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Topological data analysis (TDA) is increasingly recognized as a promising tool in

the field of neuroscience, unveiling the underlying topological patterns within

brain signals. However, most TDA related methods treat brain signals as if

they were static, i.e., they ignore potential non-stationarities and irregularities

in the statistical properties of the signals. In this study, we develop a novel

fractal dimension-based testing approach that takes into account the dynamic

topological properties of brain signals. By representing EEG brain signals as a

sequence of Vietoris-Rips filtrations, our approach accommodates the inherent

non-stationarities and irregularities of the signals. The application of our novel

fractal dimension-based testing approach in analyzing dynamic topological

patterns in EEG signals during an epileptic seizure episode exposes noteworthy

alterations in total persistence across 0, 1, and 2-dimensional homology. These

findings imply a more intricate influence of seizures on brain signals, extending

beyond mere amplitude changes.

KEYWORDS

dynamic topological data analysis, time series analysis, fractal dimension-based testing,
Higuchi fractal dimension, epileptic seizures

1 Introduction

Topological Data Analysis (TDA) is an emerging powerful framework for analyzing

high-dimensional and noisy data by leveraging concepts from topology (Edelsbrunner

et al., 2002; Carlsson et al., 2005).Within TDA, persistent homology stands out as a method

for assessing the topological patterns within a filtration of simplicial complexes through

varying spatial resolutions. Its core principle lies in quantifying the persistence (birth and

death) of k→dimensional holes, where connected components represent 0-dimensional

holes and circles or loops represent 1-dimensional holes, continuing to higher-dimensional

holes as well, through the use of barcodes or other topological summaries (Carlsson

et al., 2005; Bubenik, 2015; Adams et al., 2017). While TDA methods have faced

criticism for perceived shortcomings in statistical inference (Chung and Ombao, 2021),

the broad application of persistent homology to time series data has been demonstrated

to be successful in various scientific fields ranging from the study of periodicity in

gene expression (Perea et al., 2015), topological signs of financial crashes (Gidea and

Katz, 2018) to medical imaging domains, including structural brain imaging, functional
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magnetic resonance imaging and electroencephalography (Stolz

et al., 2017; Wang et al., 2019; Songdechakraiwut and Chung, 2020;

El-Yaagoubi et al., 2023). Motivated by these advancements and

their potential to uncover novel topological characterizations of

the brain, this paper explores the dynamics of different topological

patterns in brain signals, with a specific focus on epileptic seizures.

Unlike the existing approaches that analyze resting-state fMRI data

(Songdechakraiwut and Chung, 2020), our research delves into the

intricate dynamics of EEG signals during seizure time, aiming to

uncover deeper insights into the complex behavior exhibited by the

brain during epileptic activity.

To capture the dynamic and non-stationary characteristics of

brain signals, we employ a sliding window approach for encoding

multivariate EEG signals as time-varying Vietoris-Rips filtrations.

