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Abstract

Mangroves are important ecosystems for coastal biodiversity, resilience and car-

bon dynamics that are being threatened globally by human pressures and the

impacts of climate change. Yet, at several geographic range limits in tropical–

temperate transition zones, mangrove ecosystems are expanding poleward in

response to changing macroclimatic drivers. Mangroves near range limits often

grow to smaller statures and form dynamic, patchy distributions with other

coastal habitats, which are difficult to map using moderate-resolution (30-m)

satellite imagery. As a result, many of these mangrove areas are missing in

global distribution maps. To better map small, scrub mangroves, we tested

Landsat (30-m) and Sentinel (10-m) against very high resolution (VHR) Planet

(3-m) and WorldView (1.8-m) imagery and assessed the accuracy of machine

learning classification approaches in discerning current (2022) mangrove and

saltmarsh from other coastal habitats in a rapidly changing ecotone along the

east coast of Florida, USA. Our aim is to (1) quantify the mappable differences

in landscape composition and complexity, class dominance and spatial proper-

ties of mangrove and saltmarsh patches due to image resolution; and (2) to

resolve mapping uncertainties in the region. We found that the ability of Land-

sat to map mangrove distributions at the leading range edge was hampered by

the size and extent of mangrove stands being too small for detection (50%

accuracy). WorldView was the most successful in discerning mangroves from

other wetland habitats (84% accuracy), closely followed by Planet (82%) and

Sentinel (81%). With WorldView, we detected 800 ha of mangroves within the

Florida range-limit study area, 35% more mangroves than were detected with

Planet, 114% more than Sentinel and 537% more than Landsat.

Higher-resolution imagery helped reveal additional variability in landscape met-

rics quantifying diversity, spatial configuration and connectedness among man-

grove and saltmarsh habitats at the landscape, class and patch scales. Overall,

VHR satellite imagery improved our ability to map mangroves at range limits

and can help supplement moderate-resolution global distributions and outdated

regional maps.

Introduction

Efforts to map mangroves across the world using remote

sensing have provided incredible insights into global

mangrove extents (Giri et al., 2011, Hamilton &

Casey, 2016, Bunting et al., 2022), forest heights and bio-

mass (Simard et al., 2019) and carbon storage (Sander-

man et al., 2018). Such baselines of knowledge have
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revealed where and why mangroves are being lost and

degraded (Thomas et al., 2017, 2018; Goldberg

et al., 2020; Bryan-Brown et al., 2020), and the conse-

quences to important ecosystem functions like carbon

storage and cycling (Richards et al., 2020; Adame

et al., 2021). Similar efforts are also improving our under-

standing of saltmarsh extents, changes and impacts across

the world (McOwen et al., 2017; Murray et al., 2019,

2022; Campbell et al., 2022). Yet, global maps derived

from moderate-resolution satellite data have difficulty

capturing coastal habitats that are small in extent, short

in height and in regions experiencing disturbance or con-

taining fragmented or fringe mangrove forests (Bunting

et al., 2018; Simard et al., 2019).

At the latitudinal limits of their geographic ranges,

tropical mangrove ecosystems converge with temperate or

arid regions to form spatially and structurally unique

transition zones between adjacent coastal habitats

(Quisthoudt et al., 2012). Often referred to as ‘ecotones’,

these areas represent a transitional gradient among two

ecosystems, whereas a ‘range limit’ is the theoretical line

delineating the existence of one ecosystem (Risser, 1995;

Quisthoudt et al., 2012; Smith et al., 2013). Because man-

groves in ecotonal regions are often at the limits of their

physiological thresholds, their forms are typically shorter

and more scrub like than in the tropics (Morrisey

et al., 2010), and they are highly sensitive to environmen-

tal changes such as sea level rise, precipitation changes

and freeze events (Osland et al., 2017). Ecotones represent

gradients in macroclimatic drivers like temperature and

precipitation in which small abiotic changes can result in

large and abrupt differences in ecosystem structure

(Osland et al., 2016). As a result, range-limit mangrove

ecotones can be highly dynamic and form a heteroge-

neous mosaic with other coastal habitats at fine scales

across the landscape. Detection of mangrove encroach-

ment at coarse resolutions may be lagged as changes in

habitat presence and abundance culminate into spectral

changes over time. Recent warming trends have coincided

with mangrove expansion into adjacent coastal salt-

marshes in some regions across the world (Saintilan

et al., 2014; Cavanaugh et al., 2014, 2018; Rodriguez

et al., 2016). However, the limitations of global mapping

efforts have led to large gaps and uncertainty in the areal

extents and latitudinal limits of mangroves (Ximenes

et al., 2022).

Ongoing advancements in Earth Observation (EO) have

improved the spatial, temporal and spectral resolutions of

remotely sensed data used to study wetland ecosystems

(Klemas, 2011, 2013, 2015). As very high resolution

(VHR; <5 m) satellite imagery becomes increasingly avail-

able, mapping accuracies have improved among wetland

classes in smaller pixels better matched to the size of

wetland features and therefore less spectrally mixed

(McCarthy et al., 2015; Turpie et al., 2015; Davidson

et al., 2018; Doughty & Cavanaugh, 2019; Doughty

et al., 2021; Krause et al., 2023). VHR imagery and

machine learning classification approaches have been

combined in tropical mangrove sites to improve mapping

on fine scales and provide high-resolution insights into

habitat heterogeneity, structure and biomass (Kamal

et al., 2014, 2015, 2022). The use of VHR imagery at

mangrove range limits across the world could help reduce

the current uncertainty in global extents and establish

better baselines to assess wetland dynamics in relation to

macroclimate drivers (Ximenes et al., 2022; Bardou

et al., 2023).

