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Abstract

With the rapid development of society and economy, random and intermittent renewable en-
ergy such as wind and photovoltaic (PV) generation is connected to the grid on a large scale.
At the same time, forecasts of renewable energy output and loads are imprecise. These factors
together lead to the uncertainty of power systems increasingly showing the characteristics of
Knightian uncertainty, which makes the optimal microgrid planning and operation very chal-
lenging. Firstly, to overcome the shortcoming of the Monte Carlo method and the Latin hyper-
cube method that require prior knowledge of the probability distributions of renewables and
loads, this paper proposes a typical scenario generation methodology for renewables and loads
based on Wasserstein generative adversarial networks with gradient penalty (WGAN-GP) and
K-medoids. Secondly, optimal multi-objective bi-level microgrid planning models considering
the actual battery energy storage system (BESS) lifetime based on WGAN-GP and info-gap
decision theory under opportuneness and robustness strategies are established in this paper
to effectively resolve the Knightian uncertainty of optimal microgrid planning and operation
caused by the uncertain nature of wind, PV generation, and loads. Then, the multi-objective
bi-level models are converted into multi-objective single level models. The Pareto-optimal front
of these multi-objective problems are obtained by the e-constraint method, and the compro-
mised solution of the Pareto-optimal set is determined by fuzzy decision making. Finally,
the proposed models are analyzed on the Banshee microgrid and verified by the Monte Carlo
simulation. A bunch of results based on cases studies are obtained. For example, under the
opportuneness strategy, when the opportunistic level factor equals 0.20 and the radii of the
uncertainties of wind, PV generation, and loads are 0.0625, 0, and 0.2298, respectively, the
planning cost of the microgrid does not exceed $2048k. This case reduces the cost by 20%
compared to deterministic planning. All results of case studies prove the reliability, feasibility,
and effectiveness of the proposed models.

Keywords: Distributed energy resources (DERs), energy storage, microgrid, Wasserstein
generative adversarial networks with gradient penalty (WGAN-GP), optimal planning and
operation, info-gap decision theory, multi-objective, renewable energy, uncertainty.

1. Introduction

1.1. Research motivation

Because of growing concerns over greenhouse gas emissions by conventional energy gen-
eration sources, microgrids are becoming a viable solution for integrating distributed energy
resources (DERs) to reduce environmental pollution. In general, DERs include renewable en-
ergy sources (RESs), energy storage systems (ESSs), dispatchable fuel-generators (DFGs), etc
[1]. The battery energy storage system (BESS) is a kind of ESS.
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There have been several researches on microgrid planning. However, most of them are based
on single-bus approaches, that is, they do not consider dynamic constraints such as power flow.
The single-bus model cannot perform the optimal placement of DERs inherently, which is
obviously unreasonable. Furthermore, many studies on microgrid planning regard the BESS
lifetime as a fixed value, which is obviously unrealistic, because the frequent use of the BESS
makes its actual service lifetime lower than the nominal lifetime. Hence, our models not only
consider dynamic constraints such as power flow, but also consider the actual BESS lifetime
based on the rain-flow counting algorithm.

Traditional scenario generation methods such as the Monte Carlo method and the Latin hy-
percube method need to assume in advance that the data obey specific probability distributions
in order to generate scenarios. However, it is difficult to obtain the probability distributions
accurately in actual engineering practice. In addition, the modeling process of the Monte Carlo
method and the Latin hypercube method is tedious. These drawbacks of the Monte Carlo
method and the Latin hypercube method may produce large errors in the process of parameter
fitting and generate poor-quality scenarios. Consequently, this paper adopts the Wasserstein
generative adversarial networks with gradient penalty (WGAN-GP) rather than the traditional
scenario generation methods to generate scenarios. WGAN-GP does not need to assume the
data distribution in advance, and avoids the problem that the assumed distribution in tradi-
tional methods is different from the actual distribution, which leads to unreasonable scenario
generation.

Wind and photovoltaic (PV) generation are connected to the grid on a large scale because
they are environmentally friendly, low-cost, and renewable. However, in the context of a com-
petitive power market, microgrid planning decision-makers may not have access to complete
wind and PV generation output and load data due to privacy concerns of generation enter-
prises. Furthermore, wind and PV generation have strong intermittence and randomness, load
management makes load side structure change, and the load is affected by the subjectivity
of electricity consumption, etc. Moreover, due to the limitations of forecasting technology
and cognitive ability, these factors make it difficult to accurately obtain the actual wind, PV
generation, and loads. The above factors together make the uncertainty in the power system
increasingly exhibit characteristics of Knightian uncertainty. The uncertainty seriously affects
the design, security, stability, and economic operation of the microgrid, which makes the plan-
ning and operation of the microgrid a very challenging job. If uncertainties are not properly
addressed, they can lead to serious planning and scheduling issues, such as inadequate unit
climbing capacity, insufficient rotation reserves, transmission congestion, and demand disrup-
tions. In this context, it is of great significance to study the optimal planning and operation
of microgrids that take into account the uncertainties pertaining to renewables and loads, yet
underestimating or exaggerating the impact of uncertainty in the optimal planning and opera-
tion of microgrids can jeopardize the reliability and cost-effectiveness of microgrids. Therefore,
uncertainty must be seriously considered in the optimal planning and operation of microgrids.

At present, there are four main modeling methods of uncertainty in power systems, namely,
fuzzy programming [2, 3, 4, 5, 6, 7], stochastic programming [8, 9, 10, 11, 12, 13, 14, 15, 16], in-
terval methods [17, 18, 19, 20, 21, 22, 23], and robust optimization [24, 25, 26, 27, 28, 29, 30, 31].
The key to modeling based on fuzzy optimization lies in the selection of membership functions;
on this basis, the necessary judgment conditions are added to form the power system uncer-
tainty model. Stochastic programming holds that the uncertainty of a system can be described
by probability distribution functions. Stochastic programming requires knowing the probabil-
ity distributions of the parameters. Scenario-based stochastic programming involves a large
number of scenarios and a large amount of calculation. Although the probability distributions
of uncertain variables are not required for robust optimization, the exact set of uncertainties
in robust optimization can lead to overly conservative solutions, which can cause the economy



of the system to decline. These traditional methods need to have sufficient knowledge of un-
certainty in order to obtain membership functions, probability distributions, specific interval
ranges, or bounded uncertainty sets. However, such prior information is difficult to obtain
in practical engineering applications, especially under power systems’ increasingly displaying
Knightian uncertainty. Moreover, we used to think that uncertainty was bad; however, not
necessarily, in some cases, uncertainty can be beneficial.

Compared with stochastic, fuzzy programming, robust optimization, and interval methods,
info-gap decision theory [32] examines the characteristics of uncertainty from the perspective
of non-probability. Info-gap theory pays attention to the gap between known information
and unknown information, and the modeling is simple. It has a small demand for uncertain
information and does not need probability distributions, membership functions, uncertainty
boundaries, or uncertain intervals. It can guarantee the economy of the system while ensuring
the robustness of the system. It is insensitive to parameter perturbations. It can deal not only
with robustness model, but also with chance model. It has stronger applicability to Knightian
uncertainty in modern power systems. Info-gap theory is unique in that it expresses the idea
that uncertainty can be both harmful and beneficial, and quantifies both aspects of uncertainty.
These advantages of info-gap theory stimulate the authors to explore its use in dealing with
uncertainties in the planning and operation of microgrids.

1.2. Literature review

1.2.1. Deterministic planning

Reference [33] discussed the economic emission load dispatch-based scheduling of DERs
for proper energy management planning. Reference [34] proposed a model for calculating the
optimal ESS size of a microgrid considering the reliability criterion. Reference [35] developed
the operation and design optimization model of microgrids with renewables. Reference [36]
presented the operational strategy optimization in an optimal sized smart microgrid, where
energy management in microgrids is addressed taking into consideration economic efficiency,
environmental restrictions, and reliability improvement. In [37], the optimal planning of a
microgrid including demand response and intermittent RESs was proposed, which investigated
the suitability of a novel active controller applied to heating/cooling systems in a microgrid
with high penetration of renewables. Reference [38] presented a hybrid combined cooling,
heating, and power (CCHP) system integrated with compressed air energy storage (CAES).
Reference [39] discussed the optimal operational planning of scalable DC microgrid. Reference
[40] presented AC versus DC microgrid planning.

The microgrid planning problem is typically formulated as a mixed integer programming
problem, which is an NP-hard problem. Researchers have used different mathematical methods
to model and approach the problem of optimal microgrid planning and operation. References
[41, 42, 43] applied the mixed integer linear programming (MILP) to the planning problem
of microgrids. Particle swarm optimization was employed for the redundant building cooling
heating and power system in [44] and for the hybrid micro-grid system in [45]. Reference [46]
used genetic algorithms to design and control PV-diesel systems. A two-stage optimal planning
and design method was adopted for the CCHP microgrid system in [47]. Multi-objective for-
mulations were utilized in [48, 49, 50, 51]. Reference [52] applied a duality-based approach to
short-term operation scheduling in renewable-powered microgrids. Reference [53] established
a two-stage full-data processing method for microgrid planning with high penetration of re-
newables. A mixed integer nonlinear model was developed in [54], in which a deterministic
branch-and-bound nonlinear solver was utilized. A bi-level program for the planning of an is-
landed microgrid including CAES was presented in [55]. Two constraint-based iterative search
algorithms were proposed for the optimal sizing of wind turbines (WTs), solar PV panels and
BESSs in a grid-connected microgrid in [56]. Reference [57] proposed a cost-effective two-stage



optimization model for microgrid planning and scheduling with CAES and preventive mainte-
nance.