The assessment of topological information at each temporal point

is facilitated by total persistence (TP), which represents the sum

of persistence over all features in the k homology group of

interest, expressed as TPk =
∑

(bi ,di)∈Hk
(di → bi). Therefore, the

time-varying total persistence serves as a topological summary of

the evolving Vietoris-Rips filtrations, providing insights into the

dynamics of brain activity as the patient enters into an epileptic

state. To assess the statistical significance of the observed changes

in total persistence, we propose a novel testing framework based

on fractal dimension, enabling a robust evaluation of the altered

topological characteristics. A visual inspection indicates that the

EEG signal has increased variance (larger wave amplitudes) during

seizure. Moreover, our proposed dynamic TDAmethod was able to

detect significant changes in total persistence during the epileptic

seizure across all homology dimensions (0, 1, and 2), indicating

a more complex behavior in brain signals beyond a mere change

in signal amplitude (or variance). Our findings shed new light

on the intricate dynamics of brain connectivity during seizure. In

Section 2, we provide a succinct overview of dynamic topological

data analysis where we assume that the topological patterns under

scrutiny are no longer static in time but rather dynamic. In Section

3, we recall the definition of fractal dimension alongside a few

examples. Subsequently, we introduce a novel inference framework

to evaluate the statistical significance of alterations in topological

summaries based on this notion of fractal dimension. In Section

4, we present a simulation study that serves to illustrate the

application of our approach using simulated data. In Section 5, we

employ dynamic-TDA on EEG signals obtained from an epileptic

subject and employ our proposed testing framework to assess the

statistical significance of the changes in the topological structure

induced by seizure. Our results provide compelling evidence that

the seizure has a profound impact on the topological patterns

manifested in the EEG signal. We have shared our analysis code

in the GitHub repository: Dynamic-TDA. The repository includes

two detailed Jupyter notebooks: one for our simulation studies and

another for applying our method to real EEG data. We hope this

resource will be valuable to researchers and practitioners.

2 Dynamic TDA

In recent decades, significant strides have been taken in the

exploration of point cloud data. Approaches like t-distributed

Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold

FIGURE 1

Illustration of Local Point Cloud Embedding (LPCE). Each ti marks

the ending time of the sliding window, and w denotes the width of

each window.

Approximation and Projection (UMAP) have emerged as powerful

tools, demonstrating remarkable success in comprehending and

visualizing intricate, high-dimensional datasets (Maaten and

Hinton, 2008; McInnes et al., 2018). In contrast, the utilization of

Topological Data Analysis (TDA), specifically through persistence

homology, has yielded novel insights into point cloud data.

By capturing the topological features of the ambient space

at varying spatial resolutions, persistence homology offers a

multiscale representation of the data that remains invariant

under continuous deformations—a crucial characteristic for robust

analysis (Edelsbrunner et al., 2002; Chazal and Michel, 2021).

Topological data analysis has made substantial contributions

to the analysis of multivariate time series data (Gholizadeh and

Zadrozny, 2018; El-Yaagoubi et al., 2023). Theoretical milestones,

such as Takens’ Theorem (Takens, 1981), offer practitioners a

powerful framework to transform multivariate time series data in

order to capture the topology of the underlying system dynamics

using point cloud embeddings. These embeddings allow full use

of TDA, facilitating a thorough investigation of the topological

features present in the underlying dynamic system (Gholizadeh and

Zadrozny, 2018; Gidea and Katz, 2018). To formalize these ideas,

denote X(t) = [X1(t), . . . ,XP(t)]′ ∈ RP to be a P-dimensional

multivariate time series. Consider the time-localized point cloud

embedding (LPCE), which involves a sliding window subset of

the data with a length of w at time t, represented as LPCE(t) =

[X(t),X(t→ 1), . . . ,X(t→w+ 1)] ∈ RP×w, which can be visualized

in Figure 1. In contrast to the sliding windows and 1-persistence

scoring (SW1PerS) approach introduced by Perea et al. (2015),

our method relies on dynamic embedding and effectively handles

multivariate time series data. Utilizing this LPCE, we construct the

time-varying Vietoris-Rips filtration in Equation 1.

Xt,ω0 ⊂ Xt,ω1 ⊂ . . . ⊂ Xt,ωn (1)

where Xt,ω is a time-varying simplicial complex, i.e., a combination

of k-simplices, see example in Figure 2, where each k-simplex

corresponds to (k + 1)-tuples of brain channels that are pairwise
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within a distance ω at time t. When ω is sufficiently small, the

complex consists only of individual nodes, and for sufficiently large

ω, the complex becomes a single connected (P → 1)-dimensional

simplex.

For non-stationary signals, such as electroencephalograms

(EEG), the sliding window approach is commonly used to analyze

dynamic properties Möller et al. (2001); Antonacci et al. (2023).

However, this method can introduce autocorrelations in the

estimates and may not effectively handle abrupt model changes. To

address these issues, our study employs non-overlapping windows.

We select a window size that is small enough to capture abrupt

changes, yet large enough to accurately define the shape of the point

cloud.

The goal of persistent homology is to identify topological

features such as k-dimensional holes that persist throughout the

range of the parameter ω. The intervals of the form [ωb, ωd are the

lifetimes of k-dimensional holes that appear in the Vietoris-Rips

filtration, which represent the critical topological information, that

is usually encoded in barcodes (Bk) or persistence diagrams (PDk).

