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ABSTRACT. Developing reliable methods to discriminate different transient
brain states that change over time is a key neuroscientific challenge in brain
imaging studies. Topological data analysis (TDA), a novel framework based
on algebraic topology, can handle such a challenge. However, existing TDA
has been somewhat limited to capturing the static summary of dynamically
changing brain networks. We propose a novel dynamic-TDA framework that
builds persistent homology over a time series of brain networks. We construct
a Wasserstein distance based inference procedure to discriminate between time
series of networks. The method is applied to the resting-state functional mag-
netic resonance images of the human brain. We demonstrate that our proposed
dynamic-TDA approach can distinctly discriminate between the topological
patterns of male and female brain networks. MATLAB code for implementing
this method is available at https://github.com/laplcebeltrami/PH-STAT.

1. Introduction. The dynamical changes in brain function and activity are an ar-
chetypal example of complex systems. Within this system, brain functions depend
on constant interplays between local information processing and efficient global
integration of information [64, 14, 25]. To reveal the underpinnings of neurode-
generative diseases, it is critical to analyze such interactions in brain pathology
[70, 71, 39]. In brain network analysis, the neural interactions are encoded as a
graph consisting of nodes and edges. Often, the whole brain is parcellated into
several disjoint regions, which are represented as network nodes [69, 26, 37, 32, 4]
whereas the correlations between different parcellations (nodes) are represented as
edge weights. In most analysis based on graph theory, features such as node degrees
and clustering coefficients are acquired from adjacency matrices after thresholding
edge weights [63, 79]. However, this leads to final statistical results and interpreta-
tions that rely on the choice of the threshold [44, 20] - which is subjective. Given this
limitation, developing a multiscale network model that yields reliable outcomes in-
dependent of threshold choice is essential. Topological data analysis (TDA) can fill
this gap by providing a topologically consistent solution across varying thresholds
[29, 84, 59, 34, 18, 78]. Within TDA, persistent homology based approaches have
become increasingly popular as a tool for analyzing different brain imaging data
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because they can capture the persistences [51, 60] of different topological features
that are robust under different scales [13, 34, 44, 22]. The persistences are usually
summarized and expressed using barcodes and persistence diagrams [61]. Although
such approaches have been applied to increasingly diverse biomedical problems, they
are mostly limited to investigating the static summary of dynamically changing data
such as functional magnetic resonance images (fIMRI) and electroencephalography
(EEG) [21, 5, 77]. A recent development involves the application of TDA to an-
alyze dynamic patterns in various datasets, including financial data [35] and gene
expression data [53, 60].

Motivated by these studies, we develop a novel dynamic-TDA based approach
that can statistically discriminate between two groups of brain networks, reflecting
the dynamic nature of brain functional processes. This dynamic-TDA framework
builds persistent homology over a multivariate time series [60] and constructs a test
statistic using the Wasserstein distance between persistence diagrams. Our pro-
posed dynamic-TDA, when applied to resting-state fMRI (rs-fMRI) data, reveals
notable topological differences in the temporal dynamics between male and female
subjects. This approach moves beyond the traditional methods that focus on static
summaries of dynamic images [21, 5, 77], allowing for a more nuanced exploration
of dynamic patterns within the images [35, 53, 60]. Motivated by time-delay em-
bedding (TDE), we introduce a novel Dynamic Embedding technique to capture
the temporal evolution of topological changes in multivariate time series data [76]

2. Methods. Human brain functional networks can be modeled as graphs, with
nodes representing parcellated brain regions and edges indicating interactions be-
tween these regions [22]. We construct graph filtrations on these networks as de-
scribed below. During this filtration process, topological features such as connected
components (0-dimensional homology) and cycles (1-dimensional homology) emerge
and vanish. A feature that appears at a filtration value b; and disappears at d; is
represented as a point (b;,d;) in the plane. The set of all such points forms the
persistent diagram (PD), which encapsulates the topology of the underlying net-
work. When these features are represented as a collection of intervals on the real
line, they constitute barcodes [17].

