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Abstract

Underground construction and tunnel excavation are known to redistribute stresses and cause ground displacement.
Analytical solutions for stress distribution typically break down at shallow depths or in soil masses that exhibit high spatial
variability, making numerical simulations necessary. Seeking to find new geometries and excavation strategies for
underground construction, we propose to look to nature for inspiration. We extract 3D digital twins of Florida Harvester ant
(Pogonomyrmex Badius) structures from a nest cast in situ and simulate the stress and displacement fields around that nest
with the Finite Element Method (FEM). Stress invariants around the main shaft are compared to those around idealized
geometric representations of that shaft, i.e., helixes with a fixed pitch angle and a uniform elliptical cross-section. Helical
structures made of circular cross-sections and horizontally oriented elliptical cross-sections interact in a way that reduces
the risk of tension failure and distributes the shear stress more evenly. One can show that in addition to the extra stability
that they offer and the lower risk of tensile or shear failure that they exhibit, helical shafts have the advantage of requiring
less power to excavate than straight sub-vertical shafts.

Keywords 3D scanning - Ant nest - Finite Element Method - Tunneling

1 Introduction

In the nineteenth century, the shipworm (Teredo Navalis)
was used as inspiration for the Thames tunnel, which is
where tunnel shielding began [30]. Brunel, the engineer
who invented the design and construction scheme,
observed that the mollusc uses a cutting shell to excavate
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forward at the tunnel face and advances the rest of the body
forward periodically. Shield tunneling has evolved signif-
icantly in terms of equipment and excavation techniques,
leading to self-driving machines that do not require any
human intervention [17]. More recently, it was observed
that organisms such as ants, worms, and clams deploy
significantly more energy-efficient excavation strategies as
compared to those employed by human-designed tunneling
machines [11, 38]. Researchers have studied the behavior
of burrowing organisms in their natural habitats and in
laboratory settings to understand the underlying mecha-
nisms of penetration, excavation, locomotion, and under-
ground stability [9-12, 29, 37, 41, 45, 48]. Mechanical
models can explain burrowing strategies used by animals,
hence making them suitable to emulate in solutions to
practical engineering problems. For example, self-bur-
rowing robots inspired by plant roots were prototyped for
sensor installation and soil investigation [8, 31, 36]. The
aim of this study is to understand the principles of soil
mechanics that explain why ant structures are stable and to
identify mechanisms that can be applied to improve tun-
neling techniques.
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Biomimicry is an approach to innovation that seeks
sustainable solutions to human challenges by emulating
nature’s strategies, for instance, by reconstructing molec-
ular structures and interfaces, reproducing biophysical
phenomena in the laboratory, modeling the mechanisms
that originate biodiversity, or taking inspiration from
ecosystems and living organisms. Bio-inspired design is
either the product of an exploration of natural systems to
solve an engineering problem or the result of the opportune
application of biological principles to an engineering pro-
ject. In the former case, the engineering questions are
raised first, and biological systems that can ensure specific
functions (e.g., support loads, excavate) are sought to
address these issues. In the latter, the biological system is
selected first, and an application of the mechanism in that
system is sought. In this paper, we follow the second
approach, i.e., we select a biological organism that is
known to exhibit interesting properties, and we propose
mechanical models to enhance our fundamental under-
standing of these properties and how they impact tunnel
advancement strategies. Many applications of biomimicry
have been found in bio-inspired geotechnics alone [28]. For
example, it is possible to control the resistance to pene-
tration and pullout of an anchor by using snakeskin-in-
spired interfaces that react differently if displacement is
applied in the cranial or caudal direction. More broadly, the
importance of anisotropic friction properties for load
transfer at the interface between soil and foundation or
anchoring elements was noted in several studies that fea-
tured new soil/structure interfaces inspired by snakeskin
[26, 27, 34, 39, 47]. Similarly, inspiration was taken from
the architecture of plant roots to design high-performance
deep foundation [1] and anchorage [25] systems. Root
pullout resistance was measured by several research teams
to support these designs [5, 6, 15, 16]. The fundamental
mechanisms of soil/root interaction were studied experi-
mentally in maize, a few days old, [2, 3] and numerically at
the scale of a wheat root tip [21].

For convenience and simplicity, human tunneling has
mainly been focused on linear alignments that provide the
shortest path between two points [13]. The present study
aims to find more effective tunneling strategies and align-
ments by studying underground structures made by ants.
The complex structures of subterranean ant nests are not
widely known. Biologists have traditionally extracted the
geometry of these ant nests using excavation and mapping
techniques to generate approximate 2D profile sketches of
the nests [22, 40]. After Williams and Lofgren began using
dental plaster for nest casting in 1988, Tschinkel continued
to expand this field with the casting and extraction of full
3D nest structures of a variety of ant species [44].
Tschinkel observed that the nests of Florida Harvester ants
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(Pogonomyrmex Badius) have a particularly unique and
interesting geometry with two distinct components, i.e.,
helical sub-vertical shafts and horizontal chambers [42].
We chose to study Harvester ant nests because of these
specific structural features. In this paper, in order to
understand why the nests of Harvester ants are stable, we
propose to analyze the stress and displacement fields
around actual nests as well as simplified nest components.
Analytical solutions available to date cannot be applied to
complex tunnel structures under biaxial stress such as
Harvester ant nests (e.g., see the literature review in [35]).
Experimental studies related to ant nests have been limited
to small-scale experiments in quasi-2D settings of ant
farms that allow observation of the excavation process
through a glass panel [11, 29]. No known experimental
method has been used to understand the whole three-di-
mensional mechanical response of the soil around Har-
vester ant nests. In this study, we thus adopt a numerical
approach to model the complex geometry of the ant nests
and calculate the stress and displacement fields around the
nests. Harvester ant chambers were modeled in 2D with the
Discrete Element Method (DEM), and simulations showed
that stress redistribution due to arching contributes to the
stability of these cavities [13]. 3D DEM models of ant nests
were proposed to understand ant excavation strategies and
predict the stability of complex ant nest structures [24], but
these numerical models have been limited to small portions
of the whole nest structure. DEM studies have provided
great insight into the mechanical stability of ant nests and
have motivated the present study, dedicated to the whole
nest structure. Although DEM is a powerful tool for
granular mechanics, its computational cost would make it a
less desirable choice to model a full nest. Here, we propose
an analysis based on the Finite Element Method (FEM).