The more habitat heterogeneity revealed with VHR, the

greater the ecological insights into mangrove–saltmarsh

ecotones. Landscape patterns can be used to describe the

composition and configuration of habitats across a land-

scape, and these patterns can be related to ecological pro-

cesses (Turner, 1990). Landscape metrics, for example,

patch size or nearest-neighbor distance, provide a mecha-

nism for quantifying the spatial patterns in landscapes

that have an impact on ecosystem structure, function,

biodiversity or services (Uuemaa et al., 2013; Turner &

Gardner, 2015; Lausch et al., 2015). Measured over time,

changes in landscape metrics can also dictate the rate of

change and patchiness of impacts caused by climate

drivers (Turner & Ruscher, 1988; L�opez-Hoffman

et al., 2013). However, landscape metrics are sensitive to

resolution, scope, classification scheme and interpretation

(Liu & Cameron, 2001; Lustig et al., 2015). In mangrove–

saltmarsh ecotones, patterns at the patch scale have been

shown to play a critical and differential role in propagule

dispersal and seedling establishment dynamics, and such

insights ultimately need to be scaled up to better under-

stand range-limit dynamics (Yando et al., 2021). VHR

imagery may provide the appropriate resolutions to help

bridge the gap between the patch and the landscape and

to help estimate landscape metrics at scales better

matched to ecological properties than coarser-resolution

imagery (Foody, 2023).

The east coast of Florida, USA, is one such range limit

experiencing rapid climate-driven expansion of woody

mangroves into herbaceous saltmarshes (Cavanaugh

et al., 2014, 2018), where discrepancies exist among

mapped distributions and observations from the field

(Bardou et al., 2023). Here, mangrove encroachment can

alter ecosystem services (Kelleway et al., 2017; Osland,

Hughes, et al., 2022), with local impacts in the NE Flor-

ida region already documented for ecosystem carbon stor-

age (Doughty et al., 2016; Simpson et al., 2019; Vaughn

et al., 2020; Steinmuller et al., 2022), coastal protection

(Doughty et al., 2017), soil processes and maintenance
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(Coldren et al., 2019, Howard et al., 2020, Geoghegan

et al., 2021, Simpson et al., 2021) and trophic interactions

(Goeke et al., 2023). To truly understand the aggregate

consequences to ecosystem structure and function at

landscape and regional scales, ultimately, increased resolu-

tions are needed to map mangrove extent and change on

fine scales. Such improvements to mapping are still

needed by coordinated monitoring networks aimed at

managing rapidly changing coastal regions (Bardou

et al., 2023).

To better map mangroves within range limits, we tested

available satellite imagery ranging in spatial resolution

from 1.8 to 30 m by applying machine learning

approaches to classify current (2022) habitat distributions

in the rapidly changing mangrove–saltmarsh ecotone

along the east coast of Florida, USA. We compare com-

monly used Landsat (30 m) and Sentinel (10 m) with

very-high-resolution (VHR) commercial Planet (3 m) and

WorldView (1.8 m) imagery and assess the accuracy of

discerning mangrove and saltmarsh from other coastal

habitats. Our aim is to (1) quantify the mappable differ-

ences in landscape composition and complexity, class

dominance and spatial properties of mangrove and salt-

marsh patches due to image resolution and (2) to resolve

mapping uncertainties in the region. Improved under-

standing of mangrove distributions within range limits

will be vital for monitoring ongoing climate-driven

changes at local scales and for reducing uncertainty in

estimates of global mangrove drivers, carbon storage, and

more derived from global maps.

Materials and Methods

Study area

Mangroves occupy 5 continents and there are 14

range-limit regions defined worldwide according to the

geographic and macroclimatic constraints to distribution

(Quisthoudt et al., 2012; Saintilan et al., 2014; Osland

et al., 2017). For this study, we focused on the mangrove

range limit in Eastern North America, where mangrove

distributions in Florida, USA, have been expanding north-

ward in recent decades (Cavanaugh et al., 2014). The three

mangrove species present in the region, Avicennia germi-

nans, Rhizophora mangle and Laguncularia racemosa, are

distributed latitudinal by cold tolerance with A. germinans

and R. mangle observed at the leading edge of the range

limit. The bounds of the Florida range limit were informed

by a comparison of global maps of mangroves (Global

Mangrove Watch (GMW v3.0); Bunting et al., 2022) and

saltmarshes (Global Map of Saltmarshes (GMS); McOwen

et al., 2017), as well as published records of field observa-

tions. Within the range limit, we conducted our mapping

analyses in a c. 1500 km2 area at the leading edge of the

range limit where imagery was available from all sensors

(Fig. 1). This area includes the Guana Tolomato Matanzas

National Estuarine Research Reserve (GTMNERR) that is

home to a mosaic of estuarine habitats representing north-

east Florida (Dix et al., 2021).

We limited our analyses to relevant coastal wetland

areas by creating a coastal mask that combined previously

mapped global distributions of mangroves (Bunting

et al., 2022), salt marshes (McOwen et al., 2017), tidal

flats (Murray et al., 2019) and coastal waters extracted

from Hansen et al. (2013) at a spatial resolution of 30 m.