2.1. Graph filtration. Let G = (V, W) be a weighted graph, where V is a set of
nodes and W is the set of edge weights. The edge weight w;; between nodes ¢ and
j are assumed to be unique. We assume there are |V| = p number of nodes and
[W| = ¢ = p(p — 1)/2 number of edges. A binary graph G. = (V,W,) of G is a
graph with binary edge weight w;;

1, if Wij; > €,
Wij.e = .
0, otherwise.
A graph filtration of G is defined as a collection of nested binary networks:
Gy, DGy D - DG,

where €y < €1 < - -+ < ¢ are filtration values [3, 22, 61].
By arranging the edge weights in increasing order,

W) = Min Wi < W) < - < W) = MAX Wik, (1)
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FIGURE 1. Graph filtration and the corresponding birth-death de-
composition of a graph with 4 nodes. The birth-death decomposi-
tion partitions the edge set into disjoint birth and death sets. The
resulting Betti curves are monotonic while the persistence diagrams
are 1-dimensional points in R.

where the subscript () denotes the order statistic, we construct the graph filtration
at these edge weights [22, 61]:

Guy D Gugy D D Guy, - (2)

The graph filtration of a graph with 4 nodes is illustrated in Figure 1. Unlike
the Vietoris-Rips filtration [16, 82], the graph filtration does not produce more than
1-dimensional homology. In a binary network G, which is a simplicial complex con-
sisting of only nodes and edges, 0-dimensional (0D) holes are connected components
and 1-dimensional (1D) holes are cycles. The number of connected components and
the number of independent cycles in a graph are referred to as the 0" Betti number
(Bo) and 1% Betti number (1), respectively. In a graph filtration, the sequential
removal of edges leads to either the birth of a connected component or the death
of a cycle [22]. Once a connected component is born, it never dies. Therefore its
death values are assumed to be at co and ignored. On the other hand, all cycles
are considered to be born at —oo and their birth values are ignored. Thus we can
partition edge weights into the birth set B(G) and death set D(G). The birth set
B(G) consists of the sequence of increasing birth values

B(G) by <by < -+ < by,

where mg = p — 1 [61]. Ignoring the death values at oo, 0-dimensional persistent
diagram is simply characterized by the birth set B(G) (Figure 1). Further, the
persistence diagram is also equivalent to the barcode. The death set D(G) consists
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of the sequence of increasing death values
D(G):dy <dg-+ < dp,.

During the graph filtration, the removal of an edge splits the graph into at most
two components. Therefore, the number of connected components 3 increases, and
the increase is at most one [22]. The Euler characteristic x of the graph is given by
[1],

X=p—q=po— P

Thus,

p1=Po—p+aq.

Note that p is fixed over the filtration, but ¢ decreases by one while [y increases
by at most one. Hence, 8; always decreases, and the decrease is at most one [22].
The monotonic properties of Betti numbers over filtration is illustrated in Figure 1.
The total number of death values for a complete graph with p nodes was derived in
[61] to be

pp—1 p—1)(p—2
1y PP=1) _ =Dp=2)
2 2

Ignoring the birth values at —oo, 1-dimensional persistent diagram is character-
ized by the death set B(G) (Figure 1). This also diverges from the Vietoris-Rips
filtration, which produces cloud points in R? as the 1-dimensional persistent digram
[6, 12, 19, 28]. Every edge of a graph must belong to either the birth set or the
death set. This leads to the birth-death decomposition of a graph, which partitions
the set of edge weights into the birth and death sets [61] as follows

W = B(G)UD(G), B(G)ND(G)=9.

The birth-death decomposition of a graph is illustrated in Figure 1.

2.2. Wasserstein distance. The topological similarity or dissimilarity between
two networks can be quantified using the Wasserstein distance between persistent
diagrams [47, 48, 73, 62]. Let G; = (V,W7) and G5 = (V,W2) be two given net-
works, each with p nodes. Let P, and P be the corresponding persistent diagrams.
The r-Wasserstein distance between P; and P; is then given by

1/r
&P, P) = inf (Z lz =7 ()]l ) 7

xEP;

where the infimum is taken over every possible permutation or bijection 7 between
Py and P, [7, 52]. As r approaches infinity, the co-Wasserstein distance is given by:
Loo(P1,P) = inf max |z —7(x)]
T:P1 =Py xeP;

This distance is also known as the Bottleneck distance [24].

