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1 Introduction

The prospects for gravitational waves (GWs) to probe exotic particle phenomena have gained
increasing attention in light of their discovery by the LIGO scientific collaboration [1]. The
proof of principle that they provided has led to the proposal for a large number of new GW
telescopes covering a wide range of frequencies, from (10-100) nHz with Pulsar Timing Arrays
(PTAs) [2–4] to the mHz to 10 kHz window using ground and space based telescopes [5–7]. The
range between PTAs and telescopes is challenging to cover, but there exist proposals such as the
µAres detector [8] and through the use of asteroids [9] or binary systems [10]. At much higher
frequencies, in the MHz-GHz range, novel laboratory techniques have already constrained
gravitational wave backgrounds [11, 12] and there are plans for future detectors capable of
extending current sensitivity further [13, 14]. These observatories will significantly broaden the
scope of new physics that can be explored through gravitational waves in the coming decades.

This development has the potential to radically alter our understanding of the universe
in much the way detailed studies of the Cosmic Microwave Background (CMB) [15] have over
the past few decades. In studying the CMB [16–19], we were able to infer with great precision
the properties of the early universe fluid by studying the spectrum of background photons, as
well as the anisotropies therein. It would be remarkable indeed if the same level of detailed
study could be performed by GW experiments. For the purposes of understanding the early
universe, it is particularly interesting to learn what can be inferred from GWs emitted prior
to big bang nucleosynthesis (BBN) [20]. The CMB can only directly probe the universe back
to recombination at T ∼ eV, but observations of the primordial abundance of light elements
probes the universe back to T ∼ MeV. Above this, we thus far have no real probes and the
best hope for accessing this era is in GWs; the universe is essentially transparent to them
since they only interact via gravity and this makes them ideal messengers for probing the
pre-BBN era. This is, however, not without challenges because the universe was really tiny
at these times and effects like the Sachs-Wolfe effect [21, 22], that have proven essential to
determining our picture of the universe from CMB photons, are suppressed.
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Several early universe events, such as first order phase transitions [23–25], hybrid preheat-
ing after inflation [26], dynamics of topological defects [27], and soliton collisions [28], can
produce GWs in the pre-BBN era. These are referred to as “stochastic” and would constitute
a nearly isotropic background of gravitational radiation just like the CMB is a nearly isotropic
background of electromagnetic radiation. In this work, we focus for concreteness on GWs
produced via a first order phase transition, though none of the qualitative results of our
analysis rely on much beyond assuming that the GWs are produced nearly instantaneously
and isotropically on cosmological times.

A first order phase transition proceeds by nucleation of the new vacuum phase as bubbles
that expand. Eventually, those bubbles collide violently enough to provide a first source
of GWs. Colliding bubbles can also percolate and interact with the surrounding thermal
plasma, causing bulk motion in the fluid which, in turn, provides two further sources of GWs:
acoustic (sound wave) and magnetohydrodynamic disturbances [29]. The spectrum of GW
emission from these processes have been simulated numerically and depends on multiple
parameters such as the duration of the phase transition, the amount of latent heat released,
and the fraction of energy which gets converted into the bulk motion of the plasma (see, for
example, refs. [29–31] for more detailed discussions). The precise spectrum of gravitational
waves from these three sources is an area of ongoing research.

Despite these model dependent features, a pair of related recent papers [32, 33] pointed
out the interesting fact that the low frequency tail of GWs from any “instantaneous” event
would have a universal spectrum which only depends on features of the universe when those
modes enter the horizon. Intriguingly, the spectrum is sensitive to the equation of state
of the plasma. Provided the universe is in a radiation dominated phase, as expected in
a standard cosmology, we expect w ≈ 1/3. Nevertheless, there can be small deviations
from w = 1/3 and a careful measurement of the spectrum of GWs would be sensitive to
such deviations. The equation of state has proven to be a useful probe of early universe
phases, as illustrated in e.g. [34, 35].

Distortions of gravitational wave spectra due to modifications of the equation of state have
been studied previously [36–39]. These works largely focus on gravitational waves generated
during inflation. Combining the universal prediction for causality-limited gravitational wave
spectra from abrupt sources with distortions to the equation of state due to physics at times
after the phase transition is, however, a particularly potent probe.

