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ABSTRACT

We analyze brain networks by decomposing them into three
orthogonal components: gradient, curl, and harmonic flows,
through the Hodge decomposition, a technique advantageous
for capturing complex topological features. A Wasserstein
distance based topological inference is developed to deter-
mine the statistical significance of each component. The Hodge
decomposition is applied to human brain networks obtained
from a resting-state fMRI study. Our results indicate statis-
tically significant differences in the topological features be-
tween male and female brain networks.

1. INTRODUCTION

Traditional graph models employed in functional magnetic
resonance imaging (fMRI) studies have predominantly focused
on capturing pairwise interactions between brain regions [1,
2]. This focus often results in the neglect of higher-order
interactions, which are crucial for a comprehensive under-
standing of brain network topology [3, 4]. While the signif-
icance of higher-order interactions has been increasingly ac-
knowledged, research in this direction has been constrained
by challenges such as computational complexity and the lack
of effective analytical tools. To overcome these challenges,
topological data analysis (TDA) has emerged as a promis-
ing technique. Persistent homology (PH), a specialized tech-
nique within TDA, leverages simplicial complexes, to encode
higher-order interactions in a systematic and computationally
efficient manner [5,6]. Simplicial complexes consists of sim-
plices, each corresponding to a different level of interaction
within the network. Specifically, nodes represent 0-way in-
teractions, edges correspond to 1-way interactions, triangles
denote 2-way interactions, and tetrahedra signify 3-way in-
teractions. PH allows for a nuanced representation of net-
works across different spatial resolutions, thereby enriching
brain imaging data [4, 7].

PH quantifies multiscale topological features of data through
a filtration process [8]. Hodge theory provides a unified frame-
work combining simplicial homology and spectral geome-
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try, offering insights into network topology [9–11]. While
the Hodge Laplacian, a generalization of the graph Lapla-
cian, offers insights into the topological features of higher
order simplices, the Hodge decomposition allows to estab-
lish relationships between simplices of different dimensions
[10]. Hodge decomposition breaks data defined on edges
(edge flow) into three orthogonal components: gradient, curl,
and harmonic flows, each providing unique topological in-
sights. The gradient flow, driven by node gradients, repre-
sents the network’s gradient-like behavior. The curl flow, aris-
ing from triangle-induced flows, captures rotational patterns,
while the harmonic flow exposes loop structures and topo-
logical signatures [10]. Using a Wasserstein distance-based
statistical approach on each component, this study assesses
the topological similarities and differences between loop and
non-loop flows. Further, leveraging on the properties of the
decomposed networks, the study seeks to elucidate the most
discriminating topological disparities in female and male func-
tional brain networks.

2. METHOD

2.1. Boundary and coboundary operators

A simplicial complex is a collection of simplices that includes
nodes (0-simplices), edges (1-simplices), triangles (2-simplices)
and their higher-dimensional counterparts. The 0-skeleton
of a simplicial complex consists only of nodes, while a 1-
skeleton comprises both nodes and edges. Graphs are exam-
ples of 1-skeletons. A k-chain is a formal linear combina-
tion of k-simplices. The set of all such k-chains constitutes
a group, denoted as Kk. A sequence of these groups forms
a chain complex. To relate different chain groups, boundary
operators are used.

For two successive chain groups, Kk and Kk�1, the bound-
ary operator @k : Kk �! Kk�1 for a given k-simplex �k is
defined as

@k(�k) =
kX

i=0

(�1)i(v0, · · · , bvi, · · · , vk), (1)

where (v0, · · · , bvi, · · · , vk) represents the (k�1)-faces of �k,
obtained by omitting the vertex bvi. The boundary operator’s
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matrix representation, Bk = (Bij

k
), is given by

Bij

k
=

8
><

>:

1, if �i

k�1 ⇢ �j

k
and �i

k�1 ⇠ �j

k
,

�1, if �i

k�1 ⇢ �j

k
and �i

k�1 ⌧ �j

k
,

0, otherwise,
(2)

where ⇠ and ⌧ indicate similar and dissimilar orientations,
respectively [12, 13].