Standard methods for computing the Wasserstein distance, such as the Kuhn-
Munkres and Hungarian algorithms, typically have a computational complexity of
O(p?) [30, 49, 61, 65, 66]. In contrast, for graph filtrations that yield 1-dimensional
scatter plots as persistence diagrams, the Wasserstein distances can be calculated
more efficiently with a computational complexity of O(plog p) by directly matching
sorted birth and death values.
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Theorem 2.1. For persistent diagrams Py and Py from graph filtrations, we have

1/r 1/r
ST(P17P2) = 7':Piln—f>P2 (Z |.T — T(;C)|T> — (Z ‘SL‘ - T*<$)7"> 7

e Py zEP;

where T maps the i-th smallest value in Py to the i-th smallest value in Py for all
i. Forr — oo,

P, Py) = inf _ — — ().
Loo(P1, Ps) T:plfbngé%a}fm ()] ;g&gf\w 7 (z)]

Proof. We prove for O-dimensional persistence diagrams only; the proof for 1-
dimensional diagrams is analogous. Suppose P; and P, consist of birth values

Py bl <by<--- <D

mo’

Pyibi <by <. <b2.

respectively. Note 7* is the identity permutation, i.e., 7*(i) = ¢. We aim to prove

that
mo mo
D olbi = b <D (b — 02"
=1 =1

for any permutation 7 that is not the identity.

Consider a non-identity permutation 7. 7 will include at least one pair (i,7(%))
where i # 7(i). Without loss of generality, assume i < 7(i). Then, b} < bl(i) and
b? < bz(i). Hence,

132 _ gl 2 g1 2 1 2
bj =07 <bruy = by by — b7y <bru — b

Subsequently,

b = BF1" + [brgay — b2y < [bi = b2 I" + [br sy — BF1",

Summing over all such pairs (4, 7(¢)) shows that

mo mo
D olbl = b3 < > (b = b2
i=1 =1

thus proving the first statement. The second statement follows as

1/r
-1 — 1 % r _ %
ﬂoo(Pl,Pz)—,,lggosxphpﬂ—grgo(;|x T<x>|> max |~ 7*(2).
z€P;

O

The theorem is related to the majorization theorem [46, 72]. Given ordered
vectors @ = (a1, ,ay) and 8 = (B1,- -, Bn) satisfying

v ZayzZan, fr2Pez = P,

« majorizes (8 if

k k n n
Doz B Y wi=3 b
i=1 i=1 i=1 i=1

for all 1 < k < n. For a majorizing 8 and for any convex function f, we have
[46, 72]

PR ICORDDFCHE

i=1
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Then by identifying «; as the i-th largest element in the set {|x — 7(z)| : € P},
B; as the i-th largest element in the set {|z — 7*(x)| : « € P}, and convex function
f(z) = |z|", we obtain the desired result.

Theorem 2.2. The Wasserstein distance satisfies the following inequality
Loo(Pr, P2) < £,(P1, P) < £.(P, P) < £1(P1, P),
forr <p< .

Proof. We will restrict our proof to 0-dimensional persistence diagrams; the proof
for 1-dimensional diagrams follows analogously. Let P; and P, consist of birth
values

Py b <by<--- <D}

s PaibT < b3 << b2
respectively. The r-Wasserstein distance between connected components is given

by

mo

(P Py) =) (b —07)°.
i=1
Note that the sorted vector (b},b%,--- ,b%, )T is a point in the (mg — 1)-simplex 7o
defined as
To=A{(z1, 22, ,Zmg)|x1 < Tg <+ < Xppy } CTR™

with 21 bounded below and z,,, bounded above. Hence, the 0D Wasserstein dis-
tance is equivalent to the Euclidean distance in the mg-dimensional convex set 7.
Thus, the Wasserstein distances satisfy the [.-norm inequality for Euclidean dis-
tances in a convex set [10]. O

