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Chloé Arson1

Received: 27 March 2023 / Accepted: 24 October 2023 / Published online: 12 February 2024
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Underground construction and tunnel excavation are known to redistribute stresses and cause ground displacement.

Analytical solutions for stress distribution typically break down at shallow depths or in soil masses that exhibit high spatial

variability, making numerical simulations necessary. Seeking to find new geometries and excavation strategies for

underground construction, we propose to look to nature for inspiration. We extract 3D digital twins of Florida Harvester ant

(Pogonomyrmex Badius) structures from a nest cast in situ and simulate the stress and displacement fields around that nest

with the Finite Element Method (FEM). Stress invariants around the main shaft are compared to those around idealized

geometric representations of that shaft, i.e., helixes with a fixed pitch angle and a uniform elliptical cross-section. Helical

structures made of circular cross-sections and horizontally oriented elliptical cross-sections interact in a way that reduces

the risk of tension failure and distributes the shear stress more evenly. One can show that in addition to the extra stability

that they offer and the lower risk of tensile or shear failure that they exhibit, helical shafts have the advantage of requiring

less power to excavate than straight sub-vertical shafts.
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1 Introduction

In the nineteenth century, the shipworm (Teredo Navalis)

was used as inspiration for the Thames tunnel, which is

where tunnel shielding began [30]. Brunel, the engineer

who invented the design and construction scheme,

observed that the mollusc uses a cutting shell to excavate

forward at the tunnel face and advances the rest of the body

forward periodically. Shield tunneling has evolved signif-

icantly in terms of equipment and excavation techniques,

leading to self-driving machines that do not require any

human intervention [17]. More recently, it was observed

that organisms such as ants, worms, and clams deploy

significantly more energy-efficient excavation strategies as

compared to those employed by human-designed tunneling

machines [11, 38]. Researchers have studied the behavior

of burrowing organisms in their natural habitats and in

laboratory settings to understand the underlying mecha-

nisms of penetration, excavation, locomotion, and under-

ground stability [9–12, 29, 37, 41, 45, 48]. Mechanical

models can explain burrowing strategies used by animals,

hence making them suitable to emulate in solutions to

practical engineering problems. For example, self-bur-

rowing robots inspired by plant roots were prototyped for

sensor installation and soil investigation [8, 31, 36]. The

aim of this study is to understand the principles of soil

mechanics that explain why ant structures are stable and to

identify mechanisms that can be applied to improve tun-

neling techniques.
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Biomimicry is an approach to innovation that seeks

sustainable solutions to human challenges by emulating

nature’s strategies, for instance, by reconstructing molec-

ular structures and interfaces, reproducing biophysical

phenomena in the laboratory, modeling the mechanisms

that originate biodiversity, or taking inspiration from

ecosystems and living organisms. Bio-inspired design is

either the product of an exploration of natural systems to

solve an engineering problem or the result of the opportune

application of biological principles to an engineering pro-

ject. In the former case, the engineering questions are

raised first, and biological systems that can ensure specific

functions (e.g., support loads, excavate) are sought to

address these issues. In the latter, the biological system is

selected first, and an application of the mechanism in that

system is sought. In this paper, we follow the second

approach, i.e., we select a biological organism that is

known to exhibit interesting properties, and we propose

mechanical models to enhance our fundamental under-

standing of these properties and how they impact tunnel

advancement strategies. Many applications of biomimicry

have been found in bio-inspired geotechnics alone [28]. For

example, it is possible to control the resistance to pene-

tration and pullout of an anchor by using snakeskin-in-

spired interfaces that react differently if displacement is

applied in the cranial or caudal direction. More broadly, the

importance of anisotropic friction properties for load

transfer at the interface between soil and foundation or

anchoring elements was noted in several studies that fea-

tured new soil/structure interfaces inspired by snakeskin

[26, 27, 34, 39, 47]. Similarly, inspiration was taken from

the architecture of plant roots to design high-performance

deep foundation [1] and anchorage [25] systems. Root

pullout resistance was measured by several research teams

to support these designs [5, 6, 15, 16]. The fundamental

mechanisms of soil/root interaction were studied experi-

mentally in maize, a few days old, [2, 3] and numerically at

the scale of a wheat root tip [21].

For convenience and simplicity, human tunneling has

mainly been focused on linear alignments that provide the

shortest path between two points [13]. The present study

aims to find more effective tunneling strategies and align-

ments by studying underground structures made by ants.

The complex structures of subterranean ant nests are not

widely known. Biologists have traditionally extracted the

geometry of these ant nests using excavation and mapping

techniques to generate approximate 2D profile sketches of

the nests [22, 40]. After Williams and Lofgren began using

dental plaster for nest casting in 1988, Tschinkel continued

to expand this field with the casting and extraction of full

3D nest structures of a variety of ant species [44].

Tschinkel observed that the nests of Florida Harvester ants

(Pogonomyrmex Badius) have a particularly unique and

interesting geometry with two distinct components, i.e.,

helical sub-vertical shafts and horizontal chambers [42].

We chose to study Harvester ant nests because of these

specific structural features. In this paper, in order to

understand why the nests of Harvester ants are stable, we

propose to analyze the stress and displacement fields

around actual nests as well as simplified nest components.

Analytical solutions available to date cannot be applied to

complex tunnel structures under biaxial stress such as

Harvester ant nests (e.g., see the literature review in [35]).