1.2.2. Fuzzy programming

In order to deal with the risks brought by uncertainty to microgrid planning, there have
been a large number of relevant studies, which mainly focus on microgrid planning and op-
eration based on fuzzy programming, stochastic programming, interval methods, and robust
optimization. Reference [2] discussed the applications of fuzzy logic in planning of microgrids.
In Reference [3], a multi-objective fuzzy optimization model was established for electricity gen-
eration and consumption management in a microgrid. Reference [4] proposed a methodology
based on fuzzy interval models for microgrid planning which includes the effect of the uncer-
tainties of renewables explicitly. An economic dispatch algorithm with fuzzy wind constraints
and attitudes of dispatchers was described in Reference [5]. A fuzzy optimization approach for
solving the generation scheduling problem with wind and solar energy systems was presented
in Reference [6]. An energy operation model for optimizing operation costs of a non-isolated
microgrid was proposed in Reference [7]. Different possible uncertainties associated with dif-
ferent elements of the microgrid like the output of renewable sources, the maximum capacity
of batteries, the maximum capacity of distributed line, and hourly demand are considered in
this model. Fuzzy sets are used to model these uncertainties, and a three stage optimization
method is applied to find the optimal scheduling of the microgrid under the uncertainties.

1.2.3. Stochastic programming

In Reference [8], a predictive control approach to integrated energy management based on
the stochastic model was presented for a microgrid with renewables. The uncertainties of load
demand, wind, and PV generation in the microgrid as well as the electricity prices are modeled
by typical scenarios. A two-stage energy management scheme of hybrid AC/DC microgrids was
proposed based on stochastic programming in [9]. This scheme uses scenario-based stochastic
programming and considers frequency security constraints. A two-stage stochastic p-robust op-
timal energy trading management method for microgrid operation was presented in [10]. This
method takes into account uncertainty and hybrid demand response, and assumes that the
probability density functions of renewable generation are known. In Reference [11], a two-stage
stochastic programming formulation was proposed. The conventional generation schedules
and adjustable load set points are first-stage decisions. However, second-stage decisions in-
clude energy transactions with the main grid and real time load adjustments. Multi-objective
stochastic programming energy management in microgrids was developed in Reference [12].
Uncertainties of wind speed, solar radiation, and electrical-thermal loads are investigated, and
a multi-objective stochastic MILP is solved in the first stage. Then, in the second stage, the
effects of fuel cost uncertainty on generation units and objective functions are studied. Two-
stage stochastic programming formulation for the optimal design and operation of the multi-
microgrid system using data-based modeling of renewables was presented in Reference [13].
A multi-objective stochastic optimization methodology for planning a multi-energy microgrid
considering unscheduled islanded operation was established in Reference [14]. In this reference,
the model of the uncertain islanded mode is developed using four correlated random variables,
and the scenario tree is employed for islanded scenario generation. Cao et al. [1] presented a
chance constrained information gap decision model for multi-period microgrid expansion plan-
ning. A chance-constrained optimization problem was formulated for the optimal scheduling of
mirogrids in [58]. A scenario-based stochastic programming framework for multi-objective op-
timal microgrid operation was developed in Reference [59]. In the framework, the uncertainties
related to the forecasted values for load demand, wind, PV units, and market prices are mod-
eled by scenario-based stochastic programming. A two-stage stochastic programming method
to incorporate the various possible scenarios for RESs and costs in the microgrid planning was



introduced in Reference [60]. Hajipour et al. [61] presented the stochastic capacity expansion
planning of remote microgrids with wind farms and energy storage. A stochastic programming
framework for day-ahead scheduling of microgrid energy storage systems using multi-objective
optimization was proposed in Reference [15]. To properly handle the uncertainties, stochastic
models associated with renewables and loads are developed in the multi-objective scheduling
framework and they are formulated as MILP problems. Reference [16] presented a stochastic
multi-objective optimal energy management algorithm of grid-connected unbalanced microgrids
with renewables and plug-in electric vehicles. Uncertainties are considered by employing the
roulette wheel mechanism for generating scenarios. A hybrid stochastic/robust-based multi-
period investment planning model for isolated microgrids was presented in [62].

1.2.4. Interval methods

Optimal planning of multi-energy microgrids with uncertain renewables and demand based
on the interval method was proposed in [17]. The uncertainties of RESs and demand are
described as intervals, and the corresponding uncertainty constraints could be converted to
deterministic ones. Interval optimization was applied to the coordination of demand response
and BESSs in a microgrid in [18]. Multi-objective optimal dispatch of microgrids under uncer-
tainties via interval optimization was developed in [19]. Uncertain power output of wind and
PV generation in a microgrid are presented as interval variables. A multi-objective interval
optimization dispatch model for microgrids via deep reinforcement learning was formulated
in [20], where the uncertain power output of wind and PV generation is represented by in-
terval variables. A hybrid stochastic-interval operation algorithm for multi-energy microgrids
to account for uncertainties in decisions of operational strategies was proposed in [21]. Refer-
ence [22] developed an interval-based privacy-aware optimization framework for electricity price
setting in isolated microgrid clusters, in which the uncertain nature of renewable generation
and demand is accommodated using interval notation and equivalent scenarios. Reference [23]
proposed a stochastic-based resource expansion planning scheme for a grid-connected microgrid
using interval optimization, where interval linear programming is applied for modelling inherent
stochastic nature of renewables.

1.2.5. Robust optimization

A robust offering algorithm for wind producers considering uncertainties of demand response
and wind generation was proposed in [24]. This is a risk-constrained decision-making method.
A robust framework for the day-ahead energy operation of a residential microgrid comprising
interconnected smart users under uncertainties of demand and renewable power generation was
presented in [25]. Expansion planning for a distribution network considering the uncertainties
of wind generation and loads was handled by adaptive robust optimization based on polyhedral
uncertainty sets [26]. A scenario-based robust energy management scheme of a microgrid with
uncertain renewables and loads was described in [27], which considers the worst-case amount
of renewables and loads. Reference [63] proposed a robust optimization method for optimal
DG placement in microgrids considering the uncertain nature of renewables and loads. This
model is converted into a two-stage robust optimization problem, and a column and constraint
generation method is employed to tackle it. A distributionally robust optimization model for
real-time power scheduling of distribution networks was presented in [28]. This model can be
reshaped into a semidefinite programming problem and handled by a constraint generation
algorithm. A two-stage robust optimization method for spatially-temporally correlated data
centers was established in [29]. The boundaries of the uncertainty sets are handled by a data-
driven approach. A two-stage robust reactive power optimization strategy in active distribution
networks with wind generation was proposed in [64]. This model can give a robust optimal
solution and coordinate the discrete and continuous reactive power compensators. An inexact
two-stage stochastic robust programming was used to find the optimal planning and operation



of residential microgrids in [65]. A tri-level robust investment planning scheme of DERs in
distribution networks was proposed in [66]. A point estimate-based stochastic robust scheduling
model for electricity-gas combined systems with probabilistic wind generation was proposed,
and the model was solved using iterative convex optimization in [31]. Reference [30] developed
a tri-level robust planning-operation co-optimization scheme of distributed energy storage in
distribution networks with high PV penetration. This reference analyzes the effect of different
level uncertainties on the solutions of the planning problem. A robust optimization model for

the microgrid planning problem with uncertain physical and financial information was presented
in [67].

1.2.6. Info-gap decision theory

Info-gap decision theory has been applied to a certain extent to market bidding strate-
gies [68, 69], reactive power planning [70], voltage management [71], optimal power flow [72],
unit commitment [73, 74, 75], and energy scheduling [76, 77, 78, 79, 80, 81]. Reference [68] uti-
lized info-gap decision gap to deal with the optimal bidding strategies for the day-ahead market.
Reference [69] considered the uncertainty caused by wind generation based on info-gap decision
theory, and developed a risk-based energy management scheme of renewable-based microgrids
in the presence of peak load management. A reactive power planning scheme based on info-gap
decision theory was developed in [70]. In this reference, info-gap decision theory is utilized
to tackle the uncertainties of wind farms and loads. In [71], info-gap theory was used to deal
with congestion and voltage management in the presence of the uncertainty of wind generation.
References [72] and [73] applied info-gap decision theory to the optimal power flow and unit
commitment problems of power systems considering wind generation uncertainty, respectively.
Reference [74] applied info-gap decision theory to robust security-constrained unit commitment
considering wind generation and electric vehicles. Reference [75] utilized info-gap decision the-
ory to handle the uncertain nature of wind generation and evaluated the effect of electric vehicle
parking lots on transmission-constrained unit commitment using a hybrid IGDT-stochastic ap-
proach. References [76] and [77] utilized info-gap theory to tackle the scheduling problems of
concentrating solar power plants and wind producers, respectively. A risk-seeking economic
dispatch method based on info-gap decision theory considering the uncertainties of wind gener-
ation was presented in [78]. A robust operation approach of integrated electricity and natural
gas transmission networks was developed in [79], in which the uncertainty of load demand is
considered. The uncertainties considered in this reference are photovoltaic generation and load
demand. An optimal day-ahead scheduling approach of DERs using info-gap decision theory
was presented in [80], where the uncertainties of PV generation and loads are examined. Risk-
constrained self-scheduling schemes of generation companies based on info-gap decision theory
were proposed in [81]. A complementarity approach of virtual power plants based on info-gap
decision theory was developed in [82]. This approach can handle strategic decision making
of price-maker virtual power plants considering demand flexibility. A charging optimization
approach for electric vehicles considering demand response and multi-uncertainties based on
Markov chain and info-gap decision theory was developed in [83]. This approach analyzes the
impact of fluctuations in wind and PV generation on risk aversion decision makers using info-
gap decision theory. Info-gap decision theory was employed to enhance the resilience of active
distribution systems in [84]. Scheduling strategies of the integrated natural gas and power
system with high wind generation were developed in [85, 86], in which info-gap decision theory
is utilized to handle the uncertain nature of wind generation. A info-gap decision theory-based
robustness assessment method for a power system with wind generation penetration considering
rigorous security constraints was presented in [87].

