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Abstract

Place an active particle at the root of the infinite d-ary tree and dormant particles
at each non-root site. Active particles move towards the root with probability p and
otherwise move to a uniformly sampled child vertex. When an active particle moves
to a site containing dormant particles, all the particles at the site become active. The
critical drift pd is the infimum over all p for which infinitely many particles visit the
root almost surely. We give improved bounds on supd≥m pd and prove monotonicity of
critical values associated to a self-similar variant.
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1 Introduction

The frog model with drift on the infinite rooted d-ary tree Td with initial probability
measure ν supported on the nonnegative integers, denoted FM(d, p, ν), is defined as
follows. Initially one active particle is at the root ∅ ∈ Td and the other vertices have
independent and identically ν-distributed (i.i.d.) many dormant particles. Active particles
perform independent p-biased random walk, i.e., moving towards the root with probability
p and otherwise moving to a uniformly random child vertex. When an active particle
moves to an unvisited site, any dormant particles there become active. These dynamics
capture aspects of spatial processes with activation such as combustion, rumor spread,
and infection [16]. Due to the chaotic nature in which the model propagates, researchers
referred to particles as awake and sleeping frogs. The zoomorphism has persisted, so
we will often use that terminology.

A root visit occurs each time that an awake frog moves to ∅. Let V = VFM(d,p,ν) be
the total number of root visits. Call the process recurrent if V =∞ almost surely. It was
proven in [4] that V satisfies a 0-1 law. Accordingly, we call the process transient in the
other case that V <∞ almost surely.

The critical drift
pd(ν) := inf{p : FM(d, p, ν) is recurrent}

is the minimal drift below which the process is transient. It is known that pd(ν) is
sensitive to more than just the mean of ν [12, 13]. Most interest has been in one-per-site
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Improved critical drift estimates for the frog model on trees

and Poisson-distributed initial configurations. We will write FM(d, p, 1) to denote the one-
per-site case ν(1) = 1 and FM(d, p,Poi(µ)) to denote the case ν has a Poisson distribution
with mean µ. To reduce the number of parameters when discussing the model, it is
useful to standardize the density of sleeping frogs. Unless otherwise indicated we write

pd := inf{p : FM(d, p, 1) is recurrent}

for the critical drift in the one-per-site frog model.
The frog model was first studied on Zd. The frog model on Zd is related to branching

random walks on polynomially-growing graphs. Telcs and Wormald [17] proved that
the one-per-site version is recurrent in all dimensions. Telcs and Wormald [17] and
Popov [14] proved that it is recurrent for any ν with ν(0) 6= 1. Alves, Machado, and Popov
as well as Ramírez and Sidoravicius showed that the set of visited sites has a limiting
shape for the one-per-site model [1, 16]. There has also been interest in the frog model
on Zd in which particles have a drift in one coordinate direction [6, 5].

On Td, a simple random walk corresponds to p = p̃ := 1/(d + 1). Determining the
transience/recurrence behavior of FM(d, p̃, 1) was open for over a decade [15]. The
question was partially answered in [9] by Hoffman, Johnson, and Junge who proved that
FM(d, p̃, 1) is recurrent for d = 2 and transient for d ≥ 5. Simulations suggest that the
process is recurrent when d = 3 and transient when d = 4. Later, the same authors
in [8, 11] proved that there is a critical µc(d) = Θ(d) above which FM(d, p̃,Poi(µ)) is
recurrent and below which it is transient.

Wanting to isolate the role of the drift from the tree structure in the phase transition,
Beckman, Frank, Jiang, Junge, and Tang introduced FM(d, p, 1) and its critical value
pd [4]. It is easy to see that the stochastically larger process with all particles initially
active is transient whenever p < 1/(d + 1). Moreover, the process with no activation
is recurrent for p ≥ 1/2. So, pd ∈ [1/(d + 1), 1/2]. An intriguing aspect of FM(d, p, 1)

is that several intuitive monotonicity statements have evaded proof. We say that Y
stochastically dominates X if there is a coupling such that X ≤ Y almost surely. This is
denoted by X � Y .

Conjecture 1.1 ([3, 7, 2]).

(i) If d ≤ d′ and p ≤ p′, then VFM(d,p,ν) � VFM(d′,p′,ν).
1

(ii) pd+1 < pd.2

(iii) limd→∞ pd = (2−
√

2)/4 := q∗ (≈ 0.1464), the critical drift for a branching random
walk that doubles only when moving away from the root (with probability 1− p).3

The main result of [8] can be restated as p2 = 1/3. However, the current lack of the
monotonicity claimed in Conjecture (i) makes it unclear if

Sm := sup
d≥m

pd

is bounded from above by 1/3. In testament to this uncertainty, the first bound proven
on Sm was that S3 ≤ 0.4155 [4, Theorem 1.1]. Guo, Tang, and Wei later established the
bound S3 ≤ 1/3 which implies the “sharp” statement S2 = 1/3 [7]. This was further
improved by Bailey, Junge, and Liu to S3 ≤ 5/17 [2] which implies that pd < p2 for d ≥ 3.
Bailey, Junge, and Liu also proved that S4 ≤ 27/100 and outlined a computer-assisted
method for obtaining better bounds for larger m.