Experimental studies related to ant nests have been limited

to small-scale experiments in quasi-2D settings of ant

farms that allow observation of the excavation process

through a glass panel [11, 29]. No known experimental

method has been used to understand the whole three-di-

mensional mechanical response of the soil around Har-

vester ant nests. In this study, we thus adopt a numerical

approach to model the complex geometry of the ant nests

and calculate the stress and displacement fields around the

nests. Harvester ant chambers were modeled in 2D with the

Discrete Element Method (DEM), and simulations showed

that stress redistribution due to arching contributes to the

stability of these cavities [13]. 3D DEM models of ant nests

were proposed to understand ant excavation strategies and

predict the stability of complex ant nest structures [24], but

these numerical models have been limited to small portions

of the whole nest structure. DEM studies have provided

great insight into the mechanical stability of ant nests and

have motivated the present study, dedicated to the whole

nest structure. Although DEM is a powerful tool for

granular mechanics, its computational cost would make it a

less desirable choice to model a full nest. Here, we propose

an analysis based on the Finite Element Method (FEM).

We begin by modeling an actual ant nest extracted from

a site in Florida. We simulate the response of the nest to

geostatic stress, and we model idealized portions of that

nest, in order to isolate the different mechanisms of

structure stability. We present some mechanical conjec-

tures to explain the geometry of Harvester ant nests, and

we draw some conclusions for bio-inspired tunneling. Data

and methods that pertain to soil characterization, ant nest

geometry extraction, mesh generation, and FEM modeling

are explained in Sect. 2, which also describes the geometry

of the idealized helical shafts that we modeled for bench-

marking. The simulation results and their interpretation in

light of known analytical solutions are discussed in Sect. 3,

which also explains the underlying stability mechanisms.

Conclusions on the mechanical functions of the ant nest

components and the possible applications to tunnel engi-

neering are presented in Sect. 4.
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2 Data and methods

2.1 Soil characterization

2.1.1 Data from the field

The ant nest that is studied here was located in Lee,

Florida, in an area that is primarily composed of Blanton

sand, a siliceous, fine, clean sand, according to the USGS

Web Soil Survey [46]. Of note, the site where the ant nest

was extracted was subjected to a full geotechnical index

property characterization, which is unique to the present

study, since most, if not all, of the literature on ant nest

architecture contains no information about the surrounding

soil. ASTM standard test methods D 6913, 7263, 2216-19,

and 4253/4 were used to obtain the particle gradation, dry

unit weight, moisture content, and minimum and maximum

void ratios of the soil, respectively. The results of the grain

size distribution analysis are summarized in Table 1. The

dry unit weight and water content profile were obtained

from the field, and because their variability with depth was

not significant, average values of cdry=1.516 g/cm3 and

w ¼ 3:287% were used in the subsequent model. The

minimum and maximum dry densities of the sand were also

measured, and it was found that cdry�min=1.424 g/cm3 and

cdry�max=1.726 g/cm3.

2.1.2 Soil constitutive model parameters

In the FEM models described in Sect. 2.3, the soil is

assigned the Mohr–Coulomb elastoplastic constitutive

model, with a non-associate flow rule. The Mohr–Coulomb

criterion is chosen for its simplicity and its proven suit-

ability for frictional soil. The method to calculate the

Mohr–Coulomb constitutive parameters and the other soil

parameters needed to perform the FEM simulations is

described below:

(i) Density

By using an average dry density cdry=1.516g/

cm3 and water content w ¼ 3:287%, we calculate

the wet density (total density) of the soil as:

ct ¼ cdryð1þ wÞ ¼ 1:516 g=cm3ð1þ 0:033Þ
ct ¼ 1:566 g=cm3

(ii) Young’s elastic modulus and Poisson’s ratio

The relative density of the soil is used to

classify the sand in a spectrum from very loose to

very dense, for which typical values of elastic

modulus are available in the literature [7]. The

relative densities calculated at several depths

mainly fall in the loose sand category, for which

the Young’s modulus can be estimated as E =

20 MPa and the Poisson’s ratio as v ¼ 0:3 [7, 14].

(iii) Friction angle

The drained friction angle can be estimated to

be about /0 ¼ 30o from empirical correlations by

Brinch, Hansen, and Lundgren [33] and from

typical values reported in the literature for loose

uniform sand [7, 14].

(iv) Cohesion

The sand found in situ was unsaturated. The

capillary pressure increases the soil shear strength.

In other words, unsaturated sand has an apparent

cohesion. This apparent cohesion can be used as

the cohesion parameter in the Mohr–Coulomb

model [20] to account for the increase in soil shear

strength with suction. The apparent cohesion is

calculated as a function of the saturation and

drained friction parameters of the soil as follows:

c00 ¼ c0 þ vðua � uwÞ tan/0 ð1Þ

where the effective stress parameter v is a func-

tion of the degree of saturation of the soil, which

varies by type of soil. It has been shown that v
could be approximated as the degree of saturation

itself for sands [32]. Using the measured data of

dry density and moisture content measured in situ,

we estimated the saturation degree and, subse-

quently, the apparent cohesion to be about 6 kPa.

(v) Dilatancy angle

The typical dilatancy angle w for loose sand is

less than 10� [14]. In the following analyses, we

use a value of 10�.

The sand parameters used in the FEM model are summa-

rized in Table 2.

Table 1 Grain size distribution

D60 (mm) D30 (mm) D10 (mm) D50 (mm) Cu Cc

0.361 0.209 0.097 0.3 3.71 1.24

The sand falls under the USCS classification SP

Table 2 Summary of model parameters

ct (g/cm
3) E (MPa) v (-) / ðoÞ c (kPa) w ðoÞ

1.566 20 0.3 30 6 10
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A parametric study showed that the numerical results

were not significantly affected by the values of the elastic

modulus, Poisson’s ratio, and friction angle of the soil

when taken within a range of values typical of a loose sand.

However, varying the value of apparent cohesion con-

trolled the onset of plasticity. At very low values of

apparent cohesion (c ¼ 1 kPa and c ¼ 0:5 kPa), small

portions of the domain underwent plastic strains. In the

following, we used an apparent cohesion of 6 kPa because

it is representative of the in situ conditions.