However, the application of info-gap theory in optimal microgrid planning and operation
remains to be studied. In addition, there are some problems such as incomplete consideration
factors and incomplete application of info-gap theory in the existing info-gap theory models.



It is reflected in the following aspects. First, only one uncertainty is usually considered in
modeling, such as only load or wind or PV generation uncertainty. Only the uncertainty of
wind generation was taken into account in the corresponding problems of References [69, 72,
73, 78, 85, 86, 87]. Only the uncertainty of loads was considered based on info-gap decision
theory in [1]. Second, info-gap theory has two performance requirements for uncertainty, namely
robustness and opportuneness, but the current research generally ignores opportuneness. For
instance, only robustness was taken into account in [1, 79, 83, 86, 87, 77]. Therefore, this paper
comprehensively models the uncertainties of wind, PV generation, and loads based on info-gap
theory, and develops the optimal multi-objective planning and operation model of the microgrid
under risk aversion and risk seeking (opportunity seeking) according to the decision-maker’s
risk preference, so as to ensure that the decision result is still acceptable when the uncertainty
fluctuates arbitrarily within a certain range.

1.3. Contributions

The main contributions of this paper are summarized as follows.

1) In view of the shortcomings of vanilla generative adversarial networks (GANs) and Wasser-
stein generative adversarial networks (WGANSs), such as difficult training, slow conver-
gence rate, and poor sample quality, this paper applies WGAN-GP to wind, PV, and load
scenario generation, and utilizes the K-medoids reduction technology to obtain several
typical scenarios and reduce the calculation burden. The effect of WGAP-GP is better
than that of WGANS, the training of WGAP-GP is stable, and almost no parameters are
needed to tune.

2) Because the frequent charging and discharging during the actual use of the BESS results
in the actual lifetime of the BESS being lower than the nominal lifetime, this paper
considers the actual lifetime of the BESS based on the rain-flow counting algorithm, so as
to consider the replacement cost of the BESS. Furthermore, our models take into account
dynamic constraints such as power flow and system reliability constraints. The dynamic
constraints make our models multi-bus models, which can not only give the total capacity
of DERs, but also give the placement of DERs. However, the single-bus aggregate model
approach can only give the total number of each component, but it cannot give specific
installation locations intrinsically.

3) Based on info-gap theory, the uncertainties of wind, PV generation, and loads are compre-
hensively considered in optimal microgrid planning and operation. According to decision
makers’ preference for risk, both a robust planning strategy for risk aversion (RA) and
an opportunistic planning strategy for opportunity seeking (OS), or risk seeking, are es-
tablished, and two different multi-objective bi-level models for the optimal planning and
operation of the microgrid planning based on info-gap theory are proposed. Finally, the
multi-objective bi-level optimization models are transformed into the single level multi-
objective optimization models. These models can provide decision makers with planning
schemes for uncertainties of different ranges under different risk attitudes.

4) The correctness, feasibility, superiority, and effectiveness of the proposed models are ver-
ified by a bountiful series of numerical examples and analyses, as well as the Monte Carlo
method.

The rest of the paper is arranged as follows. Scenario generation and reduction for renew-
ables and loads are elaborated meticulously in Section 2. The BESS lifetime estimation model
is described in Section 3. The deterministic microgrid planning and operation model is derived
and expounded minutely in Section 4. Multi-objective models for optimal microgrid planning



and operation based on info-gap theory are derived and proposed in great detail in Section 5.
Section 6 demonstrates and illustrates the simulation setup and results, and culminates in
verification by the Monte Carlo method. Conclusions follow in Section 7.

2. Scenario generation and reduction for renewables and loads

2.1. Scenario generation based on WGAN-GP

WGANS [88] are used to generate renewable scenarios [89]. However, WGANS are sometimes
difficult to train, has a slow convergence rate, sometimes does not converge, and sometimes
generate poor samples. This is because WGANs use weight clipping to enforce a Lipschitz
constraint on the critic. Therefore, this paper adopts WGAN-GP [90] to generate renewable
scenarios. WGAN-GP penalizes the norm of gradient of the critic with respect to its input
instead of clipping weights. WGAN-GP works better than WGANSs, and enables stable training.
There is little need to tune hyperparameters for WGAN-GP.

The fundamental framework of WGAN-GP for renewable and load scenario generation is
shown in Figure 1. Figure 1 is mainly composed of two deep neural network models, generator
G and discriminator D. G and D can be comprised of convolutional neural networks or fully
connected neural networks. By learning the potential distribution of historical renewable gen-
eration (mainly wind and PV) or load data, the generator G processes the noise signal z that
follows the probability distribution p,(z) (such as Gaussian distributions) to obtain the gener-
ated data G(z) that follows the probability distribution pg(z). The goal of G is to approximate
the probability distribution G(z) of the generated data to the probability distribution pgata(x)
of the historical data. The discriminator judges the generated data G(z) of the generator and
the historical data x that follows the probability distribution pga.(x) and outputs the proba-
bility D(G(z)) that the generated data G(z) follows the true distribution pgata(x). The goal of
D is to determine as accurately as possible whether the input data is historical or generated.

Historical samples : N
Selected samples H

Real

Fake

Discriminator

Generator
Generated samples

Figure 1: Fundamental framework of WGAN-GP for renewable and load scenario generation.

After defining the training objectives of G and D, it is necessary to construct the loss
functions L% and L? of G and D respectively for training. For G, a smaller L% means a higher



probability that the generated data will obey pgata(x). For D, a smaller L” means that D is
better able to distinguish between data sources. LS and L” can be represented as follows:

LY = —Eyup, () [D(G(2))], (1)

A 2
L = —Expya0 D)) + B, (9 [D(G(2))] + MBsope 0 [(IV=D R, = 1], (2)
Original disc‘r?minator loss Gradier?trpenalty

where X = {x + (1 — §)G(z),& ~ U[0,1], A represents the weight coefficient of the gradient
penalty term, and ||-|| denotes the fo-norm.

In order to enable simultaneous game training between G and D, we combine (1) and (2) to
construct the following minimum-maximization game model about the value function V (G, D):

minmax V(D, G) = Expyen0[D(X)] ~ Earpy)[D(G(2)] ~ Mo sy [(IV5D ()], — 1))
(3)
In the initial stage of WGAN-GP training, there is a big difference between the data sample
generated by GG and the real data sample, so D can distinguish the two samples with a high
accuracy. In this case, L” is smaller; however, LY and V (G, D) are both larger. With the
progress of iterations, G adjusts the weight of the generator network to make the generated
sample more and more similar to the real sample, and the discriminator network also improves
the discriminant ability through learning. This is done through repeated iterations until even-
tually the discriminator network cannot accurately distinguish the source of the input data
sample, at which point the generator is trained and can be used to generate wind, PV, or load
scenarios. The detailed procedure of generating renewable scenarios using WGAN-GP is shown
in Algorithm 1.

Algorithm 1 WGAN-GP for renewable and load scenario generation
Input: Gradient penalty coefficient A\, number of discriminator iterations per generator itera-
t10N Ngiscriminator, Patch size m, Adam hyperparameters o, £, Fs.
Input: Initial parameters 62 for D and 6§ for G.
1: while 6% has not converged do

2: fort=1, - Ngiscriminator dO

3: for:=1,--- ,mdo

4: Sample historical data X ~ pgata(X).

5: Sample noise data z ~ p,(z) (Gaussian distribution).

6: Sample a random number & ~ U|0, 1].

7 X < Gya(z)

8: X ex+(1- 9%

0 LP & Dy (%) - Dyo(x) + A (| Vs Do (R)]], — 1)

10: end for

11: 0P + Adam (Veo= 3" LP. 6P «, Bi, o) # Update parameters for D.
12: end for

13: Sample a batch of noise from Gaussian distribution {z;}7; ~ p,(z).

14: 0% < Adam (VQG% S = Dygp (Goa (2))], 0%, a, B, 52) # Update parameters for G.
15: end while

2.2. Renewable and load scenario reduction based on K-medoids

In order to simplify the problem and improve the computational efficiency, we need to reduce
the scenarios generated by WGAN-GP. Assuming that all scenarios before reduction constitute



a set S, the purpose of scenario reduction is to find an optimal subset S’ of S to replace S so
that S’ covers the information contained in S as much as possible, namely:

I Pz in d i Pj) 4
mmpzes min dr (P, p;) (4)
pi¢J
dr(p,q) = [lp — allr = > _ Ipi — ail . (5)
=1

where P; is the probability of scenario p; appearing, dr is the Manhattan distance between the
two scenarios.