Following the approach in Bubenik (2015) and Songdechakraiwut

and Chung (2020), we formally define the time-varying total

persistence of the k-dimensional holes as the sum of all persistence

values of k-dimensional holes at time t:

tv-TPk(t) =
∑

[ωb ,ωd]∈Bk

(ωd → ωb) (2)

these time series measure the total lifetime of all the k-dimensional

holes at time t. A larger value indicates an extended persistence

of topological features, signifying more robust and persistent

structures in the data. Conversely, smaller values suggest more

transient topological patterns.

3 A fractal dimension-based testing
approach

In this section, we develop a novel statistical testing

framework, based on the notion of fractal dimension, to

evaluate the significance of structural breaks in total persistence

functions. The proposed approach is quite general and can be

applied in various contexts, particularly to assess structural

changes in the mean functions utilizing the Cumulative

Sum (CUSUM) approach. By employing this general testing

procedure, our proposed approach enables researchers to

effectively analyze and quantify structural changes, enhancing

the robustness and interpretability of results across different

settings.

3.1 Fractal dimension

Fractals and fractal dimension has a long history dating

back to the 17-th century. However, our use of the term

fractal is due to the pioneering work of mathematician Benoit

Mandelbrot in the 1960s and 1970s (Mandelbrot, 1967, 1975). The

existence of intricate, non-Euclidean geometries in various natural

phenomena, such as coastlines, clouds, and ice crystals can be

assessed by various measures. Fractal dimension, a fundamental

concept in this field, serves as a measure of the complexity

and degree of self-similarity exhibited by sets. It quantifies the

relative change in the level of detail within a structure or object

(e.g., length, area, and volume) in response to changes in the

observation scale.

Fractal sets are defined to be sets that exhibit self-similar

patterns repeating at various scales. We can create some of these

patterns mathematically, as seen in the Sierpinski Triangle and

the Koch Snowflake in Figure 3. The Sierpinski Triangle builds

recursively, revealing smaller triangles removed from its center in

each step. The Koch Snowflake forms a fractal curve by replacing

straight lines with smaller equilateral triangles. Moving beyond

mathematical constructions, nature provides abundant examples,

including the intricate coastline of Great Britain in Figure 3 and

various other patterns found in trees, ferns, cauliflower, crystals,

lightning, and more. These diverse examples, both mathematical

and from nature, underscore the ubiquity of fractal structures in

the world around us. Unlike the classical notion of Euclidean

dimension, which is a positive integer, fractal dimension is not

constrained to be positive integer-valued, as shown in the examples

of Figure 3. One commonly used method to compute the fractal

dimension is through the concept of box-counting (Mandelbrot,

1982; Iannaccone and Khokha, 1996; Gonzato et al., 2000).

In this approach, to compute the fractal dimension of a set S,

it needs to be covered by a grid of boxes of a given size r, then the

number of boxes Nr(S) required to cover the set S is computed at

each scale r. The fractal dimension is then calculated as the limit

of the logarithm of the number of boxes needed to cover the set

divided by the logarithm of the box size inverse, as the box size

tends to zero. Mathematically, the fractal dimension D of a set S

is given by:

D = lim
r→0

log(Nr(S))

log(1/r)

where Nr(S) is the number of boxes needed to cover the set S at

scale r. This is visually demonstrated in Figure 3 which reveals

notable distinctions in the fractal dimensions of the depicted

objects. Specifically, the Sierpinski triangle exhibits the highest

fractal dimension, occupying a substantial portion of the plane.

In comparison, the Koch snowflake possesses a lower fractal

dimension than the Sierpinski triangle, while the coast of Britain

exhibits the lowest fractal dimension, occupying a comparatively

smaller area in the plane.