We begin by modeling an actual ant nest extracted from
a site in Florida. We simulate the response of the nest to
geostatic stress, and we model idealized portions of that
nest, in order to isolate the different mechanisms of
structure stability. We present some mechanical conjec-
tures to explain the geometry of Harvester ant nests, and
we draw some conclusions for bio-inspired tunneling. Data
and methods that pertain to soil characterization, ant nest
geometry extraction, mesh generation, and FEM modeling
are explained in Sect. 2, which also describes the geometry
of the idealized helical shafts that we modeled for bench-
marking. The simulation results and their interpretation in
light of known analytical solutions are discussed in Sect. 3,
which also explains the underlying stability mechanisms.
Conclusions on the mechanical functions of the ant nest
components and the possible applications to tunnel engi-
neering are presented in Sect. 4.
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2 Data and methods
2.1 Soil characterization
2.1.1 Data from the field

The ant nest that is studied here was located in Lee,
Florida, in an area that is primarily composed of Blanton
sand, a siliceous, fine, clean sand, according to the USGS
Web Soil Survey [46]. Of note, the site where the ant nest
was extracted was subjected to a full geotechnical index
property characterization, which is unique to the present
study, since most, if not all, of the literature on ant nest
architecture contains no information about the surrounding
soil. ASTM standard test methods D 6913, 7263, 2216-19,
and 4253/4 were used to obtain the particle gradation, dry
unit weight, moisture content, and minimum and maximum
void ratios of the soil, respectively. The results of the grain
size distribution analysis are summarized in Table 1. The
dry unit weight and water content profile were obtained
from the field, and because their variability with depth was
not significant, average values of y4,=1.516 g/cm® and
w = 3.287% were used in the subsequent model. The
minimum and maximum dry densities of the sand were also
measured, and it was found that yg., i, =1.424 g/cm? and

Vary—max=1.726 glem’.
2.1.2 Soil constitutive model parameters

In the FEM models described in Sect. 2.3, the soil is
assigned the Mohr—Coulomb elastoplastic constitutive
model, with a non-associate flow rule. The Mohr—Coulomb
criterion is chosen for its simplicity and its proven suit-
ability for frictional soil. The method to calculate the
Mohr—Coulomb constitutive parameters and the other soil
parameters needed to perform the FEM simulations is
described below:

(i) Density
By using an average dry density y4,=1.516g/

cm? and water content w = 3.287%, we calculate
the wet density (total density) of the soil as:

Table 1 Grain size distribution

Dgo (mm)  D3p (mm)  Djp (mm)  Dsp (mm) G, C.

0.361 0.209 0.097 0.3 3.71 1.24

The sand falls under the USCS classification SP

% = Yay(1 +w) = 1.516 g/cm’ (1 4 0.033)
7, = 1.566 g/cm®

(i)  Young’s elastic modulus and Poisson’s ratio
The relative density of the soil is used to
classify the sand in a spectrum from very loose to
very dense, for which typical values of elastic
modulus are available in the literature [7]. The
relative densities calculated at several depths
mainly fall in the loose sand category, for which
the Young’s modulus can be estimated as E =
20 MPa and the Poisson’s ratio as v = 0.3 [7, 14].
(iii)  Friction angle
The drained friction angle can be estimated to
be about ¢’ = 30° from empirical correlations by
Brinch, Hansen, and Lundgren [33] and from
typical values reported in the literature for loose
uniform sand [7, 14].
(iv) Cohesion
The sand found in situ was unsaturated. The
capillary pressure increases the soil shear strength.
In other words, unsaturated sand has an apparent
cohesion. This apparent cohesion can be used as
the cohesion parameter in the Mohr—Coulomb
model [20] to account for the increase in soil shear
strength with suction. The apparent cohesion is
calculated as a function of the saturation and
drained friction parameters of the soil as follows:

"= + y(u, — uy) tan ¢’ (1)

where the effective stress parameter y is a func-
tion of the degree of saturation of the soil, which
varies by type of soil. It has been shown that y
could be approximated as the degree of saturation
itself for sands [32]. Using the measured data of
dry density and moisture content measured in situ,
we estimated the saturation degree and, subse-
quently, the apparent cohesion to be about 6 kPa.
(v) Dilatancy angle

The typical dilatancy angle  for loose sand is
less than 10° [14]. In the following analyses, we
use a value of 10°.

The sand parameters used in the FEM model are summa-
rized in Table 2.