1Conjecture 1.1 (i) is known in the special case that d′ = kd and p′ = p [4, Proposition 1.2].
2More generally, it should hold that pd+1(ν) < pd(ν) so long as ν has finite mean.
3The analogue should hold for general ν with a branching random walk that produces on average the mean

of ν offspring only when moving away from the root.
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Figure 1: Upper bounds on Sm for 2 ≤ m ≤ 60. The horizontal axis is the value of m
and the vertical axis is the bound we get for Sm. Circles are rigorous bounds from
Theorem 1.2 and triangles are numerically approximated bounds. The dashed line at 1/6

is the known limiting critical drift for the self-similar frog model, but is larger than the
conjectured limit of Sm (stated in Conjecture 1.1 (iii)).

1.1 Results

Our results provide further insight into Conjecture (i), (ii), and (iii). The first uses
a computer-assisted proof to carry out the proposed method from [2] for bounding Sm.
The general idea is to bound the critical drift for a non-backtracking variant that has
stochastically fewer root visits (see Theorem 1.3).

Theorem 1.2. Sm satisfies the bounds in the table below.

m 2 3 4 5 6 7 8 9 10 11 12 13

Sm ≤ 55
159

42
145

40
153

23
94

46
197

23
102

38
173

20
93

15
71

5
24

7
34

11
54

≈ .346 .290 .261 .245 .234 .225 .220 .215 .211 .208 .206 .204

Beyond m = 13 we encounter runtime issues (even getting to m = 13 requires the
efficiency-boosting inductive scheme described in Lemma 3.2). However, we are able
to use the method to make non-rigorous approximations of bounds for larger m. See
Figure 1. It was proven in [2] that the upper bounds on Sm will converge to 1/6 as
m→∞ (although Sm ought to converge to q∗ from Conjecture 1.1 (iii)). The convergence
in Figure 1 appears slow. This leads to a refinement to Conjecture 1.1 (iii). We find it
plausible that pd − q∗ = Θ(d−1/2). This might occur because for large d the frog model
behaves like the branching random walk that doubles when moving away from the root
until vertices start getting revisited. The birthday paradox tells us that repeated visits to
child vertices of ∅ occur after O(

√
d) visits to ∅. The branching random walk visits ∅

at a constant (linear in time) rate, as does the frog model [10] in certain regimes. This
suggests that d−1/2 may play a role in the point at which the frog model begins to lag
behind the branching random walk.

The rest of our results are for an important variant of FM(d, p, ν) called the self-similar
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frog model, which we denote as SFM(d, p, ν). This process, introduced in [9], is the only
known tool for proving recurrence of a frog model on trees. Put briefly, frogs in the
self-similar frog model are restricted to the non-backtracking (loop-erased) portion of
their random walk paths, and only one frog is allowed to move away from the root to
each subtree. This results in a stochastically smaller model in terms of the root visits
that is more amenable to anaylsis.

In SFM(d, p, ν) the jump distribution is different for frogs that just woke up versus
for those that have already taken a step. This arises from the fact that the law for
non-backtracking paths is influenced by both the drift and the degree of the tree. Let

p∗d = p∗d(p) :=
p(d− 1)

d− (d+ 1)p
and p̂ = p̂(p) :=

p

1− p
. (1.1)

Initially, there is one active frog at the root. It moves to a uniformly sampled child vertex
in the first step. Just-activated frogs move towards the root with probability p∗d, and
otherwise away from the root to a uniformly sampled child vertex. For subsequent steps,
if the previous step was towards the root, then the next step will be towards the root
with probability p̂. If the previous step was away from the root, all subsequent steps
will be away from the root to uniformly sampled child vertices. Any particles that visit
the root are killed there and no longer participate in the process. The last modification
is that particles moving away from the root are killed upon visiting a vertex that has
already been visited. If multiple active particles attempt to move away from the root to
the same unvisited vertex, then one is chosen to continue its path and the others are
killed.

Let VSFM(d,p,ν) denote the total number of root visits. The self-similar frog model is
dominated by the usual frog model. Indeed, [7] worked out the transition probabilities
p∗d and p̂ so that VSFM(d,p,ν) � VFM(d,p,ν). In support of Conjecture 1.1 (i), we prove that
VSFM(d,p,ν) is monotone in d.

Theorem 1.3. VSFM(d,p,ν) � VSFM(d+1,p,ν) for all d ≥ 2, p ∈ (0, 1/2) and ν.

Theorem 1.3 is the strongest contribution of this work. It is interesting foremost
because it supports Conjecture 1.1 (i). Another benefit of Theorem 1.3 is that the main
results from [4] and [7] are immediate corollaries. For example, since [9] proved that
SFM(2, 1/3, 1) is recurrent, Theorem 1.3 implies that S3 ≤ 1/3. Also, the bounds in [2]
are strengthened after applying Theorem 1.3. For example, together with Theorems 1.2
and 1.3, the bound S4 ≤ 0.27 from [2] is improved to S4 ≤ 0.262.