2.2 Geometry of the ant nest and shafts

2.2.1 Ant nest geometry extracted from the field

The ant nest was molded in place, and the geometric

characteristics were measured by using a 3D digital twin of

the cast. Various materials such as paraffin wax, dental

plaster, and zinc are routinely used to create casts of sub-

terranean ant nests [43]. For the purposes of this study,

aluminum was selected because of its low melting point as

well as the strength and durability of the cast that is pro-

duced after curing.

The casting process used in this study was based on the

procedure detailed in [43]. Pure aluminum was heated in a

crucible above its melting point of 660.3 �C. The molten

aluminum was then poured into the nest opening until the

metal began to pool at the surface. The aluminum was left

in place until the soil around the nest entrance became cool

enough to be handled safely (no longer than 24 h). The cast

was extracted from the ground using shovels and hand

rakes, and then the remaining soil was washed off with

water. After recovering the cast from the field, the next step

was to generate a digital replica for use in the subsequent

FEM model.

An EinScan Pro HD handheld scanner, developed by

Shining 3D, was used to obtain a 3D digital image of the

ant nest casts. The scanner uses flash LiDAR to develop an

initial raw point cloud of the casting. Before scanning,

reflective markers are evenly distributed on the casting.

The markers play the role of control points. Markers are

read by the scanner first and assigned coordinates. The

coordinates of the cloud points that represent the surface of

the casting are measured in reference with the coordinates

of the markers. The casting needs to have markers placed

in a random, nonlinear pattern with at least four markers in

each scanning field of view. Therefore, the markers were

distributed on the top, bottom, and edges of the ant casting

features. The reflectivity of the aluminum made scanning

in bright lights difficult; therefore, measures were taken

under indirect light, e.g., by holding an umbrella above the

casting during the scanning process. The scanner was held

by hand and slowly moved around, above, and below the

ant nest casting. Point cloud data were collected with a 0.2-

mm resolution, meaning each point had no other point

within a 0.2 mm radius in any direction. The EXScan Pro

software was then used to generate a watertight mesh, such

that the surface of the mesh was closed.

2.2.2 Simplified nest geometry for FEM models

The watertight mesh was then pre-processed before being

used as a basis to construct the Finite Element mesh. First,

the top � 17 mm was cut off during the analysis because

some overflow had occurred during the field casting pro-

cess, which led to an excess of aluminum in the top part of

the nest. Next, the density of the watertight mesh was

reduced in order to allow completion of the FEM simula-

tions within no more than a few days on a workstation,

remove ill-shaped elements that would cause convergence

issues, and avoid stress concentrations at local geometric

irregularities (which would overshadow the results in the

rest of the domain). Since the purpose of the study was to

understand the effect of the overall nest structure on soil

stress distributions, we sought to eliminate the effects of

surface roughness. We used Autodesk Meshmixer to

remesh the cast into a relatively coarser and more regular

mesh, which provided a smoother rendering of the nest

geometry, as can be seen in the sample portion shown in

Fig. 1.

The gap between the processed mesh and the original

mesh was measured along the direction normal to the

surface of the processed mesh. The average distance

between the smoothed surface and the original surface

from the scan, shown in Fig. 2, was found to be 1 mm,

which is approximately 10% of the average diameter of the

shafts and the average height of the chambers. This devi-

ation was thus judged acceptable to study the overall

geometry of the nest excluding the surface roughness of the

walls of the ant nest, mainly, the spacing of the chambers,

the orientation of the shafts, and the cross-section of the

shafts. The mesh densities and nest dimensions before and

after pre-processing are summarized in Tables 3 and 4,

respectively. In summary, we were able to reduce the

overall mesh density by an order of magnitude without

compromising on the accuracy of the geometric structure

of the nest. Figure 3 shows the post-processed mesh that

was used in the Finite Element analysis.

2.2.3 Simplified shaft geometries for FEM models

Figure 4 shows simplified geometries of helical shafts,

which are features commonly observed in Florida Har-

vester ant nests. These models were used for benchmarking

against the shafts of the actual nest presented in Sect. 2.2.2
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and have the geometric features of actual ant shafts, with a

helix diameter of 5 cm, pitch angles (h) between 20� and

70�, and cross-sections that are either circular with a 1 cm

diameter or elliptical with major and minor axes of lengths

2 cm and 1 cm, respectively. These values were selected

based on studies in which these geometric features were

quantified in Florida Harvester ant nests [42]. We verified

that the pitch angle of the main shaft of the natural nest was

in this general range of 20� and 70�. Specifically, the pitch
angle of the main shaft of the natural nest was between 45�

and 70� when measured locally along the depth, as shown

in the left panel of Fig. 4. Helix diameters were reported to

lie in the range of 4–6 cm with little variation over the

depth of the shaft [42], which is why we used a unique

median value of 5 cm for the helix diameter in our para-

metric study. The measure of the helix diameter of the

main shaft in the natural nest was consistent with this

choice. Each shaft geometry was created using the

Fig. 1 Sample portion of the cast before (left) and after (right) remeshing

Fig. 2 Originally scanned images (light gray, left), processed images (dark gray, middle), and processed image subtracted from the original

image (right)

Table 3 Surface mesh of the ant nest casting before and after

processing

Vertices Faces (triangles)

As scanned 1,249,992 2,500,076

After processing 62,439 124,950

Table 4 Dimensions of the casting before and after processing

Height (mm) Length (mm) Width (mm)

As scanned 450.312 399.468 342.33

After processing 432.365 397.802 340.974

Fig. 3 3D image of the post-processed casting used as input to the

FEM model
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parametric equation of a helix, and the model generation

was done through an automated routine that took the

geometric variables such as pitch angle, cross-sectional

shape, size, and orientation as inputs. The different

geometries used are presented on the right panel of Fig. 4.

