-thread mode of C-Coll.

3) Kernel 2: The multi-thread mode of hZCCL.

4) Kernel 3: The single-thread mode of C-Coll.

5) Kernel 4: The single-thread mode of hZCCL.
You are expected to observe that AZCCL outperforms both
C-Coll and MPI across all data sizes.

Evaluate hZCCL with other baselines using various node
counts: The expected outputs:

Running compression-accelerated allreduce with
different node counts

NNODES: 512, BLOCKSIZE: 36, ERRORBOUND: 1E-4,

KERNELMAX: 4, KERNELMIN: O

SIZEMAX = 677552940, DATADIR: $YOUR_DIR, NUMTHREADS:
18

Kernel 0 (2,512,x2)

SCALE = 2

Compression-accelerated Kernel O
677552940 bytes, the avg_time is
max_time is xxx us, the min_time
SCALE = 4

Compression-accelerated Kernel 0

For datasize:
xxX us, the
is xxx us

For datasize:

677552940 bytes, the avg_time is
max_time is xxx us, the min_time

xxxX us, the
is xxx us

Kernel 1 (2,512,x2)
Kernel 2 (2,512,x2)
Kernel 3 (2,512,x2)
Kernel 4 (2,512,x2)

The kernels utilized in this experiment are consistent with
those used in the previous experiment, and similar perfor-
mance improvements are observed.
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