Table 2 Summary of model parameters

7, (glem®) E (MPa) v (-) ¢ (%) ¢ (kPa) v (%)

1.566 20 0.3 30 6 10
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A parametric study showed that the numerical results
were not significantly affected by the values of the elastic
modulus, Poisson’s ratio, and friction angle of the soil
when taken within a range of values typical of a loose sand.
However, varying the value of apparent cohesion con-
trolled the onset of plasticity. At very low values of
apparent cohesion (c =1 kPa and ¢ = 0.5 kPa), small
portions of the domain underwent plastic strains. In the
following, we used an apparent cohesion of 6 kPa because
it is representative of the in situ conditions.

2.2 Geometry of the ant nest and shafts
2.2.1 Ant nest geometry extracted from the field

The ant nest was molded in place, and the geometric
characteristics were measured by using a 3D digital twin of
the cast. Various materials such as paraffin wax, dental
plaster, and zinc are routinely used to create casts of sub-
terranean ant nests [43]. For the purposes of this study,
aluminum was selected because of its low melting point as
well as the strength and durability of the cast that is pro-
duced after curing.

The casting process used in this study was based on the
procedure detailed in [43]. Pure aluminum was heated in a
crucible above its melting point of 660.3 °C. The molten
aluminum was then poured into the nest opening until the
metal began to pool at the surface. The aluminum was left
in place until the soil around the nest entrance became cool
enough to be handled safely (no longer than 24 h). The cast
was extracted from the ground using shovels and hand
rakes, and then the remaining soil was washed off with
water. After recovering the cast from the field, the next step
was to generate a digital replica for use in the subsequent
FEM model.

An EinScan Pro HD handheld scanner, developed by
Shining 3D, was used to obtain a 3D digital image of the
ant nest casts. The scanner uses flash LiDAR to develop an
initial raw point cloud of the casting. Before scanning,
reflective markers are evenly distributed on the casting.
The markers play the role of control points. Markers are
read by the scanner first and assigned coordinates. The
coordinates of the cloud points that represent the surface of
the casting are measured in reference with the coordinates
of the markers. The casting needs to have markers placed
in a random, nonlinear pattern with at least four markers in
each scanning field of view. Therefore, the markers were
distributed on the top, bottom, and edges of the ant casting
features. The reflectivity of the aluminum made scanning
in bright lights difficult; therefore, measures were taken
under indirect light, e.g., by holding an umbrella above the
casting during the scanning process. The scanner was held
by hand and slowly moved around, above, and below the
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ant nest casting. Point cloud data were collected with a 0.2-
mm resolution, meaning each point had no other point
within a 0.2 mm radius in any direction. The EXScan Pro
software was then used to generate a watertight mesh, such
that the surface of the mesh was closed.

2.2.2 Simplified nest geometry for FEM models

The watertight mesh was then pre-processed before being
used as a basis to construct the Finite Element mesh. First,
the top ~ 17 mm was cut off during the analysis because
some overflow had occurred during the field casting pro-
cess, which led to an excess of aluminum in the top part of
the nest. Next, the density of the watertight mesh was
reduced in order to allow completion of the FEM simula-
tions within no more than a few days on a workstation,
remove ill-shaped elements that would cause convergence
issues, and avoid stress concentrations at local geometric
irregularities (which would overshadow the results in the
rest of the domain). Since the purpose of the study was to
understand the effect of the overall nest structure on soil
stress distributions, we sought to eliminate the effects of
surface roughness. We used Autodesk Meshmixer to
remesh the cast into a relatively coarser and more regular
mesh, which provided a smoother rendering of the nest
geometry, as can be seen in the sample portion shown in
Fig. 1.

The gap between the processed mesh and the original
mesh was measured along the direction normal to the
surface of the processed mesh. The average distance
between the smoothed surface and the original surface
from the scan, shown in Fig. 2, was found to be 1 mm,
which is approximately 10% of the average diameter of the
shafts and the average height of the chambers. This devi-
ation was thus judged acceptable to study the overall
geometry of the nest excluding the surface roughness of the
walls of the ant nest, mainly, the spacing of the chambers,
the orientation of the shafts, and the cross-section of the
shafts. The mesh densities and nest dimensions before and
after pre-processing are summarized in Tables 3 and 4,
respectively. In summary, we were able to reduce the
overall mesh density by an order of magnitude without
compromising on the accuracy of the geometric structure
of the nest. Figure 3 shows the post-processed mesh that
was used in the Finite Element analysis.

2.2.3 Simplified shaft geometries for FEM models

Figure 4 shows simplified geometries of helical shafts,
which are features commonly observed in Florida Har-
vester ant nests. These models were used for benchmarking
against the shafts of the actual nest presented in Sect. 2.2.2
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10 mm

Fig. 2 Originally scanned images (light gray, left), processed images (dark gray, middle), and processed image subtracted from the original

image (right)

Table 3 Surface mesh of the ant nest casting before and after
processing

Vertices Faces (triangles)
As scanned 1,249,992 2,500,076
After processing 62,439 124,950

Table 4 Dimensions of the casting before and after processing

Height (mm) Length (mm) Width (mm)
As scanned 450.312 399.468 342.33
After processing 432.365 397.802 340.974

and have the geometric features of actual ant shafts, with a
helix diameter of 5 cm, pitch angles (0) between 20° and
70°, and cross-sections that are either circular with a 1 cm
diameter or elliptical with major and minor axes of lengths
2 cm and 1 cm, respectively. These values were selected
based on studies in which these geometric features were
quantified in Florida Harvester ant nests [42]. We verified
that the pitch angle of the main shaft of the natural nest was
in this general range of 20° and 70°. Specifically, the pitch
angle of the main shaft of the natural nest was between 45°