There are several potential sources such a distortion, but all require a breaking of scaling
invariance. Any scale-invariant theory will have w = 1/3 exactly as

∂µJµ
λ = T µ

µ = ρ − 3 p, (1.1)

where Jλ is the scale transformation current. One could imagine several small sources of
breaking in the radiation-dominated era. The recent works mentioned above, refs. [32, 33],
considered interactions inducing a scale anomaly, leading to w − 1/3 ∝ β, where β is the
beta function of the theory, and free-streaming of particles that decouple from the plasma.
As emphasized particularly in ref. [39], however, the distortion due to massive particles of
mass m around temperature T ∼ m can be particuarly significant. In this work, we focus
primarily on this source of scale-invariance breaking.
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We demonstrate that when several degrees of freedom simultaneously become non-
relativistic in the aftermath of first-order phase transition (FOPT), the resulting distortion
of the equation of state is sufficiently significant to be visible in future GW observations.
Since there are hundreds of bosonic degrees of freedom at high temperatures, the resulting
distortion goes like g/g∗, where g is the number of degrees of freedom that are becoming
non-relativistic and g∗ is the total number of relativistic degrees of freedom. This distortion
is transient, leaving a relatively brief dip in the GW spectrum below the universal scaling
predicted by causality in a purely radiation-dominated universe. If the mass of the particles
is not too far from the temperature at which the GWs are sourced, then a localized distortion
of the long-wavelength tail of the GW spectrum could be observed.

To demonstrate how this could work and could help determine qualitative information
about the non-standard early universe cosmology, we consider the weak-confined standard
model (WCSM) presented in refs. [40, 41]. In that model, a scalar field coupling to the SU(2)L

gauge kinetic operator leads to an effective shift in the scalar field coupling. This shift occurs
when the scalar field has a non-zero expectation value, a mechanism first presented in ref. [42].
If the shift is toward a stronger SU(2)L coupling, then it is possible for the weak force to
become strongly coupled at T > Tc, the critical temperature for the electroweak crossover of
standard cosmology. In a strongly coupled SU(2)L phase, B + L-violating transitions would
occur readily, opening the door for a possible baryogenesis mechanism. For such a mechanism
to work, the standard cosmology phase would need to be restored at T < Tc so that the
electroweak crossover does not washout the generated asymmetry.

More to the point of this work, the transition to strong coupling could be a FOPT, leading
naturally to a source of stochastic gravitational waves. What makes the WCSM a particularly
interesting source is that the nature of the phase of strongly-coupled weak force is in question.
It is unclear whether this would be a chiral symmetry-breaking confined phase, as with
standard model Quantum Chromodynamics (QCD), or an infrared conformal phase. In the
latter case, the only distortions away from w = 1/3 would be due to the scale anomaly of the
remaining interactions (QCD, electromagnetic, and Yukawa). On the other hand, the former
would break scale invariance more strongly. A number of species would have masses near and
a bit below the critical temperature, leading to modifications of the equation of state in the
region below the phase transition. We show that in a chiral symmetry-breaking phase, pions
becoming non-relativistic below the phase transition lead to more than 10% deviation from
w = 1/3, correspondingly leading to an order 10% dip in the characteristic strain or 20% dip in
the GW power at a frequency corresponding to modes that enter the horizon just as the pions
are becoming non-relativistic. For a WCSM phase transition above the would-be electroweak
crossover, such a dip could yield potentially observable gravitational wave signatures.

In this work, we develop a calculation of the distortion of the gravitational waves due
to particle masses in the WCSM. This requires modifying the results of refs. [32, 33] to
account for a time-dependent equation of state. We solve the resulting gravitational wave
equations numerically for benchmark models. We find potential sensitivity to the distortions
in the spectrum to future GW detectors such as the Laser Interferometer Space Antenna
(LISA) [43], Deci-hertz Interferometer Gravitational wave Observatory (DECIGO) [5], Big
Bang Observer (BBO) [6], and the µAres detector.
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The remainder of this paper is structured as follows. In section 2, we develop the formalism
required to study time-dependent distortions of the equation of state and demonstrate the
effect of a small number of non-relativistic species on the gravitational wave spectrum. We
then review the relevant details of the WCSM model in section 3. The results of our study
are presented in section 4. Finally, in section 5, we discuss the implications of our results
for future measurements.

2 General formalism

2.1 Gravitational wave equation

Our starting point is to consider a Friedmann-Robertson-Lemaître-Walker universe with metric

ds2 = dt2 − a(t)2 dx2. (2.1)

Following refs. [32, 33], we work in conformal time τ =
∫

dt/a(t) and expand the FLRW metric
in small perturbations to obtain the linearized gravitational wave equation in comomving
momentum space:

h′′ + 2 H h′ + k2 h = 0, (2.2)

where ′ denotes derivatives with respect to conformal time, H = a′/a is the conformal Hubble
rate, k is the comoving wavenumber, and h is the metric perturbation amplitude.