Since the traditional scenario reduction methods such as fast forward selection and simulta-
neous backward reduction [91, 92] are sensitive to the original scenario size, and the clustering
algorithm is not as sensitive to the original scenario size as the traditional scenario reduc-
tion methods, this paper adopts the K-modiods algorithm to complete the scenario reduction.
WGAN-GP may produce some abnormal scenarios when generating scenarios, and the K-means
algorithm takes the mean value of sample points in the same class as the clustering center, which
is very sensitive to abnormal data. Improper selection of the initial center will lead to poor
clustering results, while the K-medoids algorithm takes sample points as clustering centers.
The defect of the K-means algorithm is overcome effectively by the K-medoids algorithm, and
it has good robustness to outliers. The specific steps of the scene reduction method based on
K-medoids are shown in Algorithm 2. Algorithm 2 divides all scenarios into k clusters, and each
cluster selects a scenario (medoid) as its representative. The medoid has similar attributes and
characteristics with other scenarios in the cluster. Therefore, the attributes and characteristics
of renewable and load scenarios after reduction have obvious differences.

Algorithm 2 K-medoids for renewable and load scenario reduction

1: Randomly select k scenarios from S {ko, k1, - , k,} as the initial clustering centers.
2: while The medoids have not converged or the maximum number of iterations have not
been reached do

3: The remaining scenarios are assigned to the clusters represented by the current best
medoids based on the principle of the closest Manhattan distance (5) to the medoids.
4: In each cluster, calculate the criterion problem (4) corresponding to each member point,

and select the point corresponding to the minimum criterion function as the new medoids.
5: end while

3. BESS lifetime estimation model

In the economic analysis of the microgrid design, the lifetime of the BESS is an important
factor for its investment cost analysis. However, the lifetime prediction of the BESS is a core and
intractable problem in the research of the BESS. The lifetime of the BESS is closely related to its
working environment, charging and discharging cut-off voltages, currents, depths of discharge
(DoD)!, charging and discharging cycles, and other factors. The lifetime of the Li-ion battery is
mainly affected by the ambient temperature and the DoD. At the same ambient temperature,
the greater the DoD of the BESS, the shorter the lifetime. Generally, the operating temperature
and charging current are related to the heat dissipation and control system. Since the ambient
temperature is regarded as the room temperature and the battery is assumed to operate within

IThe DoD of the BESS refers to the percentage of discharging energy released by the BESS to its rated
capacity during a complete charge-discharge cycle.
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a certain range of conditions, we only considers the influence of the DoD of the BESS on its
lifetime.

It should be noted that a complete (full) cycle is composed of a discharge half cycle and
a charge half cycle. As shown in Figure 2, the circles of SoCy(m) — SoCi(71) — SoC (1)
and SoCq(19) — SoCsy(11) — SoCsq(7s) are full circles, and the circles of SoCy(79) — SoCy ()
and SoCy(7) — SoCy(7e) are half cycles. The DoD of SoC;(m9) — SoCi(11) — SoCi(72) is
|SOC1(T0) — SOCl(Tl)‘.

Q "
3 . SoC

SoC,

1
Time

Figure 2: Demonstration of full circles.

3.1. Calculating the DoD using the rainflow counting algorithm

Due to the irregular variations of the state of charge (SoC) in practical engineering, a clear
charging and discharging cycle cannot be directly divided. Therefore, the first problem we need
to solve is how to divide the SOC curve and get the charging-discharging cycle sequences with
clear physical significance. In this paper, the rainflow counting algorithm [93, 94] is used to
determine a series of cycles in the SOC curve and the DoD of each cycle, and then calculate
the equivalent cycle lifetime of the battery according to the corresponding relationship between
the DoD and the lifetime. The specific rules and main steps of the rain-flow counting algorithm
are shown in Algorithm 3.

Algorithm 3 Rain-flow counting algorithm

1: Turn the SOC curve clockwise by 90° and mark the starting point, local maximums, and
local minimums in the SOC curve.

2: Rain drops flow downward from the starting point, local maximums, and local minimums.
At the same time, rain drops fall vertically when they reach local maximums and local
minimums. When a rain drop meets a new local maximum larger than the original local
maximum or a new local minimum smaller than the original local minimum, it stops falling.

3: When a rain drop meets the rain drop falling from the high roof, it stops flowing and forms
a full cycle.

4: Determine each full cycle and half cycle.

5: The amplitude of each cycle is taken as the DoD of the cycle.

Assume that the SOC curve of a BESS over a period of time is shown in Figure 3. After
counting the extreme value points of the SOC curve and conducting numbering these points,
the SOC curve extremum point plot can be obtained as shown in Figure 4. Based on the
rain-flow counting algorithm, the schematic diagram of each cycle and the DoD of each cycle
are shown in Figure 4 and Table 1, respectively.
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Figure 3: SoC curve of a BESS.
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Figure 4: Extremum points and each cycle of the SoC curve.

Table 1: DoD of each cycle
Full Cycle 2 Full Cycle 3 Full Cycle 4 Full Cycle 5 Half Cycle

0.22 0.34 0.36 0.47 0.76

Cycle No.
DoD

Full Cycle 1
0.32

6 Half Cycle 7
0.74

Table 2: Relationship between the DoD and the number of cycles to failure

DoD (%) Number of cycles to failure
10 70000
20 31000
30 18100
40 11800
50 8100
60 5800
70 4300
80 3300
90 2500
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3.2. Equivalent BESS lifetime estimation

The relationship between the DoD and the number of cycles to failure of a BESS is shown
in Table 2 [95].

The polynomial function is used to fit the data in Table 2, and the relationship between the
DoD and the number of cycles to failure is

Ny =5.12 x 10°DoD® — 1.7749 x 10"DoD? + 2.4964 x 10" DoD* — 1.8303 x 10"DoD?
+7.471 x 10°DoD? — 1.672 x 10°DoD + 1.78 x 10°,

where N is the number of cycles to failure. The corresponding fitted curve is shown in Fig. 5.

x10*

*  Actual data points
16 Fitted curve

S N

Number of cycles to failure

*

o N & o o

s L L L L 1 X X *
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DoD

o

Figure 5: Relationship curve between the DoD and the number of cycles.

Assume that the number of cycles of the SoC of a BESS in a day is n, and the DoDs
corresponding to all cycles are DODq, DODs, - - - , DOD,,, respectively. The number of cycles to
failure corresponding to DOD; is NV, ¢¢, then 1/N; ¢ represents the lifetime loss rate in the ith
cycle. The lifetime loss of the BESS in one day is

n

1
L = . 7
s =Y 5 )
Then, the BESS lifetime in years can be calculated using the following formula:
Tyess = == 0
P 365 Lmss

4. Problem formulation

The considered DERs in the paper include WTs, PV panels, diesel generators (DGs), BESSs,
i.e., QRES = {WTS, PVS}, QDFG = {DES}, QESS = {BESSS}, and QDER = QRES U QDFG U QESS'
The BESSs used in this paper are Li-ion BESSs. By minimizing the annualized equivalent
investment and operation costs, the deterministic microgrid planning and operation model is
constructed in this section.

4.1. Objective function

The optimization objective is to minimize the total annualized investment and operation
cost of the microgrid, which consists of the cost of the initial investment of equipment, the
cost of BESS and other equipment replacement, the operation and maintenance (OM) cost, the
emission cost, the cost of the electricity purchased from the main grid, the electricity export
revenue, and the load curtailment cost. The chosen time-step At is one hour, so energy and
power are numerically identical. The fundamental objective can be formulated as follows:

min C' = Cipy + Cop, (9)
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Cinv - C'acq + C'OM + C'ins + C'repa (10)

Cop - Cgen + Cemi + Cimp - C(exp + CV(:UIM (11)
(1+7r)"
acq Z Z —7 (12)
neNlEQDER 1 + r) - 1
i—f
e (13)
r(1+ T)T
1ns Z Z Bl Clﬁ, (].4)
neN ZGQDER _'_ T) -
T
Lol r(147r)
rep Z Z X ( 1 1) T ) (15)
’VZENlEQDER T (1 + r> o 1
C’OM — Z Z OM max <16)
neN IEQprr

365 < — L
Cgen = 3 Z Z Z g Pn,d,h? (17)

d=1 h= 1n6Nl€QDFG

365 D H m
Cemi = 7 Z Z Z Z Z Weulyepé,d,fw (18)

d=1 h=1 TLEN ZGQDFG e=1

365 <= o
Cimp = ? Z rlmpPFl’n(lJpC ,d,h) (19)
d=1 h=1
D H
365 exp e
Cexp = fzzr pPPcp(tha (20)
d=1 h=1
365 <
Cour = HPZ > Pian (21)
d=1 h=1 neN

where C, Ciny, Cop, Cacq; Com, Cins, Creps Ceens Cemis Cimp, Cexp, and Ceyy are the total annual-
ized investment and operation costs, the annualized investment cost, the annualized operation
cost, the annualized DER acquisition cost, the annualized DER OM cost, the annualized DER
installation cost, the annualized DER replacement cost, the annualized DER generation cost,
the annualized DER emission cost, the annualized cost of electricity imported from the main
grid, the annualized revenue of the electricity exported to the main grid, and the annualized
cost of load curtailment, respectively. B! is the binary decision variable for DER [ at bus
n. FC! is the fixed installation cost of DER . d, e, h, I, n, and ¢ stand for indices of days,
pollutants, hours, DERs, buses, and optimization periods or time, respectively. N is the set of
buses. "¢ is the pollutant e emission coefficient of DFG [. 7¢ and p are unit penalty costs of
pollutant e and load curtailment, respectively. @ is the acquisition cost of DER I. OM' is the
OM cost of DFG [. 7, i, and f are the real discount rate, the nominal discount rate, and the
expected inflation rate, respectively. D is the number of typical days in a year. H is the total
hours in a day. ¢’ is the unit generation cost of DFG . m is the total types of pollutants. T is
the project lifetime. 7" is the actual lifetime of DER [ (BESSs or other DERs). r{™® and r}™"
are electricity rates for electricity export and import during period ¢, respectively. X ]z is the
number of DER [ installed at bus j. P! is the capacity of DER I.

