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Dynamic topological data
analysis: a novel fractal
dimension-based testing
framework with application to
brain signals
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Topological data analysis (TDA) is increasingly recognized as a promising tool in
the field of neuroscience, unveiling the underlying topological patterns within
brain signals. However, most TDA related methods treat brain signals as if
they were static, i.e., they ignore potential non-stationarities and irregularities
in the statistical properties of the signals. In this study, we develop a novel
fractal dimension-based testing approach that takes into account the dynamic
topological properties of brain signals. By representing EEG brain signals as a
sequence of Vietoris-Rips filtrations, our approach accommodates the inherent
non-stationarities and irregularities of the signals. The application of our novel
fractal dimension-based testing approach in analyzing dynamic topological
patterns in EEG signals during an epileptic seizure episode exposes noteworthy
alterations in total persistence across 0, 1, and 2-dimensional homology. These
findings imply a more intricate influence of seizures on brain signals, extending
beyond mere amplitude changes.

KEYWORDS

dynamic topological data analysis, time series analysis, fractal dimension-based testing,
Higuchi fractal dimension, epileptic seizures

1 Introduction

Topological Data Analysis (TDA) is an emerging powerful framework for analyzing
high-dimensional and noisy data by leveraging concepts from topology (Edelsbrunner
etal., 2002; Carlsson et al., 2005). Within TDA, persistent homology stands out as a method
for assessing the topological patterns within a filtration of simplicial complexes through
varying spatial resolutions. Its core principle lies in quantifying the persistence (birth and
death) of k—dimensional holes, where connected components represent 0-dimensional
holes and circles or loops represent 1-dimensional holes, continuing to higher-dimensional
holes as well, through the use of barcodes or other topological summaries (Carlsson
et al,, 2005; Bubenik, 2015; Adams et al, 2017). While TDA methods have faced
criticism for perceived shortcomings in statistical inference (Chung and Ombao, 2021),
the broad application of persistent homology to time series data has been demonstrated
to be successful in various scientific fields ranging from the study of periodicity in
gene expression (Perea et al., 2015), topological signs of financial crashes (Gidea and
Katz, 2018) to medical imaging domains, including structural brain imaging, functional
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magnetic resonance imaging and electroencephalography (Stolz
etal., 2017; Wang et al., 2019; Songdechakraiwut and Chung, 2020;
El-Yaagoubi et al., 2023). Motivated by these advancements and
their potential to uncover novel topological characterizations of
the brain, this paper explores the dynamics of different topological
patterns in brain signals, with a specific focus on epileptic seizures.
Unlike the existing approaches that analyze resting-state fMRI data
(Songdechakraiwut and Chung, 2020), our research delves into the
intricate dynamics of EEG signals during seizure time, aiming to
uncover deeper insights into the complex behavior exhibited by the
brain during epileptic activity.

To capture the dynamic and non-stationary characteristics of
brain signals, we employ a sliding window approach for encoding
multivariate EEG signals as time-varying Vietoris-Rips filtrations.
The assessment of topological information at each temporal point
is facilitated by total persistence (TP), which represents the sum
of persistence over all features in the k homology group of
interest, expressed as TP, = Z(bi,di)er(di — b;). Therefore, the
time-varying total persistence serves as a topological summary of
the evolving Vietoris-Rips filtrations, providing insights into the
dynamics of brain activity as the patient enters into an epileptic
state. To assess the statistical significance of the observed changes
in total persistence, we propose a novel testing framework based
on fractal dimension, enabling a robust evaluation of the altered
topological characteristics. A visual inspection indicates that the
EEG signal has increased variance (larger wave amplitudes) during
seizure. Moreover, our proposed dynamic TDA method was able to
detect significant changes in total persistence during the epileptic
seizure across all homology dimensions (0, 1, and 2), indicating
a more complex behavior in brain signals beyond a mere change
in signal amplitude (or variance). Our findings shed new light
on the intricate dynamics of brain connectivity during seizure. In
Section 2, we provide a succinct overview of dynamic topological
data analysis where we assume that the topological patterns under
scrutiny are no longer static in time but rather dynamic. In Section
3, we recall the definition of fractal dimension alongside a few
examples. Subsequently, we introduce a novel inference framework
to evaluate the statistical significance of alterations in topological
summaries based on this notion of fractal dimension. In Section
4, we present a simulation study that serves to illustrate the
application of our approach using simulated data. In Section 5, we
employ dynamic-TDA on EEG signals obtained from an epileptic
subject and employ our proposed testing framework to assess the
statistical significance of the changes in the topological structure
induced by seizure. Our results provide compelling evidence that
the seizure has a profound impact on the topological patterns
manifested in the EEG signal. We have shared our analysis code
in the GitHub repository: Dynamic-TDA. The repository includes
two detailed Jupyter notebooks: one for our simulation studies and
another for applying our method to real EEG data. We hope this
resource will be valuable to researchers and practitioners.