2.3 Finite Element models

Finite Element models of the simplified nest geometry and

of the simplified shaft geometries presented in Sects. 2.2.2

and 2.2.3 were created by extruding the geometric shape of

interest from a prismatic solid domain. The lateral faces of

the domain were subjected to zero normal displacement

and zero shear stress. The three translation degrees of

freedom at the bottom face were fixed to zero, and the top

surface was free of stress. Before extrusion, the solid

domain (which represents the soil mass) was subjected to

geostatic stresses, where the vertical stress field, which

reflects the soil self-weight, is calculated as ct � z (z being

the depth), and where the horizontal stress field, which

represents the lateral earth pressure of the soil, is calculated

as K0 � ct � z, where K0 is calculated by Jaky’s equation

[19]. Then static, implicit analysis was used to simulate the

extrusion in one loading step, with a direct solver and a full

Newton resolution technique.

2.3.1 Finite Element model of the simplified nest geometry

To create the Finite Element (FE) model of the soil sur-

rounding the nest, the processed digital twin of the casting

was imported into the FE analysis software ABAQUS. The

bounding box size of the processed casting was approxi-

mately 398� 341� 432 mm3 (L�W � H). The nest

casting shape was extruded from a parallelepiped to create

the simulation domain. We picked the smallest simulation

domain size that ensured negligible displacement and stress

gradient at the boundaries when performing the extrusion

simulation under geostatic stresses, i.e., 600� 600� 625

mm3 (L�W � H). The geometry, boundary conditions,

and geostatic loading are illustrated in Fig. 5.

The 3D domain was meshed using linear tetrahedral

elements of type C3D4. The mesh was refined close to the

ant nest walls. The Finite Element mesh, shown in Fig. 6,

contained 559, 534 nodes and 3, 199, 559 elements.

2.3.2 Finite Element models for the simplified shaft
geometries

The process to create simplified shaft models was similar to

that used to create the simplified ant nest model. The

simulation domain for each shaft was a cylinder of radius

125 mm and height 600 mm. The height of a shaft in that

domain was 450 mm. The distance between the shaft walls

and the outer domain boundaries was similar to that

between the ant nest walls and the domain boundaries in

the previous model, and we checked that the domain extent

chosen for the simplified shafts was large enough to avoid

boundary effects. We used linear tetrahedral elements

(C3D4), and the mesh was refined close to the shafts in a

Fig. 4 Local pitch angle of the simplified field nest geometry shown in comparison with the pitch angle in the simplified shaft geometries (left);

simplified ant shaft models used for benchmarking against portions of the actual scanned nest. h denotes the pitch angle (right)
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manner similar to the one shown in model of the ant nest in

Fig. 6.

2.4 FEM result post-processing

We enhanced open-source codes available in the literature

[23] to convert ABAQUS output files from ‘‘.odb’’ to

‘‘.vtk’’ (visualization toolkit) format, which allowed us to

use ParaView to create visualizations of the results of the

three-dimensional FE simulations explained in Sect. 2.3.

ParaView is a powerful tool for volume rendering which is

useful to visualize the data in a solid 3D domain; extraction

of slices and sub-volumes for visualization; extraction of

numerical data at any coordinates within the 3D domain,

regardless of the position of the Finite Element nodes.

Additionally, ParaView offers many filters, one of which

allows calculation of new fields of data from the existing

FEM output fields. Lastly, ParaView has a Python scripting

interface that can be used to automate data extraction,

which was crucial for analyzing the data around the shafts

and chambers of the nest. We compared the stress and

displacement fields around the longest helical shaft of the

ant nest with those around the simplified shaft models. To

do so, we took slices of the deformed mesh normal to the

path of the helix. This required extracting the center-line of

the helix (a process called skeletonization) so as to generate

unit vectors along the helix path. The procedure to extract

data is explained below for the model of the ant nest. The

Fig. 5 Finite Element model of the simplified ant nest cast in situ, with loading and boundary conditions (soil domain shown in blue and nest

walls in red). Domain size: 600� 600� 625 mm3 (L�W � H)

Fig. 6 Finite Element model mesh for the soil domain around the ant nest
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method employed to post-process the Finite Element out-

put data obtained from the simplified shaft simulations was

similar.

2.4.1 Skeletonization and unit vector extraction

Skeletonization was done with an open-source L1-median

algorithm [18], which fits an ellipse to a group of points

intersected by a small plane surface that travels around the

domain and then finds the centroid of that ellipse. These

barycenters are then assembled together to form the center-

line of the shape under study, and the skeleton is obtained.

The L1-median algorithm was suitable for our purpose,

since the cross-sections of the helical shafts were expected

to be elliptical both in the processed digital images of the

field cast and in the simplified shaft models. Figure 7

illustrates the principle of the skeletonization algorithm.

The skeleton of the main shaft was extracted for depths

between 10 cm and 40 cm. The coordinates of the points

on the center-line were used to generate unit vectors along

the path of the helix at regular intervals. Figure 8 shows the

skeleton of the main shaft of the ant nest (left panel), along

with sample normal planes and the unit vectors normal to

them (right panel).

2.4.2 Data extraction and filtering

Finite Element simulation output data were extracted along

the planes normal to the skeleton. In ParaView, the field

variables calculated at the nodes or Gauss points of the

elements intersected by the normal planes were

interpolated so as to generate maps of field variables on the

normal planes (see the left panel of Fig. 9). Out of these

field variable maps, we extracted the data points located at

the walls of the nest structure from the knowledge of the

coordinates of the points on the surface contour of the nest

(see the second figure from the left panel in Fig. 9). The

contour plots at the walls of chambers were filtered out in

order to display contour plots of the field variables at the

wall of the main shaft only (see the third figure from the

left panel in Fig. 9). In order to display the results in a local

coordinate system in which the horizontal axis always

refers to the direction of the major axis of the shaft section

being intersected, we fit an ellipse passing through all the

points of the shaft wall, and we calculated the angular

coordinate (a) of these points in reference to the centroid

and major axis of the ellipse (see the right panel of Fig. 9).