Since the 1-Wasserstein distance sets the upper bound, it is generally not the
most effective metric, especially when the data contains outliers. This is illustrated
through a simulation study, where two sets of edge weight vectors of length 100
were generated from a normal distribution N(0,0.012) (Figure 2). Outliers were in-
troduced into one of the edge weight vectors by replacing some entries with values
generated from N (1.5,0.01%). We computed the 1-, 2-, and co-Wasserstein distances
between the two sets and plotted the resulting distances in Figure 2. The distance
should be close to zero when no outliers are present. However, our observations
indicate that the 1-Wasserstein distance is severely impacted by the presence of
outliers, showing a substantial inflation in value. On the other hand, the 2- and oo-
Wasserstein distances are significantly more robust against such anomalies. Even
when up to 35% of the data consists of outliers, the co-Wasserstein distance pro-
vides reasonable results, while the 1-Wasserstein distance is not advisable for most
applications.

2.3. Dynamic Embedding. Dynamically changing functional brain imaging data
can be modeled as a d-variate time series, where d is the number of brain regions
under investigation. A conventional technique for transforming univariate time
series data into graph-based representations employs time-delay embedding (TDE),
which is grounded in Takens’ theorem [57]. Initially, TDE was aimed at uncovering
the underlying dynamics of time series [67]. Recently, it has been used to analyze
human speech [11] and to classify time series data [53, 31]. In TDE, each of the
d univariate time series is transformed individually using a sliding window of size
M. This produces d distinct point clouds in R™ (Figure 3). However, generalizing
TDE to handle multivariate time series, such as those encountered in functional
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FIGURE 2. Comparison of 1-, 2-, and oco-Wasserstein distances as
the number of outliers varies. The dataset consists of two sets of
edge weight vectors of length 100, generated from N (0,0.012). Out-
liers were introduced into one set by replacing entries with values
from N(1.5,0.01%). The 1-Wasserstein distance is the upper bound
of all other r-Wasserstein distances and it is severely impacted by
the presence of outliers.

brain imaging data, is not straightforward. Moreover, TDE requires an additional
step to estimate the dimension M from the data [60]. An incorrect estimation of
M can lead to either overfitting or underfitting. Overfitting occurs when M is too
large, where noise in the data is mistaken as though it was a feature. Underfitting
takes place when M is too small to fully capture the dynamics. Motivated by TDE,
we propose a new Dynamic Embedding that transforms a d-variate time series x;
into a time-varying sequence of point clouds in R%.

Let ; = (z14,...,74;)' be a d-variate time series. At each time ¢, we project
x; as a point in R¢, where z;; serves as the i-th coordinate of the point. A slid-
ing window [t,t + p — 1] covering the time series @, ..., ®;4p—1 yields p points
in R? (Figure 3). The Euclidean distance between these points will be used as
edge weights for building time-varying graph G; = (V;, W;), where the vertex set
Vi = {z¢,...,x14p—1} and the edge weights W, are the Euclidean distances be-
tween corresponding points. Subsequently, we construct graph filtrations to obtain
dynamically changing 0-dimensional and 1-dimensional persistent diagrams, repre-
sented as time varying birth and death values

B(Gt) :{b1t7"' abmm}7 D(Gt) = {dlta"' admlt}

respectively. Unlike TDE, which implicitly incorporates the dynamic features of the
time series into a point cloud, Dynamic Embedding has the distinct advantage of
easily extracting the dynamic topological characteristics of the time series.