Suppose that at a time τ∗ an instantaneous event generates gravitational waves (meaning
that the duration of the event ∆τ∗ ≪ 1/H∗, where H∗ ≡ H(τ⋆)). Then one must add a source
on the right-hand side of (2.2), and the resulting equation can be solved using Green’s function
methods, which is equivalent to solving the source-free equation with initial conditions

h(τ∗) = 0, h′(τ∗) = J∗, (2.3)

where J∗ is related to the dimensionless anisotropic stress inducing the gravitational waves,

J∗ = a2 32 π G ρ

3 ϵij Πij , (2.4)

projecting onto the GW polarization tensor ϵ.
When k ≪ H∗, the modes are initially frozen outside the horizon. As they enter the

horizon, they become sensitive the equation of state determining H. When k ≫ H, the
modes lose sensitivity to the equation of state and simply oscillate. Thus, if a number of
degrees of freedom are becoming non-relativistic at the time when a given mode is entering
the horizon, the spectrum for that mode gets distorted.

We demonstrate that future experiments should have sensitivity to this distortion. To see
this, we must first generalize the calculation of [32, 33]. In that work, the authors considered
the equation of state to be approximately constant. For the effect we are interested in, this
approximation is not accurate as the modification to the equation of state is happening on a
Hubble time, which is the same as the time scale for the modes to enter the horizon.
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Defining the equation of state w = p/ρ and plugging the first Friedmann equation
H2 = 8 π G ρ a2/3 into the acceleration Friedmann equation, we get an equation for a in
terms of w:

2 a a′′ = (1 − 3 w) (a′)2. (2.5)

This equation can be solved to determine H as

H = 2
τ + 3

∫ τ
0 w(τ1) dτ1

. (2.6)

As w(τ) can be determined from the matter content of the universe, we can solve the wave
equation (2.2), at least numerically.

It will be helpful to change variables in equation (2.2), defining

h̃ = τ̃ h, τ̃ = k τ, H̃ = H
k

. (2.7)

In terms of these variables, equation (2.2) becomes

h̃′′ + 2
(

H̃ − 1
τ̃

)
h̃′ +

(
1 + 2

τ̃

[1
τ̃

− H̃
])

h̃ = 0, (2.8)

with primes now denoting derivatives with respect to τ̃ . In terms of these variables, for a
purely conformal equation of state w = 1/3, H̃ = 1/τ̃ , and the equation reduces to that
of a harmonic oscillator with angular frequency 1.

At these late times, the solution goes like

h = A(k)J∗τ∗ sin(k(τ − τ∗) + ϕ)
kτ

, (2.9)

where ϕ is a phase shift induced due to the change in equation of state and A quantifies the
change in amplitude relative to the case of no change in equation of state. The ensemble-
averaged power is approximately a period-averaged power at this time, so that we can write

dP

dk
≈ ⟨(h′)2⟩ ≈ A2(k)J2

∗ τ2
∗

2kτ2 , (2.10)

independent of the phase shift. We can therefore examine A2(k) as an observable measure
of the effect of the distortion of the equation of state.

2.2 Time-dependent equation of state

Each species in equilibrium with temperature T in the universe contributes an energy density

ρi = gi
T 4

2 π2

∫ ∞

x
dy

y2√y2 − x2

ey ± 1 , (2.11)

and a pressure

pi = gi
T 4

6 π2

∫ ∞

x
dy

(y2 − x2)3/2

ey ± 1 , (2.12)
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Figure 1. δw for a thermal bath containing 2 bosonic species. The degrees of freedom with a mass of
104 GeV decouple from the bath at temperatures of the order of their mass causing w to deviate from 1/3.

where + is for fermions and − is for bosons, gi is the number of degrees of freedom corre-
sponding to the species and x = mi/T for a species of mass mi. The total energy density
and pressure are obtained by simply summing over the species,

ρtot =
∑

i

ρi, ptot =
∑

i

pi. (2.13)

From this, we can determine the equation of state parameter w as a function of temperature via

w(T ) = ptot
ρtot

. (2.14)

Then, we can calculate δw as a function of temperature using

δw(T ) = w(T ) − 1
3 (2.15)

To illustrate the change in the equation of state, we first consider a toy model. We consider
a scenario in which a thermal bath contains 2 different bosonic species. One of them has
40 relativistic degrees of freedom and the other species has 60 degees of freedom of mass
104 GeV. The behavior of δw with respect to temperature in this toy scenario is shown in
figure 1. In this toy model, a peak change in w is found at T = 0.38m with δw = 0.03.