max
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4.2. Constraints

4.2.1. Power flow constraints

Linearized distribution flow (LinDistFlow) [96] is adopted in this paper to integrate power
flow into the network.

v V;
'S, =Py +.7\'Qij ’

: I
M r 1 |
\ 1 |

n Ty n E
’_bzlsi A R A I

Figure 6: A radial network with 2-bus

\J

Considering the network shown in Figure 6, we have the following equations:

Z ij,t - Z ‘P;,t + P]l’ct - P;i + Z ([)ij,t - 37“,']'&]"15) 5 V] S N, \V/t € T, (22)

k:]—)k‘ lEQDER 'LZ_U

Z Qiks = ( Z f)},t + P]lct — Pﬁ) tan(arccos(pf))

k:j—k lEQDER (23)
+ ) (Qiju —3iilije), VjENVLET,
ii—j
Vit =Vit — 2 (’f‘z‘jPijﬂg + l‘ijQij,t) + 3 (7’123 + ZL’?J) gijﬂg, Vlj S S,Vt S T, (24)
Pz + 0%
3&]’7,5 - M, VZJ € S,V € t, (25)
Vit

where £ is the set of branches. r;;, z;;, and z;; are the resistance, the reactance, and the
impedance on line ij, respectively. pf is the power factor. P}J is the injected active power
generated by DER [ at bus j at time t. F;;; and @Q;;; are the active and reactive power from
buses i to j at time ¢ (sending—ending), respectively. P]l‘; and ;Ct are the curtailed active and
reactive loads at bus j at time ¢, respectively. P]k,i; and th are the active and reactive power
of the load at bus j at time ¢, respectively. v;; is the square of the magnitude of the complex
voltage at bus j during period ¢, i.e., v := [Vj4|?. £; is the square of the magnitude of the

complex current from buses i to j during period ¢, i.e., £i;; := |L;;.|*.

Remark 1. Equations (22)-(25) use the actual value, and the power in the equations is the
three-phase power. If the actual value of the single-phase power or the per value is adopted, the
coefficient 3 should be removed from the above four formulae.

If we remove 3r;;lij4, 3xilijq, and 3 (13 + 22) £, from (22), (23), and (24), respectively,
we can obtain the linearized branch flow model or LinDistFlow, which can greatly improve the
solving speed:

— ! le 1d .
Y Pui= > Pl+PS—Pi+ > Py, VieNWET, (26)
k‘]—}k ZEQDER ZZ%]
Z Qjkt = ( Z P]{t + P;‘i — iji) tan(arccos(pf))
k:j—k lEQDER

+ ZQij’t’ \V/jGN,thT,

ii—j

15



Vit =Vit — 2 (Tijf)ij,t —+ xijQij,t) , VZ] S E,Vt eT. (28)

In order to ensure the safe and stable operation of the system, the following variable bounds
must also be met:

Fvlmin < Pij,t < F}max’ Vs eN’Vj EN,VtE T,Z#]a (29)
VP <v<|V]', VieNVteT, (30)
ogfij,tgﬁij?, VieNVteT, (31)

where Flmin and F"® are the minimum and maximum power flow limits for line [, respec-
tively. |V| and |V| are the minimum and maximum acceptable voltage magnitude thresholds,
respectively. |I;;] is the maximum acceptable magnitude of the complex current from buses ¢
to j.

4.2.2. BESS constraints
According to the principle of energy conservation, the charging and discharging of the BESS
at any time period t satisfy (32) and (33), respectively:

EPFS =(1 = 0)EPFS AL + PSSt PPPSST AL Ve NV e T, (32)
EPFSS =(1 - 6)EPS AL — %BET VjeN,VteT, (33)

where EP/S is the remaining available capacity (stored energy) of the BESS at bus j at the end
of period ¢. 0 is the self-discharging rate of the BESS. n®F85~ and #BPS5* are the discharging
and charging efficiency of the BESS, respectively. PﬁESSJF is the power charged by the grid to

the BESS at bus j during period ¢. P]%ESS_ is the power discharged by the BESS during at bus
j during period t.
The BESS cannot be charged and discharged at the same time:

PEESSYPBESS= — (o vje NVt e T. (34)

To prevent the BESS from overheating on account of excessive charging and discharging
power, which may affect its service life, the following requirements must be met:

XBESS PBESS

OSIDJ%ES“Sﬁ? VieNVteT, (35)
0 < PIPSST < qpPPSS=XPESSpUESS - vje NVt e T. (36)

The state of charge (SoC)? of the BESS must satisfy

SOCj7min S SOCjﬂg S SOCj7maX, VJ € N, vVt € T (37)
BzESS
SoCis = Smigmm VI ENVLET, (38)
7 max

where SoCjmin and SoC ax minimum and maximum acceptable SoC at bus j, respectively.
SoC;,; is the SoC at bus j at the end of period ¢, and EBFSS is the BESS storage capacity.

Generally, the SoC of the BESS at the end of each dispatching period is consistent with the
beginning of the dispatching period, that is, the following formula must be satisfied:

SOCLO = SOijH. (39)

2The SoC of the BESS is the ratio of its remaining charge to its capacity.

16



Constraint (34) is bilinear and Constraint (38) has the form of z/y. They are all strongly
non-convex and non-linear. We must relax them in order to make the computation tractable.
Constraint (34) is converted into the following mixed integer linear constraints:

0 P < B PP X P VI €N VEET, (40)
L= B ) X
( ”’tnBEZSJj’ SR Vi eN Ve T. (41)

BESS+
0 S Pj’t S

Furthermore, (32)—(33) are if-esle constraints. However, the existing solver cannot tackle
such constraints, which can be eliminated by using the Big-M method. Constraints (32)—(33)
can be modified into the following mixed integer linear constraints:

(1 . 5)EJ}?tE§18 + nBESS+P]?tESS+At _ B;?FSS*M < E]}-?tESS

42
< (1 §)EPESS 4 PESSEpEESSEAL L BUESS- AL v Nt € T, 42
PRS- A
BESS )t BESS— BESS
(1=0)E;;"7 — —jnBEss_ — (1= B ) M < B}
B ) |
<(1=§ENS - ;&ET +(1=BY )M, VjeNVteT.

Remark 2. M s some sufficiently large positive number, i.e. M > 0, but not an infinite
positive number. Pay attention to the value of M: neither too small nor too large. Taking
too small may lead to an infeasible solution. It should not be very large in order to avoid
convergence problems. Thus, it is best to make it as small as possible if constraints satisfied.

In our case, we can choose it on the basis of the upper bound of the installation number of the
BESS.

In order to eliminate the non-convex x/y of (38), (37) and (38) can be converted into the
equations as follows:

S0C) min X EXY < EPPSS < SoC;max X EYY, VjENVLET. (44)

max max’

4.2.8. Generation and load shedding constraints
The following formulae should be met for different generation technologies:

0< P]{t < X;Ai, \V/] € N7 vt € T? Vi e QRESa (45)
X!Pl <P, <X!'PL..VjeN,VteT, Ve, (46)
—RD'< P!, — P, | <RU', VjeNV(t—1) €T,V e, (47)
0< Py < Pyue VIENVEET, (48)
VI
0< Y Xj< Xl V€ Qpg, (49)
j=1
P, PSeR,, VjeN,VteT,VleQresUQpre, (50)
Xj€Zy, jeN,leQpgr, (51)
where P, is the minimum allowable output power of DFG I. RD" and RU' are ramp down

and ramp up rates of DER [ (I € Qppg), respectively. Al are the predicted output of DER. I
(I € Qges) during period t. PjS,,. is the maximum load allowed to be shed at bus j. X[, is
the upper limit of installation of DER [.

In (45), the output of RESs is limited by their available capacities. Constraint (46) guaran-
tees that the dispatch of each DFG is within the allowable generation range. Hourly ramping
capability of each DFG is constrained by (47). Constraint (48) secures that the curtailed load
at each bus does not exceed the maximum allowable shed load. The total installation number

of each DER at all buses is constrained by (49).
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4.2.4. Import and export constraints
Suffice it to say that power cannot be exported to the grid and imported from the grid at
the point of common coupling (PCC) simultaneously, that is, the following equation must be
satisfied: ‘
0 < Ppiiey < BreciPrecmax, VEET, (52)

0 < Ppcey < (1= Beeey) Preomax, VEET, (53)

where Ppccmax i the maximum exchange power between the microgrid and the main grid.
Bpcey is “17 if the microgrid import the power from the grid during period ¢ and “0” otherwise.
P, is the power exported to the main grid at the PCC during period ¢, and PPCC ; 1S power
1mported from the main grid at the PCC during period ¢.