The main difficulty with proving Theorem 1.3 is that SFM(d, p, ν) and SFM(d+ 1, p, ν)

have different probabilities that the first step taken by a newly activated frogs is towards
the root (p∗d < p∗d+1). In one way this is good for SFM(d + 1, p, ν) since frogs are more
likely to move towards the root. However, it is not monotonically helpful since moving
away from the root sometimes comes with the benefit of waking more frogs.

A fortunate inequality, that had previously gone unnoticed, is that so long as at least
one vertex below a just-activated site, say v, has been visited, the probability a particle
activated at v moves away from the root to a new site in SFM(d+ 1, p, ν) is larger than
the probability in SFM(d, p, ν). An innovation in our coupling is to modify the order in
which frogs jump in a way that ensures that newly awoken frogs will have at least one
visited child vertex below them. The basic idea is to allow frogs that have jumped away
from the root to keep jumping until reaching a freezing barrier at distance n. After
sometimes eliminating frogs from SFM(d+ 1, p, ν), we arrive at a coupling that gives a
one-to-one correspondence between activated frogs at all distances from the root.

Our last result is more technical and involves Conjecture 1.1 (ii). We define a new
critical value for SFM(d, p,Poi(1)) and prove that it is strictly monotone in d. Informally
speaking, the critical value is the smallest value of p such that the only known approach
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Figure 2: The process used to define U(d, p, λ). Red sites contain particles that are
initially active and blue sites contain initially dormant particles. U(d, p, λ) is the number
of vertices among v2, . . . , vd that are ever visited. Empty boxes on the right at v1, . . . , vd
represent sites at which particles have been activated.

for proving SFM(d, p,Poi(1)) is recurrent applies. To define this formally takes some
extra notation.

We now define the frog star process. Consider a star graph with root ∅, central vertex
∅′, and leaves v1, . . . , vd (see Figure 2). There is a Poi(1) number of active particles
at ∅′ and an independent Poi(λ) number of active particles at v1. An independent
Poi(λ)-distributed number of dormant particles is placed at each of v2, . . . , vd.

The active particles started at ∅′ move to ∅ independently with probability p∗d and
otherwise each moves to an independently and uniformly sampled vertex from v1, . . . , vd.
Active particles at vi move to ∅′ with probability 1, and then to either ∅ with probability
p̂ or otherwise to a uniformly sampled vertex among {v1, . . . , vd} \ {vi}. Whenever active
particles encounter dormant particles, the dormant particles become active. When a
particle moves to a leaf or to ∅, it remains frozen there for all subsequent time steps. We
define U = U(d, p, λ) to be how many of v2, . . . , vd have been visited after all particles are
either frozen or dormant. The random variable U is important because understanding
its distribution leads to a sufficient condition for recurrence.

Define
Md,p := sup

λ≥0
E[eλ−p

∗
d−p̂(1+U)λ].

It follows from [2, Proposition 2.6] that

Md,p < 1 implies that SFM(d, p,Poi(1)) is recurrent. (1.2)

We define the critical value
qd := inf{p : Md,p < 1}

that corresponds to the threshold at which the proof technique in [2, 8, 11] fails. We are
unsure whether or not qd is equal to the more natural critical value

inf{p : SFM(d, p,Poi(1)) is recurrent}.

In favor of equality, the “bootstrapping” proof technique fairly accurately captures how
root visits behave in the self-similar model. Roughly, the proof goes by showing that if
the total number of root visits dominates a Poisson random variable of mean λ, then it
dominates a Poisson random variable of mean λ+ ε. This could be a sharp approximation
since the total number of root visits in the self-similar frog model is a Poisson with
random mean.
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Theorem 1.4. qd+1 < qd for all d ≥ 2.

This result is interesting because it supports the strict monotonicity claimed in Con-
jecture 1.1 (ii). Moreover, it suggests that proving Conjecture 1.1 (ii) may be difficult,
since a much simpler monotonicity claim requires non-trivial analysis. The advantage of
qd is that it is defined in terms of a concrete inequality satisfied by Md,p. The self-similar
nature of SFM(d, p,Poi(1)) as well as computational advantages unique to a Poisson-
distributed number of frogs let us reduce this to analyzing functions. Even with these
advantages the argument is not straightforward. The general case is unlikely to reduce
to such tractable analysis.

1.2 Organization

We begin by proving Theorem 1.3 in Section 2. The result is needed to deduce Theo-
rem 1.2. In the next two sections we prove Theorem 1.2 and Theorem 1.4, respectively.
The appendix contains additional details on the code we used to obtain Theorem 1.2 and
Figure 1.