Coboundary operators �k are duals of the boundary oper-
ators, mapping k-cochains to (k + 1)-cochains: �k : Kk !
Kk+1. The coboundary operator is the adjoint of the boundary
operator @k+1. The matrix representation of �k is the trans-
pose of the matrix representation of @k+1: �k = B>

k+1.

2.2. Hodge Decomposition

Let Ck be the space of functions over k-simplices. The Hodge
decomposition separates an edge flow X 2 C1 into three or-
thogonal components: gradient XG, curl XC and harmonic
flows XH :

X = XG +XC +XH = �0s+ �T1 �+XH (3)

with potential functions s 2 C1 and � 2 C2. The com-
ponents are determined through orthogonal projections onto
their respective subspaces. XG represents the function on the
k-chain that can be described as the gradient of a scalar field.
Similarly, XC captures the component that behaves like the
curl of a vector field, and XH denotes the harmonic compo-
nent, which is divergence-free and curl-free. XG and XC are
obtained by minimizing the residual in the projection as

XG = min
s2C0

||X � �0s||, XC = min
�2C1

||X � �T1 �||. (4)

The harmonic component XH = X�(XG+XC) is obtained
as the residual. The sum of the curl and harmonic component
forms the loop flow while the gradient component is referred
as the non-loop flow.

Figures 1 and 2 illustrate the Hodge decompositions of a
complete graph and a non-complete graph, respectively. The
MATLAB code for performing Hodge decomposition in the
least squares fashion is available at
https://github.com/laplcebeltrami/hodge.

2.3. Topological Inference on the Hodge Decomposition

To measure topological distance between graphs, we employ
the birth-death decomposition (BDD), which partition graphs
into topologically distinct subgraphs [14, 15]. We first ap-
ply graph filtration, a technique involving the sequential re-
moval of edges from a graph G, starting with the smallest
edge weight and progressing to the largest [6, 8]. We identify
the birth set B(G), associated with the emergence of con-
nected components, by computing the maximum spanning
tree (MST) of G using Kruskal’s or Prim’s algorithms [6].

Fig. 1: Illustration of the Hodge decomposition, which de-
composes the edge flow into non-loop and loop flows. These
networks are then separately subjected to birth-death decom-
position to obtain the topological features.

Fig. 2: Hodge decomposition on graph having 5 nodes and 6
edges. The edge flow is decomposed into gradient, curl and
harmonic components.

The death set D(G) then consists of the edges not present
in B(G) (Figure 1), which consists of death values of cycles
(loops) during the filtration. We perform BDD independently
on both non-loop and loop flows, allowing us to character-
ize the topology of each component of the Hodge decompo-
sition. To measure the topological disparities between com-
ponents, we use the Wasserstein distance applied to their re-
spective BDD. Wasserstein distance provides optimal match-
ing that are stable to infinitesimal noise and provide robust-
ness [15, 16].

We evaluate the difference between two groups of net-
works ⌦ = {⌦1,⌦2, . . . ,⌦m} and  = { 1, 2, . . . , n}.
The Wasserstein distance is used as a test statistic [11,17,18]:

L1(⌦, ) = Lb

1(⌦, ) + Ld

1(⌦, )

= max
1jq0

|b̄⌦
j
� b̄ 

j
|+ max

1jq1

|d̄⌦
j
� d̄ 

j
|. (5)

Lb

1(⌦, ) computes the 1-Wasserstein distance, where b̄⌦
j

and b̄ 
j

are the means of the j-th smallest birth values of con-
nected components in ⌦ and  . Ld

1(⌦, ) computes the 1-
Wasserstein distance, where d̄⌦

j
and d̄ 

j
are the means of the

j-th smallest death values of cycles in ⌦ and  [19]. q0 and
q1 are the number of birth and death values respectively. Un-
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Table 1: The performance results of the Wasserstein distance
on the edge flows, loop and non-loop components. Smaller
p-values are better when there are network differences (top
rows) and larger p-values are better when there are no network
differences (bottom rows).