To write w as a function of τ , we need the relation between conformal time and tempera-
ture, obtained by combining the first Friedmann equation with the conservation of entropy,

d

dT
(s a3) = 0. (2.16)

We can then obtain the solution

τ(T ) =
∫ ∞

T

ds(T ′)/dT ′

2 s(T ′)
√

6 πG ρtot(T ′)
dT ′. (2.17)

The entropy is given by the usual Euler relation

s = ρtot + ptot
T

. (2.18)

– 6 –
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Eqs. (18) and (19) allow us to express the conformal time as a function of temperature.
This relation can be inverted to get the temperature as a function of conformal time, which
allows us to express δw as a function of τ .

2.3 Gravitational wave model

The phase for the gravitational wave is arbitrary and depends on the random initial conditions
of the universe. To estimate the sensitivity, we therefore consider the ensemble-averaged
power in the gravitational waves,

ρgw = 1
32 π G a2

∑
helicities

⟨h′
ij(τ, x)h′

ij(τ, x)⟩ (2.19)

In Fourier space, we define the power spectrum by

⟨h(τ, k)2⟩ = (2 π)3 δ(3)(k − k′) Ph(k). (2.20)

From this, we can define the differential power by
dΩgw
d log k

= 1
ρc

k5 Ph(τ, k)
2 (2 π)3 a2 G

. (2.21)

As discussed before, for a FOPT there are three contributions to the gravitational wave
spectrum, from collisions of the bubbles themselves and from acoustic and magnetohydrody-
namic distrubances induced by their expansion in the thermal plasma. The three sources
are expected to combine linearly,

h2Ωgw = h2Ωcol + h2Ωsw + h2Ωmhd. (2.22)

To determine which one of these sources dominate we must consider the system undergoing a
FOPT. In a strongly interacting theory such as the WCSM, one can reasonably expect that
the bubble wall interacts sufficiently with the thermal plasma to cause bulk motion of the
latter. In this scenario, numerous numerical studies (see for example [30, 44]) have found
that sound waves are the dominant source of GWs compared to the collisions of bubbles
themselves.1 The peak frequency is given by [30, 31]

fsw = 1.9 × 10−5 1
vw

(
β

H∗

)(
T∗

100 GeV

)(
g∗

100

) 1
6

Hz, (2.23)

where β is the inverse duration of the phase transition, H∗ and g∗ are respectively the Hubble
parameter and number of relativistic degrees of freedom at a temperature T∗. The latter
is usually taken to be the nucleation temperature Tn when the bubble nucleation rate is
one per Hubble volume since that is when the production of GWs from all three sources is
most significant. The dimensionless gravitational wave spectrum today obtained numerically
in [44] is well fitted by [30]

h2Ωsw = 2.65 × 10−6
(

H∗
β

)(
κα

1 + α

)2 (100
g∗

) 1
3

vw Ssw(f)

Ssw(f) =
(

f

fsw

)3( 7
4 + 3 (f/fsw)2

)7/2

,

(2.24)

1In the case of a supercooled electroweak phase transition, the dominant source comes from bubble wall
collisions, but in our scenario, we expect the sound wave contribution to dominate.
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where α is the ratio of the vacuum energy released during the phase transition to the energy
of the radiation bath, and κ is the fraction of the energy of the vacuum energy that gets
converted into the bulk motion of the fluid. Aside from α and κ, the density is parameterized
in terms of other properties of the phase transition such as the ratio of the inverse duration
of the phase transition to the conformal Hubble at the phase transition H∗, the bubble wall
velocity vw, and the number of relativistic degrees of freedom at T∗.

We emphasize at this stage that, while we assume a particular model for the peak
amplitude and peak frequency for the spectrum, a full study using lattice gauge theory and
including pion masses is required to definitively predict the normalization of the spectrum
that would be observed during this scenario. A lattice study of this nature is extremely
technically challenging. We are considering a regime of strongly coupled dynamics around
the phase transition and to fully capture the effect of very massive pions, explicit chiral
symmetry breaking operators need to be included. This kind of study is beyond the scope of
this work, but our main point is that, following refs. [32, 33], the shape of the spectrum in
the region of interest is universally predicted. We simply use these frequency and amplitude
formulas to capture a range of possible spectrum normalizations. We scan over a wide range
of inverse durations β, which captures a wide range of potential spectrum normalizations
and peak frequencies. The precise parameters of the phase transition are, on the other hand,
an output of the particle physics model. They are simply ones that are beyond current
computational capabilities. We indicate the spectrum in the region beyond computational
control as dashed lines in our plots below.