2 Proof of Theorem 1.3

We first provide a sketch of the main idea. We will fix a killing barrier at the vertices
of distance n + 1 from the root of Td. At each time step s, a single frog in SFM(d, p, ν)

is sampled uniformly. The selected frog will either move a single step back towards
the root, or enter an already activated subtree and die, or follow a uniformly random
non-backtracking path until being killed at the barrier. Any sleeping frogs visited become
active, but do not yet move. For step s + 1, another active frog will be sampled. This
continues until all frogs are either killed or sleeping. The advantage of this procedure is
that, after each time step, the tree is left in a configuration for which every visited vertex
within distance n of the root has at least one already-visited child. We then couple this
process with a sub-process of SFM(d+ 1, p, ν) that also has a killing barrier at distance
n + 1. Inducting over s ≥ 0, we will describe how to maintain a bijection between the
movement and waking behavior frogs in SFM(d+1, p, ν) with what occurs in SFM(d, p, ν).

A major issue in coupling the two processes is that just-activated frogs move towards
the root with different probabilities p∗d < p∗d+1 on Td and Td+1. This has the potential
to cause the two processes decouple when a given frog moves away from the root on
Td, while its coupled frog does not. However, since our modified manner in which frogs
move ensures that all active frogs have at least one visited child, the inequality

(1− p∗d)
m

d
< (1− p∗d+1)

m+ 1

d+ 1
, 0 ≤ m < d

with m the number of unvisited child vertices of a given vertex, allows us to kill the frog
in SFM(d+ 1, p, ν) whenever the corresponding frog in SFM(d, p, ν) would be killed by
moving to an already visited child vertex. This observation, plus some additional killing
of frogs in SFM(d + 1, p, ν), makes it possible to maintain a bijective correspondence
between active frogs and their locations at all time steps.

Proof of Theorem 1.3. Fix n ≥ 1 and let SFMn(d, p, ν) denote the self-similar frog model
with sleeping frogs placed at vertices within distance n of the root. We will couple
SFMn(d, p, ν) with a sub-process SFM′n(d+ 1, p, ν), dominated by SFMn(d+ 1, p, ν), that
sometimes kills additional frogs. For s ≥ 0, consider a time-changed version of the
self-similar frog model that moves a randomly sampled awake frog at each step s. If
the frog moves towards the root, then it takes just that one step. Note that frogs are
still killed upon visiting the root. If the frog moves away from the root, then it either
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dies (if the vertex it jumps to is the root of an already activated subtree), or it samples a
non-backtracking path to distance n+ 1 from the root and is killed there. Any sleeping
frogs it visits become active, but do not yet move. For step s+ 1, a new active frog, that
has not been killed, is sampled to move. First we must prove that this modified frog
process has the same limiting number of visits as SFM(d, p, ν).

Claim 2.1. Let VSFMn(d,p,ν) be the total number of visits to the root once the process
SFMn(d, p, ν) has no active frogs. It holds almost surely that

lim
n→∞

VSFMn(d,p,ν) = VSFM(d,p,ν).

Proof. In both processes, we may couple the number of sleeping particles at each site
and the paths they follow upon waking by assigning sleeping particle counts and stacks
of independent non-backtracking paths to each particle in advance. It then suffices to
prove that a site v is visited in SFM(d, p, ν) if and only if v is visited in SFMn(d, p, ν) for
all large enough n almost surely. In what follows, we will refer to a waking chain as a
sequence of frogs f0, f1, . . . , fk for which f0 starts at ∅ and each fj is woken by fj−1 for
1 ≤ j ≤ k.

Suppose that v is visited at step t in SFM(d, p, ν). This visit happens from an active
frog fk in an almost surely finite waking chain. As the chain involves finitely many
frogs, the starting vertices are within an almost surely finite distance N of the root. In
SFMN (d, p, ν), all frogs within distance N of the root move until reaching distance N + 1,
thus v will be visited in SFMn(d, p, ν) for all n ≥ N .

Fix N ≥ 1 and suppose that v is visited in SFMn(d, p, ν) for all n ≥ N . This means
that there is a frog fk in some waking chain that visits v and the starting locations of the
frogs in the chain are all within distance N of the root. Since only finitely many frogs
are involved, that same waking chain occurs in SFM(d, p, ν) and fk reaches v after an
almost surely finite number of time steps.

Continuing towards Theorem 1.3, let T sn (d, p, ν) be the random subtree of sites within
distance n of the root that have been visited in SFMn(d, p, ν) after s such steps. We take
as our inductive hypothesis that there is an embedding ψs : T sn (d, p, ν)→ Td+1 that maps
root to root (ψs(∅d) = ∅d+1) and for each vertex v ∈ T sn (d, p, ν)

(i) ψs(v) has been visited in SFM′n(d+ 1, p, ν).

(ii) There is a bijection between the frogs moving towards and away from the root at v
and ψs(v).

We will induct over the values s ≥ 0. Once established, the inductive claim implies The-
orem 1.3. This is because for any fixed n the algorithm will terminate with all frogs
sleeping or killed after finitely many steps s. Thus the terminated algorithm produces the
total number of visits to the root in SFMn(d, p, ν) which we have coupled to be identical
as the process SFM′n(d+ 1, p, ν) that kills frogs and thus produces fewer root visits than
SFMn(d+ 1, p, ν). It follows from Claim 2.1 that VSFM(d,p,ν) � VSFM(d+1,p,ν).