Nodes Modules Topological Inference
p c Edge flow Loop flow Non-loop flow

12 vs. 12 2 vs. 3 0.0001 0.0039 0.0000
3 vs. 6 0.0011 0.0005 0.0002

18 vs. 18 2 vs. 3 0.0000 0.0012 0.0000
3 vs. 6 0.0003 0.0001 0.0001

24 vs. 24 2 vs. 3 0.0000 0.0001 0.0000
3 vs. 6 0.0000 0.0001 0.0000

24 vs. 24 2 vs. 2 0.1135 0.9669 0.1794
3 vs. 3 0.5348 0.7451 0.8864
6 vs. 6 0.2863 0.4055 0.6055

der the null hypothesis of topological equivalence between
the two groups, we expect L1(⌦, ) to be close to zero. De-
viations from this value would suggest a topological discrep-
ancy between ⌦ and  . Given that the null distribution of
L1(⌦, ) is not pre-established, we propose to approximate
it through a permutation test, from which we subsequently
derive the p-value.

3. VALIDATIONS

Our method is validated in random simulations with the ground
truth. We generated random modular networks with edge
weights drawn from a Beta distribution [19]. The Beta distri-
bution Beta(↵,�) is defined on the interval [0, 1] and is pa-
rameterized by positive shape parameters ↵ and �. These pa-
rameters allows us to create networks with varying strengths
of connectivity for comparison of their topological similar-
ity and dissimilarity. We used (↵,�) = (2, 4), (4, 2) to gen-
erate random networks (Figure 3). To construct a modular
network, we assigned edge weights within the same module
from Beta(↵,�) where ↵ > �, and edge weights between
different modules from Beta(�,↵). We set the number of
nodes p = 12, 18, 24, and the number of modules c = 2, 3, 6,
ensuring an even distribution of nodes among the modules.
We employed the 1-Wasserstein distance proposed in Sec-
tion 2.3 to evaluate the topological similarity and dissimilarity
in a two-group comparison setting, where each group consists
of 10 networks each. Statistical inferences were done using
a permutation test with 100,000 permutations. We repeated
the simulations independently 10 times, reporting the average
p-value in Table 1, where top rows test false negatives while
the bottom rows test for false positives.

The proposed 1-Wasserstein distance-based test statistic
exhibits robust performance on both the loop and non-loop
flows. The L1 distance effectively discriminated networks

Fig. 3: Edge weights following the Beta distributions with pa-
rameters (a) (↵ = 2,� = 4) (b) (↵ = 4,� = 2) with their
corresponding connectivity matrices. The modular graphs ob-
tained using the Beta distributions with (c) two and (d) three
modules. The networks are thresholded at 0.4 to enable better
display of the modules.

in both the non-loop (gradient) and loop (curl) components
when network differences were present (as shown in the top
rows of the table). In scenarios with no network differences
(bottom rows of the table), both the loop and non-loop flow
yielded satisfactory results. This underscores that the modu-
larity in the network is aptly captured by both the non-loop
and loop components of the Hodge decomposition, and that
our 1-Wasserstein distance is capable of discerning varia-
tions in modularity.

4. APPLICATION

4.1. Functional brain imaging data and preprocessing

We used the resting-state fMRI (rs-fMRI) in the Human Con-
nectome Project [20]. rs-fMRI are collected at 2 mm isotropic
voxels and 1200 time points. Data that was subjected to the
standard minimal preprocessing pipelines [21] was used. Vol-
umes with framewise displacement larger than 0.5mm and
their neighbors were scrubbed [20]. Excessive head move-
ment were excluded from the study. Subsequently, the Auto-
mated Anatomical Labeling (AAL) template is used to parcel-
late and average rs-fMRI spatially into 116 non-overlapping
anatomical regions. The details on image processing is given
in [22]. The final data is comprised of the fMRI of 400 sub-
jects of which 168 are males and 232 are females. Subse-
quently, Pearson correlation is used in computing 116 ⇥ 116
correlation matrix per subject. The Hodge decomposition
considers both positive and negative edge values with appro-
priate direction of orientation. Thus, we did not discard neg-
ative correlations.