4.2.5. Reliability constraints
In order to ensure the critical loads are supplied all the time, the following constraints
should be satisfied:
> PL>Y P v Vi € {WTs, PVs, DGs} (54)
neN necC
where C is the set of critical load buses.

4.8. Deterministic microgrid planning and operation model

From the above discussions, the deterministic microgrid planning and operation model can
be summarized as follows:

min C = Ciny + Cop

st (10)-(21), (26)-(31), (35)-(36), (39)~(54). (55)

Problem (55) is also known as the risk-neutral model.

5. Multi-objective models for optimal microgrid planning and operation based on
info-gap theory

5.1. Modeling uncertainty by info-gap theory

Because the robustness model based on info-gap theory sets the expected cost or profit
index, both system robustness and basic economy can be guaranteed, which is better than the
traditional robust optimization method. Unlike rigorously exact sets of upper and lower bounds
in robust optimization, the uncertainties of info-gap theory are modeled as an imprecise set and
described by the uncertainty sets of some non-probabilistic models, such as envelope-bound
models, slope-bound models, and energy-bound models. In the light of the characteristics of
the uncertainties of wind, PV generation, and loads, the envelope-bound model is adopted in
this paper. The uncertainty sets of wind, PV generation, and loads can be expressed as

U(QWT,PWT) : {PWT Pt — ]SJV,\:]T’ <a TPWT}> (56)
Ulapy, P} = {PPV Y= PRV < } , (57)
u(aloada Pload) . {Pload . p;;)tad < aloadpload} : (58)
awr = 0, apy 2 0, doaa > 0, (59)

where PJVXT, Pjptv, and leoad are the forecast values of wind, PV generation, and loads, respec-

tively. Py, PPV, Pj%" are the actual values of wind, PV generation, and loads, respectively.
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awT, apy, and qjeq are the radii (horizons) of the uncertainties of wind, PV generation, and
loads, respectively.

Considering that the risk attitude of decision makers will affect the final benefits and plan-
ning schemes of the microgrid, in this paper, a robustness model (RM) with RA and an op-
portunity model (OM) with OS are established. The former develops a multi-objective model
under the RA strategy for decision makers with more conservative decision intention, while the
latter a multi-objective model under the OS strategy for decision makers with more speculative
decision intention.

5.2. A multi-objective RM with RA

Obviously, the uncertain variables should satisfy the following constraints:

PY" € Uawr, PYY"), (60)
P}Ttv S u(aPV7 P},Dtv)a (61)
P;;ad € Z/{(Ckload, P]lgad). (62)

The RM model achieves the robustness while ensuring the basic economy, that is, the RM
model maximizes uncertainty on the premise that the decision cost does not exceed the expected
value. The greater the value of uncertainty, the greater the RM ability, but the greater the
corresponding planning and scheduling cost. The decision makers gain the ability to avoid risks
at the cost of more planning and operation costs. The proposed multi-objective RM model is
formulated as follows:

max (OéWT, apvy, Oé1oad)
st. maxC < (149)Cy (63)
s.6.(9)—(21), (26)—(31), (35)—(36), (39)—(54), (56)—(62),

where § is the robust level factor, which is proportional to the risk avoidance degree. Cyp =
min C|(p = p) is the base cost, which represents the minimum value of C' when P)y" = PY}*

~ ~ 7t
PrY = PPV, and P} = Pj%. That is, C is the optimal value of Problem (55).

The RM model deems that uncertainty will affect the planning result of the microgrid. The
greater the uncertainty in the RM model, the less sensitive the corresponding decision scheme

is to the uncertainty, that is, the better the robustness.

5.8. A multi-objective OM with OS

The OM holds that uncertainty can benefit planning and scheduling. In the OS strategy, the
objective is to minimize uncertainty and the risks brought by uncertainty, so as to obtain greater
benefits. The OS strategy ensures that the obtained limit values of uncertainty parameter
fluctuations make the total cost of microgrid planning and operation not greater than the
expected cost. The established OM model can be expressed as follows:

min  (QwT, APV, Moad)
st. minC < (1—-k)Cy (64)
s.t.(9)—(21), (26)—(31), (35)—(36), (39)—(54), (56)—(62),

where k is the opportunistic level factor.
In the OM model, the smaller the uncertainty, the more likely the corresponding decision
scheme is to produce favorable results.
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5.4. Model transformation

5.4.1. RM
Constraints (60)—(62) in RM can be converted to

PYT = (1 - awn) Pl (65
Pftv =(1- O‘PV)P]'P,)tvv (66)
P};ad — (1 4 aload)P;gad- (67)

Problem (63) is a multi-objective bi-level problem, which can be converted to the following
multi-objective single level problem:

max (aWT7 apy, Oé1oad)
st. C<(1+0)C, (68)
(9)-(21), (26)~(31), (35)-(36), (39)-(54), (59), (65)-(67).

In order to keep the model within the framework of classical mathematics, this paper adopts
the e-constraint method instead of evolutionary algorithms to solve the above multi-objective
problem. Finally, Problem (63) can be transformed into the following problem:

max apy
st.  awr > ewr;
Qoad = €load,is
EWTi = EWT min + A€W, (69)
€load,i = €load,min T A€load;
C < (1+49)Cy,
s.t.(9)-(21), (26)—(31), (35)-(36), (39)-(54), (59), (65)—(67),

where ewrmax and ewrmin are the maximum and minimum values under the sole action of
awr, respectively. ewr; is the ith threshold value of awr. Aewr = (EwTmax — EWT,min)?/9-
A€1oad = (€loadmax — €load,min)?/g- ¢ is the number of equally spaced grid points. i =1,--- ,g.

The compromised solution is selected using fuzzy decision making [97]. In fuzzy decision
making, the membership value ,u{ for ith objective of jth solution on the Pareto front is given
by the membership function:

1 if f; >
pl= | gt S S < (70)
0 if f; < g

where f® and f™n" are the maximum and minimum values of solutions on the Pareto front.
The normalized membership value of the jth solution is governed by

M

o Zi:l ILL.Z 71

=Tk M (71)
Zj:l > et K

where K indicates the number of Pareto solutions, and M represents the number of multiple

objectives. The Pareto solution which has the maximum value of p/ is selected as the best
solution.

1
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5.4.2. OM
Constraints (60)—(62) in OM can be converted to

Pj\gT = (1 + aWT)ﬁj\S]T, (72)
PjP,)tV =1+ aPV)P},DtVa (73)
P};ad = (1 — Oqoad)p]l;ad. (74)

Problem (64) is a multi-objective bi-level problem; similarly, it can be transformed into the
following problem:

min apy
s.t.  awr < ewry
Qoad < €load, i
EWT,i = EWT,min T Aiwr, (75)
€load,i = €load,min T Alload,
C < (1-k)Cy,
(9)-(21), (26)—(31), (35)=(36), (39)=(54), (59), (72)—(74).

By changing (70) slightly, we obtain the membership function for OM.

5.5. Model solving method

After the model conversion as delineated in Section 5.4, the multi-objective bi-level pro-
gramming problems are finally transformed into the MILP problems, which can be solved by
off-the-shelf commercial softwares such as GUROBI. The comprehensive solution process of
multi-objective models for optimal microgrid planning and operation based on info-gap theory
is illustrated in Figure 7. As can be seen from Figure 7, the solution process is divided into
two stages. The results of the first stage are obtained by Algorithm 4, and at the first stage, it
is considered that the predicted values of the uncertain parameters are perfect and completely
accurate. The results of the second stage are obtained by Algorithm 5.

Algorithm 4 Algorithm for deterministic microgrid planning and operation model
Input: Predicted data of renewables and loads, parameters of DERs, price and other economic
data, time horizon, time resolution, topology and relevant data of the microgrid.

Output: Base cost C

1: Generate typical scenarios based on WGAN-GP and K-medoids.

2: Calculate the actual BESS lifetime based on the rain-flow counting algorithm.

3: Solve the deterministic microgrid planning and operation model, i.e., Problem (55).

4: Obtain the base cost.

6. Case studies

6.1. Test platform and case description

The proposed models are tested on Feeder 1 of the Banshee microgrid [98], as shown in
Figure 8. Bus 1 is the PCC. The loads at Buses 2-5 are interruptible, the loads at Buses 4-6
are critical, and the loads at Bus 7 are priority. The peak loads of Buses 1-7 are 0, 0.3, 0,
1.2, 0.25, 1.5, and 1 MVA, respectively. Based on the original data in [99, 100], the wind,
PV generation, and load scenarios of 36 typical days used in this paper are generated using
WGAN-GP and K-medoids techniques described in Sections 2.1 and 2.2. The time resolution
is one hour. The total number of optimization hours throughout the year is 36 x 24 = 864,
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Input: typical scenarios, parameters, base cost,
robust level factor or opportunistic level factor

Input: relevant data
and parameters.

Stage I: 4

deterministic : : Calculate the actual
microgrid planning : BESS lifetime based on the rain-flow counting
Generate typical and operation : algorithm
scenarios based on model : :
WGAN-GP and K-medoids 1

Solve Problem (69) or (75)

A

Calculate the actual

BESS lifetime based on the Obtain th — d soluti
rain-flow counting algorithm : : ain the compromised solution

using fuzzy decision making

y

Solve Problem (55)

4

End

A

Stage II: optimal microgrid planning and

Obtain the base cost operation models based on info-gap theory

Figure 7: Flowchart of solving multi-objective models for optimal microgrid planning and operation based on
info-gap theory.