<X o

50 mm

Fig. 3 3D image of the post-processed casting used as input to the
FEM model

and 70° when measured locally along the depth, as shown
in the left panel of Fig. 4. Helix diameters were reported to
lie in the range of 4-6 cm with little variation over the
depth of the shaft [42], which is why we used a unique
median value of 5 cm for the helix diameter in our para-
metric study. The measure of the helix diameter of the
main shaft in the natural nest was consistent with this
choice. Each shaft geometry was created using the

@ Springer
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Fig. 4 Local pitch angle of the simplified field nest geometry shown in comparison with the pitch angle in the simplified shaft geometries (left);
simplified ant shaft models used for benchmarking against portions of the actual scanned nest. 0 denotes the pitch angle (right)

parametric equation of a helix, and the model generation
was done through an automated routine that took the
geometric variables such as pitch angle, cross-sectional
shape, size, and orientation as inputs. The different
geometries used are presented on the right panel of Fig. 4.

2.3 Finite Element models

Finite Element models of the simplified nest geometry and
of the simplified shaft geometries presented in Sects. 2.2.2
and 2.2.3 were created by extruding the geometric shape of
interest from a prismatic solid domain. The lateral faces of
the domain were subjected to zero normal displacement
and zero shear stress. The three translation degrees of
freedom at the bottom face were fixed to zero, and the top
surface was free of stress. Before extrusion, the solid
domain (which represents the soil mass) was subjected to
geostatic stresses, where the vertical stress field, which
reflects the soil self-weight, is calculated as 7, x z (z being
the depth), and where the horizontal stress field, which
represents the lateral earth pressure of the soil, is calculated
as Ko x y, x z, where Kj is calculated by Jaky’s equation
[19]. Then static, implicit analysis was used to simulate the
extrusion in one loading step, with a direct solver and a full
Newton resolution technique.

2.3.1 Finite Element model of the simplified nest geometry

To create the Finite Element (FE) model of the soil sur-
rounding the nest, the processed digital twin of the casting
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was imported into the FE analysis software ABAQUS. The
bounding box size of the processed casting was approxi-
mately 398 x 341 x 432 mm® (L x W x H). The nest
casting shape was extruded from a parallelepiped to create
the simulation domain. We picked the smallest simulation
domain size that ensured negligible displacement and stress
gradient at the boundaries when performing the extrusion
simulation under geostatic stresses, i.e., 600 x 600 x 625
mm? (L x W x H). The geometry, boundary conditions,
and geostatic loading are illustrated in Fig. 5.

The 3D domain was meshed using linear tetrahedral
elements of type C3D4. The mesh was refined close to the
ant nest walls. The Finite Element mesh, shown in Fig. 6,
contained 559, 534 nodes and 3, 199, 559 elements.

2.3.2 Finite Element models for the simplified shaft
geometries

The process to create simplified shaft models was similar to
that used to create the simplified ant nest model. The
simulation domain for each shaft was a cylinder of radius
125 mm and height 600 mm. The height of a shaft in that
domain was 450 mm. The distance between the shaft walls
and the outer domain boundaries was similar to that
between the ant nest walls and the domain boundaries in
the previous model, and we checked that the domain extent
chosen for the simplified shafts was large enough to avoid
boundary effects. We used linear tetrahedral elements
(C3D4), and the mesh was refined close to the shafts in a
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Fig. 5 Finite Element model of the simplified ant nest cast in situ, with loading and boundary conditions (soil domain shown in blue and nest

walls in red). Domain size: 600 x 600 x 625 mm?> (L x W x H)

Fig. 6 Finite Element model mesh for the soil domain around the ant nest

manner similar to the one shown in model of the ant nest in
Fig. 6.

2.4 FEM result post-processing

We enhanced open-source codes available in the literature
[23] to convert ABAQUS output files from “.odb” to
“.vtk” (visualization toolkit) format, which allowed us to
use ParaView to create visualizations of the results of the
three-dimensional FE simulations explained in Sect. 2.3.
ParaView is a powerful tool for volume rendering which is
useful to visualize the data in a solid 3D domain; extraction
of slices and sub-volumes for visualization; extraction of
numerical data at any coordinates within the 3D domain,

regardless of the position of the Finite Element nodes.
Additionally, ParaView offers many filters, one of which
allows calculation of new fields of data from the existing
FEM output fields. Lastly, ParaView has a Python scripting
interface that can be used to automate data extraction,
which was crucial for analyzing the data around the shafts
and chambers of the nest. We compared the stress and
displacement fields around the longest helical shaft of the
ant nest with those around the simplified shaft models. To
do so, we took slices of the deformed mesh normal to the
path of the helix. This required extracting the center-line of
the helix (a process called skeletonization) so as to generate
unit vectors along the helix path. The procedure to extract
data is explained below for the model of the ant nest. The
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method employed to post-process the Finite Element out-
put data obtained from the simplified shaft simulations was
similar.

2.4.1 Skeletonization and unit vector extraction

Skeletonization was done with an open-source L1-median
algorithm [18], which fits an ellipse to a group of points
intersected by a small plane surface that travels around the
domain and then finds the centroid of that ellipse. These
barycenters are then assembled together to form the center-
line of the shape under study, and the skeleton is obtained.
The L1-median algorithm was suitable for our purpose,
since the cross-sections of the helical shafts were expected
to be elliptical both in the processed digital images of the
field cast and in the simplified shaft models. Figure 7
illustrates the principle of the skeletonization algorithm.

The skeleton of the main shaft was extracted for depths
between 10 cm and 40 cm. The coordinates of the points
on the center-line were used to generate unit vectors along
the path of the helix at regular intervals. Figure 8 shows the
skeleton of the main shaft of the ant nest (left panel), along
with sample normal planes and the unit vectors normal to
them (right panel).