We applied a closing morphological filter to remove gaps

in the coastal mask that may correspond to adjacent wet-

land habitats occupying smaller scales (<30 m).

Satellite imagery sources and preprocessing

We selected cloud-free satellite images over the study area

taken from single dates in January 2022 when seasonal

differences in vegetation senescence are clear (Table S1).

We chose to collect each image directly from their source

institutions instead of downscaling a single VHR to lower

resolutions as this can introduce and amplify mapping

artifacts (Li & Wu, 2004), and because we wanted to test

the inherent variability among the available imagery.

Commercial WorldView and PlanetScope imagery are

available for government research through the NextView

License Agreement (Neigh et al., 2013) and NASA’s Com-

mercial Smallsat Data Acquisition (CSDA) Program

(Maskey et al., 2021). WorldView-2 (WV2) imagery was

obtained from MAXAR’s Global Enhanced GEOINT

Delivery portal as 16-bit basic multispectral (8-band) and

pan images that are not georeferenced or calibrated.

Images were orthorectified, radiometrically calibrated and

mosaicked using the open-source Orfeo Toolbox (OTB;

Grizonnet et al., 2017) plugin in QGIS (v3.28.2; QGIS

Development Team, 2023). Radiometric calibration uses

the 6S radiotransfer model parameterized with the image

metadata to produce top-of-atmosphere (TOA) images

which are then atmospherically corrected to top-of-

canopy surface reflectance. Images were then mosaicked

using band harmonization to create the WorldView scene

defining the mapping AOI of our study (Fig. 1C). Planet-

Scope SuperDove imagery was accessed through the

Planet Explorer. SuperDove, hereafter ‘Planet’, 8-band

multispectral images were available for download as geor-

eferenced, harmonized surface reflectance. Planet images

were mosaicked using band harmonization in OTB to

cover the study area.

Sentinel and Landsat imagery were accessed and pre-

processed in Google Earth Engine (GEE), a cloud-based

platform for storing and analyzing geospatial and
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remotely sensed data (Gorelick et al., 2017). We used the

Sentinel-2 MultiSpectral Instrument (MSI) Level-1C TOA

data and converted TOA to bottom-of-atmosphere

(BOA) surface reflectance using the sensor invariant

atmospheric correction (SIAC) method (Yin et al., 2019).

Images were then mosaicked to cover the study area. Last,

we used a NASA/USGS Landsat 8 OLI (Level 2, Collec-

tion 2 and Tier 1) scene available as atmospherically cor-

rected surface reflectance in GEE to create multispectral

8-band mosaics coinciding with the study area.

We selected spectral bands available across all images

and calculated indices that have proven useful in man-

grove classification (Goldberg et al., 2020; Hickey & Rad-

ford, 2022; Tran et al., 2022). Vegetation indices included

the normalized difference mangrove index (NDVI; Rouse

et al., 1974), normalized difference water index (NDWI;

McFeeters, 1996), simple ratio of red and near-infrared

bands (SR) and the green chlorophyll vegetation index

(GCVI). To differentiate non-vegetated pixels (water,

bare) from vegetated pixels, we used a threshold of 0.2

for NDVI and NDWI when masking.

Classification and postprocessing

Training data

We created a vector training dataset to represent the rele-

vant habitats in our study area for classification of all

2022 images. Training polygons were initially created

within areas previously mapped globally as mangrove,

saltmarsh, tidal mudflat and water (Bunting et al., 2022;

McOwen et al., 2017; Murray et al., 2019; Hansen

et al., 2013). We added previously unmapped mangrove

areas to the mangrove training class, and for the purpose

of this analysis, all mangrove species were grouped into a

single class. We also added urban/built and upland vege-

tation classes to the training dataset based on the World-

View image. To ensure that training data could be used

across all images ranging in resolution from 1.85 to

30 m, we visually checked all training polygons against

the WorldView image to ensure the area represents

homogeneous habitat even if spectral noise (e.g., canopy

shading) was present in higher-resolution images. Final

habitat classes included mangrove, saltmarsh, mudflat,

Figure 1. Coastal areas in (A) eastern Florida, USA, with global distributions of saltmarsh (blue; GMS v3.0; McOwen et al. 2017) and mangrove

(yellow; GMW v3.0; Bunting et al. 2022), and (B) areas of each habitat along the latitudinal gradient. The (C) study area covered by the

WorldView image (dashed line) with field photos (D–F) showing mangrove trees and stands within the ecotonal range limit.

4 ª 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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water, urban and upland vegetation. We randomly sam-

pled 1000 pixels per class to create a balanced training

dataset for each image. Data for each training sample

included the observed habitat class and covariates derived

from imagery bands and indices: blue, green, red,

near-infrared (NIR), NDVI, NDWI, SR and GCVI.

Classification algorithm comparison

We tested the modeling accuracy of different supervised

classification algorithms in performing landcover classifi-

cations in order to select the best algorithm to use for

our set of images. Random Forest (Breiman, 2001),

XGBoost (Friedman, 2001), K-nearest neighbor (Sam-

worth, 2012) and neural network (G�eron, 2022) algo-

rithms were tested using the ‘tidymodels’ package in R

(v1.0.0; Kuhn & Wickham, 2020). To assess model per-

formance, we split the training dataset into a training set

(75%) for fitting models and a testing set (25%) for eval-

uating model accuracy. The validation set used a 10-fold

cross-validation and stratified sampling among classes.