We now prove the inductive claims. Clearly (i) and (ii) are satisfied at s = 0. It suffices
to assume (i) and (ii) hold after s steps and prove that they continue to hold after moving
any one of the active frogs. Suppose that a frog f at v is selected to move on Td. Let
v′ = ψs(v) and f ′ be the corresponding frog at v′. Since any frogs that move away from
the root either die immediately or are allowed to jump until being killed at distance n+ 1

from the root, we need only consider the cases that the previous jump of f was towards
the root or that f was just awoken.

Suppose that the last step f took was towards the root. Both f and its corresponding
f ′ at v′ will take another step towards the root with probability p̂. We may then couple
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them to move in the same direction. If they move towards the root, then (i) and (ii)
are preserved. Suppose f and f ′ move away from the root and that there are m child
vertices of v that are yet to be visited. As ψs is an embedding, there are m + 1 child
vertices of v′ that are yet to be visited. If f does not move to a new site, then kill f
and f ′. The frog f moves to a new site with probability m/d. The frog f ′ moves to a new
site with probability (m + 1)/(d + 1) ≥ m/d. Thus, whenever f moves to a new site u,
there is a coupling that preserves the random walk law for f ′ and has it move to a new
site u′. We set ψs+1(u) = u′ and otherwise ψs+1 = ψs. Further, we couple the number
of particles discovered at u and u′ to be the same. We then have f and f ′ repeat this
coupling process until they reach distance n+ 1.

Suppose that the frogs f and f ′ were just woken at v and v′, respectively. Suppose
that v has m child vertices that are yet to be visited. Necessarily v′ has m + 1 such
vertices. Moreover, our requirement that frogs which have moved away from the root
continue doing so until reaching distance m+ 1 from the root ensures that at least one
child vertex below v and v′ has been visited so that m < d. The frog f will move towards
∅ with probability p∗d < p∗d+1. So, if f moves towards the root, we may couple f ′ to do the
same preserving (i) and (ii). If f does not move towards ∅ but f ′ does (with probability
p∗d+1 − p∗d), then we kill f ′. The frog f will move away from the root to a new vertex
with probability (1− p∗d)md . It is easy to verify that, so long as m < d, this is strictly less
than the probability (1− p∗d+1)m+1

d+1 that f ′ moves away to a new vertex. Thus, we may
couple f ′ to visit a new vertex whenever f does. We then couple the number of frogs
activated at the two sites. Lastly, if f moves away from ∅ to an already-visited vertex,
then we kill both f and f ′. These rules were defined so that both f and f ′ move with
the appropriate random walks, but f ′ only discovers a new vertex when f does. This
preserves the embedding as well as (i) and (ii).

3 Proof of Theorem 1.2

First, we describe an efficient way to inductively compute the distribution of U(d, p, λ)

as d is increased.
Given Φ,Λ ∈ [0, 1] and d ≥ 1, define the pulse process L(Φ,Λ, d) as follows. Start with

a set of d dormant vertices v1, . . . , vd. At t = 0, there is an initial pulse which causes
the vertices v2, . . . , vd to each have an independent probability 1− Φ of being activated.
Every time a dormant vertex is activated, it sends out another pulse that causes all of
the other vertices to have an independent 1− Λ probability of being activated. (If two
vertices are activated at the same time, they both send out a pulse, and these pulses
are independent.) If an already activated vertex is activated again, nothing happens.
At t = 0, the vertex v1 activates itself. Define the random variable UL(Φ,Λ,d) to be the
number of activated vertices in v2, · · · , vd after the process has finished.

Claim 3.1. The frog star process that is used to define the random variable U(d, p, λ) (see

Figure 2) is equivalent to the pulse process L in the sense that when Φd,p = exp
(
− 1−p∗d

d

)
and Λd,p = exp

(
− 1−p̂
d−1λ

)
we have

UL(Φd,p,Λd,p,d)
D
= U(d, p, λ).

Proof. It suffices to establish the following two facts about the frog star process:

1. The probability that ∅′ sends at least one frog to vi is 1− exp
(
− 1−p∗d

d

)
, and these

events are independent for each i.

2. Upon the activation of the vertex vj , the probability that it sends at least one frog
to another frog vi is 1− exp

(
− 1−p̂
d−1λ

)
, and these events are independent for each i.
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Both of these facts are true due to Poisson thinning.

For all d ≥ 1, 0 ≤ u ≤ d− 1, let sd,u : [0, 1]2 → [0, 1] be defined by

sd,u(Φ,Λ) := P(UL(Φ,Λ,d) = u).

By Claim 3.1, we then have

sd,u

(
exp
(
−1− p∗d

d

)
, exp

(
−1− p̂
d− 1

λ
))

= P(U(d, p, λ) = u).

Thus, if we know the functions sd,u, then we know the distribution of U .

