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Introduction

Efforts to map mangroves across the world using remote
sensing have provided incredible insights into global

Abstract

Mangroves are important ecosystems for coastal biodiversity, resilience and car-
bon dynamics that are being threatened globally by human pressures and the
impacts of climate change. Yet, at several geographic range limits in tropical—
temperate transition zones, mangrove ecosystems are expanding poleward in
response to changing macroclimatic drivers. Mangroves near range limits often
grow to smaller statures and form dynamic, patchy distributions with other
coastal habitats, which are difficult to map using moderate-resolution (30-m)
satellite imagery. As a result, many of these mangrove areas are missing in
global distribution maps. To better map small, scrub mangroves, we tested
Landsat (30-m) and Sentinel (10-m) against very high resolution (VHR) Planet
(3-m) and WorldView (1.8-m) imagery and assessed the accuracy of machine
learning classification approaches in discerning current (2022) mangrove and
saltmarsh from other coastal habitats in a rapidly changing ecotone along the
east coast of Florida, USA. Our aim is to (1) quantify the mappable differences
in landscape composition and complexity, class dominance and spatial proper-
ties of mangrove and saltmarsh patches due to image resolution; and (2) to
resolve mapping uncertainties in the region. We found that the ability of Land-
sat to map mangrove distributions at the leading range edge was hampered by
the size and extent of mangrove stands being too small for detection (50%
accuracy). WorldView was the most successful in discerning mangroves from
other wetland habitats (84% accuracy), closely followed by Planet (82%) and
Sentinel (81%). With WorldView, we detected 800 ha of mangroves within the
Florida range-limit study area, 35% more mangroves than were detected with
Planet, 114% more than Sentinel and 537% more than Landsat.
Higher-resolution imagery helped reveal additional variability in landscape met-
rics quantifying diversity, spatial configuration and connectedness among man-
grove and saltmarsh habitats at the landscape, class and patch scales. Overall,
VHR satellite imagery improved our ability to map mangroves at range limits
and can help supplement moderate-resolution global distributions and outdated
regional maps.

mangrove extents (Giri et al., 2011, Hamilton &
Casey, 2016, Bunting et al., 2022), forest heights and bio-
mass (Simard et al., 2019) and carbon storage (Sander-
man et al., 2018). Such baselines of knowledge have
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revealed where and why mangroves are being lost and
degraded (Thomas et al, 2017, 2018; Goldberg
et al, 2020; Bryan-Brown et al., 2020), and the conse-
quences to important ecosystem functions like carbon
storage and cycling (Richards et al., 2020; Adame
et al., 2021). Similar efforts are also improving our under-
standing of saltmarsh extents, changes and impacts across
the world (McOwen et al., 2017; Murray et al., 2019,
2022; Campbell et al., 2022). Yet, global maps derived
from moderate-resolution satellite data have difficulty
capturing coastal habitats that are small in extent, short
in height and in regions experiencing disturbance or con-
taining fragmented or fringe mangrove forests (Bunting
et al., 2018; Simard et al., 2019).

At the latitudinal limits of their geographic ranges,
tropical mangrove ecosystems converge with temperate or
arid regions to form spatially and structurally unique
transition zones between adjacent coastal habitats
(Quisthoudt et al., 2012). Often referred to as ‘ecotones’,
these areas represent a transitional gradient among two
ecosystems, whereas a ‘range limit’ is the theoretical line
delineating the existence of one ecosystem (Risser, 1995;
Quisthoudt et al., 2012; Smith et al., 2013). Because man-
groves in ecotonal regions are often at the limits of their
physiological thresholds, their forms are typically shorter
and more scrub like than in the tropics (Morrisey
et al., 2010), and they are highly sensitive to environmen-
tal changes such as sea level rise, precipitation changes
and freeze events (Osland et al., 2017). Ecotones represent
gradients in macroclimatic drivers like temperature and
precipitation in which small abiotic changes can result in
large and abrupt differences in ecosystem structure
(Osland et al., 2016). As a result, range-limit mangrove
ecotones can be highly dynamic and form a heteroge-
neous mosaic with other coastal habitats at fine scales
across the landscape. Detection of mangrove encroach-
ment at coarse resolutions may be lagged as changes in
habitat presence and abundance culminate into spectral
changes over time. Recent warming trends have coincided
with mangrove expansion into adjacent coastal salt-
marshes in some regions across the world (Saintilan
et al., 2014; Cavanaugh et al, 2014, 2018; Rodriguez
et al., 2016). However, the limitations of global mapping
efforts have led to large gaps and uncertainty in the areal
extents and latitudinal limits of mangroves (Ximenes
et al., 2022).