At each point on the ellipse, we extracted the values of the

displacement and stress fields. We then calculated the

stress invariants at each point.

3 Results and discussion

The results of the FE analysis show that, under the con-

stitutive modeling assumptions made in this study, the

domain is fully in elasticity and that there is no plasticity

developed. The main results that we interpret below are the

first stress invariant I1 and the second invariant of the

deviatoric stress tensor J2:

Fig. 7 Principle of the skeletonization process based on an L1-median algorithm that recenters a center-line by local ellipse fitting
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I1 ¼rxx þ ryy þ rzz ð2Þ
J2 ¼

ðrxx � ryyÞ2 þ ðryy � rzzÞ2 þ ðrxx � rzzÞ2

6

þ r2xy þ r2yz þ r2zx

ð3Þ

Fig. 8 Skeleton of the main shaft of the ant nest (left) and sample normal planes with the unit vectors orthogonal to them (right)

Fig. 9 Sample field data of spatial displacement shown around the main shaft (left); filtered coordinates at the nest walls and at the shaft walls

only (middle two); sample ellipse fit for a local cross-section, and calculation of the angular coordinates a of the points of the ellipse in reference

to the ellipse major axis (right)
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In the following, compression is counted positive (per the

soil mechanics sign convention). I1 is three times the mean

stress. A negative or close-to-zero value of I1 is indicative

of a risk of tensile failure. J2 reflects the effect of shear

stress. A high value of J2 points toward an increased risk of

shear failure according to Mohr–Coulomb criterion and

other failure criteria typical of frictional granular media.

3.1 Stress invariant extrema at shaft walls

The stress invariants are calculated at each point of the

contour of the wall of the main shaft, following the pro-

cedure explained in Sect. 2.4.2. The extremum values of

the invariants at the circumference of the shaft are then

calculated for each shaft section that has been extracted,

which allows plotting the extremum values of the invari-

ants as a function of depth. Additionally, the invariants of

stress at the same depths before nest extrusion (i.e., the

invariants of the geostatic stress in the far field) are also

calculated. We note the geostatic stress invariants I01 and J
0
2.

Figure 10 shows the variation of the maximum value of

the first invariant normalized by the geostatic stress first

invariant. A value close to one means that the maximum

compression stress at the shaft wall is equal to the mean

compression stress in geostatic conditions at the depth of

observation. The results obtained for the main shaft of the

ant nest model are compared with those obtained around

simplified helical shafts with horizontal elliptical, vertical

elliptical, and circular cross-sections, with pitch angles of

20�, 45�, and 70�. It is interesting to note that the

normalized maximum value of the first invariant is quasi-

independent from depth for the idealized shafts, which

means that the maximum value of I1 follows a geostatic

gradient at the wall of the helical shafts (despite the pres-

ence of that shaft). The idealized shafts with a horizontal

elliptical cross-section exhibit higher maximum mean

compression (about twice the mean compression under

geostatic stress), while the idealized shafts with circular

and vertical elliptical cross-sections have a maximum mean

compression stress close to the geostatic mean compression

stress. The normalized maximum value of I1 at the wall of

the main shaft of the ant nest varies non-monotonically

with depth. The plot exhibits oscillations around the values

of I1=I
0
1 observed around idealized shafts. The local max-

ima of I1=I
0
1 around the natural shafts are found at the

depths where the main shaft connects with a chamber,

which indicates that the chambers redistribute geostatic

stresses.

Figure 11 shows the non-normalized minimum value

taken by the first invariant I1 at the shaft wall, as a function

of depth. None of the shafts under investigation exhibit a

negative mean stress. Although this does not guarantee that

none of the principal stresses are negative (i.e., a tension),

this first control check indicates that none of the shafts are

guaranteed to fail in tension. That being said, the value of

the minimum mean stress (a third of I1) is in the range of

0.5–3 kPa, which indicates that a small perturbation of the

state of stress could lead to tension at the shaft wall, which

itself could trigger failure. The normalized plots (not

shown here for the sake of brevity) of the minimum value

Fig. 10 Normalized maxima of the first stress invariant (I1) along the depth of the shafts. I
0
1 is the first invariant of the geostatic stress field, in the

absence of shaft. The dashed lines mark the position of the chambers in the ant nest model
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of I1 at the wall of any of the shafts (including the main

shaft of the ant nest) are lower than the first invariant of the

geostatic stress field. At the wall of the idealized helical

shafts, I1 follows a geostatic (gravity-driven) gradient. The

local minima of I1 around the natural shafts are found at the

depths where the main shaft connects with a chamber. This

can be interpreted in the same way as for the maximum

value of I1: The chambers redistribute geostatic stresses.

Figure 12 shows the maxima of the normalized second

invariant of deviatoric stress at the shaft walls as a function

of depth. The maximum second invariant at the walls of

idealized shafts follows a geostatic gradient, which

explains why the normalized second invariant J2=J
0
2 is

almost constant at all depths. Slight/larger oscillations (of

amplitude of about 5% / 15% of the mean value) are noted

for shafts of circular/horizontal elliptical cross-section. A

Fig. 11 Minima of the first stress invariant (I1) along the depth of the shafts. The dashed lines mark the position of the chambers in the ant nest

model

Fig. 12 Normalized maxima of the second invariant of the deviatoric stress (J2) along the depth of the shafts. J02 is the second invariant of the

deviatoric geostatic stress field, in the absence of shaft. The dashed lines mark the position of the chambers in the ant nest models
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possible explanation for why the peak values of J2=J
0
2

exhibit almost no oscillation around helical shafts of ver-

tical elliptical cross-section is that, for that cross-section

orientation relative to the far-field stress, the stress at the

cavity wall is more evenly distributed, which means that

the range of values taken by J2 is narrower than for the

other two types of cross-section (see the details in Sect.

3.2.2, Fig. 17, where we plot the distribution of the stress

invariants around the cavity walls at different depths).

