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Abstract

We introduce an innovative, data-driven topological data analysis (TDA) technique for esti-
mating the state spaces of dynamically changing functional human brain networks at rest.
Our method utilizes the Wasserstein distance to measure topological differences, enabling
the clustering of brain networks into distinct topological states. This technique outperforms
the commonly used k-means clustering in identifying brain network state spaces by effec-
tively incorporating the temporal dynamics of the data without the need for explicit model
specification. We further investigate the genetic underpinnings of these topological features
using a twin study design, examining the heritability of such state changes. Our findings sug-
gest that the topology of brain networks, particularly in their dynamic state changes, may
hold significant hidden genetic information.

Author summary

The paper introduces a new data-driven topological data analysis (TDA) method for
studying dynamically changing human functional brain networks obtained from the rest-
ing-state functional magnetic resonance imaging (rs-fMRI). Leveraging persistent homol-
ogy, a multiscale topological approach, we present a framework that incorporates the
temporal dimension of brain network data. This allows for a more robust estimation of

the topological features of dynamic brain networks.
The method employs the Wasserstein distance to measure the topological differences

between networks and demonstrates greater efficiency and performance than the com-
monly used k-means clustering in defining the state spaces of dynamic brain networks.
Our method maintains robust performance across different scales and is especially suited

for dynamic brain networks.
In addition to the methodological advancement, the paper applies the proposed tech-

nique to analyze the heritability of overall brain network topology using a twin study
design. The study investigates whether the dynamic pattern of brain networks is a
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genetically influenced trait, an area previously underexplored. By examining the state
change patterns in twin brain networks, we make significant strides in understanding the
genetic factors underlying dynamic brain network features. Furthermore, the paper
makes its method accessible by providing MATLAB codes, contributing to reproducibility
and broader application.

1 Introduction

In standard graph theory-based network analysis, network features such as node degrees and
clustering coefficients are obtained from adjacency matrices after thresholding weighted edges
[1-4]. The final statistical analysis results can vary depending on the choice of threshold or
parameter [5, 6]. This variability underscores the need for a multiscale network analysis frame-
work that provides consistent results and interpretation, regardless of the choice of parameter.
Persistent homology, a branch of algebraic topology, presents a novel solution to this challenge
of multiscale analysis [7]. Unlike traditional graph theory approaches that analyze networks at
a single fixed scale, persistent homology examines networks across multiple scales. It identifies
topological features that remain persistent and are robust against different scales and noise
perturbations [8-11].

Recent studies have illustrated the versatility of persistent homology in analyzing complex
networks, including brain networks. [10, 12] highlighted the application of persistent homol-
ogy in evaluating temporal changes in topological network features. [13] used persistent
homology to detect and track the evolution of networks’ clique. [14] discussed the use of sim-
plicial complexes encoded by persistent homology for brain networks. [9] applied persistent
homology to investigate the spatial distributions of cliques and cycles in brain networks. [15,
16] showed how persistent homology could be used in the analysis of functional brain connec-
tivity using EEG. [17] utilized persistent homology to analyze brain networks for studying
abnormal white matter in maltreated children. These studies collectively emphasize the poten-
tial of persistent homology in providing a robust framework for multiscale network analysis.
This approach’s ability to capture topological features across different scales and under varying
conditions makes it particularly suitable for studying the complex brain networks.

Persistent homological network approaches have shown to be more robust and outperform
many existing graph theory measures and methods. In [6, 18], persistent homology was shown
to outperform eight existing graph theory features, such as clustering coefficient, small-world-
ness, and modularity. [19] showed persistent homology-based measures can provide more sig-
nificant group difference and better classification performance compared to standard graph-
based measures that characterize small-world organization and modular structure. In [20, 21],
persistent homology was shown to outperform various matrix norm-based network distances.
In [22], persistent homology was shown to outperform the power spectral density and local
variance methods. In [23], persistent homology was shown to outperform topographic power
maps. In [24], center persistency was shown to outperform the network-based statistic and ele-
ment-wise multiple corrections. In [17], persistent homology based clustering is shown to out-
perform k-means clustering and hierarchical clustering. However, the method has been
mainly used on static networks or a static summary of time-varying networks. The dynamic
pattern of persistent homology for time-varying brain networks was rarely investigated, with a
few exceptions [9, 17, 25-28].

While Euclidean loss remains the dominant cost function in deep learning, topological
losses based on persistent homology are emerging as superior in tasks requiring topological
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understanding [29-32]. These topological losses incorporate penalties based on the topological
features of the data, distinguishing them from the Euclidean loss, which primarily focuses on
differences at the node or edge level. By encoding the intrinsic topological structure of the net-
work, topological losses facilitate the creation of more informative feature maps, potentially
enhancing overall model performance [33]. [31] demonstrated that image segmentation based
on topological loss outperforms other deep learning architectures for similar tasks. [32] intro-
duced a new architecture that excels in segmenting curvilinear structures by learning topologi-
cal similarities over existing methods.

In this paper, we propose to develop a novel dynamic persistent homology framework for
time varying network data. Our coherent scalable framework for the computation is based on
the Wasserstein distance between persistent diagrams, which provides the topological profile
of data into 2D scatter plots. We directly establish the relationship between the Wasserstein
distance and edge weights in networks making the method far more accessible and adaptable.
We achieve O(n log 1) run time in most graph manipulation tasks such as matching and aver-
aging. Such scalable computation enables us to perform a computationally demanding task
such as topological clustering with ease. The method is applied in the determination of the
state space of dynamically changing functional brain networks obtained from the resting-state
functional magnetic resonance imaging (rs-fMRI). We will show that the proposed method
based on the Wasserstein distance can capture the topological patterns that are consistently
observed across different time points.

The Wasserstein distance or Kantorovich-Rubinstein metric, as originally defined between
probability distributions, can be used to measure topological differences [34-36]. Due to the
connection to the optimal mass transport, which enjoys various optimal properties, the Was-
serstein distance has been applied to various imaging applications. Nonetheless, its application
in network data analysis remains relatively limited [17, 37]. [38] used the Wasserstein distance
in resampling brain surface meshes. [39, 40] used the Wasserstein distance in classifying brain
cortical surface shapes. [41] used the Wasserstein distance in building generative adversarial
networks. [42] used the Wasserstein distance for manifold regression problems in the space of
positive definite matrices for the source localization problem in EEG. [43] used the Wasser-
stein distance in predicting Alzheimer’s disease progression in magnetoencephalography
(MEG) brain networks. [44] enhanced images by regularizing with the Wasserstein distance.
However, the Wasserstein distance in these applications is all geometric in nature.

We applied the method to dynamically changing twin brain networks obtained from the
resting-state functional magnetic resonance imaging (rs-fMRI). We investigated if the state
change pattern in time varying brain networks is genetically heritable for the first time. This is
not yet reported in existing literature. Monozygotic (MZ) twins share 100% of genes while
dizygotic (DZ) twins share 50% of genes [45]. MZ-twins are more similar or concordant than
DZ-twins for cognitive aging and dysfunction [46]. The difference between MZ- and DZ-
twins directly quantifies the extent to which imaging phenotypes, behaviors and cognitions are
influenced by genetic factors [47]. If MZ-twins show more similarity on a given trait compared
to DZ-twins, this provides a piece of evidence that genes significantly influence that trait. Even
twin studies on normal subjects are useful for understanding the extent to which psychological
and medical disorders, as well as behaviors and traits, are influenced by genetic factors. This
information can be used to develop better ways to prevent and treat disorders and maladaptive
behaviors. Some of the most effective treatments for medical disorders have been identified as
a result of twin studies [48].

Even though there are numerous twin imaging studies, almost all previous studies used
static univariate imaging phenotypes such as cortical thickness [49], fractional anisotropy [50],
functional activation [51-53] in determining heritability in brain networks. There have been a
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limited number of studies investigating the heritability of the dynamics of brain networks [51,
54]. It is not even clear the dynamic pattern itself is a heritable trait. We propose to tackle this
challenge. Measures of network dynamics are worth investigating as potential phenotypes that
indicate the genetic risk for neuropsychiatric disorders [55]. Determining the extent of herita-
bility of dynamic pattern is the first necessary prerequisite for identifying dynamic network
phenotypes.

One of the earliest papers on functional brain activation in twins is based on the resting-
state EEG [56], where they observed high twin correlation in MZ-twins on EEG spectra. [52]
reported a heritability of 0.42 for default-mode network (DMN) in an extended pedigree study
without twins. [57] reported a heritability of 0.54 for DMN on using 24 pairs of MZ and 22
pairs of DZ. [58] studied 79 MZ twins and 46 DZ twin pairs, reporting heritability in only one
specific connection: They found statistically significant heritability of 0.41 for the connection
between the precuneus and the right inferior parietal/temporal cortex, using a structural equa-
tion model. We report far stronger results with much higher heritability in a larger twin study.

2 Methods
Ethics statement

The ethics approval for using the data was obtained from the local Institutional Review Boards
(IRB) of University of Wisconsin-Madison (https://irb.wisc.edu). Informed written consent
was obtained from all participants.

2.1 Graphs as simplicial complices

The proposed method for estimating topological state space is based on the topological cluster-
ing on a collection of graphs (Fig 1). The initial step involves a birth-death decomposition of a
weighted graph, leading to the generation of sorted birth and death sets (section 2.3). The sec-
ond step entails calculating the topological distance: between birth sets to obtain the 0D topo-
logical distance d,, and between death sets to obtain the 1D topological distance d; (section
2.4). The third step involves computing the within-cluster distance I,y among the collection of
graphs (section 2.6). Subsequently, we demonstrate the equivalence of topological clustering
with k-means clustering in a high-dimensional convex set, employing k-means clustering rou-
tines for optimization. To increase the reproducibility, MATLAB codes for performing the
methods are provided in https://github.com/laplcebeltrami/PH-STAT.

A high dimensional object such as a brain network can be modeled as weighted graph X =
(V,w) consisting of node set V indexed as V= {1, 2, - - -, p} and edge weights w = (w;;) between
nodes i and j. If we order the edge weights in the increasing order, we have the sorted edge
weights:

0 Wy = Wy < W) <70 < Wg) = MaX Wy, (1)

j
where g < (p* - p)/2. The subscript (, denotes the order statistic. In terms of sorted edge weight
set W= {w), - - -, w(g)}, we may also write the graph as X = (V, W). If we connect nodes fol-
lowing some criterion on the edge weights, they will form a simplicial complex which will fol-
low the topological structure of the underlying weighted graph [7, 59]. Note that the k-simplex
is the convex hull of k + 1 points in V. A simplicial complex is a finite collection of simplices
such as points (0-simplices), lines (1-simplices), triangles (2-simplices) and higher dimensional
counter parts.

The Rips complex X is a simplicial complex, whose k-simplices are formed by (k + 1) nodes
which are pairwise within distance e [60]. While a graph has at most 1-simplices, the Rips
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Fig 1. Proposed topological clustering pipeline used in estimating the state space. Given two weighted graphs G, G,, we first
perform the birth-death decomposition and partition the edges into sorted birth and death sets (section 2.3). The 0D topological
distance Dy between birth values quantifies discrepancies in connected components (section 2.4). The 1D topological distance Dy,
between death values quantifies discrepancies in cycles (section 2.4). The combined distance D = D%, + D? | is used in computing
the within-cluster distance Iy, between graphs. Topological clustering is performed by minimizing Iy, over all possible cluster labels
Cy, -+ -, Cx (section 2.6).

https://doi.org/10.1371/journal.pchi.1011869.g001

complex has at most (p — 1)-simplices. The Rips complex induces a hierarchical nesting struc-
ture called the Rips filtration

X, cxX cXx cC---

for 0 =€y < €] < €, < - - -, where the sequence of e-values are called the filtration values. The fil-
tration is quantified through a topological basis called k-cycles. 0-cycles are the connected com-
ponents, 1-cycles are 1D closed paths or loops while 2-cycles are 3-simplices (tetrahedron)
without interior. Any k-cycle can be represented as a linear combination of basis k-cycles. The
Betti number S counts the number of independent k-cycles. During the Rips filtration, the i-
th k-cycle is born at filtration value b; and dies at d;. The collection of all the paired filtration
values

P(X) = {(bh d1)7 Ty (bq’dq)}

displayed as 1D intervals is called the barcode and displayed as a 2D scatter plot is called the
persistent diagram. Since b; < d;, the scatter plot in the persistent diagram are displayed above
the line y = x line by taking births in the x-axis and deaths in the y-axis.