Figure 3 illustrates the difference between TDE and Dynamic Embedding. A
univariate time series is constructed as

xy = sin(4nt), t=0,1,2,---,100,
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Univariate time series TDE with sliding window size 3 TDE with sliding window size 5
% ray
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FIGURE 3. Top: time delay embedding (TDE) of a univariate time
series. Sliding windows of sizes 3 and 5 are used to embed the time
series as a static point cloud in R? and R®, respectively. In the case
of a sliding window of size 3, the times 1,4,7,... provide the x-
coordinates (red), 2,5,8, ... provide the y-coordinates ( ), and
3,6,9,... provide the z-coordinates (blue). In TDE, the window
size determines the embedding dimension. Bottom: The proposed
Dynamic Embedding of a trivariate time series. Sliding windows
of sizes 3 and 5 are used to embed the time series into dynamically
changing point clouds in R3. However, due to the periodicity of the
trivariate time series, the dynamically changing point clouds forms
a closed loop. Unlike TDE, where the window size determines the
embedding dimension, in Dynamic Embedding, it is the number
of time series variables that determines the embedding dimension.
Both embedding techniques are capable of capturing the underlying
circular topology over time.

and used in TDE with window sizes M = 3,5. For the window size M = 3, TDE
produces a static point cloud in R3. The coordinates are color-coded: red for the 2-
coordinate, green for the y-coordinate, and blue for the z-coordinate. TDE reveals
a cyclic pattern due to the periodicity of the time series. A trivariate time series is
constructed as

x; = (sin(4xt), cos(4nt),sin(8xt)) ", t=0,1,2,---,100.

Dynamic Embedding is applied to produce a dynamically changing point cloud in
R3. Due to the periodicity, it warps around to form a closed loop. The coordinates
are color-coded as red (z-coordinate), green (y-coordinate), and blue (z-coordinate),
each corresponding to one of the time series. The Dynamic Embedding also reveals
the cyclic pattern resulting from the periodicity of the time series.

Consider two d-variate time series x; = (z1¢,...,24;) " and y; = (Y1¢, .- ., Yar
[42, 58, 33, 9]. We aim to determine the topological differences between these time
series. Following Dynamic Embedding, we construct time-varying graphs X; and
Y;: with p nodes corresponding to the time series x; and y;, respectively. The total
number of birth values of connected components and the total number of death

)T
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FIGURE 4. The time-varying persistence diagrams for the Dynamic
Embedding on the trivariate time series in Figure 3-bottom with
a sliding window size of 10. The embedding yields 9 dynamically
changing cloud points per window. The persistence diagrams gen-
erated from the graph filtration yield sorted birth (0-dimensional)
and death (1-dimensional) values. If a smaller window size, such
as 3, is used, it produces only 2 points, rendering the topology too
crude for accurate estimation. A larger window size was selected
to provide sufficient points for a more accurate estimation of the
underlying topology. The periodic pattern observed in the persis-
tence diagrams is a consequence of the periodicity present in the
trivariate time series.

values of cycles are given by [61]
p(p —3)
5
We can compute the 0-dimensional and 1-dimensional persistence diagrams at

time ¢ corresponding to the time series x; and y;. The r-Wasserstein distance
between the O-dimensional persistence diagrams at time ¢ is given by

mo 1/r
Sg(xtvyt) = (Z 0% — bl}c’t|r> )

k=1

mO:p_la m1:1+

where b%, and b}, are the k-th smallest birth values associated with the graphs
X; and Y;, respectively. Similarly, the r-Wasserstein distance between the 1-
dimensional persistence diagrams at time ¢ is

ma 1/r
Sﬁ(xty}’t) = (Z |d7:t - d%tr) ’

k=1

where df, and dY, are the k-th smallest death values associated with the graphs X
and Y;, respectively. Lastly, the oo-Wasserstein distances are given by

b
£ (x¢,¥¢) = 1%22)7(% IbZ‘t - b%t

and

Loy ye) = | max |df, —di,.
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Subsequently, we propose to combine the r-Wasserstein distances over all time
as

Lr(Xt,yt) = ZSQ(XtaYt) + ZSg(Xt,Yt)-
t t
For r — 0o, we have

‘COO(Xtayt) = Zggo(xtaYt) + Z’ggo(xtayt)'
t t

A large value of L,.(x,y) or Loo(x,y) suggests that the dynamic persistence di-
agrams generated from the two time series x; and y; are topologically distant. This
indicates a significant difference in the 0-dimensional and 1-dimensional topological
features between x; and y;. Since the distributions of the proposed test statisticss
L(x¢,y¢) and Lo (x¢,y¢) are unknown, we employ the permutation test for infer-
ence. The permutation test does not make any assumptions about the underlying
probability distribution [23, 68, 81, 50, 80].