3.2 Higuchi fractal dimension

Extending the concept of fractal dimension to the realm of

time series analysis, Higuchi proposed a method for computing

the fractal dimension of a time series based on a notion of curve

length (Higuchi, 1988). The Higuchi fractal dimension (HFD) is

determined by analyzing the relationship of the time series curve

length, denoted by L(k), with the scale k. This method operates

on the principle that, as the scale k varies, a smooth curve would

exhibit a proportional variation in curve length, resulting in aHFD
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FIGURE 2

Time-varying Vietoris-Rips complexes based on LPCE. At each time point ti, the nodes represent observations within the sliding window starting at

ti → ω and ending at ti. The parameter ωi indicates the spatial resolution at which edges, faces, and higher-dimensional simplices are added.

FIGURE 3

Three examples illustrating various forms of fractal behavior: the Sierpinski triangle (left), the Koch snowflake (center), and the coastline of Great

Britain (right). Each object is accompanied by its corresponding box counting fractal dimension.

value closer to 1. In contrast, a more irregular or complex curve

would yield a higher HFD value. Essentially, the HFD provides a

quantitative measure of the irregularity or complexity inherent in

a time series, offering insights into the underlying dynamics and

patterns at different scales.

For a univariate time series X(t) observed at times t = 1, . . . ,T,

the curve length computation involves summing the absolute

differences between consecutive observations that are lag k time

units apart, as shown in Equation 3. This is typically computed for

a range of scales, from 1 to kmax, where kmax ≥ 2. At each scale, an

average overm is considered, as in Equation 4.

Lm(k) =
T → 1⌊

T→m
k

⌋
× k2

⌊
T→m
k

⌋

∑

i=1

∣∣X(m+ ik)→ X(m+ (i→ 1)k)
∣∣ ,

(3)

L(k) =
1

k

k∑

m=1

Lm(k). (4)

The HFD of the observed time series X(t) is then approximated by

finding the slope of the best-fitting linear function through the data

points
{(

log( 1k ), log L(k)
)}kmax

k=1
. In other words, the curve length

scale relationship follows Equation 5.

L(k) ∝ k→HFD (5)

Since its inception in 1988, the Higuchi Fractal Dimension (HFD)

has emerged as a robust measure for quantifying the complexity

and irregularity exhibited by one-dimensional time series signals.

To assess the complexity of a time series, HFD evaluates how the

curve length varies with respect to the scale parameter. If a time

series displays self-repeating patterns, HFD tends to be larger than

one. Conversely, for time series lacking self-repeating patterns, such

as smooth curves (where zooming in removes motifs, reducing

the curve to a straight line regardless of the initial shape), HFD

tends to be closer to one. The HFD thus serves as a quantitative

measure to assess the complexity of a time series by discerning

the presence or absence of self-repeating motifs. For instance, in

the realm of finance, the HFD has proven valuable for assessing

the complexity of stock exchanges by analyzing the closing price

indices (Rani and Jayalalitha, 2016). In the domain of physiological

analysis, particularly in the evaluation of heart rate variability

(HRV) to gauge autonomic nervous system (ANS) activity among
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controls vs. diabetic patients, the HFD has exhibited discriminative

capabilities. Notably, when comparing healthy subjects to diabetic

patients, the HFD proved to be significantly higher in individuals

with diabetes (Gomolka et al., 2018). In the field of neuroscience,

the HFD has been employed to examine the complexity of various

brain signals, including electroencephalography (EEG) recordings

(Nobukawa et al., 2019; Gladun, 2020). These examples highlight

the broad spectrum of applications and the effectiveness of theHFD

in capturing intricate patterns and irregularities inherent in time

series data, such as abrupt shifts, oscillations, and other complex

variations.

3.3 Higuchi fractal dimension and random
walks

Analyzing multivariate time series dynamics is essential for

understanding various natural and economic phenomena. By

quantifying how a time series evolves over time, researchers can

reveal underlying patterns and dependencies that may not be

apparent at first sight. A key aspect of this analysis involves

examining the autocorrelation and memory of the series, which

are fundamental to informed predictions and effective modeling

strategies. Within this framework, the Hurst exponent (H) serves

as a pivotal measure, offering insights into the mean-reverting

or trending behavior of the time series. It assesses the likelihood

of a series to either maintain a consistent trend or revert to its

mean. Higher values of H (approaching 1) suggest a persistent

trend, indicating smoother, less volatile behavior, while lower

values (approaching 0) indicate a more volatile and erratic series

characterized by frequent mean reversions.