For a dynamically changing brain network X (t) = (V, w(t)), we assume the node set is
fixed while edge weights are changing over time ¢. If we build persistent homology at each
fixed time, the resulting barcode is also time dependent:
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2.2 Graph filtrations

As the number of nodes p increases, the resulting Rips complex becomes increasingly dense.
Additionally, as the filtration values rise, the number of edges connecting each pair of nodes
also increases, leading to a more interconnected structure. At higher filtration values, Rips fil-
tration becomes an ineffective representation of networks. To remedy this problem, graph fil-
tration was introduced [6, 18]. Given weighted graph X' = (V, w) with edge weight w = (w;)),
the binary network X', = (V, w,) is a graph consisting of the node set V and the binary edge

weights w, = (w, ;) given by
1 it w; > €
w .. =

€,ij .
0 otherwise.

Note w, is the adjacency matrix of X, which is a simplicial complex consisting of 0-simpli-
ces (nodes) and 1-simplices (edges) [60]. While the binary network X has at most 1-simplices,
the Rips complex can have at most (p — 1)-simplices. By choosing threshold values at sorted
edge weights w(;), w(), - - , W(g), we obtain the sequence of nested graphs [5]:

Ky D Xy 2002 Xy (2)
The sequence of such a nested multiscale graph is called the graph filtration [6, 18]. Note
that & Wiy 18 the complete weighted graph for any € > 0. On the other hand, X w18 the node

set V. By increasing the threshold value, we are thresholding at higher connectivity; thus more
edges are removed.

For dynamically changing brain networks (Fig 2), we can similarly build time varying
graph filtrations at each time point {X_(¢) : t € R"}.

2.3 Birth-death decomposition

Unlike the Rips complex, there are no higher dimensional topological features beyond the 0D
and 1D topology in graph filtration. The 0D and 1D persistent diagrams (b;, d;) tabulate the
life-time of 0-cycles (connected components) and 1-cycles (loops) that are born at the filtration
value b; and die at value d;, respectively. The Oth Betti number f,(w(;)) counts the number of
0-cycles at filtration value wy; and can be shown to be non-decreasing over filtration (Fig 3)
[21]:

ﬁU(W(i)) < ﬂU(W(H—l))'

On the other hand the 1st Betti number f;(w(;)) counts the number of independent loops
and can be shown to be non-increasing over filtration [21]:

ﬁl(w(i)) > ﬁ1(W(i+1))-

During the graph filtration, when new components is born, they never die. Thus, 0D persis-
tent diagrams are completely characterized by birth values b; only. Loops are viewed as already
born at —oco. Thus, 1D persistent diagrams are completely characterized by death values d;
only. We can show that the edge weight set W can be partitioned into 0D birth values and 1D
death values [61]:
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Fig 2. Dynamically changing correlation matrices computed from rs-fMRI using the sliding window of size 60 for a subject. The constructed
correlation matrices are superimposed on top of the white matter fibers in the MNI space and color coded based on correlation values.

https://doi.org/10.1371/journal.pcbi.1011869.9002

01 02 03 04. 05
Birth

01..02 03 04.05
Birth

Fig 3. The birth-death decomposition partitions the edge set into the birth and death edge sets. The birth set forms the
maximum spanning tree (MST) and contains edges that create connected components (0D topology). The death set contains edges
that do not belong to the maximum spanning tree (MST) and destroys loops (1D topology).

https://doi.org/10.1371/journal.pchi.1011869.g003
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Fig 4. The corresponding birth and death sets of dynamically changing correlation matrix shown in Fig 2. The
horizontal axis is the time point. Columns are the sorted birth and death edge values at the time point.

https://doi.org/10.1371/journal.pcbi.1011869.9004

Theorem 1 (Birth-death decomposition). The edge weight set W = {w(y), - - -, (o} has the
unique decomposition

W=W,uWw, W,NWwW,=0, (3)

where birth set W, = {b(1), b2y, - - - b(qo)} is the collection of 0D sorted birth values and death set
Wa={dn), deay, - - - d(q1)} is the collection of 1D sorted death values with qo = p — 1 and g, = (p
— 1)(p — 2)/2. Further Wy, forms the OD persistent diagram while W, forms the 1D persistent
diagram.

In a complete graph with p nodes, there are g = p(p — 1)/2 unique edge weights. There are
qo = p — 1 number of edges that produce 0-cycles. This is equivalent to the number of edges in
the maximum spanning tree (MST) of the graph. Thus,

q1:q_%:(p 1)2(]7 2
number of edges destroy loops. The 0D persistent diagram is given by

{(b1);00), -+, (by)» ) }- Ignoring oo, Wy, is the OD persistent diagram. The 1D persistent
diagram is given by {(—00,d,))," - -, (—00,d, ) }. Ignoring —oo, Wy is the 1D persistent
digram. We can show that the birth set is the MST (Fig 3) [62].

The identification of W), is based on the modification to Kruskal’s or Prim’s algorithm that
identifies the MST [6, 62]. Then W, is identified as W \ W, = W N W¢. Fig 4 displays how the
birth and death sets change over time for a single subject used in the study. Given edge weight
matrix W as input, the Matlab function WS_decompose . m outputs the birth set W}, and the
death set W .
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O

dgeo(a,0) =1 dyeo(c,b) =1 dyeo(d,b) =2

dtop(a> b) =0 dtop(ca b) =1 dtop(d, b) =0

Fig 5. Comparison between geometric distance d,,, and topological distance d;,,. We used the shortest Euclidean
distance between objects as the geometric distance. The left (two circles) and middle (circle and arc) objects are
topologically different while the left and right (square and circle) objects are topologically equivalent. The geometric
distance cannot discriminate topologically different objects (left and middle) and produces false negatives. The
geometric distance incorrectly discriminates topologically equivalent objects (left and right) and produces false
positive.

https://doi.org/10.1371/journal.pchi.1011869.g005

2.4 Topological distances

Like the majority of clustering methods such as k-means and hierarchical clustering that use
geometric distances [6, 63, 64], we propose to develop a topological clustering method using
topological distances (Fig 5). For this purpose we use the Wasserstein distance.

Given two probability distributions X ~ f; and Y ~ f,, the r-Wasserstein distance Dy, the
probabilistic version of the optimal transport, is defined as

Dy (f,.f,) = (inf EIX — Y[)"", (4)

where the infimum is taken over every possible joint distribution of X and Y. The Wasserstein
distance is the optimal expected cost of transporting points generated from f; to those gener-
ated from f, [35]. There are numerous distances and similarity measures defined between
probability distributions such as the Kullback-Leibler (KL) divergence and the mutual infor-
mation [65]. While the Wasserstein distance is a metric satisfying positive definiteness, sym-
metry, and triangle inequality, the KL-divergence and the mutual information are not metrics.
Although they are easy to compute, the biggest limitation of the KL-divergence and the mutual
information is that the two probability distributions must be defined on the same sample
space. If the two distributions do not have the same support, it may be difficult to even define
the distance between them. If f; is discrete while f, is continuous, it is difficult to define them.
On the other hand, the Wasserstein distance can be computed for any arbitrary distributions
that may not have the common sample space, making it extremely versatile.

Consider persistent diagrams P; and P, given by

(b;ad;)7 szlz(bfvd%%ayq:(bi?d;)

Pl L X :(bllad]l)v"'vxq

Their empirical distributions are given in terms of Dirac-Delta functions

709 =230 —x), £0) =1 oy )
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Then we can show that the r-Wasserstein distance on persistent diagrams is given by

1/r
D, (P,,P,) = 1nf <Z||x— ) (5)

x€P;

over every possible bijection y, which is a permutation, between P; and P, [34-36]. Optimiza-
tion (5) is the standard assignment problem, which is usually solved by the Hungarian algo-
rithm in O(g*) [66]. However, for graph filtration, the distance can be computed exactly in
O(qlog q) by simply matching the order statistics on the birth or death values [61, 62, 67]:

Theorem 2. The r-Wasserstein distance between the 0D persistent diagrams for graph filtra-
tion is given by

90

1/r
Dy (Py, P,) = [Z(bzf) - b?i))r] ) (6)

i=1

where b’@ is the i-th smallest birth values in persistent diagram P;. The r-Wasserstein distance

between the 1D persistent diagrams for graph filtration is given by

q1

1r
Dy, (P,,P,) = [Z(dgi) - d?j))r] ) (7)

i=1

where d’@ is the i-th smallest death values in persistent diagram P;.

The proof is provided in [68]. We can show that the 2-Wasserstein distance is equivalent to
the Euclidean distance within a certain convex set. Let b, = (bj,), bl - - -, dé%))T be the vector
of sorted birth values of persistent diagram P;. Then b, is a point in the (g — 1)-simplex 7,
given by

T,= {(xlvxm"'v qo)‘xl <Xy <-e < xqo} CR*,

where x; and x, are bounded below and above respectively. If brith and death values are from
correlation matrices, -1 < x; and X, < 1. Hence, the 0D Wasserstein distance is equivalent to
Euclidean distance in the go-dimensional convex set 7 ,. Similarly, the vector of sorted death
values d, = (di,, d}, - - ,déql))T of persistent diagram P; is a point in the (q; — 1)-simplex T,
given by

T, ={(x), %%, )|x <x, <. <x, } CR", (8)

where x; and x, are bounded below and above respectively. Hence, the 1D Wasserstein dis-

tance is equivalent to Euclidean distance in the g;-dimensional convex set 7 ,.

2.5 Topological mean and variance
Given a collection of graphs X, = (V,w'),---, X, = (V,w") with edge weights w* = (wﬁ.),

the usual approach for obtaining the average network X’ is simply averaging the edge weight
matrices in an element-wise fashion

_ 1<
X = V,—sz .
=
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However, such average is the average of the connectivity strength. Such an approach is usu-
ally sensitive to topological outliers [21]. We address the problem through the Wasserstein dis-
tance. A similar concept was proposed in the persistent homology literature through the
Wasserstein barycenter [69, 70], which is motivated by the Fréchet mean [71-74]. However,
the method has not seen many applications in modeling graphs and networks.

To account for both 0D and 1D topological differences in networks, we use the sum of 0D
and 1D Wasserstein distances between networks X, and &, as the topological distance

D(X,,X,) =D;,(P,,P,) + D, (P, P,). (9)

The equal weights of the form (9) were used for the following reasons. Through the birth-
death decomposition, a weighted graph can be topologically characterized by 0D and 1D fea-
tures, with no higher-dimensional features present. However, it is unclear which feature con-
tributes the most. Equal weighting of 0D and 1D features ensures a balanced representation
without bias towards either type of feature.

Let @denote a graph with zero edge weights. Then, due to the birth-death decomposition,
we have

D(X,,9) = Z(Wi1j>2’ D(2,X,) = Z(W?j)27

i<j i<j

where the squared sums of all the edge weights make the interpretation straightforward. If
unequal weighting is used, these relationships do not hold. Further, the Wasserstein distances
Dy and Dyy, are equivalent to the Euclidean distances in a convex set. Therefore, squared dis-
tance is a more natural choice that satisfies the triangle inequality

D(Xl ’ XS) S D(Xl ? XZ) + D(‘XQ? X3)7

thus qualifying as a metric.