We tuned and evaluated model performance using the

cross-validation set and selected the best algorithm based

on model accuracy, Cohen’s kappa coefficient, F score

and ROC area under the curve (AUC) (Table S2).

Landcover classification

The selected algorithm for each image was tuned a final

time to create a final classification model with the opti-

mal model parameter values to maximize model perfor-

mance. Final models were then applied to the full image

across our study area in order to predict land cover clas-

ses based on the pixel values of all covariate bands and

indices. Random Forest was ultimately selected as the

final classification algorithm used for all images, as it per-

formed better or was similar to other algorithms

(Table S1) and is commonly used and successful in land-

cover applications (Talukdar et al., 2020).

Classification outputs included landcover maps of pre-

dicted mangrove, saltmarsh, mudflat, water, urban/built

and upland vegetation habitats. Landcover map outputs

were produced for each image in their native resolution.

We cleaned landcover predictions using a majority filter

to remove speckling (interclass noise) for areas connected

by 4 or less pixels, opting for pixel counts over area to

deal with large differences in pixel sizes. We performed

an additional cleaning step using a weighted filter to

remove mangrove and saltmarsh areas of connected pixels

that were completely contained in urban/built and upland

vegetation classes, as these represent potential misclassifi-

cations due to confusion among specific classes

(Table S3). For our final maps, accuracy assessment and

landscape metrics analysis, we focused on the mangrove

and saltmarsh classes by reclassifying and combining

water, bare soil, urban and upland vegetation classes to

an ‘other’ class.

Landcover accuracy assessment and area

estimation

We assessed the accuracy of the predicted landcover maps

using a stratified random sample among mangroves, salt-

marsh and other class pixels at 30 m resolution. Sample

sizes per class were weighted by the average proportion of

area of each class in the predicted landcover maps for a

total of 450 samples. For each sample, we compared the

actual habitat observed in WorldView and Google Base-

maps for 2022 to the habitat predicted in each image.

From this independent validation dataset, we calculated

area-based error matrices following Olofsson et al. (2014),

which allowed us to quantify the standard error and con-

fidence intervals for the estimated area of each habitat, as

well as user’s, producer’s accuracy and overall classifica-

tion accuracy and kappa coefficients.

We compared the area estimates of mangrove and salt-

marsh from the resulting classification maps to regional

and global landcover datasets. We used the Florida

Department of Environmental Protection 2017 Statewide

Land Use and Land Cover (LULC) dataset to summarize

the total area of mangroves and saltmarshes previously

delineated within the study area (FL DEP, 2017). We also

compare the amount of area within the study site

included in global maps of mangroves (Giri et al., 2011;

Bunting et al., 2022), saltmarsh (McOwen et al., 2017)

and intertidal habitats that represent tidal marsh, tidal flat

or mangrove ecosystems (Murray et al., 2019).

Landscape, class and patch metrics for
mangrove and saltmarshes

We calculated landscape metrics from our classification

maps to compare how image resolution impacted our

ability to measure landscape composition and complexity,

class dominance and spatial properties of habitat patches

using the ‘landscapemetrics’ package in R (v2.0.0; Hessel-

barth et al., 2019), which implements ‘FRAGSTATS’ ana-

lyses for landscape spatial patterns (McGarigal &

Marks, 1995). At the landscape level, we quantified overall

habitat configuration using the landscape shape index

(LSI), which is the ratio between the total edge length of

habitats and the minimum possible edge length defined

by 1 pixel (Patton, 1975). Higher LSI values indicate

increasingly complex, less compact habitat boundaries on

the landscape. Overall landscape complexity was estimated

using marginal entropy as the measure of diversity among
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thematic landscape classes, where more dispersed, com-

plex patterns have higher entropy (Nowosad & Ste-

pinski, 2019). Landscape composition was summarized as

the fractional cover of mangrove and saltmarsh habitats

within a 1-km hex grid over the study area, which we dis-

played using a bivariate legend with three natural (Jenks)

breaks from the ‘biscale’ R package (v1.1.0.9; Prener

et al., 2022).

At the class level, we estimated the total number of

patches and patch density per square kilometer for the

mangrove and saltmarsh classes from each image. Class

configuration on the landscape was summarized using the

clumpiness index and the patch cohesion index. Class

clumpiness indices indicate more random (0) or aggre-

gated (1) distributions of classes based on the deviation

of the proportion of same-class adjacencies compared to

a spatially random distribution with the corresponding

class (McGarigal & Marks, 1995). Patch cohesion indices

estimate how connected or isolated patches of the same

class are across the landscape (Schumaker, 1996). We esti-

mated the mean fractal dimension index (FDI), which is

a scale-dependent shape index based on patch perimeter

and area that describes patch complexity (Mandel-

brot, 1977). It has been suggested that FDI may indicate

scaling factors to correct for the variability lost in habitat

edges at coarser increasing resolutions, but more work is

needed (Turner & Gardner, 2015), so we tested this

among our classification outputs.

Patch-level metrics were used to summarize mean patch

size, shape and connectedness detected for each class in

each image. In addition to mean area, we also calculated

the core area index, which equals the percentage of interior

(non-edge pixels) area relative to total patch area. Patch

complexity was estimated using the perimeter–area ratio.

Patch intra-connectedness was summarized using the con-

tiguity index, a shape metric representing the spatial conti-

guity of pixels within a patch (LaGro, 1991). Patch inter-

connectedness, or isolation, was estimated as the Euclidean

nearest-neighbor (ENN) distance, which measures the

edge-to-edge distance to the nearest patch of the same class

(McGarigal & McComb, 1995).