In his study of Brownian motion, Benoit Mandelbrot

established a remarkable connection between the Hurst exponent

and fractal dimension, which paved the way for the development

of fractal Brownian motion (fBm) (Mandelbrot and Van Ness,

1968). Subsequently, the relationship between the fractal dimension

(also referred to as Hausdorff dimension) of fBm and the Hurst

exponent was further elucidated in subsequent studies (Orey, 1970;

Mandelbrot, 1982). This connection reveals that classical Brownian

motion, represented by B(t) =
∫ t
0 dW(t), possesses a fractal

dimension of 1.5 (HFD= 1.5) and a corresponding Hurst exponent

of 0.5 (H = 0.5). Here, dW(t) represents a normally distributed

independent increment at each time step with Var[dW(t)] = dt

and E[dW(t)] = 0. This relationship is expressed asHFD = 2→H,

as depicted in Figure 4. Additionally, the observation holds for

smooth curves, such as the x(t) = t · cos(t2/10), with a fractal

dimension close to 1 (HFD≈ 1) along with a Hurst exponent close

to 1 (H ≈ 1). These insights into the fractal dimension of Brownian

motion and smooth curves play a pivotal role in the development

of our novel fractal testing methodology.

3.’ Fractal dimension and the CUSUM
approach

The CUSUMmethod, a statistical tool widely used for detecting

structural breaks or alterations in univariate signals, calculates

1: procedure GETPVALUES(TPk(t), t = 1, . . . ,T)

2: Compute local TP mean: µ̂k(t) =
1
ω

∑ω→1
#=0 TPk(t → #).

3: Compute deviations from the mean as:

Dk(t) = TPk(t)→ µ̂k(t).

4: Compute the cumulative sum (CUSUM) of

deviations: Sk(t) =
∑t

s=0 Dk(s).

5: Compute the original Higuchi Fractal

Dimension of Sk(.): HFDk.

6: for b = 1, . . . ,B do

7: Permute the deviations Dk(t) across time to

obtain D∗
k (t).

8: Compute the CUSUM of the permuted

deviations: S∗k (t) =
∑t

s=0 D
∗
k (s).

9: Compute the Higuchi Fractal Dimension of

S∗k (.): HFDb
k.

10: end for

11: Compute the p-values as: pk =
∑B

b=1
1
B I{HFD

b
k <

HFDk}.

12: end procedure

Algorithm 1. Computation of p-values based on the Higuchi Fractal

Dimension of CUSUM of total persistence deviations.

cumulative sums of deviations from an expected or reference value

over time (Page, 1954). Our objective is to devise a CUSUM-

based approach specifically tailored for evaluating the presence

of structural breaks in time-varying total persistence curves.

These curves encapsulate meaningful information by dynamically

assessing the shape of brain signals as they transition into epileptic

states. Harnessing the expected random walk behavior of the

CUSUM test statistic, which is anticipated to exhibit a fractal

dimension of 1.5 under the assumption of no structural breaks, we

will interpret deviations from this value as indicative of topological

changes in brain signals.

Let TP0(t), TP1(t), and TP2(t) be the observed time-varying

total persistence curves as defined in Equation 2. Then, define the

cumulative sum of deviations as in Equation 6.

Sk(0) = 0,

Sk(t) = Sk(t → 1)+ Dk(t) (6)

Let the null hypothesis H0 be defined as in Equation 7.

H0 : ∀t,E[Dk(t)] = 0. (7)

This null hypothesis posits that the expected value of deviations

(Dk(t)) is always zero, indicating no substantial changes in

the k-dimensional topological features over time. To conduct

a formal statistical inference under the aforementioned

hypothesis, it becomes imperative to define a suitable test

statistic and determine its reference distribution. The null

hypothesis posits the absence of structural breaks, suggesting

that deviations from the mean of total persistence Dk(t)

fluctuate around zero. This implies that observed deviations

from the mean are viewed as random fluctuations, rather than

suggestive of systematic changes in the underlying structure

or dynamics.
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FIGURE 4

Three time series examples with corresponding Higuchi fractal dimension: smooth time series x(t) = t · cos(t2/10) has HFD ≈ 1; Gaussian white noise

with σ = 3 has HFD ≈ 2; standard Brownian motion has HFD ≈ 1.).