The sum (9) does not uniquely define networks. Like the toy example in Fig 5, we can have
many topologically equivalent brain networks that give the identical distance. Thus, the aver-
age of two graphs is also not uniquely defined. The situation is analogous to Fréchet mean,
which frequently does not result in a unique mean [71-74]. We introduce the concept of the
topological mean for networks, defined as the minimizer according to the Wasserstein dis-
tance, mirroring how the sample mean minimizes the Euclidean distance. The squared Was-
serstein distance is translation invariant such that

D(c+ X, c+ &,) = D(X,, &,).

If we scale connectivity matrices by ¢, we have

D(cX),cX,) = D(X), X,).

Definition 1. The topological mean EX of networks X, - - -, X, is the graph given by
EX = arg mXin ZD(X, X,). (10)
k=1

Unlike the sample mean, we can have many different networks with identical topology that
give the minimum. Similarly, we can define the topological variance VX as follows.
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Definition 2. The topological variance VX of networks X, - - -, X is the graph given by

1 n
VX = ;ZD(EX, X). (11)
k=1

The topological variance can be interpreted as the variability of graphs from the topological
mean EX. To compute the topological mean and variance, we only need to identify a network
with identical topology as the topological mean or the topological variance.

Theorem 3. Consider graphs X, = (V, w') with corresponding birth-death decompositions
W; = Wy, U Wy, with birth sets W, = {bil), . bé%)} and death sets W, = {dél), . ,dqu)}.
Then, there exists topological mean EX = (V, w) with birth-death decomposition W, U W
with W, = {b,,---,b, }and W, ={d,,---,d, } satisfying

1N, 1<,
bj:;;bg), djzzz;d(j). (12)

2.6 Topological clustering

There are few studies that used the Wasserstein distance for clustering [38, 75]. The existing
methods are mainly applied to geometric data without topological consideration or persis-
tence. It is not obvious how to apply such geometric methods to cluster graph or network data.
We propose to use the Wasserstein distance to cluster collection of graphs &', - - -, X into k
clusters Cy, - - -, Cy such that

Uf:lci ={X, -, &} CnN Cj =0.

Let C = (Cy, - - -, C) be the collection of clusters. Let y; be the topological cluster mean within
C; given by
= argng(in ZD(X, X,).

XeG;

The cluster mean is computed through Theorem 3. Just like Fréchet mean, the cluster mean
is not unique in a geometric sense but only unique in a topological sense [71-74]. Let y = (3,
-+ -, px) be the cluster mean vector. The within-cluster distance from the cluster centers is given
by

k
L(Ci) =D > DX, ). (13)
j=1 Xe
If we let |Cj| to be the number of networks within cluster C;, (13) can be written as

k

Ly(Cp) = Z|C}.|V}.X7 (14)

j=1

with topological cluster variance

1
V]X = ?Z D(X, /,L])

| 1|XeCj
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within cluster C;. The optimal cluster is found by minimizing within-cluster distance Iy,(Ciu)
in (13) over every possible partition of C.

If p is given and fixed, the identification of clusters C can be done easily by assigning each
network to the closest mean. Thus the topological clustering algorithm can be written as the
two-step optimization similar to the expectation maximization (EM) algorithm often used in
variational inferences and likelihood methods [76]. The first step computes the cluster mean.
The second step minimizes the within-cluster distance. Just like k-means clustering, the two-
step optimization is then iterated until convergence. Such process converges locally.

Theorem 4. The topological clustering converges locally.

The direct algebraic proof is fairly involving and given in [17]. Here we provide a more
intuitive explanation. Note Dyy, and Dy, are Euclidean distances in convex set 7, ® 7 ,. Sub-
sequently,

D(P1»P2) = D%\/O<P17P2> +D%/\/1(P1ap2)~

is the Euclidean distance in the Cartesian product 7, ® 7,. Thus, our topological clustering is
equivalent to k-means clustering restricted to the convex set 7, ® 7 ,. The convergence of
topological clustering is then the direct consequence of the convergence of k-means clustering,
which always converges in such a convex space. Numerically we minimize (13) by replacing
the Wasserstein distance with the 2-norm between sorted vectors of birth and death values in
k-means clustering.

Like k-means clustering algorithm that only converges to local minimum, there is no guar-
antee the topological clustering converges to the global minimum [77]. This is remedied by
repeating the algorithm multiple times with different random seeds and taking the smallest
possible minimum. The method is implemented as the Matlab function WS_cluster.m
which inputs the collection of networks and outputs the cluster labels and clustering accuracy.
Different choice of initial cluster centers may lead to different results. Thus, the algorithm may
become stuck in a local minimum and may not converge to the global minimum. Thus, in
actual numerical implementation, we used different initializations of centers. Then, we picked
the best clustering result with the smallest within cluster distance [y.

2.7 Validation

We validated the topological clustering in a simulation with the ground truth against k-means
and hierarchical clustering [18]. We generated 4 circular patterns of identical topology (Fig 6-
top) and different topology (Fig 6-bottom). Along the circles, we uniformly sampled 60 nodes
and added Gaussian noise N(0, 0.3%) on the coordinates. We generated 5 random networks per
group. The Euclidean distance (L,-norm) between randomly generated points is used to build
connectivity matrices for k-means and hierarchical clustering. Fig 6 shows the superposition
of nodes from 20 networks. For k-means and Wasserstein graph clustering, the average result
of 100 random seeds is reported.

2.7.1 Testing for false positives. In the experiment depicted in Fig 6, we evaluated the
occurrence of false positives in scenarios devoid of topological differences. All groups, derived
from Group 1 through rotations, are topologically identical. Hence, any detected differences
are false positives. While k-means clustering exhibited an accuracy of 0.90 + 0.15, and hierar-
chical clustering achieved perfect accuracy (1.00), these methods reported significant false pos-
itives, erroneously categorizing the groups as distinct clusters. The absence of inherent
topological differences between the groups implies that higher clustering accuracy is indicative
of false positive results. Conversely, topological clustering, with a lower accuracy of
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Fig 6. Top: simulation study on topological equivalence. The correct clustering method should not be able to cluster
them because they are all topologically equivalent. The pairwise Euclidean distance (L,-norm) is used in k-means and
hierarchical clustering. The Wasserstein distance is used in topological clustering. Bottom: simulation study on
topological difference. The correct clustering method should be able to cluster them because they are all topologically
different.

https://doi.org/10.1371/journal.pcbi.1011869.9g006

0.53 + 0.08, demonstrated a reduced tendency for reporting false positives in the absence of
topological differences.

2.7.2 Testing for false negatives. Fig 6 presents our test for false negatives, featuring
groups with varying numbers of cycles and distinct topologies. In this scenario, topological dif-
ferences should be detectable. Here, k-means clustering recorded an accuracy of 0.83 + 0.16,
and hierarchical clustering again reported perfect accuracy. Notably, topological clustering
attained a high accuracy of 0.98 + 0.09. Separating topological from geometric signals is
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challenging; the presence of topological differences often coincides with geometric variations,
which can influence the performance of all tested methods.

In summary, while traditional clustering methods based on geometric distances are prone
to a significant number of false positives, making them less suitable for topological learning
tasks, the proposed Wasserstein distance-based approach demonstrates superior performance.
This method excels in minimizing both false positives and false negatives, as evidenced by our
tests. Its effectiveness is particularly noteworthy in topological learning tasks, where discerning
topological rather than geometric distinctions is crucial.

2.8 Weighted Fourier series representation

The predominant method for computing time-varying correlation in time series data, particu-
larly in neuroimaging studies, involves Sliding Windows (SW). This technique entails comput-
ing correlations between brain regions across various time windows [77-81]. However, the use
of discrete windows in SW can lead to artificially high-frequency fluctuations in dynamic cor-
relations [82]. While tapering methods can occasionally mitigate these effects [78], the correla-
tion computations within these windows remain susceptible to the influence of outliers [83].
To circumvent these limitations, we employed the Weighted Fourier Series (WFS) repre-
sentation [84, 85]. This approach extends the traditional cosine Fourier transform by incorpo-
rating an additional exponential weight. This modification effectively smooths out high-
frequency noise and diminishes the Gibbs phenomenon [84, 86]. Crucially, WFS eliminates
the need for sliding windows (SW) when computing time-correlated data. Given the necessity
for robust signal denoising methods to ensure the efficacy of the persistent homology method
across various subjects and time points, such an approach is needed. Consider an arbitrary
noise signal f(), t € [0, 1], which will undergo denoising through the diffusion process.
Theorem 5. The unique solution to 1D heat diffusion:

o &
o h(ts) =5 h(t.s) (15)

on unit interval [0, 1] with initial condition h(t, s = 0) = f(t) is given by WFS:

ht,s) = S e e (o), (16)

=0

where yo(t) = 1, ,(t) = \/2 cos(Int) are the cosine basis and ¢ = folf(t)tp,(t)dt are the expan-

sion coefficients.
The algebraic derivation is given in [84]. Note the cosine basis is orthonormal

Wt / V(O (0) dt = 6,

where Jy,,, is Kroneker-detal taking value 1 if | = m and 0 otherwise. We can rewrite (16) as a
more convenient convolution form

h(t,s) = /UIKS(t’ O)f ()t
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where heat kernel K (¢, ¢') is given by
K(t,¢) = > e (e (t).
=0

The diffusion time s is usually referred to as the kernel bandwidth and controls the amount
of smoothing. Heat kernel satisfies fnl K (t,t') dt = 1forany ¢ ands.

To reduce unwanted boundary effects near the data boundary t =0 and t = 1 [77, 86], we
project the data onto the circle C with circumference 2 by the mirror reflection:

gt)y=f(@)if t€[0,1], g(t)=f(2—1¢)if t€[1,2].

Then perform WES on the circle.
Theorem 6. The unique solution to 1D heat diffusion:
0 ok
9 _J 17
o h(t.s) = = h(ts) (17)
on the circle C with the initial periodic condition h(t, s = 0) = f(t) if t € [0, 1], h(t, s =0) =f(2 - 1)
ift € [1, 2] is given by WFS:

Ht9) = D e e (), (19)

where yo(t) = 1, ,(t) = /2 cos(Int) are the cosine basis and = folf(t)tp,(t)dt are the expan-
sion coefficients.

The cosine series coefficients ¢4 are estimated using the least squares method by setting up a
matrix equation [84]. We set the expansion degree to equate the number of time points, which
is 295. The window size of 20 TRs was used in most sliding window methods [77, 78, 87]. We
matched the full width at half maximum (FWHM) of heat kernel to the window size numeri-
cally. We used the fact that diffusion time s in heat kernel approximately matches to the kernel
bandwidth of Gaussian kernel e /%" as g = s°/2 (page 144 in [88]). 20 TRs is approximately
equivalent to heat kernel bandwidth of about 4.144 - 10 in terms of FWHM. Fig 7 displays
the WES representation of rsfMRI with different kernel bandwidths.

2.9 Dynamic correlation on weighted Fourier series

The weighted Fourier series representation provides a way to compute correlations dynami-
cally without using sliding windows. Consider time series x(¢) and y(¢) with heat kernel K(t,
t). The mean and variance of signals with respect to the heat kernel are given by

&=
=
—~
=
I

/1K$(t, x(t) dt',
Vx(t) = /le(t,t’)xZ(t’) dt' — [Ex(t)]’.