We consider only long wavelength waves, with f < fsw. The f3 scaling is a universal
property of short duration phase transition. Rather than directly calculate this power
spectrum in our model, we perform a simple rescaling by

h2Ωgw = ⟨h̃2⟩
⟨h̃2⟩0

h2Ωsw , (2.25)

where we define the averaging procedure here by averaging over a period in τ̃ of 2π at
τ → ∞, when the gravitational waves are well within the horizon and lose their sensitivity
to the equation of state. We denote by ⟨h̃2⟩0 the averaged gravitational wave in a purely
radiation-dominated universe. Taking the now-arbitrary normalization J∗ = 1, we find

⟨h̃2⟩0 = τ̃2
∗
2 . (2.26)

The goal for much of the remainder of this paper is then to solve the equation (2.8), with
the initial conditions h̃(k τ∗) = 0 and h̃′(k τ∗) = τ̃∗.

The GW spectrum is also distorted by the deconfining phase transition when the WCSM
returns to the SM phase. The change in the equation of state due to such a deconfining
phase transition is again one that can only be studied through a detailed lattice computation,
but it is clear that the change in the number of relativistic degrees of freedom when going
from the WCSM to the SM phase will distort the GW spectrum. For example, there will
be an effect for modes that enter the horizon as SM particles are becoming non-relativistic.
However, since the change in g∗ is much smaller than when, say the 49 strong pions became

– 8 –
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Particle Degrees of freedom Mass (GeV)
Π0

3 3 1.95 × 105

6 2.18 × 105

Π±
2 8 6.38 × 104

8 1.59 × 105

12 1.55 × 105

Pions 4 7.23 × 104

Π±
1 6 8.90 × 104

Π0
1 2 9.82 × 104

4 1.07 × 103

1 5.32
2 0

Ξ0
1 6 0

Ξ±
1 4 2.31 × 10−7

4 2.81 × 10−2

Fermions 4 6.04 × 10
Ξ±

2 8 2.11 × 10−7

8 2.48 × 10−2

8 1.42 × 102

A′ 2 0
G 6 0

Gauge bosons W ′± 12 1.19 × 105

Z ′ 3 2.09 × 105

Table 1. Numerical spectrum of the WCSM at fπ = 80 TeV. Additionally, there are 4 light tachyonic
degrees of freedom as well.

non-relativistic, this distortion is much smaller. These modes also have much lower frequency
and amplitude, and are out of reach for planned future GW experiments.

Before going into that calculation, we note on the observable spectrum in the present
day universe. The gravitational waves are a bit colder than the radiation, as they decouple
immediately after the phase transition. The spectrum gets scaled by a factor of a(τ∗)−4

and we need to convert from co-moving wave number to physical frequency. We work in a
convention with a(τ∗) = 1, in which case f = k/(2 π a(τ0)).

3 Particle physics models

The Weak Confined Standard Model (WCSM) is a model in which the SU(2)L component
of the electroweak force is strongly coupled and weak isospin is confined. To achieve this,

– 9 –
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a scalar is coupled to the kinetic term for the gauge bosons,

L = −Φ
ΛW i

µνW iµν , (3.1)

where Λ is the scale of the operator. If the scalar Φ acquires an expectation value in the
early universe, the value of the weak coupling g′ is shifted. Since the weak coupling constant
is asymptotically free, it will run to strong coupling if the nominal confinement scale ΛW
is larger than the elecotroweak phase transition temperature Tc ≲ v. In order to have Big
Bang Nucleosynthesis as observed, the weak coupling should return to the SM phase at a
temperature TSM ≳ 10 MeV. Further details of the WCSM can be found in ref. [40].