FIGURE 5

Simulated multivariate time series (bottom) with cloud point representation (top). The second epoch exhibits a circular shape, while the fourth

epoch takes on a spherical form. The first, third, and fifth epochs exhibit Gaussian uncorrelated random noise.

FIGURE 6

Estimated time-varying persistence curves reveal prominent peaks during the second (30–60 seconds) and fourth (90–120 seconds) epochs in both

1D and 2D-Homology, aligning with the expected circular and spherical shapes in the simulation.

Therefore, under the null hypothesis, we can exchange the

observed deviations, producing a set of permuted deviations

denoted as D∗
k(t). The permutation process provides a reference

distribution under the assumption of no systematic changes,

reinforcing the idea that any observed deviations could occur

randomly if there are no structural breaks. Subsequently, the
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FIGURE 7

Observed CUSUM of deviations of total persistence, Sk(t), and permuted CUSUM of deviations, S∗k(t).

FIGURE (

Observed p-values against reference distribution for the 0-, 1-, and 2-dimensional Homology groups.

FIGURE )

Simulated multivariate time series (bottom) with point cloud representation (top). The first epoch exhibits an infinity-like pattern, the second epoch

exhibits a torus-like pattern, and the third epoch exhibits a spiral-like pattern.
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FIGURE 1*

Estimated time-varying persistence curves reveal prominent peaks during the second ()0–100 seconds) in both 1D and 2D-Homology, which is the

expected distinction between torus and the other two patterns.

FIGURE 11

Observed CUSUM of deviations of total persistence, Sk(t), and permuted CUSUM of deviations, S∗k(t).

FIGURE 12

Observed p-values against reference distribution for the 0-, 1-, and 2-dimensional Homology groups.

cumulative sum of these permuted deviations, denoted as S∗k(t),

is expected to exhibit characteristics reminiscent of a random

walk. This expectation stems from the concept that, under

the null hypothesis, the cumulative sum should demonstrate

random and unpredictable behavior over time. Thus, the entire

process aligns with standard practices in hypothesis testing,

leveraging random permutation and cumulative sums to assess the

significance of observed deviations under the assumption of no

structural breaks.

In order to quantify the extent to which the observed sum

of deviations Sk(t) deviates from a random walk under the null

hypothesis, reflecting the absence of structural breaks in total

persistence, we utilize the HFD as defined in Section 3.2. By

employing the HFD, it becomes possible to assess the dissimilarity

between the behavior of Sk(t) and that of a random walk.

Specifically, the proximity of the HFD to 1 (or deviation from 1.5),

indicates a departure from random behavior, thereby implying the

presence of a structural break in the time-varying total persistence.
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’ Simulations

The primary objective of this section is to demonstrate the

efficacy of our approach in a simulated environment that replicates

the time-varying topological properties of a multivariate time

series. By conducting comprehensive simulation studies, we aim

to validate the robustness and potential of our methodology under

different conditions. We propose two examples to illustrate this:

the first involves simple circular and spherical patterns, while

the second features more complex topological structures with

multiple cycles and voids. These scenarios are designed to test

the adaptability and precision of our approach in capturing the

dynamic topological features of the data.

’.1 First example: simple patterns

In this first example, we generate a 3-dimensional time series

consisting of 15,000 observations, equivalent to 150 seconds of

data captured at a rate of 100 observations per second (see

Figure 5). During the first, third, and fifth 30-second epochs,

the observations are drawn from a 3-dimensional uncorrelated

Gaussian distribution with a mean of zero and a standard deviation

of 1. In the second 30-second epoch, the observations are drawn

from a circle with radius of size 4, and in the fourth 30-second

epoch, they are drawn form a sphere with radius of size 2.5. A

visual representation of samples from this simulated data can be

observed in Figure 5. Following the approach presented in Section

2, we employ a sliding window of size 50 and compute the total

persistence to evaluate the dynamics of the topological patterns

within the data. The estimated time-varying total persistence, as

illustrated in Figure 6, provides a clear depiction of the evolving

topology over time. Notably, an increase in the total persistence

of 1D-Homology signifies the presence of holes in the cloud

point, indicating a non-linear relationship among the components

of the multivariate time series. Similarly, increase in the total

persistence of 2D-Homology suggests the existence of cavities in

the cloud point, reflecting interdependence among the time series

components, now constrained to follow a non-linear relationship

with a spherical shape. Conversely, a decrease in total persistence

signals the disappearance of these topological patterns, leaving

points randomly distributed in space.