2.4. Topological inference on Dynamic Embedding. Suppose we have m and
n d-variate time series in two groups. Given two sets of d-variate time series,
{x1,x2,...,x™} and {y',y?,...,y"}, we aim to compute the p-value to test the
null hypothesis that the two sets of time series are topologically equivalent. The
topological similarity is measured through the Wasserstein distance. For each pair
of time series x* and y?, we compute the Wasserstein distance £,.(x¢, y?) using birth
and death values obtained from topological features.
We consider the combined ordered set

z"T") = {xl,x2, Xy YR ,y' L

The between-group distance d(z) is given by the total sum of pairwise Wasserstein

distances:
m n
d(z) = Z ZET(XZ, v7).
i=1j=1
This can be used as a test statistic. Since the distribution is unknown, the sta-
tistical significance can be determined through the scalable version of permutation
test through transpositions [23, 61]. We first compute the pairwise distance matrix
D = (d;;) = (L£(z",27)). Once D is computed, there is no need to recompute it
for each permutation. We only need to shuffle the entries of D by permutation as
follows.
The between-group distance can be expressed as

2= {ah

m  m-+n
d(Z) = Z Z dij = ]-ILD]-na
i=1 j=m+1

where where 1,, and 1,, are indicator vectors of dimension m + n for each group
such that
1,=[1,---,1,0,---,0]", 1,=][0,---,0,1,---,1]".

There are m 1’s in 1,, and n 1’s in 1,,. Let m € S,,4+, be a permutation for
integers {1,--- ,m 4+ n} in the permutation group of order m + n. For permutation
z™ = {z"M ... 27"+ which permutes entries of z, the permuted between-group
distance d(z™) can be represented as

d(z") =1, TIDIT' 1, (3)
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with the permutation matrix II = (g¢;;) defined as a (m + n) x (m + n) matrix
such that ¢;; = 1 if w(¢) = j and ¢;; = 0 otherwise. After the permutation, the
Wasserstein distance incrementally changes to

d(z™) = d(z) + Ad, (4)

where Ad = 1, (IIDIIT — )1, is the increment over permutation . The compu-
tation of d(z™) leverages term d(z) recycled from the previous iteration. When only
one entry from each group is permuted, we have transpositions, and the iterative
update for Ad in equation (4) involves only a small number of terms and we can fur-
ther increase the rate of convergence [23, 61]. Thus, in numerical implementations,
we intersperse a full permutation after every 1000 transpositions.

Since d(z) increases as the number of networks m and n increases, we normalized
it as
_ d(z)

S S Ly (2 27) — d(z)

The sum of all pairwise distances >74" ;n:i" L, is fixed regardless of how we

assign group labels. The denominator is the within-group distance, which is the
sum of all pairwise distance within each group. Subsequently, we use the ratio \(z)
as a test statistic for testing the equality of two sets of d-variate time series. The
p-value is then calculated as the proportion of permutations where \(z™) exceeds
A(z):

A(z)

p-value =

gy 3 I(/\(z”) > A(z)), (5)
TESm4n

where 7 is an indicator variable taking value 1 if the argument is true and 0 otherwise
[23]. Since the computation for every possible permutation is too time consuming,
we usually perform uniform sampling in S;,4+,. Once incremental formula (4) is
identified, the p-value can be computed iteratively over permutations. At the k-th
permutation, the p-value p; is updated as

(k + D)prsr = kpi +I(>\(z”) > )\(z)). (6)

The MATLAB code for Dynamic Embedding and topological inference are avail-
able at https://github.com/laplcebeltrami/PH-STAT.