The SM has 12 SU(2)L doublet Weyl fermions and therefore has a SU(12) flavor symmetry
with respect to this gauge group. This symmetry gets broken to Sp(12) due to chiral symmetry
breaking assumed to occur at strong SU(2)L coupling. As a result, there are 65 massless
Goldstone bosons (pions) in the spectrum. The flavor symmetry is explicitly broken by
both the SU(3)C × U(1)Y gauge couplings and the fermion Yukawa couplings. The non-
isospin gauge symmetry is spontaneously broken as SU(3)C × U(1)Y → SU(2)C × U(1)Q.
Out of 9 gauge bosons, 5 gauge bosons become massive and five pions are eaten. Out of
the remaining 60 pions, 58 pions acquire masses through gauge interactions and Yukawa
interactions. Four of these pion masses are tachyonic, but we expect these pions to be light
after minimizing their potential.

In addition to the massive pions, there are fermionic states in the WCSM which contribute
to modifying the equation of state. The left-handed fermions of the SM become mostly
composite, while the right-handed states are mostly elementary. The composite fermions have
masses around the confinement scale ΛW ∼ 4πfπ. Only the elementary fermions, with masses
≪ ΛW, contribute significantly to modifying the equation of state at relevant temperatures.

The mass spectrum of the pions and the fermions is sensitive to dimensionless operator
coefficients which encode loop corrections and are expected to be O(1) numbers. The values
of these coefficients can be taken to be ±1 for the purpose of calculating the numerical
spectrum of the WCSM given in table 1.

With this numerical spectrum, we can repeat the procedure outlined in section 2.2 to
calculate δw for the WCSM. The behaviour of δw over a range of values of T for a benchmark
value of fπ = 80 TeV is shown in figure 2.

For the gravitational wave spectrum, we illustrate three benchmark values for fπ =
(0.08, 8, 80) TeV, which sets the critical temperature of the chiral phase transition TC ≃ fπ.
For the gravitational wave parameters in (2.24), the precise value of β/H∗ is obtainable only
through a numerical lattice study of the WCSM. That study is beyond the scope of this
work and we therefore adopt three benchmarks, β/H∗ = 1, 10, 100, noting that since we
are assuming that the phase transition occurs quasi-instantaneously, β/H∗ = 1 is a lower
limit. Furthermore, we adopt two benchmark (BI and BII) values for α and κ. BII assumes
values for the latter that are fully consistent with the numerical simulation of [44] while BII
is an extrapolation of the latter assuming that the GW spectrum scaling with respect α

and κ is unchanged. For both benchmarks, we assume the wall velocity to be vw = 0.83
c, the upper limit considered [44]. With these, we show the GW spectrum of an assumed
first order WCSM phase transition and compare them to the reach of future experiments
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Figure 2. Deviations from w = 1
3 in the WCSM for a benchmark scenario where fπ ≃ 80 TeV. The

peak near T/fπ ≃ 1 corresponds particles of mass around fπ — mainly 49 pions which get their mass
predominantly from the strong coupling or the top Yukawa — decoupling from the thermal bath.

like LISA, DECIGO, and BBO. We also show the expected GW spectrum from galactic
binaries, the dominant background for our model. The dotted lines in the spectrum are
used to describe modes entering the horizon when the validity of the equation of state is
uncertain (we describe this in more detail in the next section).

4 Results

We have solved (2.8) numerically in the WCSM phase with initial conditions described in
section (2). As discussed above, the particle physics effects of the WCSM on this equation
describing the propagation of GWs are encoded in the small changes to the Hubble parameter
due to deviations of the equation of state from w = 1/3 during the radiation domination
era. The latter is determined assuming the validity of chiral perturbation theory, but there
is some uncertainty, inherent to the strongly coupled nature of this theory, on what the
critical temperature for the phase is, what the properties and nature of the phase transition
are, and what distortions of the equation of state would occur due to relatively strong pion
interactions close to the confinement scale. A robust answer to these questions can only come
from a detailed numerical lattice study, which is beyond the scope of this work.

As such, we trace the high frequency end of our spectrum within an order of magnitude
of the cutoff scale Λχ = 4πfπ for chiral perturbation theory, as a dashed line. Furthermore,
any modes that would not quite reach a point where they lose sensitivity to the equation
of state before the universe deconfines back to the SM phase are subject to modification by
that deconfining phase transition and changes to the equation of state just below that phase
transition. Therefore, modes for which 10π/k < τSM, the conformal time of the transition
to the SM phase, are also drawn as dashed lines.
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Figure 3. The GW spectrum of an assumed first order WCSM phase transition compared to the
reach of future experiments like LISA (purple), DECIGO (orange), BBO (green), and µAres (brown).
The stochastic background of GWs from galactic binaries is shown in gray. The dotted lines in the
spectrum denote frequencies with model-dependent effects. The left panels show the spectra for BI
and the right panels the spectra for BII as described in the text.
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thermal bath at the moment of horizon entry for each mode. The largest change — the dip at k ≲
10−7 GeV corresponds to the mode that enters the horizon when particles of mass O(fπ) — mainly 49
pions — decouple from the thermal bath.