The time-varying total persistence curves indicate an increase

in total persistence during the second and fourth 30-second

epochs for both the 1- and 2-dimensional features. Following

the approached described in Section 3, we propose Algorithm 1

to assess the statistical significance of structural breaks in total

persistence.

The original CUSUM statistic as well as the permuted

CUSUM statistics can be viewed in Figure 7. The p-values,

showcased in Figure 8, provide valuable statistical insights into

the estimated time-varying total persistence. The analysis notably

reveals significant structural breaks in the second and third total

persistence curves, indicating statistically meaningful changes in

1-, and 2-dimensional features over time. An increase in the total

persistence of 1D and 2D-Homology suggests the emergence of

holes and cavities in the cloud point, indicating a non-linear

FIGURE 13

Scalp EEG with 10–20 standard layout.

relationship among the components of the multivariate time series.

Furthermore, the comparison of the three p-values indicates that

alterations to 1D and 2D-Homology are much more significant

than alterations to 0D-Homology. This comprehensive analysis

confirms that the detected alterations in the topological patterns

are not mere random fluctuations but rather statistically significant

changes.

’.2 Second example: more complex
patterns

In this example, we generate a 3-dimensional time series

consisting of 15,000 observations, equivalent to 150 seconds of

data captured at a rate of 100 observations per second with more

complex patterns (see Figure 9). During the first 50-second epoch

(5,000 observations), the observations are drawn from an infinity-

like pattern. In the second 50-second epoch (5,000 observations),

the observations are drawn from a torus-like pattern. Finally, in the

third 50-second epoch (5,000 observations), the observations are

drawn from a spiral-like pattern. A visual representation of samples

from this simulated data can be observed in Figure 9. Following the

approach presented in Section 2, we employ a sliding window of

size 150 and compute the total persistence to evaluate the dynamics

of the topological patterns within the data. The estimated time-

varying total persistence, illustrated in Figure 10, provides a clear

depiction of the evolving topology over time. Notably, there is an

increase in the total persistence of 1D and 2D homology, signifying

the presence of larger holes/void in the point cloud during the

second epoch (50–100 seconds). Conversely, a decrease in total

persistence signals the disappearance of these topological patterns,

leaving points randomly distributed in a spiral shape.

The original CUSUM statistic as well as the permuted

CUSUM statistics can be viewed in Figure 11. The p-values,
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FIGURE 14

The figure displays 1)0 seconds of EEG data collected from the subset of Channels Left pre-frontal: Fp1; Left parietal: P3 and Left temporal: T3. The

signals were sampled at a rate of 100 Hz. The data was recorded from a female patient diagnosed with left temporal lobe epilepsy. The dataset was

collected by the Department of Neurology, University of Michigan.

FIGURE 15

Estimated time-varying total persistence for 0-, 1- and 2-dimensional Homology groups.

FIGURE 16

Visualization of the estimated (top) and permuted (bottom) cumulative sum of deviations for the 0-, 1-, and 2-dimensional Homology groups of

total persistence.

showcased in Figure 12, provide valuable statistical insights into

the estimated time-varying total persistence. The analysis notably

reveals significant structural breaks in the second and third

total persistence curves, indicating statistically meaningful changes

in 1-, and 2-dimensional features over time. An increase in

the total persistence of 1D and 2D-Homology suggests the

emergence of holes and cavities in the cloud point, indicating a

non-linear relationship among the components of the multivariate

time series. Furthermore, the comparison of the three p-values

indicates that alterations to 1D and 2D-Homology are much more

significant than alterations to 0D-Homology. This comprehensive

analysis confirms that the detected alterations in the topological

patterns are not mere random fluctuations but rather statistically

significant changes.
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FIGURE 17

Fractal testing based P-Values for the 0-, 1-, and 2-dimensional Homology groups of total persistence.