4.2. Hodge decomposition of the brain network

We decomposed individual brain networks using the Hodge
decomposition. In Figure 4, the Hodge decomposition ap-
plied to average female and male brain networks is displayed.
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Fig. 4: The average connectivity (edge flow), non-loop flow (middle), which is gradient flow XG, and the loop flow (right),
which is the sum of curl XC and harmonic flow XH , of the female (top) and male networks (bottom) along with their connec-
tivity matrices. The colorbar represents edge weight values for each flow type.

We then assessed if there are topological difference between
females and males in the original connectivity (edge flow).
Following the test procedure in Section 2.3, the Wasserstein
distances Lb

1 on birth values for testing 0D topology differ-
ence and Ld

1 on death values for testing 1D topology differ-
ence are separately used. The permutation test conducted on
both the birth set (first term) and the death set (second term)
yielded p-values of 0.0177 and 0.0110, respectively. These
results indicate the presence of significant topological differ-
ences in the original connectivity matrices.

We further determined if we can detect topological differ-
ences in the decomposed components (Figure 2). The gradi-
ent component sum to zero along any cycles. The curl com-
ponents are zero for edges that are not a 2-simplex boundary
and the entries sum to zero around each node. The harmonic
component sums to zero around each node, and it also sums to
zero along each 2-simplex. We tested the topological equiva-
lence of female brain networks and male brain networks using
the Wasserstein distance (5). We first considered the network
constructed from the gradient component and performed the
birth death decomposition. We then carried out the permu-
tation test p-value = 0.008). The gradient flow reflects a di-
rected transmission of information or activity across the brain,
indicative of a potential difference between nodes that drives
the flow from areas of high to low functional connectivity
strength. Also we performed the permutation test on the curl
component (p-value = 0.0296). Curl flows are akin to vor-
tices, where the functional connectivity follows circular pat-
terns, suggesting a rotational or cyclic exchange of informa-
tion between brain regions, a phenomenon that plays a pivotal
role in the brain’s ability to process and integrate information
across various cognitive domains.

We also tested if we can detect 0D and 1D topological
signals separately in each component. For the non-loop com-

ponent (gradient flow), the permutation test yielded p-values
of 0.0088 and 0.0080 for the birth (0D topology) and death
(1D topology) values, respectively. The birth values, repre-
senting the emergence of new connections, and the death val-
ues, indicating the dissolution of existing connections, both
demonstrate the dynamic nature of the brain’s connectivity
that does not necessarily form closed loops. For loop com-
ponents, the permutation test yielded p-values of 0.0019 for
the birth values and 0.1582 for the death values, indicating
a highly significant presence of loop flows for birth values
but not for death values. Loop flows, which include curl and
harmonic flows, characterize the cyclic and recurrent connec-
tivity patterns. The significant result for the birth values sug-
gests that the formation of cyclic patterns is a notable fea-
ture of brain connectivity, supporting the brain’s integrative
and cooperative processes. However, the non-significant re-
sult for the death values hints at the stability of these looped
connections once established, reflecting the brain’s tendency
to maintain certain cyclic patterns over time.

5. CONCLUSION

This study detailed the use of Hodge decomposition—gradient,
curl, and harmonic components—in topological data analysis
of brain networks. Applying this technique to rs-fMRI cor-
relation networks, we subsequently categorized these com-
ponents into loop and non-loop flows. By incorporating the
Wasserstein distance, we differentiated network types, show-
casing the components’ ability to detect topological differ-
ences. Tested on static functional brain networks, our method
discriminated between male and female brain networks. The
extension to dynamically changing brain network and time-
dependent topological changes are left as a future work.
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