2.4.2 Data extraction and filtering

Finite Element simulation output data were extracted along
the planes normal to the skeleton. In ParaView, the field
variables calculated at the nodes or Gauss points of the
elements intersected by the normal planes were

interpolated so as to generate maps of field variables on the
normal planes (see the left panel of Fig. 9). Out of these
field variable maps, we extracted the data points located at
the walls of the nest structure from the knowledge of the
coordinates of the points on the surface contour of the nest
(see the second figure from the left panel in Fig. 9). The
contour plots at the walls of chambers were filtered out in
order to display contour plots of the field variables at the
wall of the main shaft only (see the third figure from the
left panel in Fig. 9). In order to display the results in a local
coordinate system in which the horizontal axis always
refers to the direction of the major axis of the shaft section
being intersected, we fit an ellipse passing through all the
points of the shaft wall, and we calculated the angular
coordinate () of these points in reference to the centroid
and major axis of the ellipse (see the right panel of Fig. 9).
At each point on the ellipse, we extracted the values of the
displacement and stress fields. We then calculated the
stress invariants at each point.

3 Results and discussion

The results of the FE analysis show that, under the con-
stitutive modeling assumptions made in this study, the
domain is fully in elasticity and that there is no plasticity
developed. The main results that we interpret below are the
first stress invariant /; and the second invariant of the
deviatoric stress tensor J,:

i

point cloud of whole nest

local section
® [ocal set of points
¥ local center

Fig. 7 Principle of the skeletonization process based on an L1-median algorithm that recenters a center-line by local ellipse fitting
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Fig. 8 Skeleton of the main shaft of the ant nest (left) and sample normal planes with the unit vectors orthogonal to them (right)
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In the following, compression is counted positive (per the
soil mechanics sign convention). /; is three times the mean
stress. A negative or close-to-zero value of /; is indicative
of a risk of tensile failure. J, reflects the effect of shear
stress. A high value of J; points toward an increased risk of
shear failure according to Mohr—Coulomb criterion and
other failure criteria typical of frictional granular media.

3.1 Stress invariant extrema at shaft walls

The stress invariants are calculated at each point of the
contour of the wall of the main shaft, following the pro-
cedure explained in Sect. 2.4.2. The extremum values of
the invariants at the circumference of the shaft are then
calculated for each shaft section that has been extracted,
which allows plotting the extremum values of the invari-
ants as a function of depth. Additionally, the invariants of
stress at the same depths before nest extrusion (i.e., the
invariants of the geostatic stress in the far field) are also
calculated. We note the geostatic stress invariants /] and J}.

Figure 10 shows the variation of the maximum value of
the first invariant normalized by the geostatic stress first
invariant. A value close to one means that the maximum
compression stress at the shaft wall is equal to the mean
compression stress in geostatic conditions at the depth of
observation. The results obtained for the main shaft of the
ant nest model are compared with those obtained around
simplified helical shafts with horizontal elliptical, vertical
elliptical, and circular cross-sections, with pitch angles of
20°, 45°, and 70°. It is interesting to note that the

Vertical ellipse x-sec

normalized maximum value of the first invariant is quasi-
independent from depth for the idealized shafts, which
means that the maximum value of /; follows a geostatic
gradient at the wall of the helical shafts (despite the pres-
ence of that shaft). The idealized shafts with a horizontal
elliptical cross-section exhibit higher maximum mean
compression (about twice the mean compression under
geostatic stress), while the idealized shafts with circular
and vertical elliptical cross-sections have a maximum mean
compression stress close to the geostatic mean compression
stress. The normalized maximum value of I; at the wall of
the main shaft of the ant nest varies non-monotonically
with depth. The plot exhibits oscillations around the values
of I; /1] observed around idealized shafts. The local max-
ima of I;/I} around the natural shafts are found at the
depths where the main shaft connects with a chamber,
which indicates that the chambers redistribute geostatic
stresses.

Figure 11 shows the non-normalized minimum value
taken by the first invariant /; at the shaft wall, as a function
of depth. None of the shafts under investigation exhibit a
negative mean stress. Although this does not guarantee that
none of the principal stresses are negative (i.e., a tension),
this first control check indicates that none of the shafts are
guaranteed to fail in tension. That being said, the value of
the minimum mean stress (a third of /) is in the range of
0.5-3 kPa, which indicates that a small perturbation of the
state of stress could lead to tension at the shaft wall, which
itself could trigger failure. The normalized plots (not
shown here for the sake of brevity) of the minimum value
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Fig. 10 Normalized maxima of the first stress invariant (I;) along the depth of the shafts. /] is the first invariant of the geostatic stress field, in the
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absence of shaft. The dashed lines mark the position of the chambers in the ant nest model
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Fig. 11 Minima of the first stress invariant (/) along the depth of the shafts. The dashed lines mark the position of the chambers in the ant nest

model

of I; at the wall of any of the shafts (including the main
shaft of the ant nest) are lower than the first invariant of the
geostatic stress field. At the wall of the idealized helical
shafts, I; follows a geostatic (gravity-driven) gradient. The
local minima of /; around the natural shafts are found at the
depths where the main shaft connects with a chamber. This
can be interpreted in the same way as for the maximum
value of /;: The chambers redistribute geostatic stresses.