5 Application to epileptic seizure EEG
signals

Epilepsy, a critical neurological condition affecting a significant

portion of the population, manifests through abnormal neural

firing during seizures. Initiated by a subpopulation of neurons,

this abnormal activity can subsequently spread to other localized

sub-populations or across the entire brain, giving rise to a

variety of time-localized spikes and dynamic alterations in

neural activity. In 2015, an estimated 3.4 million individuals

in the United States, constituting around 1.2% of the total

population, were affected by active epilepsy (Zack and Kobau,

2017). Despite its prevalence, epilepsy remains a complex disorder

with limited treatment options (Chen et al., 2018). Therefore,

understanding the underlying mechanisms and dynamics of

epileptic seizures is crucial for improving diagnosis, treatment, and

patient care.

Current data analytic methods in epilepsy research typically

include high-dimensional parametric models (Rapela et al., 2019),

stochastic differential equations (Tajmirriahi and Amini, 2021),

spectral and coherence analysis (Busonera et al., 2018), and

information theory (Stramaglia et al., 2021; Pernice et al.,

2022). While these approaches have provided valuable insights,

there is a growing recognition of the limitations they pose

in capturing the intricate and often nonlinear relationships

within neural networks during epileptic events. In light of

these challenges, an emerging approach gaining attention is

Topological Data Analysis (TDA). Unlike traditional methods,

TDA offers a unique perspective by analyzing the shape

and structure of complex data, allowing for a more holistic

understanding of the underlying patterns in neural activity

during seizures.

We conducted an analysis of EEG signals recorded during an

epileptic seizure from a female patient of Dr. Malow (formerly

associated with the University of Michigan), diagnosed with left

temporal lobe epilepsy (Ombao et al., 2001, 2005). The dataset

comprises 19 bipolar scalp electrodes placed according to the 10–

20 system, see Figure 13. Each recording spanning approximately

8 min and 20 seconds, sampled at a rate of 100 Hz. Figure 14

shows 3 of the 21 EEG signals (Left pre-frontal: Fp1; Left parietal:

P3 and Left temporal: T3). The onset of the seizure episode was

identified by the neurologist at around t = 363 seconds. The

presence of non-stationarity, particularly amplitude variability, in

the EEG signals during seizure motivated the use of our dynamic

TDA approach. In Figures 15, 16, we report the time-varying total

persistence curves as well as the estimated cumulative sum of

deviations. Changes in the mean structure of these curves suggest

the presence of dynamic topological patterns in the EEG signals

during seizure time. Even these structural changes are convincing,

at least from visual inspection, it is still necessary to formally assess

their significance statistically. Therefore, following our approach in

Section 3, we report the results in Figure 17. It is clear that all three

curves display statistically extremely significant changes in their

mean structure.

* Conclusion

This paper presents a novel framework for analyzing

and evaluating the significance of time-varying alterations of

topological patterns by leveraging the concept of fractal dimension.

Through a comprehensive simulation study, we have demonstrated

the effectiveness of our approach in detecting substantial

topological changes in localized point cloud embeddings.

Additionally, its application to the analysis of EEG signals during

epileptic seizures revealed noteworthy alterations in the dynamics

of topological features, particularly in 0- and 1-dimensional

Homology. These alterations, such as the increase in total

persistence (1D-Homology) during epileptic seizures, suggest

the emergence of holes in localized point cloud embeddings,

signifying the development of a non-linear relationship among the

components of the multivariate time series.

The versatility of our novel approach extends beyond EEG

analysis, offering applicability to diverse settings for assessing

structural breaks in measured time series. By introducing

a robust testing framework and harnessing the power of

topological data analysis, our methodology provides a valuable

tool for comprehending and characterizing dynamic systems.

Future research endeavors could explore its application to other

domains, thereby enhancing our understanding of complex

temporal phenomena and facilitating the development of targeted

interventions across various applications.
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