3 Subsequently, the correlation w(t) of x(¢) and y(¢) is given by

[y K.(t,2)x(t)y(t) dt’ — Ex(t)Ey(t) |
Vx(t)\/Vy(t)

w(t) = (19)
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Fig 7. Left: The original and smoothed fMRI time series using WES with degree L = 295 and different heat kernel bandwidth s. The bandwidth 4.141 x 10™* used in this
study approximately matches 20 TRs often used in the sliding window methods. Right: The dotted gray lines are correlations computed over sliding windows. The solid
black lines are correlations computed using WES.

https://doi.org/10.1371/journal.pchi.1011869.g007

When the kernel is shaped as a sliding window, the correlation w(t) exactly matches the cor-
relation computed over the sliding window. The kernelized correlation generalizes the concept
of integral correlations with the additional weighting term [89]. As s — 00, w(t) converges to
the Pearson correlation computed over the whole time points. Thus, the kernel bandwidth
behaves like the length of sliding window.

Theorem 7. The correlation w(t) of time series x(t) and y(t) with respect to heat kernel K(t,
t') is given by

_ > i eil%zscxyzl//z(t) - P‘x(t)ﬂy(t)

" 7. 00,0 ’ 20
with
Bl = D a0, a0 = > e el — i)

6= / (O (0dt, ¢, = / YW (t)de

are the cosine series coefficients. Similarly we expand x(£)y(t), x*(t) and yz(t) using the cosine
basis and obtain coefficients .y, Cq and c,,;.

The derivation follows by simply replacing all the terms with the WES representation. Cor-
relation (20) is the formula we used to compute the dynamic correlation in this study. Fig 7
displays the WES-based dynamic correlation for different bandwidths. A similar weighted cor-
relation was proposed in [90], where the time varying exponential weights proportional to e/’
with exponential decay factor 6 were used. However, our exponential weight term is related to
the spectral decomposition of heat kernel in the spectral domain and invariant over time. The
WES based correlation is not related to [90].
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3 Results
3.1 Data

The proposed method is applied in the accurate estimation of state spaces in dynamically
changing functional brain networks. The 479 subjects resting-state functional magnetic reso-
nance images (rs-fMRI) used in this paper were collected on a 3T MRI scanner (Discovery
MR?750, General Electric Medical Systems, Milwaukee, WI, USA) with a 32-channel RF head
coil array. The 479 healthy subjects consist of 231 males and 248 females ranging in age from
13 to 25 years. The sample contains 132 monozygotic (MZ) twin pairs and 93 same-sex dizy-
gotic (DZ) twin pairs.

The image preprocessing includes motion corrections and image alignment to the MNI
template and follows [91, 92]. The resulting rs-fMRI consist of 91 x 109 x 91 isotropic voxels
at 295 time points. We further parcellated the brain volume into 116 non-overlapping brain
regions using the Automated Anatomical Labelling (AAL) atlas [93]. The fMRI data were aver-
aged across voxels within each brain region, resulting in 116 average fMRI signals with 295
time points for each subject. The rs-fMRI signals were then scaled to fit to unit interval [0, 1]
and treated as functional data in [0, 1].

3.2 Topological state space estimation

For p brain regions, we estimated p x p dynamically changing correlation matrices Cy(t) for the
i-th subject using WES. Let C;; denote the vectorization of the upper triangle of p x p matrix
Ci(t;) at time point ¢; into p2 x 1 vector. For each fixed i, the collection of C;; over T = 295 time
points is then feed into topological clustering in identifying the recurring brain connectivity at
the subject level. We are clustering individual brain networks without putting any constraint
on group or twin. We compared the proposed Wasserstein clustering against the k-means clus-
tering, which has been often used as the baseline method in the state space modeling [77, 78,
86]. After clustering, each correlation matrix Ci(#)) is assigned integers between 1 and k. These
discrete states serve as the basis for investigating the dynamic pattern of brain connectivity
[94]. For the convergence of both topological clustering and k-means clustering, the cluster-
ings were repeated 10 times with different initial centroids and the best result (smallest within-
cluster distance) is reported. Fig 8-left displays the result of the topological clustering against
the k-means for three subjects. 295 time points are rescaled to fit into unit interval [0, 1].

The optimal number of cluster k was determined by the elbow method [77, 78, 94, 95]. For
each value of k, we computed the ratio of the within-cluster to between-cluster distances. The
ratio shows the goodness-of-fit of the cluster model. The elbow method gives the largest slope
change in the ratio when k = 3 in the both methods (Fig 8-right). At k = 3, the ratio is
0.034 + 0.012 for 479 subjects for Wasserstein while it is 0.202 + 0.047 for the k-means. The six
times smaller ratio for the topological clustering demonstrates the superior model fit over k-
means. Fig 9 shows the results of clustering for both methods. The k-means clustering result is
based on averaging correlations of every time point and subject within each state. The resulting
states in the k-means clustering are somewhat random without any biologically interpretable
pattern. The topological clustering computes the topological mean of every time point and sub-
ject within each state.

3.3 Twin correlations over transpositions

Using additional twin information in the data, we further investigated if the state change pat-
tern itself is genetically heritable. As far as we are aware, there is no study on the heritability of
the state change pattern itself. This requires computing twin correlations. We assume there are
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Fig 8. Left: The time series of estimated state spaces using the topological clustering and k-means clustering for 3 subjects. The time is normalized into unit interval
[0, 1]. Right: The ratio of within-cluster to between-cluster distances. Smaller the ratio, better the clustering fit is.

https://doi.org/10.1371/journal.pcbi.1011869.g008

m MZ- and n DZ-twins. For some feature, let x; = (x;;, x;) | be the i-th twin pair in MZ-twin
and y; = (¥, yiz)T be the i-th twin pair in DZ-twin. They are represented as

_ (xw ’xml> y= ()’117 ’ynl)
= , = )
Xigs T X Yizs 0 5 Ve
Let x; be the j-th row of x, i.e., x; = (x;;, Xy, - -+, x,,,). Similarly lety, = (y,;, o, - -, y,)-
Then MZ- and DZ-correlations are computed as the sample correlation
PME(x,,x,) = corr(x,,X,)
YY) = corr(yyys)-
However, there is no preference for the order of twins within a pair, and we can transpose
the i-th twin pair in MZ-twin such that
T(x) = (% XXy Xip1g LR
Ti(xz) = ('x12 T X1 X X1 T 'xm2)
and obtain another twin correlation y"#(7,(x,), 7,(x,)) [96, 97]. Ignoring symmetry, there are
2" possible combinations in ordering the twins, which form a permutation group. The size of
the permutation group grows exponentially large as the sample size increases. Computing cor-
relations over all permutations is not even computationally feasible for large m beyond 100.
Fig 10 illustrates many possible transpositions within twins. Thus, we propose a new fast

online computational strategy for computing twin correlations.
Over transposition T;, the correlation changes

(%, x,) — M (1(x,), Ti(x,)) (21)

incrementally. We will determine the exact increment over the transposition. The sample
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Fig 9. The estimated state spaces of dynamically changing brain networks. The correlations are averaged over every time point and subject within each state for k-
means clustering (top) and Wasserstein distance based topological clustering (bottom). In k-means clustering, the connectivity pattern of each state is somewhat
random. In topological clustering, the connectivity pattern is highly symmetric even though we did not put any symmetry constraint in the clustering method.

https://doi.org/10.1371/journal.pcbi.1011869.g009

correlation between x, and x, involves the following functions.

v(x,) = ixlk
o(x,,x;) = i(‘xrk —v(x,)/m)(x,; —v(x;)/m).
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Fig 10. The schematic of transpositions on 3 MZ- and 2 DZ-twins. a) One possible pairing. b) Transposition within a MZ-twin. c¢) Transposition
within a DZ-twin. d) Transpositions in both MZ- and DZ-twins simultaneously. Any transposition will affect the heritability estimate so it is necessary

to account for as many transpositions as possible.

https://doi.org/10.1371/journal.pcbi.1011869.g010

The functions y and w are updated over transposition 7; as
v(t(x)) = v(x) - XX
o(t(x) u(x)) = ox.x)+ (- xil)2/m = (3 = x) (v(xe) = v(x)) /m.
Then the MZ-twin correlation after transposition is updated as

o(t,(x,),7,(5,))
N AR TCNECCARC ) @2)

'VMZ(Ti(Xl ), Ti(%,)) =

The time complexity for correlation computation is 33 operations per transposition, which
is substantially lower than the computational complexity of directly computing correlations
per permutation. In the numerical implementation, we sequentially apply random transposi-

tions 7, ,7, - -, 7. This results in ] different twin correlations, which are averaged. Let

T =TTy =T1,0T;, ", ; =T,0-+0T, 0T, .

The average correlation 7}* of all ] transpositions is given by
1 J
o MZ
V?AZ = 721)/ (nij<xl)7 nij(XZ))‘
p

In each sequential update, the average correlation can be updated iteratively as

D R VAN |
=R e () ().
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Fig 11. State visits for 3 MZ-twins (left) and 3 DZ-twins (right) obtained from the baseline k-means clustering. We are interested in determining the heritability of
such state changes. Unfortunately, even within a twin, the time series of state change do not synchronize, making the task extremely challenging.

https://doi.org/10.1371/journal.pchi.1011869.9011

If we use enough transpositions, the average correlation 7} converges to the true underly-
ing twin correlation Y for sufficiently large J. DZ-twin correlation 3% is estimated similarly.

In the widely used ACE genetic model, the heritability index (HI) 4, which determines the
amount of variation due to genetic difference in a population, is estimated using Falconer’s
formula [45, 98, 99]. MZ-twins share 100% of genes while same-sex DZ-twins share 50% of
genes on average. Thus, the additive genetic factor A and the common environmental factor C

are related as
,))MZ A _|_ C7

W2 = AJ2+C.

HI h, which measures the contribution of 4, is given by
h(x,y) = 20" = ™).

In numerical implementation, 100 million transpositions can be easily done in 100 seconds
in a desktop. Similarly, we update the DZ-correlation over the transposition.

3.4 Heritability of the state space

The heritability estimation of state space is not a trivial task since the estimated state does not
synchronize across twins making the task fairly difficult. Fig 11 displays the state visits in ran-
domly selected 3 MZ- and 3 DZ-twins. However, the time series of state changes do not syn-
chronize within twins. This is likely a reason for the lack of reported heritability of the state
space in the literature.

For each subject, we computed the average correlation of each state, where the average is
taken over all time points within each state. The correlation matrices are then used as the input
to the transposition based twin correlations [98]. Subsequently, we computed the MZ- and
DZ-twin correlations within each state (Fig 12). The MZ-twin correlations (Fig 12-top) are
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Fig 12. MZ-correlation (top) and DZ-correlation (middle) in each state obtained through topological clustering in Fig 9. There is no DZ-correlation above
0.3 and not displayed. The heritability index (HI) is determined by the twice the difference in twin correlations. HI of each state shows the extensive genetic
contribution of dynamically changing states. The first state is characterized by prominent bilateral connections between the left and right hemispheres, whereas
the second state primarily features front-back connections.

https://doi.org/10.1371/journal.pcbi.1011869.9012
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densely observed in many connections while there are no DZ-twin correlations (Fig 12-mid-
dle) observed above 0.3. We then computed the heritability index (HI) of each state (Fig 12-
bottom). The heritability of the first state is characterized by strong lateralization of the hemi-
sphere connections. The heritability of the second state is characterized by front and back con-
nections. We believe the topological approach provides far more accurate and stable
heritability index maps for dynamically changing state, which are biologically interpretable.