Ongoing advancements in Earth Observation (EO) have
improved the spatial, temporal and spectral resolutions of
remotely sensed data used to study wetland ecosystems
(Klemas, 2011, 2013, 2015). As very high resolution
(VHR; <5 m) satellite imagery becomes increasingly avail-
able, mapping accuracies have improved among wetland
classes in smaller pixels better matched to the size of
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wetland features and therefore less spectrally mixed
(McCarthy et al, 2015; Turpie et al, 2015; Davidson
et al, 2018; Doughty & Cavanaugh, 2019; Doughty
et al., 2021; Krause et al, 2023). VHR imagery and
machine learning classification approaches have been
combined in tropical mangrove sites to improve mapping
on fine scales and provide high-resolution insights into
habitat heterogeneity, structure and biomass (Kamal
et al., 2014, 2015, 2022). The use of VHR imagery at
mangrove range limits across the world could help reduce
the current uncertainty in global extents and establish
better baselines to assess wetland dynamics in relation to
macroclimate drivers (Ximenes et al, 2022; Bardou
et al., 2023).

The more habitat heterogeneity revealed with VHR, the
greater the ecological insights into mangrove—saltmarsh
ecotones. Landscape patterns can be used to describe the
composition and configuration of habitats across a land-
scape, and these patterns can be related to ecological pro-
cesses (Turner, 1990). Landscape metrics, for example,
patch size or nearest-neighbor distance, provide a mecha-
nism for quantifying the spatial patterns in landscapes
that have an impact on ecosystem structure, function,
biodiversity or services (Uuemaa et al,, 2013; Turner &
Gardner, 2015; Lausch et al., 2015). Measured over time,
changes in landscape metrics can also dictate the rate of
change and patchiness of impacts caused by climate
drivers (Turner & Ruscher, 1988; Lopez-Hoffman
et al.,, 2013). However, landscape metrics are sensitive to
resolution, scope, classification scheme and interpretation
(Liu & Cameron, 2001; Lustig et al., 2015). In mangrove—
saltmarsh ecotones, patterns at the patch scale have been
shown to play a critical and differential role in propagule
dispersal and seedling establishment dynamics, and such
insights ultimately need to be scaled up to better under-
stand range-limit dynamics (Yando et al., 2021). VHR
imagery may provide the appropriate resolutions to help
bridge the gap between the patch and the landscape and
to help estimate landscape metrics at scales better
matched to ecological properties than coarser-resolution
imagery (Foody, 2023).

The east coast of Florida, USA, is one such range limit
experiencing rapid climate-driven expansion of woody
mangroves into herbaceous saltmarshes (Cavanaugh
et al, 2014, 2018), where discrepancies exist among
mapped distributions and observations from the field
(Bardou et al., 2023). Here, mangrove encroachment can
alter ecosystem services (Kelleway et al., 2017; Osland,
Hughes, et al., 2022), with local impacts in the NE Flor-
ida region already documented for ecosystem carbon stor-
age (Doughty et al., 2016; Simpson et al., 2019; Vaughn
et al., 2020; Steinmuller et al., 2022), coastal protection
(Doughty et al., 2017), soil processes and maintenance
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(Coldren et al., 2019, Howard et al, 2020, Geoghegan
et al., 2021, Simpson et al., 2021) and trophic interactions
(Goeke et al., 2023). To truly understand the aggregate
consequences to ecosystem structure and function at
landscape and regional scales, ultimately, increased resolu-
tions are needed to map mangrove extent and change on
fine scales. Such improvements to mapping are still
needed by coordinated monitoring networks aimed at
managing rapidly changing coastal regions (Bardou
et al., 2023).

To better map mangroves within range limits, we tested
available satellite imagery ranging in spatial resolution
from 1.8 to 30 m by applying machine learning
approaches to classify current (2022) habitat distributions
in the rapidly changing mangrove—saltmarsh ecotone
along the east coast of Florida, USA. We compare com-
monly used Landsat (30 m) and Sentinel (10 m) with
very-high-resolution (VHR) commercial Planet (3 m) and
WorldView (1.8 m) imagery and assess the accuracy of
discerning mangrove and saltmarsh from other coastal
habitats. Our aim is to (1) quantify the mappable differ-
ences in landscape composition and complexity, class
dominance and spatial properties of mangrove and salt-
marsh patches due to image resolution and (2) to resolve
mapping uncertainties in the region. Improved under-
standing of mangrove distributions within range limits
will be vital for monitoring ongoing climate-driven
changes at local scales and for reducing uncertainty in
estimates of global mangrove drivers, carbon storage, and
more derived from global maps.