2 Dynamic TDA

In recent decades, significant strides have been taken in the
exploration of point cloud data. Approaches like t-distributed
Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold
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FIGURE 1

Illustration of Local Point Cloud Embedding (LPCE). Each t; marks
the ending time of the sliding window, and w denotes the width of
each window.

Approximation and Projection (UMAP) have emerged as powerful
tools, demonstrating remarkable success in comprehending and
visualizing intricate, high-dimensional datasets (Maaten and
Hinton, 2008; McInnes et al., 2018). In contrast, the utilization of
Topological Data Analysis (TDA), specifically through persistence
homology, has yielded novel insights into point cloud data.
By capturing the topological features of the ambient space
at varying spatial resolutions, persistence homology offers a
multiscale representation of the data that remains invariant
under continuous deformations—a crucial characteristic for robust
analysis (Edelsbrunner et al., 2002; Chazal and Michel, 2021).

Topological data analysis has made substantial contributions
to the analysis of multivariate time series data (Gholizadeh and
Zadrozny, 2018; El-Yaagoubi et al., 2023). Theoretical milestones,
such as Takens’ Theorem (Takens, 1981), offer practitioners a
powerful framework to transform multivariate time series data in
order to capture the topology of the underlying system dynamics
using point cloud embeddings. These embeddings allow full use
of TDA, facilitating a thorough investigation of the topological
features present in the underlying dynamic system (Gholizadeh and
Zadrozny, 2018; Gidea and Katz, 2018). To formalize these ideas,
denote X(t) = [X1(8),...,Xp(#)] € RP to be a P-dimensional
multivariate time series. Consider the time-localized point cloud
embedding (LPCE), which involves a sliding window subset of
the data with a length of w at time ¢, represented as LPCE(t) =
[X(6), X(t—1),...,X(t —w+1)] € RP*¥ which can be visualized
in Figure 1. In contrast to the sliding windows and 1-persistence
scoring (SW1PerS) approach introduced by Perea et al. (2015),
our method relies on dynamic embedding and effectively handles
multivariate time series data. Utilizing this LPCE, we construct the
time-varying Vietoris-Rips filtration in Equation 1.

Xieo C Xy T ... C X, (1)
where X ¢ is a time-varying simplicial complex, i.e., a combination

of k-simplices, see example in Figure 2, where each k-simplex
corresponds to (k + 1)-tuples of brain channels that are pairwise
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within a distance € at time t. When € is sufficiently small, the
complex consists only of individual nodes, and for sufficiently large
€, the complex becomes a single connected (P — 1)-dimensional
simplex.

For non-stationary signals, such as electroencephalograms
(EEG), the sliding window approach is commonly used to analyze
dynamic properties Moller et al. (2001); Antonacci et al. (2023).
However, this method can introduce autocorrelations in the
estimates and may not effectively handle abrupt model changes. To
address these issues, our study employs non-overlapping windows.
We select a window size that is small enough to capture abrupt
changes, yet large enough to accurately define the shape of the point
cloud.