0 Horizontal ellipse x-sec  Vertical ellipse x-sec

Figure 12 shows the maxima of the normalized second
invariant of deviatoric stress at the shaft walls as a function
of depth. The maximum second invariant at the walls of
idealized shafts follows a geostatic gradient, which
explains why the normalized second invariant J,/J) is
almost constant at all depths. Slight/larger oscillations (of
amplitude of about 5% / 15% of the mean value) are noted
for shafts of circular/horizontal elliptical cross-section. A
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Fig. 12 Normalized maxima of the second invariant of the deviatoric stress (J») along the depth of the shafts. J} is the second invariant of the
deviatoric geostatic stress field, in the absence of shaft. The dashed lines mark the position of the chambers in the ant nest models
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possible explanation for why the peak values of J,/J)
exhibit almost no oscillation around helical shafts of ver-
tical elliptical cross-section is that, for that cross-section
orientation relative to the far-field stress, the stress at the
cavity wall is more evenly distributed, which means that
the range of values taken by J, is narrower than for the
other two types of cross-section (see the details in Sect.
3.2.2, Fig. 17, where we plot the distribution of the stress
invariants around the cavity walls at different depths).
Interestingly, all the maxima of J;, around the shafts exceed
the second invariant of the geostatic stress field. For ide-
alized helical shafts of vertical elliptical cross-section, the
maximum value of J, is about five times the value of J,
that would exist under a geostatic stress field, while the
maximum value of J;, is 10 to 15 times (respectively, 10 to
20 times) larger than the value J, expected under geostatic
stress conditions for a circular cross-section (respectively, a
horizontal elliptical cross-section). The maximum value of
J, at the wall of the main shaft of the ant nest model almost
always exceeds the maximum value of J; at the wall of any
idealized shaft at a given depth, except for the idealized
shafts that have a horizontal elliptical cross-section. Addi-
tionally, the maxima of J,/J) reached at the wall of the
main shaft of the ant nest model exhibit peaks at depths just
below the connections with chambers (one exception is the
small peak observed at 380 mm depth). This reinforces
once again the role of chambers in the redistribution of
geostatic stresses.

The maximum value taken by the yield function f at any
given depth is plotted in Fig. 13 for the simplified nest
geometry and for the idealized shaft geometries. We recall

0 Horizontal ellipse x-sec Vertical ellipse x-sec

that the Mohr—Coulomb plasticity criterion in terms of
stress invariants as:

f= @_wh —m(0;, ¢)ccos ¢ (4)

where:

m(0;, ¢) = v3
b V3 cos 0; + sin 0; sin ¢

1
J3 = det(o-—glﬁ)

The closer f is to zero, the closer the stress state is to a
plastic state. Results indicate that shafts with a pitch angle
of 70° are the furthest from plasticity. The analytical
solutions presented in the next section show that stress
states in biaxial conditions are generally closer to plasticity
than in isotropic conditions. The low value of f at a pitch
angle of 70° can be attributed to the low anisotropy of the
stress state. Shafts with vertical elliptical or circular cross-
sections present similar yield function profiles for pitch
angles of 20° and 45°. For shafts with a horizontal elliptical
cross-section, a pitch angle of 20° provides a state of stress
that is generally further to plasticity than a pitch angle of
45°. This is counter-intuitive because the shafts of a
smaller pitch angle are subjected to more of a biaxial stress
state, which is expected to increase the risk of plasticity.
This can be understood as the result of interactions between
coils, which are closer to one another when the pitch angle
is lower.

3375
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Fig. 13 Maximum value of the yield function at any given depth. The dashed lines mark the position of the chambers in the natural nest
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3.2 I, and J, distributions around the shafts — C
! 2 ou :p(e"—f) {(1+k(e2—1)—+(1—k)
J 260
3.2.1 Baseline analytical solution J
y {(E(e—&-eo) +Ce) (5)

Equations 5-7 provide the analytical expression of the
stress field in an elastic medium around an elliptical cavity
in plane strain [4], with the geometric parameters shown in
Fig. 14. Since it was found that the soil never enters the
plastic regime in our simulations, this analytical solution is
sufficient to assess the stress distributions around the shafts
in reference to those that would be obtained around a
straight shaft under biaxial stress conditions (horizontal
shaft) or isotropic stress conditions (vertical shaft embed-
ded in a soil mass under isotropic horizontal stresses). The
comparison of the analytical and simulated stress distri-
butions allows isolating the effect of the helical geometry
of the shaft on the mechanical state of the soil mass around
the shaft.

For an ellipse that has its long axis oriented at an angle f§
compared to the direction of the horizontal and for a
material element that is at coordinate (x;, z;) in reference
to the shown coordinate system with the origin at the
ellipse centroid and oriented at § from the horizontal, the
stress components are given below. Note that the local
coordinate system (/, m) corresponds to the perpendicular
() and tangent (m) orientations in reference to the cavity
wall.