We reported 10 connections that give the highest HI values in all three states in Tables 1, 2
and 3. Although numerous studies report high heritability for anatomical features such as gray
matter density, there are few rs-fMRI studies reporting heritability of rs-fMRI [52, 58]. Most of
these studies report low HI compared to our high HI. [52] reported HI of 0.104 in the left cere-
bellum, 0.304 in the right cerebellum, 0.331 in the left temporal parietal region, 0.420 in the
right temporal parietal region. [58] reported HI of 0.41 in the connection between the poste-
rior cingulate cortex and right inferior parietal cortex in the default mode network involving
79 MZ- and 46 same-sex DZ-twins. Other connections are all reporting very low HI below
0.24. We believe our topological method is clustering topologically similar functional network
patterns and significantly boost genetic signals.

3.5 Null test on twin study design

Because we are reporting significantly higher diffused heritability compared to existing litera-
ture [52, 57, 58], we performed the null test to check the validity of our analysis pipeline fur-
ther. We generated the null MZ-twin data by randomly pairing each MZ individual with
another, excluding their own twin. Such a permutation is generated by derangement, which is
a permutation of the elements of a set, such that no element appears in its original position
[100]. In other words, if we have a set of distinct items and you rearrange them, a derangement
means none of the items are in the spot they started in. The null DZ-twin data is constructed
similarly. Such null data should not show any genetic relations beyond random chances. On
the null data, we recomputed the twin correlations and the heritability index, following the
same pipeline as before. Fig 13 shows an example of one possible derangement out of exponen-
tially many such permutations. For m MZ-twin pairs, there are

m _1 i

number of derangements. For the null test, we generated 1000 derangements that followed the

Table 1. 10 connections with the highest heritability index for state 1. Connections are sorted with respect to HI

values.

Regions Regions HI
Parietal-Sup-L Parietal-Sup-R 0.96
Frontal-Sup-Medial-L Frontal-Sup-Medial-R 0.90
Olfactory-R Temporal-Mid-R 0.89
Precentral-R Rolandic-Oper-L 0.88
Olfactory-R Temporal-Inf-R 0.88
Olfactory-R Fusiform-R 0.87
Olfactory-R Cerebelum-4-5-L 0.87
Precentral-R SupraMarginal-L 0.85
Rolandic-Oper-L Postcentral-R 0.84
Olfactory-R Lingual-L 0.84

https://doi.org/10.1371/journal.pcbi.1011869.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 24/33


https://doi.org/10.1371/journal.pcbi.1011869.t001
https://doi.org/10.1371/journal.pcbi.1011869

PLOS COMPUTATIONAL BIOLOGY

Persistent homological state-space estimation

Table 2. 10 connections with the highest heritability index for state 2. Connections are sorted with respect to HI

values.

Regions Regions HI
Hippocampus-L Cerebelum-4-5-L 1.00
Olfactory-L Fusiform-R 0.92
Precuneus-R Cerebelum-Crus2-L 0.90
Occipital-Sup-L Fusiform-L 0.89
Supp-Motor-Area-L Cerebelum-Crus2-L 0.88
Occipital-Mid-L Occipital-Mid-R 0.87
Thalamus-L Cerebelum-9-L 0.86
Rolandic-Oper-L Temporal-Sup-L 0.85
Paracentral-Lobule-L Cerebelum-Crus2-L 0.85
Caudate-R Cerebelum-Crus2-L 0.85

https://doi.org/10.1371/journal.pcbi.1011869.t002

proposed pipeline in computing average MZ- and DZ-correlations in each state. We used the
Wasserstein distance in measuring the topological discrepancy. Fig 14 displays the normalized
histogram of the Wasserstein distance between average MZ- and DZ-twin correlations within
each state over 1000 derangements. Because the generated null data has no genetic signal, we
are basically computing the Wasserstein distance between two random connectivity matrices.
In comparison, the observed Wasserstein distance (red line) between average MZ- and DZ-
twin correlation shows huge topological differences. None of the derangements show the large
wide spread signals as our observation. We conclude that what we observe is genetic signal
and cannot possibly be produced by random chance.

4 Discussion

In this study, we proposed the topological clustering method for the estimation and quantifica-
tion of dynamic state changes in time-varying brain networks. A coherent statistical theory,

grounded in persistent homology, was developed, and we demonstrated the application of this
method to resting-state fMRI data. Resting-state brain networks tend to persist in a single state
for extended periods before transitioning to another state [78, 80, 101, 102]. The average brain

network in each state appears to diverge from the patterns reported in previous studies (Fig
10) [77, 103, 104]. Further research is required for independent validation.

Table 3. 10 connections with the highest heritability index for state 3. Connections are sorted with respect to HI

values.

Regions Regions HI

Hippocampus-R Cerebelum-3-R 1.00
Hippocampus-L Cerebelum-4-5-L 0.93
Occipital-Mid-R Cerebelum-Crus2-R 0.86
Olfactory-L Cerebelum-3-L 0.81
Heschl-L Temporal-Pole-Sup-L 0.81
Rolandic-Oper-L Temporal-Pole-Sup-L 0.80
Caudate-R Cerebelum-Crusl1-L 0.79
Cerebelum-7b-R Cerebelum-9-R 0.78
Cingulum-Ant-L Cerebelum-3-R 0.78
Frontal-Mid-Orb-R Frontal-Med-Orb-L 0.78

https://doi.org/10.1371/journal.pcbi.1011869.t003
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Fig 13. MZ-correlation (top) and DZ-correlation (middle) in each state obtained through topological clustering in Fig 9. There is no MZ-correlation
above 0.3 and not displayed. The heritability index (HI) is determined by the twice the difference in twin correlations. HI of each state shows extensive
genetic contribution of dynamically changing states.

https://doi.org/10.1371/journal.pcbi.1011869.9013
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Fig 14. The normalized histogram of the Wasserstein distance between average MZ- and DZ-twin correlations within each state over 1000 derangements. Since the
generated null data has no genetic signal, we are basically computing the Wasserstein distance between two connectivity matrices with random noises. In comparison, the
observed Wasserstein distance (dotted line) between average MZ- and DZ-twin correlation shows huge topological differences.

https://doi.org/10.1371/journal.pchi.1011869.9g014

In contrast to previous studies that reported relatively low heritability in functional brain
networks [52, 57, 58, 105], our findings indicate significant higher heritability across various
regions of the brain network. This discovery not only challenges the prevailing understanding
but also opens new avenues for exploring genetic influences on brain network dynamics. Our
observations align with the early findings by [56], which documented higher heritability in
EEG spectra. Heritability in brain networks may be more nuanced than previously under-
stood. In our framework, rather than directly using the connectivity strength, we decomposed
networks into discrete topological states and computed heritability for each state. This granu-
lar analysis provides a more accurate estimation of heritability across different functional states
of the brain. The resting state measures employed in studies such as those by [52, 57, 58]
directly rely on static connectivity matrices. These matrices, while informative, often do not
capture the dynamic and configural nature of brain networks. Such methods may overlook
hidden configural patterns that hold significant heritable information. Our topological method
represents a significant advancement in this regard. By focusing on the topological aspects of
dynamic brain networks, our method is adept at identifying and extracting hidden patterns of
high heritability that might be missed by traditional approaches. This capability could be cru-
cial for understanding the genetic basis of various neuropsychiatric and neurodevelopmental
disorders, where altered brain network configurations play a critical role.

Intraclass correlation (ICC) has long been recognized as a vital reliability and reproducibil-
ity metric, especially for gauging similarity in paired data when the order of pairing is not pre-
served [96, 106, 107]. In brain imaging, it serves as a popular baseline for test-retest (TRT)
reliability assessments, often in conjunction with the Dice coefficient [108-112]. The wide-
spread use of ICC in these contexts underscores its perceived utility in evaluating consistency
across imaging sessions or different imaging modalities. The conventional computation of
ICC is typically through an ANOVA statistical model, which can be fairly limited and inflexi-
ble. Recent years have seen a shift towards mixed-effects models, which offer greater flexibility
and accuracy in estimating ICC, especially in datasets with nested or hierarchical structures
[96, 113]. In light of these advancements, our proposed transposition-based approach for com-
puting correlation over paired data presents a novel approach to computing ICC, potentially
offering a faster and more efficient alternative. The full potential and utility of the transposi-
tion-based method for ICC computation, however, remain to be explored in future research.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 27/33


https://doi.org/10.1371/journal.pcbi.1011869.g014
https://doi.org/10.1371/journal.pcbi.1011869

PLOS COMPUTATIONAL BIOLOGY Persistent homological state-space estimation

Acknowledgments

We would like to thank Chee-Ming Ting and Hernando Ombao of KAUST for discussion on
k-means clustering. We also like to thank Soumya Das, Tananun Songdechakraiwut of Univer-
sity of Wisconsin, Madison and Botao Wang of University of Illinois, Urbana-Champaign for
discussion on the clustering.

Author Contributions

Conceptualization: Moo K. Chung.

Data curation: Shih-Gu Huang, Ian C. Carroll.

Formal analysis: Moo K. Chung, Shih-Gu Huang.

Funding acquisition: Moo K. Chung, H. Hill Goldsmith.
Investigation: Moo K. Chung, Shih-Gu Huang, Ian C. Carroll.
Methodology: Moo K. Chung, Shih-Gu Huang.

Project administration: Moo K. Chung, H. Hill Goldsmith.
Resources: Ian C. Carroll, H. Hill Goldsmith.

Software: Moo K. Chung, Shih-Gu Huang, Ian C. Carroll.
Supervision: Moo K. Chung, H. Hill Goldsmith.
Validation: Moo K. Chung.

Visualization: Moo K. Chung.

Writing - original draft: Moo K. Chung, Shih-Gu Huang.

Writing - review & editing: Moo K. Chung, Shih-Gu Huang, Vince D. Calhoun, H. Hill
Goldsmith.

References

1. Bassett DS, Sporns O. Network neuroscience. Nature neuroscience. 2017; 20(3):353-364. https://doi.
org/10.1038/nn.4502 PMID: 28230844

2. Sporns O. In: Kétter R, editor. Graph Theory Methods for the Analysis of Neural Connectivity Patterns.
Boston, MA: Springer US; 2003. p. 171-185.

3.  Wijk BCM, Stam CJ, Daffertshofer A. Comparing brain networks of different size and connectivity den-
sity using graph theory. PloS one. 2010; 5:e13701. https://doi.org/10.1371/journal.pone.0013701
PMID: 21060892

4. Chung MK, Hanson JL, Adluru L, Alexander AL, Davidson RJ, Pollak SD. Integrative structural brain
network analysis in diffusion tensor imaging. Brain Connectivity. 2017; 7:331-346. https://doi.org/10.
1089/brain.2016.0481 PMID: 28657774

5. Chung MK, Hanson JL, Lee H, Adluru N, Alexander AL, Davidson RJ, et al. Persistent Homological
Sparse Network Approach to Detecting White Matter Abnormality in Maltreated Children: MRl and DT
Multimodal Study. MICCAI, Lecture Notes in Computer Science (LNCS). 2013; 8149:300-307. https://
doi.org/10.1007/978-3-642-40811-3_38 PMID: 24505679

6. LeeH, KangH, Chung MK, Kim BN, Lee DS. Persistent brain network homology from the perspective
of dendrogram. IEEE Transactions on Medical Imaging. 2012; 31:2267—-2277. https://doi.org/10.1109/
TMI.2012.2219590 PMID: 23008247

7. Edelsbrunner H, Harer J. Computational topology: An introduction. American Mathematical Society;
2010.

8. Petri G, Expert P, Turkheimer F, Carhart-Harris R, Nutt D, Hellyer PJ, et al. Homological scaffolds of
brain functional networks. Journal of The Royal Society Interface. 2014; 11:20140873. https://doi.org/
10.1098/rsif.2014.0873 PMID: 25401177

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 28/33


https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
http://www.ncbi.nlm.nih.gov/pubmed/28230844
https://doi.org/10.1371/journal.pone.0013701
http://www.ncbi.nlm.nih.gov/pubmed/21060892
https://doi.org/10.1089/brain.2016.0481
https://doi.org/10.1089/brain.2016.0481
http://www.ncbi.nlm.nih.gov/pubmed/28657774
https://doi.org/10.1007/978-3-642-40811-3_38
https://doi.org/10.1007/978-3-642-40811-3_38
http://www.ncbi.nlm.nih.gov/pubmed/24505679
https://doi.org/10.1109/TMI.2012.2219590
https://doi.org/10.1109/TMI.2012.2219590
http://www.ncbi.nlm.nih.gov/pubmed/23008247
https://doi.org/10.1098/rsif.2014.0873
https://doi.org/10.1098/rsif.2014.0873
http://www.ncbi.nlm.nih.gov/pubmed/25401177
https://doi.org/10.1371/journal.pcbi.1011869

PLOS COMPUTATIONAL BIOLOGY

Persistent homological state-space estimation

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

Sizemore AE, Giusti C, Kahn A, Vettel JM, Betzel RF, Bassett DS. Cliques and cavities in the human
connectome. Journal of computational neuroscience. 2018; 44:115-145. https://doi.org/10.1007/
510827-017-0672-6 PMID: 29143250

Sizemore AE, Phillips-Cremins JE, Ghrist R, Bassett DS. The importance of the whole: topological
data analysis for the network neuroscientist. Network Neuroscience. 2019; 3:656—673. https://doi.org/
10.1162/netn_a_00073 PMID: 31410372

Vaccarino F, Fugacci U, Scaramuccia S. Persistent Homology: A Topological Tool for Higher-Interac-
tion Systems. In: Higher-Order Systems; 2022. p. 97—139.