The goal of persistent homology is to identify topological
features such as k-dimensional holes that persist throughout the
range of the parameter €. The intervals of the form [e;, €4 are the
lifetimes of k-dimensional holes that appear in the Vietoris-Rips
filtration, which represent the critical topological information, that
is usually encoded in barcodes (By) or persistence diagrams (PDy).
Following the approach in Bubenik (2015) and Songdechakraiwut
and Chung (2020), we formally define the time-varying total
persistence of the k-dimensional holes as the sum of all persistence
values of k-dimensional holes at time ¢#:

v-TPe(t) = Y (e4— &) (2)

[ep-€al€By

these time series measure the total lifetime of all the k-dimensional
holes at time t. A larger value indicates an extended persistence
of topological features, signifying more robust and persistent
structures in the data. Conversely, smaller values suggest more
transient topological patterns.

3 A fractal dimension-based testing
approach

In this section, we develop a novel statistical testing
framework, based on the notion of fractal dimension, to
evaluate the significance of structural breaks in total persistence
functions. The proposed approach is quite general and can be
applied in various contexts, particularly to assess structural
changes in the mean functions utilizing the Cumulative
Sum (CUSUM) approach. By employing this general testing
procedure, our proposed approach enables researchers to
effectively analyze and quantify structural changes, enhancing
the robustness and interpretability of results across different
settings.

3.1 Fractal dimension

Fractals and fractal dimension has a long history dating
back to the 17-th century. However, our use of the term
fractal is due to the pioneering work of mathematician Benoit
Mandelbrot in the 1960s and 1970s (Mandelbrot, 1967, 1975). The
existence of intricate, non-Euclidean geometries in various natural
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phenomena, such as coastlines, clouds, and ice crystals can be
assessed by various measures. Fractal dimension, a fundamental
concept in this field, serves as a measure of the complexity
and degree of self-similarity exhibited by sets. It quantifies the
relative change in the level of detail within a structure or object
(e.g., length, area, and volume) in response to changes in the
observation scale.

Fractal sets are defined to be sets that exhibit self-similar
patterns repeating at various scales. We can create some of these
patterns mathematically, as seen in the Sierpinski Triangle and
the Koch Snowflake in Figure 3. The Sierpinski Triangle builds
recursively, revealing smaller triangles removed from its center in
each step. The Koch Snowflake forms a fractal curve by replacing
straight lines with smaller equilateral triangles. Moving beyond
mathematical constructions, nature provides abundant examples,
including the intricate coastline of Great Britain in Figure 3 and
various other patterns found in trees, ferns, cauliflower, crystals,
lightning, and more. These diverse examples, both mathematical
and from nature, underscore the ubiquity of fractal structures in
the world around us. Unlike the classical notion of Euclidean
dimension, which is a positive integer, fractal dimension is not
constrained to be positive integer-valued, as shown in the examples
of Figure 3. One commonly used method to compute the fractal
dimension is through the concept of box-counting (Mandelbrot,
1982; Tannaccone and Khokha, 1996; Gonzato et al., 2000).

In this approach, to compute the fractal dimension of a set S,
it needs to be covered by a grid of boxes of a given size r, then the
number of boxes N,(S) required to cover the set S is computed at
each scale r. The fractal dimension is then calculated as the limit
of the logarithm of the number of boxes needed to cover the set
divided by the logarithm of the box size inverse, as the box size
tends to zero. Mathematically, the fractal dimension D of a set S
is given by:

D — lim log(N;(S))
—0 log(1/r)

where N,(S) is the number of boxes needed to cover the set S at
scale r. This is visually demonstrated in Figure 3 which reveals
notable distinctions in the fractal dimensions of the depicted
objects. Specifically, the Sierpinski triangle exhibits the highest
fractal dimension, occupying a substantial portion of the plane.
In comparison, the Koch snowflake possesses a lower fractal
dimension than the Sierpinski triangle, while the coast of Britain
exhibits the lowest fractal dimension, occupying a comparatively
smaller area in the plane.