Interestingly, all the maxima of J2 around the shafts exceed

the second invariant of the geostatic stress field. For ide-

alized helical shafts of vertical elliptical cross-section, the

maximum value of J2 is about five times the value of J2
that would exist under a geostatic stress field, while the

maximum value of J2 is 10 to 15 times (respectively, 10 to

20 times) larger than the value J2 expected under geostatic

stress conditions for a circular cross-section (respectively, a

horizontal elliptical cross-section). The maximum value of

J2 at the wall of the main shaft of the ant nest model almost

always exceeds the maximum value of J2 at the wall of any

idealized shaft at a given depth, except for the idealized

shafts that have a horizontal elliptical cross-section. Addi-

tionally, the maxima of J2=J
0
2 reached at the wall of the

main shaft of the ant nest model exhibit peaks at depths just

below the connections with chambers (one exception is the

small peak observed at 380 mm depth). This reinforces

once again the role of chambers in the redistribution of

geostatic stresses.

The maximum value taken by the yield function f at any

given depth is plotted in Fig. 13 for the simplified nest

geometry and for the idealized shaft geometries. We recall

that the Mohr–Coulomb plasticity criterion in terms of

stress invariants as:

f ¼
ffiffiffiffiffi

J2
p

� mðhl;/Þ sin/
3

I1 � mðhl;/Þc cos/ ð4Þ

where:

mðhl;/Þ ¼
ffiffiffi

3
p

ffiffiffi

3
p

cos hl þ sin hl sin/
; sin 3hl ¼

3
ffiffiffi

3
p

J3

2J
3=2
2

;

J3 ¼ det r� I1
3
d

� �

The closer f is to zero, the closer the stress state is to a

plastic state. Results indicate that shafts with a pitch angle

of 70� are the furthest from plasticity. The analytical

solutions presented in the next section show that stress

states in biaxial conditions are generally closer to plasticity

than in isotropic conditions. The low value of f at a pitch

angle of 70� can be attributed to the low anisotropy of the

stress state. Shafts with vertical elliptical or circular cross-

sections present similar yield function profiles for pitch

angles of 20� and 45�. For shafts with a horizontal elliptical
cross-section, a pitch angle of 20� provides a state of stress
that is generally further to plasticity than a pitch angle of

45�. This is counter-intuitive because the shafts of a

smaller pitch angle are subjected to more of a biaxial stress

state, which is expected to increase the risk of plasticity.

This can be understood as the result of interactions between

coils, which are closer to one another when the pitch angle

is lower.

Fig. 13 Maximum value of the yield function at any given depth. The dashed lines mark the position of the chambers in the natural nest
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3.2 I1 and J2 distributions around the shafts

3.2.1 Baseline analytical solution

Equations 5–7 provide the analytical expression of the

stress field in an elastic medium around an elliptical cavity

in plane strain [4], with the geometric parameters shown in

Fig. 14. Since it was found that the soil never enters the

plastic regime in our simulations, this analytical solution is

sufficient to assess the stress distributions around the shafts

in reference to those that would be obtained around a

straight shaft under biaxial stress conditions (horizontal

shaft) or isotropic stress conditions (vertical shaft embed-

ded in a soil mass under isotropic horizontal stresses). The

comparison of the analytical and simulated stress distri-

butions allows isolating the effect of the helical geometry

of the shaft on the mechanical state of the soil mass around

the shaft.

For an ellipse that has its long axis oriented at an angle b
compared to the direction of the horizontal and for a

material element that is at coordinate ðx1; z1Þ in reference

to the shown coordinate system with the origin at the

ellipse centroid and oriented at b from the horizontal, the

stress components are given below. Note that the local

coordinate system (l, m) corresponds to the perpendicular

(l) and tangent (m) orientations in reference to the cavity

wall.

rll ¼
pðe0 � eÞ

J2

h

ð1þ kðe2 � 1Þ C

2e0
þ ð1� kÞ

h� J

2
ðeþ e0Þ þ Ce

�

cos 2ðwþ bÞ � C cos 2b
i

ð5Þ

rmm ¼ p

J
½ð1þ kÞðe2 � 1Þ þ 2ð1� kÞ

e0ðe cos 2ðwþ bÞ � cos 2bÞ� � rll
ð6Þ

rlm ¼ pðeo � eÞ
J2

h

ð1þ kÞCe
e0

sin 2wþ ð1� kÞ
�

eðe0 þ eÞ sin 2bþ

e sin 2ðw� bÞ �
� J

2
ðe0 þ eÞ þ e2e0

�

sin 2ðwþ bÞ
�i

ð7Þ

where:

e0 ¼
W þ H

W � H

b ¼ 4ðx21 þ z21Þ
W2 � H2

d ¼ 8ðx21 � z21Þ
W2 � H2

� 1

C ¼ 1� eðe0Þ

Figure 15 shows the distributions of the first and second

stress invariants expected in elasticity at the wall of hori-

zontal elliptical cavities (b ¼ 0), circular cavities, and

vertical elliptical cavities (b ¼ 90o) that have the same

dimensions as the cross-sections of the idealized shafts

(circular sections of diameter 1 cm or elliptical cross-sec-

tions with a major axis 2 cm long and a minor axis 1 cm

long). Here, I1 and J2 are normalized by the invariants of

the initial geostatic stress (stress before the extrusion of the

shaft from the solid domain meshed in the Finite Element

analysis). Since the stresses depend linearly on the vertical

far-field stress p, the normalization has the advantage of

yielding variables that do not depend on the far-field stress

conditions used in the analysis, which removes the need to

vary p in our parametric studies, that is to say, I1=I
0
1 and

J2=J
0
2 do not depend on depth and can be represented by

only studying different shaft cross-section geometries and

different values of the parameter k (which is equal to the

coefficient of earth pressure at rest in biaxial stress con-

ditions and equal to 1 in isotropic stress conditions).