3. Simulation studies. Since there is no ground truth in real data, we performed
two simulation studies with specified ground truths for testing false-negatives and
false-positives. These controlled experiments were utilized to assess the performance
of the proposed method. Consider a trivariate time series generated by a vector
autoregressive model of order one [83, 45, 38]:

x; =a+ bt +0x;_1 + &, (7)
with noise &, ~ N (0, X) at time ¢ (Figure 5). We also considered a different trivariate
time series consisting solely of Gaussian white noise at time ¢:

yi ~ N(0,%). (8
The trend parameters were set to a = (1,1,0)T and b = (1.5,2,0) " for 1 <t <

30. The coefficient and covariance matrices are chosen as

02 —-0.1 0.5 0.1 0.01 0.3
0= |-04 02 0, ¥=1]001 05 O
-0.1 0.2 0.3 0.3 0 1

~—
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FicURE 5. Four independently simulated trivariate time se-
ries x; = (z1(t),z2(t),z3(t))T (equation 7) and y; =
(y1(t),y2(t),y3(t)) T (equation 8) in Study 1. Each trivariate time
series is represented as a random walk of length 30 in R3. The
Wasserstein distance was able to discriminate between samples gen-
erated from x; and y;, but did not detect any differences in samples
generated solely from x;.

For simulations, we generated 10 time series for each time series x;,y; and z;.
Used p = 10 as size of sliding window for Dynamic Embedding. The transposition
test with 100,000 transpositions were used to determine statistical signfance.

3.1. When there is difference in time series. We tested if the method can
detect topological differences in time series x; and y; (Figure 5). We used Lo(x¢,y¢)
as the test statistic. Each simulation is independently replicated 10 times, and the
resulting p-values are averaged. The computed p-values are (0.50 & 0.97) x 107°,
signifying a robust topological disparity between the two trivariate time series.

3.2. When there is no difference in time series. To assess the false-positive
rate of our method, we introduce another time series z;, which is modeled iden-
tically to x; but with independently generated noise (Figure 5). In this case, we
do not expect our method to identify any topological differences between x; and
z¢. The simulation was conducted 10 times independently, and the results were
averaged. The computed p-values are 0.33 + 0.20, confirming that our method does
not incorrectly identify topological differences.

4. Application to functional brain images.

4.1. Data description. We used a resting-state fMRI dataset collected as part
of the Human Connectome Project (HCP) [75, 36]. The dataset consists of fMRI
scans of 412 subjects (172 males and 240 females) measured over 1200 time points
using a gradient-echoplanar imaging sequence [61, 3]. Since there are more than
300000 voxels in an fMRI scan, we parcellated the brain into 116 non-overlapping
anatomical regions using the Automated Anatomical Labeling (AAL) template and
averaged rsfMRI over each parcellation [69, 26, 37, 4]. The head movements cause
serious spatial artifacts in functional connectivity [54, 74, 55, 15]. We calculated
the framewise displacements from the three translational displacements and three
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FIGURE 6. Top: Time series of functional brain connectivity be-
tween the left and right hemispheres across 4 regions. We analyzed
a total of 6670 time series of brain connectivity between 116 re-
gions in this study. Bottom: The average time series of functional
brain connectivity, averaged over all connections and subjects. We
removed the first 60 time points in the subsequent analysis. Al-
though a slight increasing trend is observed, it is negligible when
compared to the individual connectivities.

rotational displacements at each time point to measure the head movement from
one volume to the next. The volumes with framewise displacement larger than 0.5
mm from their neighbors (one back and two forward time points) were scrubbed
[74, 54, 40]. More than one third of 1200 volumes were scrubbed in 12 subjects.
Thus, we removed the 12 subjects (4 males and 8 females) and used 400 subjects
for the study. Following [2], we adopted window size 60 repetition time (TR),
which is time taken for the MRI sequence to acquire one whole volume. Since
TR=0.72 seconds in HCP, it is 43.2 seconds in physical time. Subsequently we
computed the Pearson correlation between brain regions in each sliding window
in measuring the strength of time varying brain connectivity. The details on the
rsfMRI preprocessing we performed is explained in our previous study [40]. There
are total (116 x 115)/2 = 6670 time series of brain connectivity between 116 regions
per subject that is used as an input to this study.