3.2 Higuchi fractal dimension

Extending the concept of fractal dimension to the realm of
time series analysis, Higuchi proposed a method for computing
the fractal dimension of a time series based on a notion of curve
length (Higuchi, 1988). The Higuchi fractal dimension (HFD) is
determined by analyzing the relationship of the time series curve
length, denoted by L(k), with the scale k. This method operates
on the principle that, as the scale k varies, a smooth curve would
exhibit a proportional variation in curve length, resulting in a HFD
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Time-varying Vietoris-Rips complexes based on LPCE. At each time point t;, the nodes represent observations within the sliding window starting at
ti — w and ending at t;. The parameter ¢; indicates the spatial resolution at which edges, faces, and higher-dimensional simplices are added

Sierpinski Triangle
D~1.58

FIGURE 3

Xh:

Koch Snowflake
D=1.26

Three examples illustrating various forms of fractal behavior: the Sierpinski triangle (left), the Koch snowflake (center), and the coastline of Great
Britain (right). Each object is accompanied by its corresponding box counting fractal dimension.

Great Britain Coast
D=1.25

value closer to 1. In contrast, a more irregular or complex curve
would yield a higher HFD value. Essentially, the HFD provides a
quantitative measure of the irregularity or complexity inherent in
a time series, offering insights into the underlying dynamics and
patterns at different scales.

For a univariate time series X(t) observed at timest = 1,..., T,
the curve length computation involves summing the absolute
differences between consecutive observations that are lag k time
units apart, as shown in Equation 3. This is typically computed for
a range of scales, from 1 to kmay, Where kmax > 2. At each scale, an
average over m is considered, as in Equation 4.

T—1 , )
Lin(k) = W Z |X(m + ik) — X(m + (i — 1)k)|,
k i=1
3)
1 k
L(k) = . mZ::I Lin(k). 4)

The HFD of the observed time series X() is then approximated by
finding the slope of the best-fitting linear function through the data
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kmax
points [(log(%),log L(k))]ki1 . In other words, the curve length

scale relationship follows Eqaation 5.
L(k) oc k=P (5)

Since its inception in 1988, the Higuchi Fractal Dimension (HFD)
has emerged as a robust measure for quantifying the complexity
and irregularity exhibited by one-dimensional time series signals.
To assess the complexity of a time series, HFD evaluates how the
curve length varies with respect to the scale parameter. If a time
series displays self-repeating patterns, HFD tends to be larger than
one. Conversely, for time series lacking self-repeating patterns, such
as smooth curves (where zooming in removes motifs, reducing
the curve to a straight line regardless of the initial shape), HFD
tends to be closer to one. The HFD thus serves as a quantitative
measure to assess the complexity of a time series by discerning
the presence or absence of self-repeating motifs. For instance, in
the realm of finance, the HFD has proven valuable for assessing
the complexity of stock exchanges by analyzing the closing price
indices (Rani and Jayalalitha, 2016). In the domain of physiological
analysis, particularly in the evaluation of heart rate variability
(HRV) to gauge autonomic nervous system (ANS) activity among
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controls vs. diabetic patients, the HFD has exhibited discriminative
capabilities. Notably, when comparing healthy subjects to diabetic
patients, the HFD proved to be significantly higher in individuals
with diabetes (Gomolka et al., 2018). In the field of neuroscience,
the HFD has been employed to examine the complexity of various
brain signals, including electroencephalography (EEG) recordings
(Nobukawa et al., 2019; Gladun, 2020). These examples highlight
the broad spectrum of applications and the effectiveness of the HFD
in capturing intricate patterns and irregularities inherent in time
series data, such as abrupt shifts, oscillations, and other complex
variations.