Results

Mangrove classification using random

forest improves with image resolution

VHR WorldView had the highest overall accuracy

(84.2%) in classifying mangrove, saltmarsh and other

habitats using Random Forest compared to Planet

(82.2%), Sentinel (81.4%) and Landsat (50.6%) (Table 1).

We found that Random Forest was the best overall super-

vised classification approach compared to other machine

learning algorithms to use on each image (Table S2). The

overall accuracy of the resulting landcover maps decreased

as image resolution decreased. WorldView, Planet and

Sentinel imagery performed similarly in terms of overall

accuracy (81.4–84.2%) and kappa value (0.67–0.72), while

30-m Landsat showed a large decrease in accuracy

(50.6%, 0 kappa value) using this classification approach.

Mangrove habitats were more often correctly identified

as mangrove in the WorldView imagery (67% user’s accu-

racy), compared to 46% in Planet, 38% in Sentinel and

13% in Landsat (Table 1). Mangroves were most often

misclassified as ‘other’, namely upland vegetation

(Table S3). Producer’s accuracy of the mangrove class

ranged from 60% to 73% across the images, showing a

slight advantage in WorldView’s ability to correctly iden-

tify 5% more of the mangrove reference training data.

The landcover predictions at the leading edge of the range

limit display the increased edge definition and detection

of small patches of mangroves adjacent to tidal creeks

with WorldView (Fig. 2).

Saltmarsh habitats were classified correctly 76% of the

time using WorldView, 82% using Planet and 72% using

Sentinel (Table 1). Landsat did not predict any saltmarsh

in our classification approach, explaining why the user’s

accuracy for this class is 0% and overall kappa is 0. Aside

TABLE 1. Landcover accuracy and corrected area estimates (�95% CI) of Random Forest classification maps. Overall accuracy and Kappa values

per image summarize users’ and producers’ accuracy among mangrove, saltmarsh and other classes.

WorldView Planet Sentinel Landsat

Overall accuracy 84.2 82.2 81.4 50.6

Kappa value 0.72 0.68 0.67 0

Class

UA

(%)

PA

(%)

Area

(ha)

95%

CI (ha)

UA

(%)

PA

(%)

Area

(ha)

95%

CI (ha)

UA

(%)

PA

(%)

Area

(ha)

95%

CI (ha)

UA

(%)

PA

(%)

Area

(ha)

95%

CI (ha)

Mangrove 67 73 800.0 214.4 46 60 590.8 215.1 38 68 373.3 169.6 13 68 125.6 107.7

Saltmarsh 76 94 3234.9 281.3 82 88 4961.0 377.2 72 93 3385.8 319.2 0 NA NA NA

Other 94 80 5953.9 335.1 88 80 6100.9 403.8 95 76 6308.8 338.6 99 50 9942.3 107.7
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from Landsat, the saltmarsh class was more accurate to

map (88–94% producer’s accuracy) compared to the

mangrove class (60–73%). Saltmarsh was most often mis-

classified with mudflat at moderate resolutions and man-

grove and upland vegetation at higher resolutions

(Table S3). A large saltmarsh patch in the south of our

study area identified with WorldView, Planet and Sentinel

highlights where image resolution and class confusion

impact the delineation of saltmarsh edges (Fig. 3).

VHR imagery detects more mangroves

compared to moderate imagery and

regional and global maps

The total area of mangroves detected in our study region

using WorldView was estimated at 800.0 � 214.4 ha

(Table 1, Fig. 4A). That is 35% more mangrove area than

was classified with Planet (590.8 � 215.1 ha), 114% more

than Sentinel (373.3 � 169.6 ha) and 537% more than

Figure 2. Comparison of false-color images per satellite and landcover maps of mangrove individuals and stands (yellow) and saltmarshes (blue)

at the northern edge of the mangrove range limit in Florida, USA. WorldView Basemaps © 2022 Maxar/DigitalGlobe, Inc. Basemap © 2022 ESRI.

Figure 3. Comparison of false-color images per satellite and landcover maps of mangroves (yellow) and saltmarshes (blue) in the southern

portion of the mangrove range limit in Florida, USA. WorldView Basemaps © 2022 Maxar/DigitalGlobe, Inc. Basemap © 2022 Google.
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Landsat (125.6 � 107.7 ha). Planet predicted the most

saltmarsh area (4961.0 � 377.2 ha), followed by

3385.8 � 319.2 ha predicted with Sentinel,

3234.9 � 281.3 ha predicted with WorldView and 0 ha

predicted with Landsat (Table 1). Despite similar accura-

cies among WorldView, Planet and Sentinel classifications

(81.4–84.2%), they estimated substantially different pro-

portions of mangrove and saltmarsh across the landscape

(Fig. 5). Total mangrove area estimates ranged from

125.6 to 800.0 ha across all images, while the estimated

range of saltmarsh area varied from 0.0 to 4961.0 ha

(Table 1, Fig. 4A). The mangrove class was most accu-

rately mapped with WorldView (67% user’s accuracy)

which estimated the most mangroves (800.0 � 214.4 ha).

Similarly, the most saltmarsh (4961.0 � 377.2 ha) was

predicted with Planet, which also had the highest user’s

accuracy (82%).