In figure 4, we plot the ratio of the time-averaged gravitational wave amplitude today
for δw ̸= 0 compared to the δw = 0 case for fπ ≃ 80 TeV. Since this value of fπ corresponds
to the variation of the equation of state with respect to temperature (upper axis) shown
in figure 2, we can compare the two figures and see that the largest change occurs at k ≲
10−9 GeV and corresponds to the mode that enters the horizon when particles of mass around
fπ (mainly 49 pions which get their mass predominantly from the strong coupling or the
top Yukawa) become non-relativistic.

We also show a zoomed in version of the fπ = 80 TeV, α = 0.5, κ = 0.1, β/H∗ = 1
benchmark (figure 3(f)) in figure 5. To make the f3 scaling at low frequencies apparent, we
plot h2Ωgw/f3 instead of h2Ωgw. We show the δw = 0 case, corresponding to no conformal
symmetry breaking, and the WCSM with chiral symmetry breaking, where conformal symme-
try is strongly broken. We see that LISA has some sensitivity to the two curves in a region
where the conformal and non-conformal scenarios differ which lies at the upper end of the
region where the causality limited f3 scaling is valid. There are also pronounced dips well
into the region where the f3 scaling is valid, but this lies in the µHz gap described in ref. [9].

One concern here is that for many of these benchmark models, the GW signal is weaker
than that of astrophysical foregrounds such as galactic binaries (for example the first and
second rows of the first column of figure 3). While this certainly represents a difficult
challenge, it is hoped that in the future such foregrounds may be subtracted by using
directional information [33] such that the GW spectrum itself can be seen. It would still
be challenging to observe the effect described here since we would be seeking to observe an
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effect potentially observable.

O(10)% level deviation of a signal on top of a foreground that is orders of magnitude higher.
However, there are some benchmark values where the signal is sufficiently above background
to see this effect. We quantify this further below with a Fisher matrix analysis.

For a more quantitative analysis of the observational prospects for localised distortions in
the GW spectra due to changes in the equation of state, we perform a Fisher matrix analysis
of the different benchmarks shown in figure 3. The parameter of interest here is γ, defined by

h2Ωgw = ⟨h̃2⟩
⟨h̃2⟩0

h2Ωsw ≡ (γ + 1) h2Ωsw. (4.1)

For the analysis we assume, like in [33], that the overlap factors and noise between pairs of
detectors are identical and Gaussian. The Fisher matrix then reduces to a number given by

F = T

∫
df

(
∂(h2Ωgw)

∂γ

)2 4Ω2
gw + 2ΩgwΩnoise + Ω2

noise(
2Ω2

gw + 2ΩgwΩnoise + Ω2
noise

)2 , (4.2)

where T is the experimental run time, here taken to be 4 years and we have suppressed the
frequency dependence of Ωsw,noise for notational clarity. The noise models are taken from [45]
for LISA, BBO, and DECIGO, and [8] for µAres. To stay consistent with these references,
we conservatively only integrate equation (4.2) over the frequency range specified in them
for LISA, BBO, DECIGO, and µAres. To study the effect of astrophysical foregrounds like
galactic binaries, we perform two analyses, one assuming that they can be subtracted and
one assuming they contribute linearly to the noise [46],

Ωnoise = Ωins + Ωastro, (4.3)
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where Ωins is the instrument noise and Ω2
astro is the “noise” associated with astrophysical

foregrounds. We integrate over frequency intervals but restrict ourselves to ranges where we
trust the validity of chiral perturbation theory (indicated by solid lines in figure 3). Since the
Fisher matrix is the inverse of the covariance matrix, in our case 1/

√
F gives the standard

deviation in the measurement of the γ parameter. The smaller this value, the smaller the
error in the measurement of γ, representing better observational prospects.