Lemma 3.2. The functions sd,u satisfy the following relations:

s1,0(Φ,Λ) = 1, (3.1)

sd,u(Φ,Λ) =

(
d− 1

u

)(
ΦΛu+1

)d−u−1
su+1,u(Φ,Λ), (3.2)

sd,d−1(Φ,Λ) = 1−
d−2∑
i=0

sd,i(Φ,Λ). (3.3)

Proof. Equation (3.1) is satisfied because

s1,0(Φ,Λ) = P(UL(Φ,Λ,1) = 0) = 1.

UL(Φ,Λ,1) must be 0 since there are no vertices to activate.

To see that equation (3.2) is satisfied, we define two events:

• SelfActivate is the event that all of v1, v2, . . . , vu+1 are activated using only pulses
from v1, v2, . . . , vu+1, and the initial pulse.

• NoVisit is the event that neither the initial pulse nor any of the pulses that
v1, v2, . . . , vu+1 send out activate any of vu+2, . . . , vd.

Notice that for 0 ≤ u ≤ d− 1,

sd,u(Φ,Λ) =

(
d− 1

u

)
P(NoVisit | SelfActivate)P(SelfActivate).

The choice of v2, . . . , vu+1 can be replaced by any u vertices, leading to the
(
d−1
u

)
factor at

the front. In the case of SelfActivate, since a pulse affects each vertex independently
in a way not dependent on d, we can pretend like the vertices vu+2, . . . , vd don’t exist,
which lets us deduce that

P(SelfActivate) = su+1,u(Φ,Λ).

In the case of P(NoVisit | SelfActivate), we realize that this is the probability that
none of the u + 1 pulses sent out by v1, . . . , vu+1 activate any of the d − u − 1 vertices
vu+2, . . . , vd. This is equal to (Λu+1)d−u−1. The initial pulse must also not activate any of
vu+2, . . . , vd, which gives us an additional factor of Φd−u−1. Multiplying these together,
we get (ΦΛu+1)d−u−1. This proves (3.2).

Lastly, equation (3.3) follows from the observation that sd,d−1 = P(UL(Φ,Λ,d) = d− 1)

is complementary to P(UL(Φ,Λ,d) < d− 1) =
∑d−2
i=0 sd,i(Φ,Λ).
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Proof of Theorem 1.2. Let f(λ) = fd,p(λ) = E[eλ−p
∗
d−p̂(1+U)λ]. Suppose we prove that

Md,p := sup
λ≥0

fd,p(λ) < 1.

Then, (1.2) implies that SFM(d, p,Poi(1)) is recurrent. The stochastic comparison result
in [12] implies that SFM(d, p, 1) is recurrent. The monotonicity result in Theorem 1.3

further ensures that SFM(d′, p, 1) is recurrent for all d′ ≥ d. We then apply the observa-
tion that VSFM(d,p,1) � VFM(d,p,1) in [7] to conclude that FM(d, p, 1) is recurrent and thus
Sd ≤ p.

Lemma 3.2 allows us to efficiently compute the distribution of U as we increase d.
This formula only involves powers of exponential functions of λ. The method devised in
[2] gives a way to rigorously prove that f has a single maximum on [0,∞). To accomplish
this we make the change of variables f(−c log(y)) = g(y). If c is an appropriately chosen
rational number, then g is a polynomial. The CountRoots function in Mathematica helps
us to confirm with Sturm’s theorem that g′ has a single root in (0, 1]. So, g (and thus f )
has a unique global maximum which we prove is strictly less than 1. We implemented
this approach for 2 ≤ d ≤ 13. For larger d we experience runtime issues with this
computer-assisted rigorous proof. More details can be found in the Appendix and the
code documentation at https://github.com/fredcheng02/frog-model.

4 Proof of Theorem 1.4

We first prove that U is monotone in d. A similar, but less general observation was
made in [2].

Lemma 4.1. U(d, p, λ) � U(d+ 1, p, λ).

Proof. Recall that a coupon collector process on m coupons is a process that at each
step independently and uniformly samples one of m distinct coupons. Typically we track
the number of distinct coupons sampled after t selections.

We start with a general observation about coupon collectors collecting from different
sized sets of coupons. Namely, whoever has a larger set of coupons collects at least as
many distinct coupons as the collector with less options. To be more precise, suppose
that two coupon collectors are independently collecting coupons. The first collector
collects from a set of n coupons and the second collector collects from a set of n + 1

coupons. Let Cit be the number of distinct coupons collected by collector i = 1, 2 after
each takes t uniform draws from their set of coupons.

Claim 4.2. There is a coupling so that C1
t ≤ C2

t for all t ≥ 0.

Proof. The inequality holds at t = 0. Suppose it is true after collecting t coupons. If
C1
t < C2

t , then regardless of the (t+ 1)th draw we will have C1
t+1 ≤ C2

t+1. Suppose that
C1
t = C2

t = c ≤ n. For the (t+ 1)th draw, the first collector has probability (n− c)/n of
collecting a new coupon. The second collector has probability (n+ 1− c)/(n+ 1). It is
easy to check that the second probability is at least as large as the first. Thus, we may
couple the two processes so that the second collector discovers a new coupon whenever
the first collector does. This gives C1

t+1 ≤ C2
t+1.