3.2.2 Stress invariants around idealized shafts

Stress around a vertical shaft is close to isotropic, and stress

around a horizontal shaft is close to biaxial, so it is

expected that the idealized shafts with a pitch angle of 70o
Fig. 14 Geometry of the problem in the analytical model of stress

distribution around an elliptical cavity in plane strain
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will exhibit a stress distribution close to that around a

cavity subjected to isotropic stress in the far field, while the

ones with a pitch angle of 20o will have a stress distribution

close to that around a cavity subjected to a biaxial stress in

the far field. The stress distributions at the contour of the

idealized shafts are compared to those around elliptical

cavities in plane strain in Fig. 16 (in terms of the first

invariant) and in Fig. 17 (in terms of the second invariant).

The curve that represents the variations of I1 with the

angular coordinate a along the contour of shafts with a

horizontal elliptical cross-section lies between the curves

obtained analytically for a straight shaft under biaxial and

isotropic stress conditions. For helical shafts of circular

cross-section, the variations of I1 are similar to those

obtained analytically under biaxial stress conditions, but

the curve is translated by about 45o and reaches higher

minima than with the analytical solution under biaxial

stress. If the cross-section is a vertical ellipse, the variation

of I1 with a is similar for the idealized shaft models and the

analytical solution (around one). We expected instead that

the idealized shafts would follow a stress distribution

similar to the one obtained analytically in isotropic con-

ditions for a pitch angle of 70o and similar to the one

obtained analytically in biaxial conditions for a pitch angle

of 20o. This is because the coils of the helical shafts

interact with one another. According to the analytical

solution for a horizontally oriented elliptical cavity in a

biaxial far-field stress state, there is a risk of tension failure

at the crown and at the foot of the cavity as can be indi-

cated by the nearly 0 or negative I1 values. At the cross-

section of a helical shaft with a horizontally oriented

ellipse at a 20o pitch, which is close to a horizontal ellip-

tical cavity under biaxial stress, tension is avoided due to

the interaction between the different segments of the helix.

Such interaction is also visible in the plots obtained for

circular sections at a 20o pitch. The redistribution of stress

at the wall of helical shafts with a vertical elliptical cross-

section is more complex to interpret, and the interaction is

less significant. This is likely because the distance between

the coils is too small to allow the type of interactions seen

in the other two cross-section shapes, and the orientation of

the cross-section relative to the geostatic stresses in the far

field does not create influence zones that allow the inter-

action that is observed in the case of horizontal elliptical

cross-sections. At a 70o pitch angle, the average com-

pression stress at the cavity wall is larger than under iso-

tropic stress for all section shapes, which points to

favorable interactions between the coils. The variations of

I1 around the sections of the shafts oriented at a pitch angle

of 45o follow the same trends as for the other pitch angles,

with intermediate magnitude values.

Fig. 15 Distributions of the normalized stress invariants at the wall of elliptical and circular cavities, calculated from the analytical solution. I01 is
the first invariant of the geostatic stress field, and J02 is the second invariant of the deviatoric geostatic stress field (both I01 and J02 are calculated in

the absence of shaft)
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The variations of J2 with the inclination angle a along

the contour of the idealized shafts follow the analytical

solution obtained for biaxial stress conditions if the shaft

cross-section is a horizontal ellipse, but the peak values of

the J2 are 3–4 times lower than in the analytical solution. If

the cross-section is circular, the variations of J2 are also

similar to those obtained analytically under biaxial stress

conditions with lower magnitudes, but the curve is

Fig. 16 Normalized I1 distribution around the cavity wall: comparison between analytical solution and idealized shaft models for several pitch

angles (h). I01 is the first invariant of the geostatic stress field, in the absence of shaft

Fig. 17 Normalized J2 distribution around the cavity wall: comparison between analytical solution and idealized shaft models for several pitch

angles (h). J02 is the second invariant of the deviatoric geostatic stress field, in the absence of shaft
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translated by about 45o. If the cross-section is a vertical

ellipse, the curve showing the variations of J2 with a lies

between the ones obtained analytically for biaxial and

isotropic stress conditions. Overall, what is striking is that

compared to the known analytical solutions, for a given

cross-section shape, J2 is more evenly distributed around

the wall of helical shafts. This implies that there is a

decreased risk of shear failure. We hypothesize that this is

due to the interaction between the coils of the helix. The

redistribution of the variations of J2 compared to the stress

distributions in biaxial stress is more prominent for hori-

zontal elliptical cross-sections, which could be due to

arching effects made possible due the increased distance

between the coils compared to the other cross-section

shapes, or to the shielding effects induced by the zone of

influence of elliptical cavities, which spreads over a larger

vertical distance when the elliptical cavity is horizontal

than when it is vertical [4]. It is interesting to note that

interactions between coils contribute to the reduction of the

magnitude of J2 but not I1 around circular shafts. Another

noteworthy observation is that the values of J2=J
0
2 are

bounded by the values obtained analytically under isotropic

and biaxial stress conditions in plane strain.

3.2.3 Stress invariants around the ant nest model

Figures 18 and 19 show the variations of the normalized

first and second invariants at different depths around the

main shaft of the ant nest model and around the idealized

helical shafts. Note that the curves obtained for the ant nest

model are the same in each row, in which the cross-section

of the idealized shafts is changed, but not that of the main

shaft of the ant nest, which is taken as is from the digital

images. A first glance at the figure indicates that, in gen-

eral, the distributions of both I1 and J2 are close to those

obtained around a helical shaft of horizontal cross-section

with a pitch angle of 45o at shallow depth (190 mm), and

they are close to those obtained around a helical shaft of

circular cross-section at larger depth (400 mm). This

agrees with the observations made in the field, where it was

noted that the higher traffic close to the free surface causes

cross-sections to be wider and more elliptical at shallow

depth. The stress invariant distributions around helical

shafts with vertical elliptical cross-sections do not repro-

duce the variations of stress invariants around the ant nests.