Fig. 14 Geometry of the problem in the analytical model of stress
distribution around an elliptical cavity in plane strain

cos2(¥ + ) — Ccos 2[3}

T = [(1 +k)(e? —1)+2(1 —k)
eo(ecos2(y + f) — cos2f)] — ay

smw + (1 —k)

Oim :[LZ_) |:(1 +k) o

J
(e(eo + e)sin2f+

esin2(y — f) — (% (eo +e) + €2€0>

sin2(y + ﬂ))]
where:
W+ H
€y =
W-—-H
b 4(x7 + Z%)
- w2 — H?
8-
- W2 — H2
C=1—-ee)

Figure 15 shows the distributions of the first and second
stress invariants expected in elasticity at the wall of hori-
zontal elliptical cavities (ff = 0), circular cavities, and
vertical elliptical cavities (ff = 90°) that have the same
dimensions as the cross-sections of the idealized shafts
(circular sections of diameter 1 cm or elliptical cross-sec-
tions with a major axis 2 cm long and a minor axis 1 cm
long). Here, I} and J, are normalized by the invariants of
the initial geostatic stress (stress before the extrusion of the
shaft from the solid domain meshed in the Finite Element
analysis). Since the stresses depend linearly on the vertical
far-field stress p, the normalization has the advantage of
yielding variables that do not depend on the far-field stress
conditions used in the analysis, which removes the need to
vary p in our parametric studies, that is to say, I; /I{ and
J»/J, do not depend on depth and can be represented by
only studying different shaft cross-section geometries and
different values of the parameter k (which is equal to the
coefficient of earth pressure at rest in biaxial stress con-
ditions and equal to 1 in isotropic stress conditions).

3.2.2 Stress invariants around idealized shafts
Stress around a vertical shaft is close to isotropic, and stress

around a horizontal shaft is close to biaxial, so it is
expected that the idealized shafts with a pitch angle of 70°
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Fig. 15 Distributions of the normalized stress invariants at the wall of elliptical and circular cavities, calculated from the analytical solution. /] is
the first invariant of the geostatic stress field, and J} is the second invariant of the deviatoric geostatic stress field (both I{ and J; are calculated in

the absence of shaft)

will exhibit a stress distribution close to that around a
cavity subjected to isotropic stress in the far field, while the
ones with a pitch angle of 20° will have a stress distribution
close to that around a cavity subjected to a biaxial stress in
the far field. The stress distributions at the contour of the
idealized shafts are compared to those around elliptical
cavities in plane strain in Fig. 16 (in terms of the first
invariant) and in Fig. 17 (in terms of the second invariant).

The curve that represents the variations of I; with the
angular coordinate o along the contour of shafts with a
horizontal elliptical cross-section lies between the curves
obtained analytically for a straight shaft under biaxial and
isotropic stress conditions. For helical shafts of circular
cross-section, the variations of I; are similar to those
obtained analytically under biaxial stress conditions, but
the curve is translated by about 45° and reaches higher
minima than with the analytical solution under biaxial
stress. If the cross-section is a vertical ellipse, the variation
of I; with o is similar for the idealized shaft models and the
analytical solution (around one). We expected instead that
the idealized shafts would follow a stress distribution
similar to the one obtained analytically in isotropic con-
ditions for a pitch angle of 70° and similar to the one
obtained analytically in biaxial conditions for a pitch angle
of 20°. This is because the coils of the helical shafts
interact with one another. According to the analytical

@ Springer

solution for a horizontally oriented elliptical cavity in a
biaxial far-field stress state, there is a risk of tension failure
at the crown and at the foot of the cavity as can be indi-
cated by the nearly O or negative I; values. At the cross-
section of a helical shaft with a horizontally oriented
ellipse at a 20° pitch, which is close to a horizontal ellip-
tical cavity under biaxial stress, tension is avoided due to
the interaction between the different segments of the helix.
Such interaction is also visible in the plots obtained for
circular sections at a 20° pitch. The redistribution of stress
at the wall of helical shafts with a vertical elliptical cross-
section is more complex to interpret, and the interaction is
less significant. This is likely because the distance between
the coils is too small to allow the type of interactions seen
in the other two cross-section shapes, and the orientation of
the cross-section relative to the geostatic stresses in the far
field does not create influence zones that allow the inter-
action that is observed in the case of horizontal elliptical
cross-sections. At a 70° pitch angle, the average com-
pression stress at the cavity wall is larger than under iso-
tropic stress for all section shapes, which points to
favorable interactions between the coils. The variations of
I, around the sections of the shafts oriented at a pitch angle
of 45 follow the same trends as for the other pitch angles,
with intermediate magnitude values.
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The variations of J, with the inclination angle o along
the contour of the idealized shafts follow the analytical
solution obtained for biaxial stress conditions if the shaft
cross-section is a horizontal ellipse, but the peak values of

90 180 270
o (%)

O

O

the J, are 3—4 times lower than in the analytical solution. If
the cross-section is circular, the variations of J, are also
similar to those obtained analytically under biaxial stress
conditions with lower magnitudes, but the curve is
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translated by about 45°. If the cross-section is a vertical
ellipse, the curve showing the variations of J, with « lies
between the ones obtained analytically for biaxial and
isotropic stress conditions. Overall, what is striking is that
compared to the known analytical solutions, for a given
cross-section shape, J, is more evenly distributed around
the wall of helical shafts. This implies that there is a
decreased risk of shear failure. We hypothesize that this is
due to the interaction between the coils of the helix. The
redistribution of the variations of J, compared to the stress
distributions in biaxial stress is more prominent for hori-
zontal elliptical cross-sections, which could be due to
arching effects made possible due the increased distance
between the coils compared to the other cross-section
shapes, or to the shielding effects induced by the zone of
influence of elliptical cavities, which spreads over a larger
vertical distance when the elliptical cavity is horizontal
than when it is vertical [4]. It is interesting to note that
interactions between coils contribute to the reduction of the
magnitude of J, but not /; around circular shafts. Another
noteworthy observation is that the values of J,/J, are
bounded by the values obtained analytically under isotropic
and biaxial stress conditions in plane strain.