Algorithm 5 Algorithm for optimal microgrid planning and operation models based on info-

gap theory

Input: Typical scenarios, base cost, parameters of DERs, price and other economic data, time
horizon, time resolution, topology and relevant data of the microgrid, robust level factor or
opportunistic level factor.

Output: Optimal DER installation capacity, type, location, microgrid operation data, invest-
ment cost, operation cost, total cost, horizons of the uncertainties of wind, PV generation,
and lO&dS, awT, Apvy, and oad -

Calculate the actual BESS lifetime based on the rain-flow counting algorithm.
Solve the RM model, i.e., Problem (69), or the OM model, i.e., Problem (75).
Obtain the compromised solution using fuzzy decision making.
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Figure 8: Feeder 1 of the Banshee microgrid.
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which is much less than the number of annual 8760 hours and make the calculation tractability
and calculation efficiency greatly improved.

The parameters of DERs are shown in Table 3. The import, export rate, and curtailment
cost are $0.15/kWh, $0.09/kWh, and $0.18/kWh, respectively [1, 101]. The minimum and
maximum acceptable voltage magnitude thresholds are |V| = 0.9p.u. and ’V| = 1.05p.u.,
respectively. For BESSs, ¢ = 0.01 %/h; charging and discharging efficiency are both 95%. The
planning horizon T is 15 years. The nominal discount rate ¢ and the expected inflation rate f
are 6.75% and 4.1%, respectively. The power factor pf is set to be 0.95 (lagging) [102, 103, 104,
105]. The emission characteristics of generation technologies and the magnitude of penalty for
pollutant emissions are shown in Tables 4 [106].

Simulations are carried out on the desktop with an Intel i9 CPU, 3.60 GHz (16 CPUs), a
64 GB RAM, an Intel(R) UHD Graphics 630 GPU, and an NVIDIA GeForce RTX 2080 Ti
GPU. Instead of closed source MATLAB, we use free and open source PYTHON. The solver
is GUROBI.

Table 3: Parameters of DERs

Type of Cost DG BESS PV WT

Capital® 800 250 1875 900

oMm! 35 10 22 22
Generation ($/kWh)  0.36 / / /

Fixed Installation ($) 1000 1000 1000 1000

! The units of capital and OM costs for BESSs and
other DERs are $/kWh and $/kW, respectively.

Table 4: Emission characteristics of DEs and the magnitude of penalty for pollutant emissions

Pollutant Type Emission characteristics (g/kWh) Magnitude of penalty ($/kg)

NO, 4.3314 0.250
CO, 232.0373 0.00125
CcO 2.3204 0.020
SO, 0.4641 0.125

6.2. Deterministic planning results

Supposing that the predicted value equals the actual value, we obtain Cjy and other planning
results, as shown in Table 5. After obtaining wind, PV generation, and load scenarios of typical
days, we solve Problem (55) to get the optimal solutions of all variables, which include the
voltage amplitude of each bus. Then, we can obtain the voltage profiles of all buses on all
typical days for deterministic planning as shown in Figure 9.

Table 5: Deterministic planning results

Investment Operation Total

o1
Type  Capacity” Placement oy (k$)  Cost (k$) Cost (k$)

DG 2000 2
WT 0 /
BESS 2768 6 1238.52 1321.12 2559.64
PV 5468 6
1 The units of capacity for BESSs and other DERs are kWh and kW,
respectively.
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Figure 9: Voltage profiles of all buses on all typical days for deterministic planning.

6.3. Planning results based on the RM with RA

According to (69), we get the planning results based on the RM with RA, as shown in
Table 6. Take 6 = 0.20 as an example; when wind, PV generation, and loads fluctuate at
[0.0099, 1.9901] P}YT, [0.0108, 1.9892] PFY, and [0.8437,1.1563] P15, respectively, the planning
cost of the microgrid does not exceed $3071.56k. From the sensitivity analyses, as shown
in Figure 10, we know that in the RM, both costs and the sum of uncertainty horizons are
positively correlated with robust level factors. This is because the robust level factor represents
the percentage of cost increases that planners can accept due to uncertainties. Generally, the
larger robust level factor, the larger the budget of the planning scheme that the planner can
bear, and the stronger the ability of the planning model to cope with uncertainties. Conservative
decision makers believe that uncertainties will lead to the development of goals in an unfavorable
direction and hope to make the system bear the maximum possible uncertainties by paying more
planning costs.

When 6 is equal to 0.20, 0.25, 0.30, and 0.35, respectively, the Pareto-optimal fronts of
Problem (69) are shown in Figures 11-14, respectively. After obtaining wind, PV generation,
and load scenarios of typical days, we solve Problem (69) to get the optimal solutions of all
variables, which include the voltage amplitude of each bus. Then, we can obtain the voltage
profiles of all buses on all typical days for the RM with RA when ¢ is equal to 0.20, 0.25, 0.30,
and 0.35, respectively, which are shown in Figures 11-14. As can be seen from these figures,
voltages are within the required range with high quality.

W Cost -®- aur+ Qpy + Aoad mm Cost —— aur+ apy + Qroad
3500 2500 1
0.28
3000 222
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2500 0.26
B L2203 & 3
S S 1500 5
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F2.14
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(a) Under the RA strategy (b) Under the OS strategy

Figure 10: Variation trends of costs and uncertainties with level factors.

6.4. Planning results based on the OM with OS

According to (75), we get the planning results based on the OM with OS, as shown in
Table 7. Likewise, take k = 0.05 as an example; when the radii of the uncertainties of wind,
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Table 6: Planning results based on the RM with RA
Investment Operation  Total

apv Qload Cost (k$) Cost (k$) Cost (k$)

Type Cap. PL ¢ awT
DG 2000 3
WT 0 /
BESS 5718 6 0.20 0.9901 0.9892 0.1563 1516.41 1555.15  3071.56
PV 1084 x 6 2-7
DG 2000 3
WT 0 / 0.25 0.9901 0.9889 0.1934  1561.59 1637.96  3199.55
BESS 6294 3 ’ ’ ' ’ ’ ’ ’
PV 1110 x 6 2-7
DG 2000 7
WT 0 / 0.30 0.9901 0.9878 0.2296  1716.03 1611.50  3327.53
BESS 7348 3 ' ' ' ’ ' ' '
PV 1222 x 4,1250,1222 2-7
DG 2000 6
WT 0 /
BESS 9959 1 0.35 0.9901 0.9859 0.2560  1981.16 1474.35  3455.51
PV 1411 x 2, 1486, 1411 x 3 2-7

Solutions on the Pareto Front
Compromised Solution

®  Solutions on the Pareto Front
x  Compromised Solution x

0.16
0.14
0.12
010 T
008 &
0.06
0.04
0.02
0.00

Figure 11: Pareto-optimal front of (69) when 6=0.20 Figure 12: Pareto-optimal front of (69) when §=0.25

® Solutions on the Pareto Front ® Solutions on the Pareto Front
x  Compromised Solution x  Compromised Solution

Figure 13: Pareto-optimal front of (69) when 6=0.30 Figure 14: Pareto-optimal front of (69) when 6=0.35
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PV generation, and loads are 0.0625, 0, and 0.1023, respectively, the planning cost of the
microgrid does not exceed $2431.65k. From the sensitivity analyses, as shown in Figure 10, we
know that in the OM, costs are negatively correlated with opportunistic level factors, while the
sum of uncertainty horizons is positively correlated with the opportunistic level factor. This is
because OS decision makers believe that uncertainties will lead to a favorable development of
the problem, and they are more inclined to accept lower planning costs. After obtaining wind,
PV generation, and load scenarios of typical days, we solve Problem (75) to get the optimal
solutions of all variables, which include the voltage amplitude of each bus. Then, we can obtain
the voltage profiles of all buses on all typical days for the OM with OS when & is equal to 0.05,
0.10, 0.15, and 0.20, respectively, which are shown in Figures 19-22. As can be seen from these
figures, the voltages fully meet the requirements with high quality.

Table 7: Planning results based on the OM with OS

T C Pl Investment Operation Total
Ype Tap T WGPy Glead - Cogt (k§)  Cost (k8)  Cost (k$)

DG 2000 7

wWT 0 |/

BEss o y 005 00625 0 01023 67914 175251 243165
PV 2757 6

DG 2000 7

wWT o0 |/

BEss o y 010 00625 0 0143 63709 166658  2303.67
PV 2514 7

DG 2000 7

wWT 0 /

BEss o y 015 00625 0 01860 60338 156731  2175.69
PV 2348 7

DG 2000 7

wWT 0 /

BESS o y 020 00625 0 02298 57948 146823 204771
PV 2181 7

6.5. Verification by the Monte Carlo method

In order to further verify the models presented in this paper, 100 Monte Carlo simulation
experiments were conducted in uncertain scenarios. Take the RA strategy as an example. Ac-
cording to the distribution of the costs under RM shown in Figure 23 and the kernel density
estimate plot under RM shown in Figure 24, when § = 0.25 and wind, PV generation, and

loads fluctuate within [0.0099, 1.9901]]5JY¥T, (0.0111,1.9889] P}V, and [0.8066, 1.1934]15}3“, re-
spectively, the planning model under the RA strategy guarantees that the planning cost is not
greater than the expected value 2559.64k x (1 + 0.25) = $3199.55k. The experimental results
show that the planning model under the multi-objective RA strategy can ensure that the plan-
ning cost is not greater than the expected cost, which verifies the feasibility and effectiveness

of the models proposed in this paper.