The 800.0 ha of mangroves we identified represent an

additional 455.0 ha of mangroves that were not included

in the 345.0 ha of mangroves mapped in the 2017 FL

statewide landcover dataset (Fig. 4B). For saltmarshes,

our classifications underestimated the 6,049 ha mapped

by FL DEP by �47% using WorldView, �44% using Sen-

tinel and �100% using Landsat, but just �17% with

Planet. Compared to global maps, our classifications

detected upwards of 800.0 ha of mangroves that were not

identified in the 2011 Global Mangrove Forest or 2022

Global Mangrove Watch datasets (Giri et al., 2011; Bun-

ting et al., 2022). However, compared to the 8,702 ha of

saltmarsh in our study area (2017 Global Map of Salt-

marsh; McOwen et al., 2017) and to the 7534 ha of inter-

tidal (2018 Global Intertidal Map; Murray et al., 2019),

overall, our classifications underestimated both the total

saltmarsh area and the combined wetland area (saltmarsh

and mangrove) by as much as 93% and 26%, respectively

(Fig. 4).

Complexity of mangrove and saltmarsh

habitats at range limits increases with

image resolution

At the landscape level, the proportion of mangrove and

saltmarsh habitats derived from the multiresolution classi-

fications largely revealed similar distributions throughout

the range limit and identified large habitat patches (Figs. 5

and 6A). Mangroves dominated coastal areas (<40%)

south of 29.9°N in all images. Saltmarshes occupied a

higher proportion of coastal area (<80%) largely to the

north and in several large patches to the south (Fig. 5).

The complexity of habitats, measured as LSI, decreased as

image resolution increased, with WorldView

(LSI = 158.4) identifying 1067% more complexity in

Figure 4. Mangrove and saltmarsh areas classified in (A) this study compared to (B) regional and global coastal datasets within the study region.

8 ª 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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habitat edges than Landsat (LSI = 13.7, Fig. 6A). Planet

and Sentinel LSI estimates were 79.6 and 64.1, respec-

tively, indicating similar measures of habitat configuration

detected at 3-m and 10-m image resolutions. Marginal

entropy, the metric for thematic complexity, was highest

for WorldView (0.64), followed by Sentinel (0.55) and

Planet (0.46).

At the class level (Fig. 6B), patch counts and density

for the mangrove class were highest in WorldView with

5848 patches at 123.2 patches km�2, more than the 1142

patches from Planet (19.6 patches km�2), the 457 from

Sentinel (9.2 patches km�2) and 142 patches from Land-

sat (55.1 patches km�2). Similarly, counts of saltmarsh

patches identified were highest in WorldView (13 899),

more than the 5665 patches from Planet, the 2750 patches

from Sentinel and no patches identified from Landsat

(Fig. 6B, Table S4). Patch clumpiness indices for both

mangrove and saltmarsh fell within a small range from

0.971 to 0.977 for WorldView, Planet and Sentinel

images, which indicates similar detection of highly uneven

spatial aggregation among the two classes across the land-

scape. Patch cohesion indices measuring intraclass con-

nectedness of mangroves increased with image resolution:

WorldView (98.6), Planet (98.3), Sentinel (96.1) and

Landsat (89.5). No pattern appeared with image resolu-

tion in the cohesion indices for saltmarsh, which suggests

that increased image resolutions help detect more connec-

tions only for the highly aggregated mangrove class. FDI,

a metric of patch complexity, increased with image reso-

lution for both classes. Mangrove FDI was 1.120 � 0.077,

1.103 � 0.059, 1.075 � 0.050 and 1.045 � 0.041 for

Worldview, Planet, Sentinel and Landsat, respectively.

Saltmarsh FDI was 1.121 � 0.090, 1.076 � 0.073 and

1.066 � 0.061, for Worldview, Planet and Sentinel,

respectively.

At the patch level, image resolution impacted landscape

metrics describing patch size, shape and connectedness

per class (Fig. 6C). Mean mangrove patch areas were

Figure 5. Landscape composition of mangrove (yellow) and saltmarsh (blue) habitats proportionate cover detected with (A) WorldView, (B)

Planet, (C) Sentinel and (D) Landsat.
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0.13 � 1.25 ha for WorldView, 0.50 � 2.25 ha for Planet,

1.37 � 4.42 ha for Sentinel and 1.81 � 4.37 ha for

Landsat. Mean saltmarsh patch areas were 0.29 � 5.02 ha

for WorldView, 0.93 � 17.85 ha for Planet and

1.57 � 14.35 ha for Sentinel. The mean core area index

varied greatly among classes and imagery with higher

values in the mangrove class indicating more compact, or

square, patch shapes compared to the relatively more

complex shapes of saltmarsh habitats detected in the same

image. Core area index for Planet-derived mangroves was

53.4 � 27.4%, while WorldView and Sentinel produced

more similar estimates of 34.3 � 29.7% and

32.4 � 28.9%, respectively. Perimeter–area ratios per class

increased with resolution, as the complexity in patch

boundaries is increasingly revealed with higher-resolution

imagery (Fig. 6C; Table S4).