Now we will describe U(d, p, λ) and U(d + 1, p, λ) in terms of coupon collector pro-
cesses. Collector A is collecting coupons uniformly from coupons {1, . . . , d}. Collector B
is collecting coupons uniformly from coupons {1, . . . , d+ 1}. Suppose further that each
collector has initially collected coupon 1.

At the first step Collector A samples Poi
(
(1 − p∗d)

d−1
d

)
coupons uniformly from

{2, . . . , d}, and Collector B samples Poi
(
(1−p∗d+1) d

d+1

)
coupons uniformly from {2, . . . , d+
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1}. Recall that p∗d = p(d−1)
d−(d+1)p as defined in (1.1). We have for p < 1/2 and d ≥ 2,

(1− p∗d)
d− 1

d
< (1− p∗d+1)

d

d+ 1
.

Thus, we may couple Collector B to collect at least as many total coupons from {2, . . . , d+

1} as Collector A does from {2, . . . , d}. By Claim 4.2 there is a coupling so that Collector
B ends up with at least as many distinct coupons as Collector A.

For each distinct coupon collected, say coupon i, the collectors receive an independent
Poi((1 − p̂)λ) distributed number of additional uniform draws from the set of coupons
minus coupon i. We may couple the number of uniform draws from each newly discovered
coupon and repeatedly apply Claim 4.2 to ensure that Collector B always has at least as
many distinct coupons as Collector A. In particular, this is true once no new coupons
are discovered and the collecting ends. Comparing to the definition of U , the number
of distinct coupons collected by Collectors A and B are distributed as U(d, p, λ) and
U(d+ 1, p, λ), respectively. This gives the claimed stochastic dominance.

Recall that fd,p(λ) = E[eλ−p
∗
d−p̂(1+U)λ] and Md,p = supλ≥0 f

d,p(λ).

Lemma 4.3. For p ∈ ( 1
d+1 ,

1
2 )

(i) Md,p is continuous in p.

(ii) Md+1,p < Md,p.

Proof of (i). For now fix p and d. Let g(y) = f(− log(y)). Recall

P(U(d, p, λ) = u) = sd,u(Φd,Λd)

from Claim 3.1. Making this replacement, we have that f : [0,∞)→ R given by

f(λ) = e−p
∗
d

d−1∑
u=0

e(1−p̂(1+u))λsd,u(Φd,Λd)

becomes g : (0, 1]→ R with

g(y) = e−p
∗
d

d−1∑
u=0

yp̂(1+u)−1sd,u
(
Φd, y

1−p̂
d−1
)

(4.1)

using Λd = exp
(
− (1−p̂)

d−1 λ
)
. Now Md,p = supy∈(0,1] g

d,p(y).

By Lemma 3.2 it is easy to show via induction that the y terms in sd,u
(
Φd, y

1−p̂
d−1
)

above

have nonnegative exponents. Also we replace Λd by y
1−p̂
d−1 in equation (3.2) and obtain

sd,u
(
Φd, y

1−p̂
d−1
)

=

(
d− 1

u

)(
Φd · y

1−p̂
d−1 (u+1)

)d−u−1
su+1,u

(
Φd, y

1−p̂
d−1
)
. (4.2)

Plugging this equation into (4.1), we see that the exponent of y in each summand of g(y)

as 0 ≤ u ≤ d− 2 is

(1− p̂) (d− 1− u)(u+ 1)

(d− 1)
+
[
exponent of y in su+1,u

(
Φd, y

1−p̂
d−1
)]

+ [p̂(1 + u)− 1].

The above expression is nonnegative since all three terms are nonnegative and equal
zero if and only if u = 0. (Recall from equation (3.1) that s1,0 ≡ 1.) When u = d− 1, our
assumption that p > 1

d+1 ensures that p̂(1 + u) = p̂ · d > 0. Recall from (3.3) that

sd,d−1

(
Φd, y

1−p̂
d−1
)

= 1−
d−2∑
i=0

sd,i
(
Φd, y

1−p̂
d−1
)
,
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which must have nonnegative y-exponents by our previous reasoning. So the y-exponents
in the u = d− 1 summand of (4.1) are strictly positive.

g(y) is now a sum of terms, each with nonnegative y-exponents. Therefore g(y) is
continuous on the interval [0, 1].

Now define the function G : ( 1
d+1 ,

1
2 )× [0, 1]→ R by G(p, y) = gd,p(y) for every fixed d.

One can show thatG is continuous on its entire domain, including ( 1
d+1 ,

1
2 )×{0}. Consider

any p0 ∈ ( 1
d+1 ,

1
2 ). Take any r1 < p0 and r2 > p0 so that p0 ∈ [r1, r2] ⊆ ( 1

d+1 ,
1
2 ), then G

is uniformly continuous on the compact set [r1, r2]× [0, 1]. In particular we have for all
γ > 0, there exists some 0 < δ ≤ min{p0 − r1, r2 − p0} such that for any y ∈ (0, 1], if
|p− p0| < δ, then |G(p, y)−G(p0, y)| < γ.