3.3 Higuchi fractal dimension and random
walks

Analyzing multivariate time series dynamics is essential for
understanding various natural and economic phenomena. By
quantifying how a time series evolves over time, researchers can
reveal underlying patterns and dependencies that may not be
apparent at first sight. A key aspect of this analysis involves
examining the autocorrelation and memory of the series, which
are fundamental to informed predictions and effective modeling
strategies. Within this framework, the Hurst exponent (H) serves
as a pivotal measure, offering insights into the mean-reverting
or trending behavior of the time series. It assesses the likelihood
of a series to either maintain a consistent trend or revert to its
mean. Higher values of H (approaching 1) suggest a persistent
trend, indicating smoother, less volatile behavior, while lower
values (approaching 0) indicate a more volatile and erratic series
characterized by frequent mean reversions.

In his study of Brownian motion, Benoit Mandelbrot
established a remarkable connection between the Hurst exponent
and fractal dimension, which paved the way for the development
of fractal Brownian motion (fBm) (Mandelbrot and Van Ness,
1968). Subsequently, the relationship between the fractal dimension
(also referred to as Hausdorff dimension) of fBm and the Hurst
exponent was further elucidated in subsequent studies (Orey, 1970;
Mandelbrot, 1982). This connection reveals that classical Brownian
motion, represented by B(t) = fot dW(t), possesses a fractal
dimension of 1.5 (HFD = 1.5) and a corresponding Hurst exponent
of 0.5 (H = 0.5). Here, dW(t) represents a normally distributed
independent increment at each time step with Var[dW(t)] = dt
and E[dW (t)] = 0. This relationship is expressed as HFD = 2 — H,
as depicted in Figure 4. Additionally, the observation holds for
smooth curves, such as the x(t) = t - cos(t>/10), with a fractal
dimension close to 1 (HFD ~ 1) along with a Hurst exponent close
to 1 (H ~ 1). These insights into the fractal dimension of Brownian
motion and smooth curves play a pivotal role in the development
of our novel fractal testing methodology.

3.4 Fractal dimension and the CUSUM
approach

The CUSUM method, a statistical tool widely used for detecting
structural breaks or alterations in univariate signals, calculates
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1: procedure GETPVALUES (TPi(t),t=1,...,T)

2: Compute local TP mean: ix(t) =i }‘:01 TPi(t —0).

3: Compute deviations from the mean as:
Dy (t) = TP(t) — ik (t) -

4: Compute the cumulative sum (CUSUM) of
deviations: Si(t) = ZE:O Dy (s) .

5: Compute the original Higuchi Fractal
Dimension of Sig(.): HFDg.

6: for b=1,...,B do

7: Permute the deviations Di(t) across time to
obtain Di(t).

8: Compute the CUSUM of the permuted
deviations: Si(t) = EZOD;(S).

9: Compute the Higuchi Fractal Dimension of
Si(): HFD!.

10: end for

11: Compute the p-values as: p; = Zf:l %]I{HFDZ <
HFDy} .

12: end procedure

Algorithm 1. Computation of p-values based on the Higuchi Fractal
Dimension of CUSUM of total persistence deviations.

cumulative sums of deviations from an expected or reference value
over time (Page, 1954). Our objective is to devise a CUSUM-
based approach specifically tailored for evaluating the presence
of structural breaks in time-varying total persistence curves.
These curves encapsulate meaningful information by dynamically
assessing the shape of brain signals as they transition into epileptic
states. Harnessing the expected random walk behavior of the
CUSUM test statistic, which is anticipated to exhibit a fractal
dimension of 1.5 under the assumption of no structural breaks, we
will interpret deviations from this value as indicative of topological
changes in brain signals.

Let TPy(t), TP;(t), and TP,(t) be the observed time-varying
total persistence curves as defined in Equation 2. Then, define the
cumulative sum of deviations as in Equation 6.

Sk(0) =0,
Sk(t) = Skt — 1) + Dy(t) (6)

Let the null hypothesis Hy be defined as in Equation 7.