The contiguity index measuring patch interconnectivity

was 18% higher on average in mangroves (0.59 � 0.31)

versus saltmarsh (0.50 � 0.31) from WorldView, nearly

doubled in mangroves (0.75 � 0.23) versus saltmarsh

(0.39 � 0.33) from Planet and 42% higher on average in

mangroves (0.58 � 0.30) versus saltmarsh (0.41 � 0.28)

from Sentinel. Landsat mangrove contiguity was an

estimated 0.40 � 0.28. Higher contiguity index values

indicate more contiguous patches. ENN distance measur-

ing the connection among same-class patches decreased

with image resolution for the mangrove class, but not the

saltmarsh class. The mean distance detected between

mangrove patches was 24.4 � 52.2 m in WorldView,

78.5 � 211.7 m in Planet, 133.5 � 441.7 m in Sentinel

and 339.1 � 1000.4 m in Landsat. ENN distances were

smaller for saltmarsh patches overall compared to man-

grove: WorldView (8.6 � 18.2 m), Planet

(15.7 � 23.0 m), Sentinel (30.7 � 43.2 m) and none in

Landsat.

Discussion

Discrepancies between the scales of mangrove observation

and mapping have led to uncertainty in the limits and

extents of mangroves at the leading edge of their geo-

graphical ranges, but we found by comparing across dif-

ferent satellite images that mapping at higher resolutions

can supplement regional and global mapping efforts and

reveal important ecological properties at local scales.

Along the northeast Florida coastline, VHR mapping

Figure 6. Landcover metrics at the (A) landscape, (B) class and (C) patch levels for mangrove (yellow) and saltmarsh (blue) detected from

WorldView (W), Planet (P), Sentinel (S) and Landsat (L). Values reported for classes and patches are means � standard (see Table S4). Note that

only the mangrove class was present for Landsat.
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uncovered at least 240.6 ha of mangroves that were previ-

ously unmapped. These vanguard mangroves represent

the leading edge of this range shift and are important to

monitor as encroaching mangroves influence ecosystem

services and future responses to climate change.

Mapping at higher resolutions is necessary to supple-

ment our global understanding of mangrove distributions

and dynamics. In some range limits across the world,

especially in western North America, western Australia

and northern West Africa, latitudinal discrepancies of up

to 10° exist in the detected limits from each global data-

set, and this has significant consequences as we make

global inferences on the climatic drivers of mangrove

change or make area-based extrapolations of global man-

grove carbon accounting, deforestation rates and mitiga-

tion potential (Ximenes et al., 2022). Our mapping

analysis across different scales estimated different total

extents of mangrove and saltmarsh habitats, however, all

sensors were able to detect the same large northward

patch of mangroves within our study area at

29.959471°N, 81.330311°W. This same patch was the

northernmost mangrove mapped in the FL LCLUC

(2017) but was missing from global maps. The patch

extent derived from only partial coverage with Landsat

was 1.32 ha, whereas Sentinel, Planet and WorldView

identified the patch size as 2.31, 1.77 and 2.97 ha, respec-

tively. Compared to this patch, the northernmost patch

of mangroves identified by Sentinel was located c. 6.2 km

to the north (30.0141906°N, 81.3446904°W). With Planet,

the northernmost patch detected was just 442 m to the

north (29.9632769°N, 81.3318483°W). Worldview identi-

fied the northernmost patch of mangroves 11.65 km fur-

ther than Landsat (30.05996325°N, 81.36519184°W). The

northernmost patches detected in all images were within

0.1° latitude.

Comparing mangrove extents derived from different

methodological approaches or points in time makes it

challenging to assess change within the mangrove–salt-

marsh ecotone. We estimated a total of 800.0 � 214.4 ha

of mangroves as of 2022 using WorldView. The best

available estimate of 345 ha of mangroves in the region

from the FL DEP LULC dataset was published in 2017

and is based on earlier data dating back to 2012 (FL

DEP, 2017). The updated FL Cooperative Land Cover

Map (FL Fish and Wildlife Conservation Commis-

sion, 2022) is based on data from 2018 to 2021, however,

some mangroves in the study area are now reclassified as

other coastal habitats. Although we cannot interpret the

difference as true mangrove gains or losses from 2017 to

2023, we estimated less saltmarsh in all three of our

higher-resolution classifications compared to the 6049 ha

of saltmarsh mapped in the FL DEP LULC dataset and

8702 ha identified in the Global Map of Saltmarsh dataset

(McOwen et al., 2017). Marsh loss has been predicted in

areas of the GTMNERR using field-based measures of

saltmarsh productivity to parameterize a tide–marsh equi-

librium model, Hydro-MEM (Bacopoulos et al., 2019).

The coastal wetland equilibrium model (CWEM), devel-

oped specifically to predict future response to sea level

rise (SLR) in mangrove-saltmarsh ecotones, also found

that although mangroves have higher surface elevation

gain rates than saltmarsh, the elevation gain is abruptly

lost with mangrove mortality and both habitat types are

projected to drown under SLR of 100 cm (Morris

et al., 2023). SLR-induced changes will not be limited to

saltmarshes, as the landward migration of mangroves is

expected to displace adjacent freshwater and upland eco-

systems (Osland, Chivoiu, et al., 2022). In addition to

SLR, boat wakes and coastal storms will add to the vul-

nerability of the mangrove–saltmarsh ecotone (Verutes

et al., 2024). Improved maps of current mangrove distri-

bution at range limits will allow us to more directly assess

coastal wetlands changes, gains and losses at relevant

scales.