The time series are averaged over all connections to determine if there is an overall
trend (Figure 6-bottom). We observe a sharp decline in the initial measurements
of fMRI, which is usually considered as artifacts included by the large variance at
the beginning of each MRI scan [40, 27]. Thus, we removed the first 60 time points
and only used the remaining 1140 time points in the subsequent analysis. There
exists a slow increasing trend (Figure 6-bottom). However, the trend is negligible
when compared to the individual connectivities. Further, the time-varying graph
G obtained in the Dynamic Embedding is invariant of changes in the baseline fMRI
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FIGURE 7. Dynamically changing persistence diagrams for subject
1 (top) and subject 2 (bottom). The persistence diagrams were
computed on time varying graphs obtained through Dynamic Em-
bedding in R%°. We employed the 2-Wasserstein distance to mea-
sure topological similarity between the subjects within a window
of 60 TRs, equivalent to 43.2 seconds.

signal. If there’s a general upward or downward trend in the fMRI data over time,
this will not have an impact on the structure of graph G;. Therefore, we applied
our method directly to the fMRI connectivity without the need for detrending.

4.2. Global topological inference. We applied our method to determine if there
is overall topological difference between resting-state functional brain connectivity
between males and females. Sex differences in rs-fMRI have been a subject of consid-
erable research interest. Studies have found that males and females exhibit different
patterns of functional connectivity in the default mode network [8]. Research on
specific brain regions like the amygdala has shown sex-specific connectivity patterns
that could be linked to emotional processing [43]. Sex differences in the rs-fMRI con-
nectivity of the brain could be related to cognitive performance and behavioral traits
[56]. In diffusion tensor imaging study, males have been observed to have greater
within-hemisphere connectivity, whereas females have greater between-hemisphere
connectivity [41].

We performed Dynamic Embedding on d = 6670 time-varying connectivities. We
employed a sliding window approach with a window size of p = 60. This window size
was chosen to match the sliding window used for computing correlations to ensure
consistency across different analytical methods and to minimize aliasing artifacts.
Aliasing occurs when a signal is sampled at a rate leading to distortions or inaccu-
racies in the reconstructed signal. By aligning the window sizes, we enhanced the
robustness and interpretability of our results. Figure 7 displays the time-varying
persistence diagrams for two subjects. There are total m = 168 males and n = 232
females. We performed the permutation test with 50 million random transpositions
intermixed with one full permutation every 1000 transpositions on the Wasserstein
distance L5 in discriminating sex. We obtain the observed ratio statistic of 0.9846
and the corresponding p-value 0.0223. Thus, we conclude that the proposed method
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FIGURE 8. Left: Distance matrix L£2(z’,2z7). Males have slightly
larger topological distance compared to females. Middle: plot
showing the convergence of p—value over increasing permutations.
At 50 million permutations, the estimated p-value is stable. Right:
the empirical null distribution obtained from 50 million permuta-
tions. The red line is the observed ratio statistic of the between-
group over within-group distances.

distinctly discriminates the functional connectivity between females and males. Fig-
ure 8 plots the histogram of the test statistic and the corresponding observed test
statistic (in dashed red).

5. Conclusion. Topological data analysis (TDA) based approaches have been pre-
viously applied to static brain imaging studies [21, 5, 77], focusing on identifying
topological features that characterize brain signals. However, these methods are
primarily tailored for investigating static summaries of brain networks, which in-
herently limits their ability to provide comprehensive insights. In this paper, we
introduce a new framework for dynamic-TDA that is capable of statistically discrim-
inating between two groups of multivariate time series. Our proposed methodology
builds on persistent homology over multivariate time series and constructs a statis-
tical measure based on r-Wasserstein distances between persistence diagrams. We
have applied this approach to resting-state fMRI data from both female and male
human subjects and discovered significant topological differences in terms of com-
bined 0D and 1D topological distances between the two groups. Given the success
of the proposed approach in differentiating multivariate time series, we believe that
it can be extended to analyze other types of time series data as well.
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