Ho: V¢, E[Dy(1)] = . @)

This null hypothesis posits that the expected value of deviations
(Dk(1)) is always zero, indicating no substantial changes in
the k-dimensional topological features over time. To conduct
a formal statistical inference under the aforementioned
hypothesis, it becomes imperative to define a suitable test
statistic and determine its reference distribution. The null
hypothesis posits the absence of structural breaks, suggesting
that deviations from the mean of total persistence Dy(t)
fluctuate around zero. This implies that observed deviations
from the mean are viewed as random fluctuations, rather than
suggestive of systematic changes in the underlying structure

or dynamics.
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FIGURE 4
Three time series examples with corresponding Higuchi fractal dimension: smooth time series x(t) = t - cos(t?/10) has HFD a 1; Gaussian white noise

with o = 3 has HFD =~ 2; standard Brownian motion has HFD ~ 1.5.
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FIGURE 5
Simulated multivariate time series (bottom) with cloud point representation (top). The second epoch exhibits a circular shape, while the fourth

epoch takes on a spherical form. The first, third, and fifth epochs exhibit Gaussian uncorrelated random noise.
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FIGURE 6

Estimated time-varying persistence curves reveal prominent peaks during the second (30-60 seconds) and fourth (90-120 seconds) epochs in both
1D and 2D-Homology, aligning with the expected circular and spherical shapes in the simulation.

Therefore, under the null hypothesis, we can exchange the  distribution under the assumption of no systematic changes,
observed deviations, producing a set of permuted deviations reinforcing the idea that any observed deviations could occur
denoted as Dj(t). The permutation process provides a reference ~ randomly if there are no structural breaks. Subsequently, the
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exhibits a torus-like pattern, and the third epoch exhibits a spiral-like pattern.

Simulated multivariate time series (bottom) with point cloud representation (top). The first epoch exhibits an infinity-like pattern, the second epoch

120 150
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Estimated time-varying persistence curves reveal prominent peaks during
expected distinction between torus and the other two patterns.
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Observed p-values against reference distribution for the 0-, 1-, and 2-dimensional Homology groups.

cumulative sum of these permuted deviations, denoted as SZ(t),
is expected to exhibit characteristics reminiscent of a random
walk. This expectation stems from the concept that, under
the null hypothesis, the cumulative sum should demonstrate
random and unpredictable behavior over time. Thus, the entire
process aligns with standard practices in hypothesis testing,
leveraging random permutation and cumulative sums to assess the
significance of observed deviations under the assumption of no

structural breaks.
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In order to quantify the extent to which the observed sum
of deviations Si(t) deviates from a random walk under the null
hypothesis, reflecting the absence of structural breaks in total
persistence, we utilize the HFD as defined in Section 3.2. By
employing the HFD, it becomes possible to assess the dissimilarity
between the behavior of Si(¢f) and that of a random walk.
Specifically, the proximity of the HFD to 1 (or deviation from 1.5),
indicates a departure from random behavior, thereby implying the
presence of a structural break in the time-varying total persistence.
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4 Simulations

The primary objective of this section is to demonstrate the
efficacy of our approach in a simulated environment that replicates
the time-varying topological properties of a multivariate time
series. By conducting comprehensive simulation studies, we aim
to validate the robustness and potential of our methodology under
different conditions. We propose two examples to illustrate this:
the first involves simple circular and spherical patterns, while
the second features more complex topological structures with
multiple cycles and voids. These scenarios are designed to test
the adaptability and precision of our approach in capturing the
dynamic topological features of the data.