The primary reason for this could be that ants are unlikely

to excavate tunnels with that section shape, which does not

allow more traffic and yet requires more mass removal.

Interestingly, the distribution of I1 shows that in the ant

nest model, the risk of tension failure is avoided by a

higher degree as compared to the simplified models. At

intermediate and larger depths (300 mm and 400 mm), it is

worth noticing that the second invariant is more evenly

distributed around the main shaft of the ant nest than

around the idealized helical shafts, which implies that the

risk of shear failure is lower than around helixes. These two

Fig. 18 Normalized I1 distribution around cavity walls: comparison of the main shaft of the ant nest model with the idealized helical shafts
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observations can be explained either by the irregular cross-

sectional size, shape, and orientation of the shaft in the ant

nest or by the interactions with the remainder of the nest

(other minor shafts and extending chambers) in the ant

nest.

3.3 Comments on the helical shape of the main
shaft

Beyond the reduced risk of tension or shear failure at cavity

walls and increased stability of the underground structure,

it is interesting to note some other benefits of the helical

shaft shape. A simple intuitive analysis of excavation

efficiency can be done between a helical vertical shaft and

a nearly straight vertical shaft. During the excavation

process, ants carry the sand particles out of the nest. In

doing so, they walk uphill by providing mechanical work

against their weight, as shown in the sketch in Fig. 20

(right panel). The work that needs to be produced to move

upward by a distance d along the slope (mg sin h� d)
increases as h increases, i.e., as the slope becomes steeper.

The path formed by a straight shaft between two points A

and B has a steeper slope than any helical path between A

and B, as shown Fig. 20 (left panel). Excavating a helical

shaft requires removing more mass than excavating a

nearly straight shaft, which may require more energy. But,

at the same excavation rate, the power needed to excavate a

section d of the shaft at any given time, mg sin h� _d,

decreases as h decreases. As a result, the helical shaft is a

beneficial design when excavation power is limited. Other

benefits to the helical shape may be found in the function

that they serve for the ant communities as well, but this

kind of multi-functional optimization problem is beyond

the scope of the present study.

Fig. 19 Normalized J2 distribution around cavity walls: comparison of the main shaft of the ant nest model with the idealized helical shafts

Fig. 20 Alternative paths from A to B with a straight shaft shown in

orange and a helical shaft shown in blue (left). Force components

involved in the work that ants have to do when carrying particles out

of the ground
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4 Conclusion

We modeled the complex underground structures of ant

nests by in situ casting, 3D scanning, image post-process-

ing, and Finite Element simulation and created simplified

geometries that mimic the most unique geometric feature

of the nest, i.e., helical shafts. The results obtained by

calculating the stress distributions around a model of ant

nest were compared to those obtained with idealized helical

shaft models. The following general main observations

were made:

• Coils of helical structures made of circular cross-

sections and horizontally oriented elliptical cross-sec-

tions interact in a way that reduces the risk of tension

failure and distributes the shear stress more evenly;

• The pitch angle plays an important role in the intensity

of these interactions;

• The maximum and minimum stress invariants I1 and J2
along cross-sections taken at different depths are

significantly affected by the proximity of cross-sections

to a chamber;

• The stress distributions around the cross-section of the

main shaft in an ant nest resemble those around

horizontal elliptical cavities at shallow depth and those

of circular cavities at greater depth. This is in agree-

ment with observations made in the field, where it was

noted that the cross-section of the main shaft was wider

close to the free surface, possibly to allow more traffic;

• In addition to promoting mechanical stability, helical

shafts present the advantage of requiring lower exca-

vation power than straight shafts.

An important consideration in bio-inspired geotechnics is

the realization that biological solutions are multi-faceted.

Organisms adapt to create a particular solution under a set

of constraints. For example, ants, in constructing their

nests, would be interested in optimizing their construction

in a way that minimizes their excavation efforts, maxi-

mizes the nest stability and capacity, allows them to obtain

food and store it easily, has good ventilation, and much

more. It is important to disentangle and understand these

aspects and then select strategies toward improving human-

designed systems. In this study, we presented a set of

results that were created to understand the mechanical

stability of ant nests. We learned that there is an advantage

to creating helical shafts and we can argue that studies on

such helical shafts could be useful to develop new tech-

nologies toward large-scale underground facilities with

multiple levels that would be accessed through helical

shafts. At a smaller scale, this knowledge can be used for

deploying self-burrowing investigation robots that would

construct helical structures, which have advantageous sta-

bility properties, thus enabling the robot to take the same

path backward to be recovered. In order to evaluate these

potential applications, it is necessary to study excavation

energy efficiency and feasibility in further research.

Acknowledgments This material is based upon work primarily sup-

ported by the National Science Foundation under Grant No. 1935548

and partially through the NSF funded ERC on Bio-mediated and Bio-

inspired Geotechnics (CBBG) through PTE Federal Award No. EEC-

1449501. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

Funding was also provided by UKRI NERC grant NE/T010983/1.

Author contributions MB was involved in conceptualization,

methodology, software, validation, formal analysis, investigation,

data curation, writing—original draft, writing—review and editing,

and visualization. KY was involved in methodology, investigation,

resources, and writing—review and editing. EN and DZ participated

in data curation, writing—review and editing, and visualization. DF

participated in conceptualization, methodology, investigation,

resources, data curation, writing—review and editing, supervision,

project administration, and funding acquisition. CA was involved in

conceptualization, methodology, formal analysis, resources, writ-

ing—original draft, writing—review and editing, supervision, project

administration, and funding acquisition.

References

1. Aleali SA, Bandini P, Newtson CM (2020) Multifaceted bioin-

spiration for improving the shaft resistance of deep foundations.

J Bionic Eng 17(5):1059–1074. https://doi.org/10.1007/s42235-

020-0076-6
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