3.2.3 Stress invariants around the ant nest model

Figures 18 and 19 show the variations of the normalized
first and second invariants at different depths around the

main shaft of the ant nest model and around the idealized
helical shafts. Note that the curves obtained for the ant nest
model are the same in each row, in which the cross-section
of the idealized shafts is changed, but not that of the main
shaft of the ant nest, which is taken as is from the digital
images. A first glance at the figure indicates that, in gen-
eral, the distributions of both I; and J, are close to those
obtained around a helical shaft of horizontal cross-section
with a pitch angle of 45 at shallow depth (190 mm), and
they are close to those obtained around a helical shaft of
circular cross-section at larger depth (400 mm). This
agrees with the observations made in the field, where it was
noted that the higher traffic close to the free surface causes
cross-sections to be wider and more elliptical at shallow
depth. The stress invariant distributions around helical
shafts with vertical elliptical cross-sections do not repro-
duce the variations of stress invariants around the ant nests.
The primary reason for this could be that ants are unlikely
to excavate tunnels with that section shape, which does not
allow more traffic and yet requires more mass removal.
Interestingly, the distribution of /; shows that in the ant
nest model, the risk of tension failure is avoided by a
higher degree as compared to the simplified models. At
intermediate and larger depths (300 mm and 400 mm), it is
worth noticing that the second invariant is more evenly
distributed around the main shaft of the ant nest than
around the idealized helical shafts, which implies that the
risk of shear failure is lower than around helixes. These two

——Nb5-natural ------ 0=20° — 9=45° —— -~ 0=70°
Depth=190mm Depth=300mm Depth=400mm
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Fig. 18 Normalized /; distribution around cavity walls: comparison of the main shaft of the ant nest model with the idealized helical shafts
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Fig. 19 Normalized J, distribution around cavity walls: comparison of the main shaft of the ant nest model with the idealized helical shafts

observations can be explained either by the irregular cross-
sectional size, shape, and orientation of the shaft in the ant
nest or by the interactions with the remainder of the nest
(other minor shafts and extending chambers) in the ant
nest.

3.3 Comments on the helical shape of the main
shaft

Beyond the reduced risk of tension or shear failure at cavity
walls and increased stability of the underground structure,
it is interesting to note some other benefits of the helical
shaft shape. A simple intuitive analysis of excavation
efficiency can be done between a helical vertical shaft and
a nearly straight vertical shaft. During the excavation
process, ants carry the sand particles out of the nest. In
doing so, they walk uphill by providing mechanical work
against their weight, as shown in the sketch in Fig. 20
(right panel). The work that needs to be produced to move
upward by a distance ¢ along the slope (mgsinf x J)
increases as 0 increases, i.e., as the slope becomes steeper.
The path formed by a straight shaft between two points A
and B has a steeper slope than any helical path between A
and B, as shown Fig. 20 (left panel). Excavating a helical
shaft requires removing more mass than excavating a
nearly straight shaft, which may require more energy. But,
at the same excavation rate, the power needed to excavate a

section & of the shaft at any given time, mgsin@ X 9,

B

horizontal

A

Fig. 20 Alternative paths from A to B with a straight shaft shown in
orange and a helical shaft shown in blue (left). Force components
involved in the work that ants have to do when carrying particles out
of the ground

decreases as 0 decreases. As a result, the helical shaft is a
beneficial design when excavation power is limited. Other
benefits to the helical shape may be found in the function
that they serve for the ant communities as well, but this
kind of multi-functional optimization problem is beyond
the scope of the present study.
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4 Conclusion

We modeled the complex underground structures of ant
nests by in situ casting, 3D scanning, image post-process-
ing, and Finite Element simulation and created simplified
geometries that mimic the most unique geometric feature
of the nest, i.e., helical shafts. The results obtained by
calculating the stress distributions around a model of ant
nest were compared to those obtained with idealized helical
shaft models. The following general main observations
were made:

e Coils of helical structures made of circular cross-
sections and horizontally oriented elliptical cross-sec-
tions interact in a way that reduces the risk of tension
failure and distributes the shear stress more evenly;

e The pitch angle plays an important role in the intensity
of these interactions;

e The maximum and minimum stress invariants /; and J,
along cross-sections taken at different depths are
significantly affected by the proximity of cross-sections
to a chamber;

e The stress distributions around the cross-section of the
main shaft in an ant nest resemble those around
horizontal elliptical cavities at shallow depth and those
of circular cavities at greater depth. This is in agree-
ment with observations made in the field, where it was
noted that the cross-section of the main shaft was wider
close to the free surface, possibly to allow more traffic;

e In addition to promoting mechanical stability, helical
shafts present the advantage of requiring lower exca-
vation power than straight shafts.

An important consideration in bio-inspired geotechnics is
the realization that biological solutions are multi-faceted.
Organisms adapt to create a particular solution under a set
of constraints. For example, ants, in constructing their
nests, would be interested in optimizing their construction
in a way that minimizes their excavation efforts, maxi-
mizes the nest stability and capacity, allows them to obtain
food and store it easily, has good ventilation, and much
more. It is important to disentangle and understand these
aspects and then select strategies toward improving human-
designed systems. In this study, we presented a set of
results that were created to understand the mechanical
stability of ant nests. We learned that there is an advantage
to creating helical shafts and we can argue that studies on
such helical shafts could be useful to develop new tech-
nologies toward large-scale underground facilities with
multiple levels that would be accessed through helical
shafts. At a smaller scale, this knowledge can be used for
deploying self-burrowing investigation robots that would
construct helical structures, which have advantageous sta-
bility properties, thus enabling the robot to take the same
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path backward to be recovered. In order to evaluate these
potential applications, it is necessary to study excavation
energy efficiency and feasibility in further research.
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