4.1 First example: simple patterns

In this first example, we generate a 3-dimensional time series
consisting of 15,000 observations, equivalent to 150 seconds of
data captured at a rate of 100 observations per second (see
Figure 5). During the first, third, and fifth 30-second epochs,
the observations are drawn from a 3-dimensional uncorrelated
Gaussian distribution with a mean of zero and a standard deviation
of 1. In the second 30-second epoch, the observations are drawn
from a circle with radius of size 4, and in the fourth 30-second
epoch, they are drawn form a sphere with radius of size 2.5. A
visual representation of samples from this simulated data can be
observed in Figure 5. Following the approach presented in Section
2, we employ a sliding window of size 50 and compute the total
persistence to evaluate the dynamics of the topological patterns
within the data. The estimated time-varying total persistence, as
illustrated in Figure 6, provides a clear depiction of the evolving
topology over time. Notably, an increase in the total persistence
of 1D-Homology signifies the presence of holes in the cloud
point, indicating a non-linear relationship among the components
of the multivariate time series. Similarly, increase in the total
persistence of 2D-Homology suggests the existence of cavities in
the cloud point, reflecting interdependence among the time series
components, now constrained to follow a non-linear relationship
with a spherical shape. Conversely, a decrease in total persistence
signals the disappearance of these topological patterns, leaving
points randomly distributed in space.

The time-varying total persistence curves indicate an increase
in total persistence during the second and fourth 30-second
epochs for both the 1- and 2-dimensional features. Following
the approached described in Section 3, we propose Algorithm 1
to assess the statistical significance of structural breaks in total
persistence.

The original CUSUM statistic as well as the permuted
CUSUM statistics can be viewed in Figure7. The p-values,
showcased in Figure 8, provide valuable statistical insights into
the estimated time-varying total persistence. The analysis notably
reveals significant structural breaks in the second and third total
persistence curves, indicating statistically meaningful changes in
1-, and 2-dimensional features over time. An increase in the total
persistence of 1D and 2D-Homology suggests the emergence of
holes and cavities in the cloud point, indicating a non-linear

Frontiersin Neuroinformatics

10.3389/fninf.2024.1387400

FIGURE 13
Scalp EEG with 10-20 standard layout.

relationship among the components of the multivariate time series.
Furthermore, the comparison of the three p-values indicates that
alterations to 1D and 2D-Homology are much more significant
than alterations to 0D-Homology. This comprehensive analysis
confirms that the detected alterations in the topological patterns
are not mere random fluctuations but rather statistically significant
changes.

4.2 Second example: more complex
patterns

In this example, we generate a 3-dimensional time series
consisting of 15,000 observations, equivalent to 150 seconds of
data captured at a rate of 100 observations per second with more
complex patterns (see Figure 9). During the first 50-second epoch
(5,000 observations), the observations are drawn from an infinity-
like pattern. In the second 50-second epoch (5,000 observations),
the observations are drawn from a torus-like pattern. Finally, in the
third 50-second epoch (5,000 observations), the observations are
drawn from a spiral-like pattern. A visual representation of samples
from this simulated data can be observed in Figure 9. Following the
approach presented in Section 2, we employ a sliding window of
size 150 and compute the total persistence to evaluate the dynamics
of the topological patterns within the data. The estimated time-
varying total persistence, illustrated in Figure 10, provides a clear
depiction of the evolving topology over time. Notably, there is an
increase in the total persistence of 1D and 2D homology, signifying
the presence of larger holes/void in the point cloud during the
second epoch (50-100 seconds). Conversely, a decrease in total
persistence signals the disappearance of these topological patterns,
leaving points randomly distributed in a spiral shape.

The original CUSUM statistic as well as the permuted
CUSUM statistics can be viewed in Figure 11. The p-values,
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FIGURE 14
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Visualization of the estimated (top) and permuted (bottom) cumulative sum of deviations for the 0-,

1-, and 2-dimensional Homology groups of

showcased in Figure 12, provide valuable statistical insights into
the estimated time-varying total persistence. The analysis notably
reveals significant structural breaks in the second and third
total persistence curves, indicating statistically meaningful changes
in 1-, and 2-dimensional features over time. An increase in
the total persistence of 1D and 2D-Homology suggests the
emergence of holes and cavities in the cloud point, indicating a

Frontiers in Neuroinformatics

non-linear relationship among the components of the multivariate
time series. Furthermore, the comparison of the three p-values
indicates that alterations to 1D and 2D-Homology are much more
significant than alterations to 0D-Homology. This comprehensive
analysis confirms that the detected alterations in the topological
patterns are not mere random fluctuations but rather statistically
significant changes.
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5 Application to epileptic seizure EEG
signals