6.6. Influence of power factors on results

When the power factor is 0.90 and 0.85, respectively, we are able to get the results for the
different models as shown in Tables 8-10. As can be seen from Tables 8-10, for the deterministic
model, when the power factor decreases, the total cost increases, and the installation capacities
of some DERs change. For the RM model, when the robust level factor is certain, the total
cost increases with the decrease of the power factor. As the power factor changes, both the

27



1010 - —o— Bus1
~—¥— Bus2
—<— Bus3
1005k —>— Bus4
—#— Bus5
= —r— Bus 6
5 1000 F miei By
g LT
5 ulgil!gl'l‘i““
o
8 )
S 0905 f
0.990 |-
0985 -
1 1 1 1 1
0 200 400 600 800
Time (h)
Figure 19: Voltage profiles under OM when x = 0.05
—8— Bus1
103k ~%— Bus2
—<— Bus3
—»— Bus 4
—#— Bus5
= 1.02f ‘ —— Bus6
5 ! —— Bus7
5 | |
=1 I |
Q101 I ‘ ! ‘
8 i }
o i ) e
s i iy
l:“!'!!:!".?ﬂ kR
1.00F @l i
A T S ST AR e RS T RN
i | ;
0.99
1 1 1 1 1
0 200 400 600 800
Time (h)

Figure 21: Voltage profiles under OM when x = 0.15

Number of occurrences

mmm  Monte Carlo Simulation Cost
——- Cost Based on the RM WITH RA

30 .
1
1
1
25 H
1
1
1
1
20 I
1
1
1
1
15 :
1
1
1
10 :
1
1
1
]
5 1
1
1
1
1 :
0 29 3.0 3.1 3.2
Total cost ($/year) 1e6
Figure 23: Distribution of the costs under RM.

28

Voltage (per unit)

N
o
)

-
o
=3

N
=}
S

oL f s

i
il

Bus 1
Bus 2
Bus 3
Bus 4

H+H++

|

1
400
Time (h)

ol

Figure 20: Voltage profiles under OM when x = 0.10

Voltage (per unit)

1.000

0.995

0.990

0.985

0.980

0.975

Bus 1
Bus 2
Bus 3
Bus 4
Bus 5
Bus 6
Bus 7

1 1
400 600

Time (h)

ol

200

1
800

Figure 22: Voltage profiles under OM when s = 0.20

Density

1e-6
7 =
6 -
5k
4 -
3 -
2k
1k
0 1 1 1 1 1
26 27 28 29 3.0 3.1
Cost ($) 1e6

Figure 24: Density of the costs under RM.



installation capacities and placement of some DERs change. With the reduction of the power
factor, the sum of uncertainty horizons may not change or may become larger. For the OM
model, when the opportunistic level factor is certain, the total cost increases with the decrease
of the power factor. Similarly, both the installation capacities and placement of some DERs
change with the change of the power factor. With the reduction of the power factor, the sum
of uncertainty horizons may not change or may become smaller.

Table 8: Deterministic planning results when the power factor is 0.90 and 0.85, respectively

Investment Operation Total

Type  Capacity  Placement — pf " 1) Cost (k§)  Cost (k$)

DG 2000 2

WT 0 /

BESS 2785 A 0.90  1238.83 1320.88  2559.70
PV 5467 6

DG 2000 2

WT 0 /

BESS 2864 . 0.85  1237.78 1322.32  2560.11
PV 5447 6

Table 9: Planning results based on the RM with RA when the power factor is 0.90 and 0.85, respectively

Investment Operation  Total
Type  Cap PLopf 0 awr o apv @ead oo (k8) Cost (1) Cost (KS)

DG 2000 7
WT 0 /

BESS 6277 4
PV 1109 x 6 2-7

0.90 0.25 0.9901 0.9889 0.1934 1560.24 1639.39 3199.63

DG 2000 3

WT 0 /

BESS 6713 2 0.5 0.25 0.9969 009827 0.1949  1617.87  1582.27  3200.13
1730 x 2, 2-3,

PV 1730x2 56

Table 10: Planning results based on the OM with OS when the power factor is 0.90 and 0.85, respectively

T C Pl ! Investment Operation Total
ype Lap. L P : AWT  OPV. Qoad (e (k$) Cost (k$) Cost (k$)

DG 2000

WT 0
BESS 0

PV 2524

DG 2000

WT 0
BESS 0

PV 2726

0.90 0.10 0.0625 0 0.1436 638.87 1664.87 2303.73

0.85 0.10 0.0625 0  0.1435 673.72 1630.38 2304.10

OO | NN

7. Conclusion

In view of the shortcomings of GANs and WGANS, such as difficult training, slow conver-
gence rate, and poor sample quality, this paper applies WGAN-GP to wind, PV generation,
and load scenario generation, and utilizes the K-medoids reduction technology to obtain several
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typical scenarios to reduce the calculation burden. The performance of WGAP-GP is better
than that of WGANS, the training of WGAP-GP is stable, and almost no parameters are
needed to tune. This paper considers the actual lifetime of the BESS based on the rain-flow
counting algorithm, so as to consider the replacement cost of the BESS. We derive an MILP
model for the deterministic planning and operation of the microgrid in a strict mathematical
way. This MILP model takes into account dynamic constraints such as power flow and system
reserve constraints, BESS replacement, and other equipment replacement costs in the objective
function, which are not considered in many references. Based on info-gap theory, this paper
comprehensively considers the uncertainties of wind, PV generation, and loads, and establishes
two multi-objective bi-level planning models with robustness and opportunity respectively ac-
cording to the difference in attitude to risk. All models proposed in this paper are multi-bus
models, which can not only give the total capacity of DERs, but also the placement of DERs.
Finally, these models are transformed into multi-objective single level programming and solved
by the e-constraint method. The following results are obtained through the analyses of case
studies.

1) In the RM, both costs and the sum of uncertainty horizons are positively correlated
with robust level factors. In the OM, costs are negatively correlated with opportunistic
level factors; however, the sum of uncertainty horizons is positively correlated with the
opportunistic level factor.

2) The RM model can effectively deal with the negative effects of uncertainty and guarantee
certain expected costs while realizing the robustness of the system; however, the OM
model can make full use of favorable uncertainties and obtain lower expected costs.

3) The Monte Caro simulation results also demonstrate that the RM model can ensure that
the planning cost is not greater than the expected cost, which verifies the feasibility and
effectiveness of the models proposed in this paper.

4) For the deterministic model, as the power factor decreases, the total cost increases. For
the RM model or the OM model, when the robust level factor or the opportunistic level
factor is certain, the total cost increases with the decrease of the power factor. For the
RM model, the sum of uncertainty horizons may not change or may become larger with
the reduction of the power factor. However, for the OM model, the sum of uncertainty
horizons may not change or may become smaller with the reduction of the power factor.
For the deterministic model, with the change of the power factor, the installation capac-
ities of some DERs change. For the RM model and the OM model, with the change of
the power factor, both the capacities and placement of some DERs change.

5) The e-constraint method can efficiently solve the multi-objective optimization problems
in this paper.

6) For uncertainty modeling, info-gap theory has the advantages of less required information
and no need for probability distribution information. However, uncertainty modeling
with info-gap theory also has some weaknesses, such as choosing the robust model or
the opportunity model in practical engineering, and how to determine appropriate robust
level factors or appropriate opportunistic level factors, all of which require experience.

In our future research, we will focus on the following directions.

1) We will study the optimal configurations of flywheel energy storage, compressed air energy
storage, supercapacitor energy storage, superconducting energy storage, and lead-acid
battery energy storage in microgrid planning based on info-gap theory and compare their
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economy. We will also study the optimal configurations of hybrid energy storage in
microgrid planning based on info-gap theory, such as battery-supercapacitor hybrid energy
storage, and compare their economy.

We will study the optimal planning and operation of integrated energy systems based on
info-gap theory. We will consider more uncertainties, such as market price fluctuations,
policy changes, and technological advancements, and explore their impact on the planning
and operation of microgrids and integrated energy systems. We will consider electric
vehicles, hydrogen vehicles, and other new loads as well. We will also take into account
different demand-side responses in the models. Considering so many factors can make
modeling very complex. Solving these models will be very challenging. How to efficiently
solve these complex models is a problem well worth studying.

We intend to compare different models based on info-gap theory, stochastic programming,
robust optimization, and interval optimization from the performance of uncertainty mod-
eling, such as modeling accuracy, costs, and computational complexity. We will also
explore the combination of various uncertainty modelling methods in order to obtain
better hybrid methods for uncertainty modelling. Solving these hybrid models can be a
tricky problem.

We will explore applying exact power flow equations to our models and compare models
based on exact power flow with models based on LinDistFlow. The models considering
the exact power flow are highly non-convex nonlinear models, and the solution of the
models will be complex and time-consuming.

We will include more objectives, such as low carbon requirements, to form many-objective
models, and will study how to design more efficient multi-objective and many-objective
solution methods. Generally speaking, the speed of the classical multi-objective algo-
rithm is faster than that of the heuristic algorithm, but the classical algorithm has high
requirements for the properties of the model itself. Exploring the combination of heuris-
tic algorithms and classical algorithms is an interesting and important topic, but also a
knotty one.
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