Xing J, Jia J, Wu X, Kuang L. A spatiotemporal brain network analysis of Alzheimer’s disease based
on persistent homology. Frontiers in aging neuroscience. 2022; 14:788571. https://doi.org/10.3389/
fnagi.2022.788571 PMID: 35221988

Aktas ME, Akbas E, Fatmaoui AE. Persistence homology of networks: methods and applications.
Applied Network Science. 2019; 4:1-28. https://doi.org/10.1007/s41109-019-0179-3

Billings J, Saggar M, Hlinka J, Keilholz S, Petri G. Simplicial and topological descriptions of human
brain dynamics. Network Neuroscience. 2021; 5:549-568. https://doi.org/10.1162/netn_a_00190
PMID: 34189377

Khalid A, Kim BS, Chung MK, Ye JC, Jeon D. Tracing the evolution of multi-scale functional networks
in a mouse model of depression using persistent brain network homology. Neurolmage. 2014;
101:351-363. https://doi.org/10.1016/j.neuroimage.2014.07.040 PMID: 25064667

Capuiti L, Pidnebesna A, Hlinka J. Promises and pitfalls of topological data analysis for brain connectiv-
ity analysis. Neurolmage. 2021; 238:118245. https://doi.org/10.1016/j.neuroimage.2021.118245
PMID: 34111515

Chung MK, Ramos CG, De Paiva FB, Mathis J, Prabhakaran V, Nair VA, et al. Unified Topological
Inference for Brain Networks in Temporal Lobe Epilepsy Using the Wasserstein Distance. Neuro-
Image. 2023; 284:120436. https://doi.org/10.1016/j.neuroimage.2023.120436 PMID: 37931870

Lee H, Chung MK, Kang H, Kim BN, Lee DS. Computing the shape of brain networks using graph filtra-
tion and Gromov-Hausdorff metric. MICCAI, Lecture Notes in Computer Science. 2011; 6892:302—
309. https://doi.org/10.1007/978-3-642-23629-7_37 PMID: 21995042

Kuang L, Zhao D, Xing J, Chen Z, Xiong F, Han X. Metabolic brain network analysis of FDG-PET in
Alzheimer’s disease using kernel-based persistent features. Molecules. 2019; 24(12):2301. hitps://doi.
org/10.3390/molecules24122301 PMID: 31234358

Chung MK, Lee H, Solo V, Davidson RJ, Pollak SD. Topological distances between brain networks.
International Workshop on Connectomics in Neuroimaging. 2017; 10511:161-170. https://doi.org/10.
1007/978-3-319-67159-8_19 PMID: 29745383

Chung MK, Huang SG, Gritsenko A, Shen L, Lee H. Statistical inference on the number of cycles in
brain networks. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).
IEEE; 2019. p. 113-116.

Wang Y, Ombao H, Chung MK. Topological data analysis of single-trial electroencephalographic sig-
nals. Annals of Applied Statistics. 2018; 12:1506—1534. https://doi.org/10.1214/17-AOAS1119 PMID:
30220953

Wang Y, Chung MK, Dentico D, Lutz A, Davidson RJ. Topological network analysis of electroencepha-
lographic power maps. In: International Workshop on Connectomics in Neurolmaging, Lecture Notes
in Computer Science (LNCS). vol. 10511; 2017. p. 134—142.

Yoo K, Lee P, Chung MK, Sohn WS, Chung SJ, Na DL, et al. Degree-based statistic and center persis-
tency for brain connectivity analysis. Human Brain Mapping. 2017; 38:165—-181. https://doi.org/10.
1002/hbm.23352 PMID: 27593391

Yoo J, Kim EY, Ahn YM, Ye JC. Topological persistence vineyard for dynamic functional brain connec-
tivity during resting and gaming stages. Journal of neuroscience methods. 2016; 267:1-13. https://doi.
org/10.1016/j.jneumeth.2016.04.001 PMID: 27060383

Santos FAN, Raposo EP, Coutinho-Filho MD, Copelli M, Stam CJ, Douw L. Topological phase transi-
tions in functional brain networks. Physical Review E. 2019; 100:032414. https://doi.org/10.1103/
PhysRevE.100.032414

Songdechakraiwut T, Chung MK. Dynamic Topological Data Analysis for Functional Brain Signals.
IEEE International Symposium on Biomedical Imaging Workshops. 2020; 1:1—4.

Giusti C, Ghrist R, Bassett DS. Two’s company, three (or more) is a simplex. Journal of computational
neuroscience. 2016; 41:1—14. https://doi.org/10.1007/s10827-016-0608-6 PMID: 27287487

Chen C, Ni X, Bai Q, Wang Y. A topological regularizer for classifiers via persistent homology. In: The
22nd International Conference on Atrtificial Intelligence and Statistics. PMLR; 2019. p. 2573-2582.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 29/33


https://doi.org/10.1007/s10827-017-0672-6
https://doi.org/10.1007/s10827-017-0672-6
http://www.ncbi.nlm.nih.gov/pubmed/29143250
https://doi.org/10.1162/netn_a_00073
https://doi.org/10.1162/netn_a_00073
http://www.ncbi.nlm.nih.gov/pubmed/31410372
https://doi.org/10.3389/fnagi.2022.788571
https://doi.org/10.3389/fnagi.2022.788571
http://www.ncbi.nlm.nih.gov/pubmed/35221988
https://doi.org/10.1007/s41109-019-0179-3
https://doi.org/10.1162/netn_a_00190
http://www.ncbi.nlm.nih.gov/pubmed/34189377
https://doi.org/10.1016/j.neuroimage.2014.07.040
http://www.ncbi.nlm.nih.gov/pubmed/25064667
https://doi.org/10.1016/j.neuroimage.2021.118245
http://www.ncbi.nlm.nih.gov/pubmed/34111515
https://doi.org/10.1016/j.neuroimage.2023.120436
http://www.ncbi.nlm.nih.gov/pubmed/37931870
https://doi.org/10.1007/978-3-642-23629-7_37
http://www.ncbi.nlm.nih.gov/pubmed/21995042
https://doi.org/10.3390/molecules24122301
https://doi.org/10.3390/molecules24122301
http://www.ncbi.nlm.nih.gov/pubmed/31234358
https://doi.org/10.1007/978-3-319-67159-8_19
https://doi.org/10.1007/978-3-319-67159-8_19
http://www.ncbi.nlm.nih.gov/pubmed/29745383
https://doi.org/10.1214/17-AOAS1119
http://www.ncbi.nlm.nih.gov/pubmed/30220953
https://doi.org/10.1002/hbm.23352
https://doi.org/10.1002/hbm.23352
http://www.ncbi.nlm.nih.gov/pubmed/27593391
https://doi.org/10.1016/j.jneumeth.2016.04.001
https://doi.org/10.1016/j.jneumeth.2016.04.001
http://www.ncbi.nlm.nih.gov/pubmed/27060383
https://doi.org/10.1103/PhysRevE.100.032414
https://doi.org/10.1103/PhysRevE.100.032414
https://doi.org/10.1007/s10827-016-0608-6
http://www.ncbi.nlm.nih.gov/pubmed/27287487
https://doi.org/10.1371/journal.pcbi.1011869

PLOS COMPUTATIONAL BIOLOGY

Persistent homological state-space estimation

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.
46.
47.

48.

49.

50.

51.

52,

53.

Hu X, Li F, Samaras D, Chen C. Topology-preserving deep image segmentation. In: Advances in Neu-
ral Information Processing Systems; 2019. p. 5657—-5668.

Gupta S, Hu X, Kaan J, Jin M, Mpoy M, Chung K, et al. Learning topological interactions for multi-class
medical image segmentation. In: European Conference on Computer Vision; 2022. p. 701-718.

Lin M, Zepf K, Christensen AN, Bashir Z, Svendsen MBS, Tolsgaard M, et al. DTU-Net: Learning
Topological Similarity for Curvilinear Structure Segmentation. In: International Conference on Informa-
tion Processing in Medical Imaging; 2023. p. 654—-666.

Hofer C, Kwitt R, Niethammer M, Dixit M. Connectivity-optimized representation learning via persistent
homology. In: International Conference on Machine Learning; 2019. p. 2751-2760.

Vallender SS. Calculation of the Wasserstein distance between probability distributions on the line.
Theory of Probability & Its Applications. 1974; 18:784—786. https://doi.org/10.1137/1118101

Canas GD, Rosasco L. Learning probability measures with respect to optimal transport metrics. arXiv
preprint arXiv:12091077. 2012;.

Berwald JJ, Gottlieb JM, Munch E. Computing Wasserstein distance for persistence diagrams on a
quantum computer. arXiv:180906433. 2018;.

Ma K, Wen X, Zhu Q, Zhang D. Positive Definite Wasserstein Graph Kernel for Brain Disease Diagno-
sis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention;
2023. p. 168-177.

MiL, Zhang W, Gu X, Wang Y. Variational Wasserstein clustering. In: Proceedings of the European
Conference on Computer Vision (ECCV); 2018. p. 322-337.

ShiJ, Zhang W, Wang Y. Shape analysis with hyperbolic Wasserstein distance. In: Proceedings of the
IEEE conference on computer vision and pattern recognition; 2016. p. 5051-5061.

SuZ,Zeng W, Wang Y, Lu ZL, Gu X. Shape classification using Wasserstein distance for brain mor-
phometry analysis. In: International Conference on Information Processing in Medical Imaging.
Springer; 2015. p. 411-423.

Hartmann KG, Schirrmeister RT, Ball T. EEG-GAN: Generative adversarial networks for electroence-
phalograhic (EEG) brain signals. arXiv preprint arXiv:180601875. 2018;.

Sabbagh D, Ablin P, Varoquaux G, Gramfort A, Engemann DA. Manifold-regression to predict from
MEG/EEG brain signals without source modeling. arXiv preprint arXiv:190602687. 2019;.