To show Md,p = supy∈(0,1]G(p, y) is continuous in p, note∣∣∣ sup
y∈(0,1]

G(p, y)− sup
y∈(0,1]

G(p0, y)
∣∣∣ ≤ sup

y∈(0,1]

|G(p, y)−G(p0, y)|.

By the uniform continuity argument above we know immediately that Md,p is continuous
at all p ∈ ( 1

d+1 ,
1
2 ).

Proof of (ii). In part (i) we said for each fixed p that g(y) is continuous on the compact
interval [0, 1], which implies g(y) attains its maximum on [0, 1].

We also mentioned that the g(y) in (4.1) is a sum of terms with positive y exponents
except for u = 0, which produces a constant term. Plug y = 0 into (4.1) and use (4.2) in
the case u = 0, we have

g(0) = e−p
∗
d · Φd−1

d = exp
(
−p∗d −

d− 1

d
(1− p∗d)

)
= exp

(
−1

d
p∗d −

d− 1

d

)
.

(Recall the definition of Φd from Claim 3.1.) Also from (4.1) we have

g(1) = e−p
∗
d

d−1∑
u=0

sd,u
(
Φd, 1) = e−p

∗
d .

By p < 1/2 we have p∗d < 1, which implies − 1
dp
∗
d − d−1

d < −p∗d. It follows that g(1) > g(0),
and hence g(y) attains its maximum on (0, 1], i.e.,

Md,p = max
y∈(0,1]

gd,p(y).

We can write fd,p(λ) = e−p
∗
d+λE[e−p̂(1+U)λ]. By Lemma 4.1 we have U(d, p, λ) � U(d+

1, p, λ). Since p∗d+1 > p∗d, it follows that fd+1,p(λ) < fd,p(λ). Therefore gd+1,p(y) < gd,p(y)

for all y ∈ (0, 1]. Since g attains its maximum on (0, 1], Md+1,p < Md,p, as desired.

It is now quick to deduce our final result.

Proof of Theorem 1.4. Referring to the statements in Lemma 4.3. (i) implies that Md,qd ≤
1. (ii) implies that Md+1,qd < 1. Another application of (i) implies that Md+1,qd−ε < 1 for
some ε > 0. Hence qd+1 ≤ qd − ε.

Appendix

We explain how the exact bounds in Theorem 1.2 and the approximate bounds in
Figure 1 are obtained. The code and further explanation can be found in the Jupyter
Notebooks at https://github.com/fredcheng02/frog-model. The code is written in Sage-
Math, but we imported the CountRoots function from Mathematica at one point, as
previously noted.
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We mentioned in the proof of Theorem 1.2 that we make a change of variables
f(−c log(y)) = g(y). The approach in [2] was to visually inspect the formula to determine
which c should be chosen so that g(y) gives us a polynomial (integer exponents). This
is possible for d ≤ 4, but problematic for larger d when the expressions involve an
exponentially increasing number of terms. Our approach is to take p to be an irreducible
fraction a

b ∈ ( 1
d+1 ,

1
2 ) and set c = (b− a)(d− 1). Then

g(y) = exp
( a− ad
bd− ad− d

) d−1∑
u=0

y(d−1)[(u+2)a−b]sd,u(Φd, y
b−2a),

where Φd = exp
(

2a−b
bd−ad−a

)
. Using the same argument as in Lemma 4.3 (i), one can show

that this change of variables always makes g(y) a polynomial. We then have the power
of exact algorithms to show that g has a unique maximum on (0, 1], which we prove is
strictly less than 1. The bounds obtained in Theorem 1.2 are nearly the best possible
using this method. We use continued fraction approximation to find the p’s such that
0.9994 < supy∈(0,1] g

d,p(y) < 1 for all 2 ≤ d ≤ 13.
In finding the maximum of g on (0, 1] above, we need to use the find_root function

in SageMath to obtain the root of g′. The Brent’s method used in find_root only allows
fixed machine precision, and fails to give a correct root when d ≥ 14, given the fast-
growing complexity of the exact symbolic expression for g(y). This led us to numerically
approximate the bounds for higher d’s instead.

To obtain the values in Figure 1, we work with the original f(λ). It appears that
arg maxλ≥0 f

d,p(λ) converges monotonically down to some value in [0, 1) as d → ∞,
and f has small curvature around its peak. For a chosen p, if we can verify that
fd,p(0), fd,p(0.01), . . . , fd,p(0.99) are all strictly less than 1, then we check for a slightly
smaller p (e.g., we decrease p by 0.0001 in our code) if they are still less than 1. If not,
then we have just found the approximate p such that supλ∈[0,∞) f

d,p(λ) ≈ 1.
Our code also lets us verify if a specific p can work as an upper bound to Sm. For

large m we have to adjust the real number precision accordingly to avoid numerical
errors. For example, we have checked that the upper bounds fall below 0.18 for the first
time at around m = 230, which again supports our conjecture that pd converges at rate
d−1/2.
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