Our approach to range-limit mapping identified

important spatial patterns across the mangrove–saltmarsh

ecotone that will likely have consequences to ecosystem

structure, function and services as the landscape continues

to undergo rapid climate-driven changes. Understanding

the boundaries of habitats at range limits is necessary to

understand mangrove dispersal and connect establishment

dynamics across plot, patch and landscape scales (Yando

et al., 2021). WorldView, Planet and Sentinel images indi-

cated similar patterns of highly uneven spatial aggregation

among the two classes across the landscape, but high res-

olutions provided more insights into patch inter- and

intra-class connectivity measured by contiguity indices

and ENN distances. The spatial relationship between

mangroves and saltmarsh measured by satellites is the cul-

mination of ecological phenomena occurring at fine

scales. Eutrophication has been attributed to mangrove

expansion in the region, as nitrogen availability increases

mangrove growth, canopy size and reproduction (Dangre-

mond et al., 2020). Mangroves pioneering the leading

edge have shown precocious reproductive rates and adap-

tive genetic traits, which can accelerate population growth

and expansion into salt marsh (Dangremond &

Feller, 2016; Kennedy et al., 2022). Recruitment of man-

grove propagules into adjacent habitats can also be influ-

enced by grass or succulent saltmarsh growth forms and

by spring or storm tidal events (Peterson & Bell, 2012,

2015; Adgie & Chapman, 2021). Boundaries created by

tides and saltmarsh properties ultimately influence where

propagules can disperse and recruit, resulting in different

landward versus seaward expansion (Peterson &

Bell, 2015). Abiotic conditions at fine scales, namely

ª 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 11
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temperature, precipitation, hydrology and salinity, can

also impact growth rates, belowground biomass allocation

and carbon storage of each habitat differently in addition

to dispersal in changing saltmarsh and mangrove ecotones

(Yando et al., 2016, 2018, 2021; Chapman et al., 2021).

The spatial relationships we found among landscape

metrics in mangrove and saltmarsh habitats in northeast-

ern Florida at multiple resolutions could potentially pro-

vide a basis for quantifying uncertainty in mangrove

extents or for correcting for differences in area detected

among satellite sensors. The fractal dimension index

(FDI) summarizes the complexity of patch edges, with the

underlying assumption that smaller units of measurement

allow us to measure more variation in the habitat perime-

ter. Coastlines typically have fractal dimensions around

1.2 (Lam & Quattrochi, 1992). We found FDI for man-

grove patches unsurprisingly increased with image resolu-

tion, from 1.045 � 0.041 with Landsat to 1.120 � 0.077

with WorldView. Using the WoldView FDI as a scaling

factor to correct Landsat estimates, we would estimate

that the 125.6 � 107.7 ha of mangrove measured by

Landsat in this study could really represent upward of

277.7 ha of mangroves if the same areas were measured

at the scale of 1.8 m versus 30 m. Sentinel and Planet

estimates could similarly be revised upward to 646.1 and

958.0 ha, respectively. However, more work needs to be

done to test using FDI as a scaling factor in different

mangrove regions before being used to bookend uncer-

tainty in mangrove area estimates.

Multiresolution classification highlights the tradeoffs

between the spatial resolution of satellite imagery, the

global coverage of satellite data and the computational

power required to run machine learning models. At local

to regional scales, fine-scale mapping efforts can require

extensive time and resources for manual digitization. We

observed that 1.8-m WorldView and 10-m Sentinel per-

formed similarly in correctly classifying mangrove and

saltmarsh areas and in identifying similar patterns in class

clumpiness, cohesion and shape/compactness on the land-

scape, despite differences in overall estimated extents.

Landscape metrics of habitat complexity, patch density,

patch complexity, patch size, edge complexity and con-

nectedness per class, however, were found to improve

with image resolutions. In addition to the resolution of

satellite imagery, data accessibility and the ease of work-

ing with public versus commercial satellite data on large

geographic scales will be important tradeoffs to consider

in selecting the correct data to measure ecological phe-

nomena at range limits.

No matter how fine the scales are at which we conduct

remote sensing, our ability to detect mangrove expansion

at the leading edge will always be limited, but the scales

at which analyses are conducted and observations are

made matter (Li and Wu 2004). Our work illustrates that

VHR improves mapping and identification of landscape,

class and patch properties of mangroves and saltmarshes

at the leading edge of a range limit. We identified the

northernmost mangrove patch within our study area at

30.05996325°N, 81.36519184°W with remote sensing,

which is still 0.4° south of the northernmost reported

field observation of mangroves made in the Timucuan

Ecological and Historic Preserve near Jacksonville, Flor-

ida, in recent years (Cavanaugh et al., 2019). These pio-

neer mangroves have since suffered diebacks caused by

extreme freeze events (Kaalstad et al. 2023), further

emphasizing the need for more dynamic mapping

approaches. The scales of the satellite imagery tested in

this study are not capable of detecting individual seed-

lings; however, unoccupied aerial systems (UASs) that can

collect imagery at centimeter scales may provide more

appropriate scales for observation. As higher and higher

resolutions become available, it may become easier to

identify mangroves newly emerging into saltmarsh and

other coastal habitats. There is a clear need for better

coordinated regional networks of coastal monitoring that

use consistent very high resolution spatiotemporal data

and methods paired with field observations to advance

the understanding of past, current and future coastal

dynamics in the southeastern United States and beyond

(Bardou et al. 2023). For the time being, no remote sens-

ing can replace the power of fieldwork in uncovering

mangrove pioneers at the leading edge, and more work

will be needed to further reduce the gap between our field

and remotely sensed observations.
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Table S1. The characteristics of Landsat 8, Sentinel-2, Pla-

netScope SuperDove, and Worldview-2.

Table S2. Comparison of classification model accuracy
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