Xu M, Sanz DL, Garces P, Maestu F, Li Q, Pantazis D. A Graph Gaussian Embedding Method for Pre-
dicting Alzheimer’s Disease Progression with MEG Brain Networks. IEEE Transactions on Biomedical
Engineering. 2021; 68:1579—-1588. https://doi.org/10.1109/TBME.2021.3049199 PMID: 33400645

FuY, Huang Y, Zhang Z, Dong S, Xue L, Niu M, et al. OTFPF: Optimal transport based feature pyra-
mid fusion network for brain age estimation. Information Fusion. 2023; 100:101931. https://doi.org/10.
1016/j.inffus.2023.101931

Falconer D, Mackay T. Introduction to Quantitative Genetics, 4th ed. Longman; 1995.
Reynolds CA, Phillips D. Genetics of Brain Aging—Twin Aging. 2015;.

Zhan L, Nagesh A, Dean DC, Alexander AL, Goldsmith HH. Genetic and environmental influences of
variation in diffusion MRI measures of white matter microstructure. Brain Structure and Function.
2022; 227:131-144. hitps://doi.org/10.1007/s00429-021-02393-7

Sahu M, Prasuna JG. Twin studies: A unique epidemiological tool. Indian journal of community medi-
cine: official publication of Indian Association of Preventive & Social Medicine. 2016; 41:177. https://
doi.org/10.4103/0970-0218.183593 PMID: 27385869

McKay DR, Knowles EEM, Winkler AAM, Sprooten E, Kochunov P, Olvera RL, et al. Influence of age,
sex and genetic factors on the human brain. Brain Imaging and Behavior. 2014; 8:143—152. https://doi.
org/10.1007/s11682-013-9277-5 PMID: 24297733

Chiang MC, McMahon KL, de Zubicaray Gl, Martin NG, Hickie |, Toga AW, et al. Genetics of white
matter development: a DT study of 705 twins and their siblings aged 12 to 29. Neurolmage. 2011;
54:2308-2317. https://doi.org/10.1016/j.neuroimage.2010.10.015 PMID: 20950689

Blokland GAM, McMahon KL, Thompson PM, Martin NG, de Zubicaray Gl, Wright MJ. Heritability of
working memory brain activation. The Journal of Neuroscience. 2011; 31:10882—10890. https://doi.
org/10.1523/JNEUROSCI.5334-10.2011 PMID: 21795540

Glahn DC, Winkler AM, Kochunov P, Almasy L, Duggirala R, Carless MA, et al. Genetic control over
the resting brain. Proceedings of the National Academy of Sciences. 2010; 107:1223—-1228. https:/
doi.org/10.1073/pnas.0909969107 PMID: 20133824

Smit DJA, Stam CJ, Posthuma D, Boomsma DI, De Geus EJC. Heritability of small-world networks in
the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Human Brain Map-
ping. 2008; 29:1368-1378. https://doi.org/10.1002/hbm.20468 PMID: 18064590

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 30/33


https://doi.org/10.1137/1118101
https://doi.org/10.1109/TBME.2021.3049199
http://www.ncbi.nlm.nih.gov/pubmed/33400645
https://doi.org/10.1016/j.inffus.2023.101931
https://doi.org/10.1016/j.inffus.2023.101931
https://doi.org/10.1007/s00429-021-02393-7
https://doi.org/10.4103/0970-0218.183593
https://doi.org/10.4103/0970-0218.183593
http://www.ncbi.nlm.nih.gov/pubmed/27385869
https://doi.org/10.1007/s11682-013-9277-5
https://doi.org/10.1007/s11682-013-9277-5
http://www.ncbi.nlm.nih.gov/pubmed/24297733
https://doi.org/10.1016/j.neuroimage.2010.10.015
http://www.ncbi.nlm.nih.gov/pubmed/20950689
https://doi.org/10.1523/JNEUROSCI.5334-10.2011
https://doi.org/10.1523/JNEUROSCI.5334-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21795540
https://doi.org/10.1073/pnas.0909969107
https://doi.org/10.1073/pnas.0909969107
http://www.ncbi.nlm.nih.gov/pubmed/20133824
https://doi.org/10.1002/hbm.20468
http://www.ncbi.nlm.nih.gov/pubmed/18064590
https://doi.org/10.1371/journal.pcbi.1011869

PLOS COMPUTATIONAL BIOLOGY

Persistent homological state-space estimation

54.

55.

56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in time.
Proceedings of the National Academy of Sciences. 2017; 114:12827-12832. https://doi.org/10.1073/
pnas.1705120114 PMID: 29087305

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional
systems. Nature Review Neuroscience. 2009; 10:186-98. https://doi.org/10.1038/nrn2618 PMID:
19190637

Lykken DT, Tellegen A, lacono WG. EEG spectra in twins: Evidence for a neglected mechanism of
genetic determination. Physiological Psychology. 1982; 10:60-65. https://doi.org/10.3758/
BF03327008

Xud, Yin X, Ge H, Han Y, Pang Z, Liu B, et al. Heritability of the effective connectivity in the resting-
state default mode network. Cerebral Cortex. 2017; 27:5626-5634. https://doi.org/10.1093/cercor/
bhw332 PMID: 27913429

Korgaonkar MS, Ram K, Williams LM, Gatt JM, Grieve SM. Establishing the resting state default mode
network derived from functional magnetic resonance imaging tasks as an endophenotype: a twins
study. Human brain mapping. 2014; 35:3893-3902. https://doi.org/10.1002/hbm.22446 PMID:
24453120

Zomorodian AJ. Topology for computing. Cambridge: Cambridge University Press; 2009.

Ghrist R. Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society.
2008; 45:61-75. https://doi.org/10.1090/S0273-0979-07-01191-3

Songdechakraiwut T, Shen L, Chung MK. Topological learning and its application to multimodal brain
network integration. Medical Image Computing and Computer Assisted Intervention (MICCAI). 2021;
12902:166-176. https://doi.org/10.1007/978-3-030-87196-3_16 PMID: 35098263

Songdechakraiwut T, Chung MK. Topological learning for brain networks. Annals of Applied Statistics.
2023; 17:403-433. https://doi.org/10.1214/22-a0as1633 PMID: 36911168

Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967; 32:241-254. https://doi.org/10.
1007/BF02289588 PMID: 5234703

Hartigan JA, Wong MA. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statis-
tical Society Series C (applied statistics). 1979; 28:100-108.

Kullback S, Leibler RA. On information and sufficiency. The Annals of Mathematical Statistics. 1951;
22:79-86. https://doi.org/10.1214/aoms/1177729694

Edmonds J, Karp RM. Theoretical improvements in algorithmic efficiency for network flow problems.
Journal of the ACM (JACM). 1972; 19:248-264. https://doi.org/10.1145/321694.321699

Rabin J, Peyré G, Delon J, Bernot M. Wasserstein barycenter and its application to texture mixing. In:
International Conference on Scale Space and Variational Methods in Computer Vision. Springer;
2011. p. 435-446.

Chung MK, Das S, Ombao H. Dynamic Topological Data Analysis of Functional Human Brain Net-
works. Foundations of Data Science. 2024; 6:22—40. https://doi.org/10.3934/fods.2023013

Agueh M, Carlier G. Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis.
2011; 43:904-924. https://doi.org/10.1137/100805741

Cuturi M, Doucet A. Fast computation of Wasserstein barycenters. In: International conference on
machine learning. PMLR; 2014. p. 685-693.

Le H, Kume A. The Fréchet mean shape and the shape of the means. Advances in Applied Probability.
2000; 32:101-113. https://doi.org/10.1239/aap/1013540025

Turner K, Mileyko Y, Mukherjee S, Harer J. Fréchet means for distributions of persistence diagrams.
Discrete & Computational Geometry. 2014; 52:44—70. https://doi.org/10.1007/s00454-014-9604-7

Zemel Y, Panaretos VM. Fréchet means and procrustes analysis in Wasserstein space. Bernoulli.
2019; 25:932-976. https://doi.org/10.3150/17-BEJ1009

Dubey P, Muller HG. Fréchet analysis of variance for random objects. Biometrika. 2019; 106:803-821.
https://doi.org/10.1093/biomet/asz052

Yang Z, Wen J, Davatzikos C. Smile-GANs: Semi-supervised clustering via GANs for dissecting brain
disease heterogeneity from medical images. arXiv preprint. 2020;arXiv:2006.15255.

Bishop CM. Pattern recognition and machine learning. Springer; 2006.

Huang SG, Samdin ST, Ting CM, Ombao H, Chung MK. Statistical model for dynamically-changing
correlation matrices with application to brain connectivity. Journal of Neuroscience Methods. 2020;
331:108480. https://doi.org/10.1016/j.jneumeth.2019.108480 PMID: 31760059

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking whole-brain connectivity
dynamics in the resting state. Cerebral cortex. 2014; 24:663—-676. https://doi.org/10.1093/cercor/
bhs352 PMID: 23146964

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 31/33


https://doi.org/10.1073/pnas.1705120114
https://doi.org/10.1073/pnas.1705120114
http://www.ncbi.nlm.nih.gov/pubmed/29087305
https://doi.org/10.1038/nrn2618
http://www.ncbi.nlm.nih.gov/pubmed/19190637
https://doi.org/10.3758/BF03327008
https://doi.org/10.3758/BF03327008
https://doi.org/10.1093/cercor/bhw332
https://doi.org/10.1093/cercor/bhw332
http://www.ncbi.nlm.nih.gov/pubmed/27913429
https://doi.org/10.1002/hbm.22446
http://www.ncbi.nlm.nih.gov/pubmed/24453120
https://doi.org/10.1090/S0273-0979-07-01191-3
https://doi.org/10.1007/978-3-030-87196-3_16
http://www.ncbi.nlm.nih.gov/pubmed/35098263
https://doi.org/10.1214/22-aoas1633
http://www.ncbi.nlm.nih.gov/pubmed/36911168
https://doi.org/10.1007/BF02289588
https://doi.org/10.1007/BF02289588
http://www.ncbi.nlm.nih.gov/pubmed/5234703
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1145/321694.321699
https://doi.org/10.3934/fods.2023013
https://doi.org/10.1137/100805741
https://doi.org/10.1239/aap/1013540025
https://doi.org/10.1007/s00454-014-9604-7
https://doi.org/10.3150/17-BEJ1009
https://doi.org/10.1093/biomet/asz052
https://doi.org/10.1016/j.jneumeth.2019.108480
http://www.ncbi.nlm.nih.gov/pubmed/31760059
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1093/cercor/bhs352
http://www.ncbi.nlm.nih.gov/pubmed/23146964
https://doi.org/10.1371/journal.pcbi.1011869

PLOS COMPUTATIONAL BIOLOGY

Persistent homological state-space estimation

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.
89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VDea. Dynamic functional connectiv-
ity: promise, issues, and interpretations. Neurolmage. 2013; 80:360-378. https://doi.org/10.1016/j.
neuroimage.2013.05.079 PMID: 23707587

Shakil S, Lee CH, Keilholz SD. Evaluation of sliding window correlation performance for characterizing
dynamic functional connectivity and brain states. Neurolmage. 2016; 133:111-128. https://doi.org/10.
1016/j.neuroimage.2016.02.074 PMID: 26952197

Mokhtari F, Akhlaghi MI, Simpson SL, Wu G, Laurienti PJ. Sliding window correlation analysis: Modu-
lating window shape for dynamic brain connectivity in resting state. Neurolmage. 2019; 189:655-666.
https://doi.org/10.1016/j.neuroimage.2019.02.001 PMID: 30721750

Oppenheim AV, Schafer RW, Buck JR. Discrete-time signal processing. Upper Saddle River, NJ:
Prentice Hall; 1999.