Epilepsy, a critical neurological condition affecting a significant
portion of the population, manifests through abnormal neural
firing during seizures. Initiated by a subpopulation of neurons,
this abnormal activity can subsequently spread to other localized
sub-populations or across the entire brain, giving rise to a
variety of time-localized spikes and dynamic alterations in
neural activity. In 2015, an estimated 3.4 million individuals
in the United States, constituting around 1.2% of the total
population, were affected by active epilepsy (Zack and Kobau,
2017). Despite its prevalence, epilepsy remains a complex disorder
with limited treatment options (Chen et al., 2018). Therefore,
understanding the underlying mechanisms and dynamics of
epileptic seizures is crucial for improving diagnosis, treatment, and
patient care.

Current data analytic methods in epilepsy research typically
include high-dimensional parametric models (Rapela et al., 2019),
stochastic differential equations (Tajmirriahi and Amini, 2021),
spectral and coherence analysis (Busonera et al, 2018), and
information theory (Stramaglia et al, 2021; Pernice et al,
2022). While these approaches have provided valuable insights,
there is a growing recognition of the limitations they pose
in capturing the intricate and often nonlinear relationships
within neural networks during epileptic events. In light of
these challenges, an emerging approach gaining attention is
Topological Data Analysis (TDA). Unlike traditional methods,
TDA offers a unique perspective by analyzing the shape
and structure of complex data, allowing for a more holistic
understanding of the underlying patterns in neural activity
during seizures.

We conducted an analysis of EEG signals recorded during an
epileptic seizure from a female patient of Dr. Malow (formerly
associated with the University of Michigan), diagnosed with left
temporal lobe epilepsy (Ombao et al.,, 2001, 2005). The dataset
comprises 19 bipolar scalp electrodes placed according to the 10—
20 system, see Figure 13. Each recording spanning approximately
8 min and 20 seconds, sampled at a rate of 100 Hz. Figure 14
shows 3 of the 21 EEG signals (Left pre-frontal: Fp1; Left parietal:
P3 and Left temporal: T3). The onset of the seizure episode was
identified by the neurologist at around t = 363 seconds. The
presence of non-stationarity, particularly amplitude variability, in
the EEG signals during seizure motivated the use of our dynamic
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TDA approach. In Figures 15, 16, we report the time-varying total
persistence curves as well as the estimated cumulative sum of
deviations. Changes in the mean structure of these curves suggest
the presence of dynamic topological patterns in the EEG signals
during seizure time. Even these structural changes are convincing,
at least from visual inspection, it is still necessary to formally assess
their significance statistically. Therefore, following our approach in
Section 3, we report the results in Figure 17. It is clear that all three
curves display statistically extremely significant changes in their
mean structure.

6 Conclusion

This paper presents a novel framework for analyzing
and evaluating the significance of time-varying alterations of
topological patterns by leveraging the concept of fractal dimension.
Through a comprehensive simulation study, we have demonstrated
the effectiveness of our approach in detecting substantial
topological changes in localized point cloud embeddings.
Additionally, its application to the analysis of EEG signals during
epileptic seizures revealed noteworthy alterations in the dynamics
of topological features, particularly in 0- and I-dimensional
Homology. These alterations, such as the increase in total
persistence (1D-Homology) during epileptic seizures, suggest
the emergence of holes in localized point cloud embeddings,
signifying the development of a non-linear relationship among the
components of the multivariate time series.

The versatility of our novel approach extends beyond EEG
analysis, offering applicability to diverse settings for assessing
structural breaks in measured time series. By introducing
a robust testing framework and harnessing the power of
topological data analysis, our methodology provides a valuable
tool for comprehending and characterizing dynamic systems.
Future research endeavors could explore its application to other
domains, thereby enhancing our understanding of complex
temporal phenomena and facilitating the development of targeted
interventions across various applications.
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