The results of our analysis are tabulated in tables 2 and 3. Benchmarks which produce
a signal outside the range specified by the noise models used in this work are indicated by
a “-”. It is worth emphasizing, however, that we are taking a conservative approach here
and that this does not mean that the signal is not observable; it is plausible that with more
accurate noise modelling over a broader frequency range the signal for these benchmarks
could be observed. As expected, the spectra for benchmarks of β/H∗ = 100,10 are difficult to
observe, especially in regions where there are astrophysical foregrounds. Some benchmarks
with (α, κ) = (0.1,0.025) could be observable with accurate foreground extraction, for example
by using directional information. For higher fπs (the 80 TeV benchmark for example), the
peak frequency are sufficiently far from foregrounds that, for β/H∗ = 1, it is conceivable
that future experiments like LISA, DECIGO, BBO, and µAres would be sensitive to the
localised distortions to the GW spectrum described here.

5 Discussion and outlook

The signal we describe here is quite general and applies to any scenario with a long wavelength
gravitational wave background and a significant number of particles becoming non-relativistic.
For example, one could examine supersymmetric scenarios with a large spectrum of superpart-
ners at similar masses. The signal also bears some resemblance to that studied by ref. [47].
One could imagine slight tweaks of that scenario to get similar dips.

One further intriguing possibility is to modify the QCD phase transition such that it
is first order. One scenario in which this would occur is a supercooled electroweak phase
transition [48], as the QCD transition would then occur with six light flavors of quarks.
After the QCD phase transition, the amount of radiation in the universe is rather low. As
such, the process of the muons becoming non-relativistic is sufficient to induce a roughly 5%
change in w, which is more challenging to observe. While the prediction of a f3 scaling of
the power, up to modifications due to the equation of state, is universal, the normalization of
the spectrum and peak frequency are dependent on the properties of the phase transition.
Further calculations are needed to determine these properties of the phase transition. Lattice
gauge theory is rather challenging for this model due to the addition of the Higgs field, but
this would be the most robust way to study the phase transition. A lattice study would also
elucidate the nature of the strongly interacting phase, which we assume be chiral symmetry
breaking as in QCD. It is possible that the gravitational wave properties can be also estimated
from a Nambu-Jona-Lasinio model [49, 50].

Note that any dimensionful parameters in the model could in principle lead to such a
deviation in the spectrum. In particular a super-renormalizable scalar cubic coupling or non-
renormalizable operator will lead to a small shift in the power of the low frequency spectrum.
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Benchmark (fπ, α, κ) β/H∗ LISA DECIGO BBO µ-Ares
100 1.5 × 106 — — 13

(80 GeV, 0.1, 0.025) 10 5.8 × 102 — — 4.2×10−2

1 5.1 × 102 — — 4.1×10−2

100 6.7 × 103 — — 1.1×10−1

(80 GeV, 0.5, 0.1) 10 2.8 — — 3.3×10−2

1 2.4 — — 3.3×10−2

100 5.5 × 104 4.2 1.1×10−1 1.0 × 105

(8 TeV, 0.1, 0.025) 10 12 6.2×10−3 3.7×10−3 11
1 6.0 × 10−1 6.2 × 10−3 3.5×10−3 1.9×10−2

100 2.6 × 102 2.6 × 10−2 5.3×10−3 4.9×102

(8 TeV, 0.5, 0.1) 10 5.7 × 10−2 3.4×10−3 3.3×10−3 6.0×10−2

1 8.6 × 10−3 3.4 × 10−3 3.4 × 10−3 7.5×10−3

100 2.9× 107 1.6×10−1 1.8×10−2 3.3 × 108

(80 TeV, 0.1, 0.025) 10 3.3 × 103 1.3×10−3 1.1×10−3 3.4 × 104

1 2.0 1.2 ×10−3 1.1×10−3 3.7
100 1.4 × 105 2.4×10−3 1.3×10−3 1.6 × 106

(80 TeV, 0.5, 0.1) 10 16 1.0 ×10−3 1.0×10−3 1.6×102

1 1.5 × 10−2 1.0×10−3 1.1×10−3 4.8×10−2

Table 2. Fisher matrix analysis for different benchmarks considered in this work (see figure 3)
assuming a four-year lifetime without taking into account the effect of astrophysical foregrounds
comprising galactic binaries. The reported numbers are

√
1/F from equation (4.2) for various

gravitational wave experiments, with smaller values corresponding to larger sensitivity. The noise
models are taken from [45] for LISA, BBO, and DECIGO, and [8] for µAres. Benchmarks which
produce a signal outside the range specified by these noise models are indicated by a “-”. It is worth
emphasizing, however, that we are taking a conservative approach here and that this does not mean
that the signal is not observable; it is plausible that with more accurate noise modelling over a broader
frequency range the signal for these benchmarks could be observed.

The promising signal type presented in this work will ultimately require further study
by gravitational wave telescopes.
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