Devlin SJ, Gnanadesikan R, Kettenring JR. Robust estimation and outlier detection with correlation
coefficients. Biometrika. 1975; 62:531-545. https://doi.org/10.1093/biomet/62.3.531

Chung MK, Dalton KM, Shen L, Evans AC, Davidson RJ. Weighted Fourier representation and its
application to quantifying the amount of gray matter. IEEE Transactions on Medical Imaging. 2007;
26:566-581. https://doi.org/10.1109/TMI.2007.892519 PMID: 17427743

Chung MK, Dalton KM, Davidson RJ. Tensor-based Cortical Surface Morphometry via Weighted
Spherical Harmonic Representation. IEEE Transactions on Medical Imaging. 2008; 27:1143—-1151.
https://doi.org/10.1109/TMI.2008.918338 PMID: 18672431

Huang SG, Chung MK, Carroll IC, Goldsmith HH. Dynamic Functional Connectivity Using Heat Kernel.
In: 2019 IEEE Data Science Workshop (DSW); 2019. p. 222—-226.

Lindquist M. Statistical and Computational Methods in brain Image Analysis. By Chung Moo K. Boca
Raton, Florida: CRC Press. 2013. Journal of the American Statistical Association. 2014; 109:1334—
1335.

Chung MK. Computational Neuroanatomy: The Methods. Singapore: World Scientific; 2012.

Huang SG, Gritsenko A, Lindquist MA, Chung MK. Circular Pearson Correlation Using Cosine Series
Expansion. In: IEEE 16th International Symposium on Biomedical Imaging (ISBI); 2019. p. 1774—
1777.

Pozzi F, Di Matteo T, Aste T. Exponential smoothing weighted correlations. The European Physical
Journal B. 2012; 85:1-21. https://doi.org/10.1140/epjb/e2012-20697-x

Burghy CA, Fox ME, Cornejo MD, Stodola DE, Sommerfeldt SL, Westbrook CA, et al. Experience-
driven differences in childhood cortisol predict affect-relevant brain function and coping in adolescent
Monozygotic twins. Scientific Reports. 2016; 6:37081. https://doi.org/10.1038/srep37081 PMID:
27872489

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear
registration and motion correction of brain images. Neurolmage. 2002; 17:825-841. https://doi.org/10.
1006/nimg.2002.1132 PMID: 12377157

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated
anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. Neurolmage. 2002; 15:273-289. https://doi.org/10.1006/nimg.2001.0978 PMID:
11771995

Ting CM, Ombao H, Samdin SB, Salleh SH. Estimating dynamic connectivity states in fMRI using
regime-switching factor models. IEEE transactions on Medical imaging. 2018; 37:1011-1023. https://
doi.org/10.1109/TMI.2017.2780185 PMID: 29610078

Rashid B, Damaraju E, Pearlson GD, Calhoun VD. Dynamic connectivity states estimated from resting
fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Fron-
tiers in Human Neuroscience. 2014; 8:897. https://doi.org/10.3389/fnhum.2014.00897 PMID:
25426048

Chen G, Taylor PA, Haller SP, Kircanski K, Stoddard J, Pine DS, et al. Intraclass correlation: Improved
modeling approaches and applications for neuroimaging. Human brain mapping. 2018; 39:1187—
1206. https://doi.org/10.1002/hbm.23909 PMID: 29218829

Chung MK, Xie L, Huang SG, Wang Y, Yan J, Shen L. Rapid Acceleration of the Permutation Test via
Transpositions. 2019; 11848:42-53.

Chung MK, Lee H, DiChristofano A, Ombao H, Solo V. Exact topological inference of the resting-state
brain networks in twins. Network Neuroscience. 2019; 3:674—694. https://doi.org/10.1162/netn_a_
00091 PMID: 31410373

Arbet J, McGue M, Basu S. A robust and unified framework for estimating heritability in twin studies
using generalized estimating equations. Statistics in Medicine. 2020;. https://doi.org/10.1002/sim.
8564 PMID: 32449216

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 32/33


https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.neuroimage.2013.05.079
http://www.ncbi.nlm.nih.gov/pubmed/23707587
https://doi.org/10.1016/j.neuroimage.2016.02.074
https://doi.org/10.1016/j.neuroimage.2016.02.074
http://www.ncbi.nlm.nih.gov/pubmed/26952197
https://doi.org/10.1016/j.neuroimage.2019.02.001
http://www.ncbi.nlm.nih.gov/pubmed/30721750
https://doi.org/10.1093/biomet/62.3.531
https://doi.org/10.1109/TMI.2007.892519
http://www.ncbi.nlm.nih.gov/pubmed/17427743
https://doi.org/10.1109/TMI.2008.918338
http://www.ncbi.nlm.nih.gov/pubmed/18672431
https://doi.org/10.1140/epjb/e2012-20697-x
https://doi.org/10.1038/srep37081
http://www.ncbi.nlm.nih.gov/pubmed/27872489
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
http://www.ncbi.nlm.nih.gov/pubmed/12377157
https://doi.org/10.1006/nimg.2001.0978
http://www.ncbi.nlm.nih.gov/pubmed/11771995
https://doi.org/10.1109/TMI.2017.2780185
https://doi.org/10.1109/TMI.2017.2780185
http://www.ncbi.nlm.nih.gov/pubmed/29610078
https://doi.org/10.3389/fnhum.2014.00897
http://www.ncbi.nlm.nih.gov/pubmed/25426048
https://doi.org/10.1002/hbm.23909
http://www.ncbi.nlm.nih.gov/pubmed/29218829
https://doi.org/10.1162/netn_a_00091
https://doi.org/10.1162/netn_a_00091
http://www.ncbi.nlm.nih.gov/pubmed/31410373
https://doi.org/10.1002/sim.8564
https://doi.org/10.1002/sim.8564
http://www.ncbi.nlm.nih.gov/pubmed/32449216
https://doi.org/10.1371/journal.pcbi.1011869

PLOS COMPUTATIONAL BIOLOGY

Persistent homological state-space estimation

100.
101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112,

113.

Hassani M. Derangements and applications. Journal of Integer Sequences. 2003; 6:03—1.

Calhoun VD, Adali T. Time-Varying Brain Connectivity in fMRI Data: whole-brain data-driven
approaches for capturing and characterizing dynamic states. IEEE Signal Processing Magazine.
2016; 33:52—66. https://doi.org/10.1109/MSP.2015.2478915

Rosenberg BM, Mennigen E, Monti MM, Kaiser RH. Functional segregation of human brain networks
across the lifespan: an exploratory analysis of static and dynamic resting-state functional connectivity.
Frontiers in Neuroscience. 2020; 14:561594. https://doi.org/10.3389/fnins.2020.561594 PMID:
33363450

Cai B, Zille P, Stephen JM, Wilson TW, Calhoun VD, Wang YP. Estimation of dynamic sparse connec-
tivity patterns from resting state fMRI. IEEE Transactions on Medical Imaging. 2018; 37:1224-1234.
https://doi.org/10.1109/TMI.2017.2786553 PMID: 29727285

Haimovici A, Tagliazucchi E, Balenzuela P, Laufs H. On wakefulness fluctuations as a source of BOLD
functional connectivity dynamics. Scientific Reports. 2017; 7:5908. https://doi.org/10.1038/s41598-
017-06389-4 PMID: 28724928

Wan B, Bayrak $, Xu T, Schaare HL, Bethlehem R, Bernhardt BC, et al. Heritability and cross-species
comparisons of human cortical functional organization asymmetry. Elife. 2022; 11:€77215. hitps://doi.
org/10.7554/eLife.77215 PMID: 35904242

Sarker P, Zaman N, Ong J, Paladugu P, Aldred M, Waisberg E, et al. Test—retest reliability of virtual
reality devices in quantifying for relative afferent pupillary defect. Translational Vision Science & Tech-
nology. 2023; 12:2. https://doi.org/10.1167/tvst.12.6.2

Solis-Lemus JA, Baptiste T, Barrows R, Sillett C, Gharaviri A, Raffaele G, et al. Evaluation of an open-
source pipeline to create patient-specific left atrial models: A reproducibility study. Computers in Biol-
ogy and Medicine. 2023; 162:107009. https://doi.org/10.1016/j.compbiomed.2023.107009 PMID:
37301099

Liao XH, Xia MR, Xu T, Dai ZJ, Cao XY, Niu HJ, et al. Functional brain hubs and their test—retest reli-
ability: a multiband resting-state functional MRI study. Neurolmage. 2013; 83:969-982. https://doi.org/
10.1016/j.neuroimage.2013.07.058 PMID: 23899725

Cole JH, Farmer RE, Rees EM, Johnson HJ, Frost C, Scahill R, et al. Test-retest reliability of diffusion
tensor imaging in HuntingtonOs disease. PLoS Currents. 2014; 6. https://doi.org/10.1371/currents.hd.
f19ef63fff962f5cd9c0e88f4844f43b PMID: 24672743

Cousineau M, Jodoin PM, Garyfallidis E, Coté MA, Morency FC, Rozanski V, et al. A test-retest study
on Parkinson’s PPMI dataset yields statistically significant white matter fascicles. Neurolmage: Clini-
cal. 2017; 16:222—233. https://doi.org/10.1016/j.nicl.2017.07.020

Pfaehler E, Mesotten L, Kramer G, Thomeer M, Vanhove K, de Jong J, et al. Repeatability of two
semi-automatic artificial intelligence approaches for tumor segmentation in PET. EJINMMI research.
2021; 11:1-11. https://doi.org/10.1186/s13550-020-00744-9 PMID: 33409747

Zhang Z, Descoteaux M, Zhang J, Girard G, Chamberland M, Dunson D, et al. Mapping population-
based structural connectomes. Neurolmage. 2018; 172:130-145. https://doi.org/10.1016/j.
neuroimage.2017.12.064 PMID: 29355769

Nielsen NM, Smink WAC, Fox JP. Small and negative correlations among clustered observations:
Limitations of the linear mixed effects model. Behaviormetrika. 2021; 48:51-77. https://doi.org/10.
1007/s41237-020-00130-8

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011869 May 13, 2024 33/33


https://doi.org/10.1109/MSP.2015.2478915
https://doi.org/10.3389/fnins.2020.561594
http://www.ncbi.nlm.nih.gov/pubmed/33363450
https://doi.org/10.1109/TMI.2017.2786553
http://www.ncbi.nlm.nih.gov/pubmed/29727285
https://doi.org/10.1038/s41598-017-06389-4
https://doi.org/10.1038/s41598-017-06389-4
http://www.ncbi.nlm.nih.gov/pubmed/28724928
https://doi.org/10.7554/eLife.77215
https://doi.org/10.7554/eLife.77215
http://www.ncbi.nlm.nih.gov/pubmed/35904242
https://doi.org/10.1167/tvst.12.6.2
https://doi.org/10.1016/j.compbiomed.2023.107009
http://www.ncbi.nlm.nih.gov/pubmed/37301099
https://doi.org/10.1016/j.neuroimage.2013.07.058
https://doi.org/10.1016/j.neuroimage.2013.07.058
http://www.ncbi.nlm.nih.gov/pubmed/23899725
https://doi.org/10.1371/currents.hd.f19ef63fff962f5cd9c0e88f4844f43b
https://doi.org/10.1371/currents.hd.f19ef63fff962f5cd9c0e88f4844f43b
http://www.ncbi.nlm.nih.gov/pubmed/24672743
https://doi.org/10.1016/j.nicl.2017.07.020
https://doi.org/10.1186/s13550-020-00744-9
http://www.ncbi.nlm.nih.gov/pubmed/33409747
https://doi.org/10.1016/j.neuroimage.2017.12.064
https://doi.org/10.1016/j.neuroimage.2017.12.064
http://www.ncbi.nlm.nih.gov/pubmed/29355769
https://doi.org/10.1007/s41237-020-00130-8
https://doi.org/10.1007/s41237-020-00130-8
https://doi.org/10.1371/journal.pcbi.1011869