Materials and Methods

Study area

Mangroves occupy 5 continents and there are 14
range-limit regions defined worldwide according to the
geographic and macroclimatic constraints to distribution
(Quisthoudt et al., 2012; Saintilan et al., 2014; Osland
et al,, 2017). For this study, we focused on the mangrove
range limit in Eastern North America, where mangrove
distributions in Florida, USA, have been expanding north-
ward in recent decades (Cavanaugh et al., 2014). The three
mangrove species present in the region, Avicennia germi-
nans, Rhizophora mangle and Laguncularia racemosa, are
distributed latitudinal by cold tolerance with A. germinans
and R. mangle observed at the leading edge of the range
limit. The bounds of the Florida range limit were informed
by a comparison of global maps of mangroves (Global
Mangrove Watch (GMW v3.0); Bunting et al., 2022) and
saltmarshes (Global Map of Saltmarshes (GMS); McOwen
et al., 2017), as well as published records of field observa-
tions. Within the range limit, we conducted our mapping
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analyses in a c. 1500 km” area at the leading edge of the
range limit where imagery was available from all sensors
(Fig. 1). This area includes the Guana Tolomato Matanzas
National Estuarine Research Reserve (GTMNERR) that is
home to a mosaic of estuarine habitats representing north-
east Florida (Dix et al., 2021).

We limited our analyses to relevant coastal wetland
areas by creating a coastal mask that combined previously
mapped global distributions of mangroves (Bunting
et al., 2022), salt marshes (McOwen et al., 2017), tidal
flats (Murray et al, 2019) and coastal waters extracted
from Hansen et al. (2013) at a spatial resolution of 30 m.
We applied a closing morphological filter to remove gaps
in the coastal mask that may correspond to adjacent wet-
land habitats occupying smaller scales (<30 m).

Satellite imagery sources and preprocessing

We selected cloud-free satellite images over the study area
taken from single dates in January 2022 when seasonal
differences in vegetation senescence are clear (Table S1).
We chose to collect each image directly from their source
institutions instead of downscaling a single VHR to lower
resolutions as this can introduce and amplify mapping
artifacts (Li & Wu, 2004), and because we wanted to test
the inherent variability among the available imagery.
Commercial WorldView and PlanetScope imagery are
available for government research through the NextView
License Agreement (Neigh et al., 2013) and NASA’s Com-
mercial Smallsat Data Acquisition (CSDA) Program
(Maskey et al., 2021). WorldView-2 (WV2) imagery was
obtained from MAXAR’s Global Enhanced GEOINT
Delivery portal as 16-bit basic multispectral (8-band) and
pan images that are not georeferenced or calibrated.
Images were orthorectified, radiometrically calibrated and
mosaicked using the open-source Orfeo Toolbox (OTB;
Grizonnet et al, 2017) plugin in QGIS (v3.28.2; QGIS
Development Team, 2023). Radiometric calibration uses
the 6S radiotransfer model parameterized with the image
metadata to produce top-of-atmosphere (TOA) images
which are then atmospherically corrected to top-of-
canopy surface reflectance. Images were then mosaicked
using band harmonization to create the WorldView scene
defining the mapping AOI of our study (Fig. 1C). Planet-
Scope SuperDove imagery was accessed through the
Planet Explorer. SuperDove, hereafter ‘Planet’, 8-band
multispectral images were available for download as geor-
eferenced, harmonized surface reflectance. Planet images
were mosaicked using band harmonization in OTB to
cover the study area.

Sentinel and Landsat imagery were accessed and pre-
processed in Google Earth Engine (GEE), a cloud-based
platform for storing and analyzing geospatial and
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Figure 1. Coastal areas in (A) eastern Florida, USA, with global distributions of saltmarsh (blue; GMS v3.0; McOwen et al. 2017) and mangrove
(yellow; GMW v3.0; Bunting et al. 2022), and (B) areas of each habitat along the latitudinal gradient. The (C) study area covered by the
WorldView image (dashed line) with field photos (D-F) showing mangrove trees and stands within the ecotonal range limit.

remotely sensed data (Gorelick et al., 2017). We used the
Sentinel-2 MultiSpectral Instrument (MSI) Level-1C TOA
data and converted TOA to bottom-of-atmosphere
(BOA) surface reflectance using the sensor invariant
atmospheric correction (SIAC) method (Yin et al., 2019).
Images were then mosaicked to cover the study area. Last,
we used a NASA/USGS Landsat 8 OLI (Level 2, Collec-
tion 2 and Tier 1) scene available as atmospherically cor-
rected surface reflectance in GEE to create multispectral
8-band mosaics coinciding with the study area.

We selected spectral bands available across all images
and calculated indices that have proven useful in man-
grove classification (Goldberg et al., 2020; Hickey & Rad-
ford, 2022; Tran et al., 2022). Vegetation indices included
the normalized difference mangrove index (NDVI; Rouse
et al.,, 1974), normalized difference water index (NDWI;
McFeeters, 1996), simple ratio of red and near-infrared
bands (SR) and the green chlorophyll vegetation index
(GCVI). To differentiate non-vegetated pixels (water,
bare) from vegetated pixels, we used a threshold of 0.2
for NDVI and NDWI when masking.

Classification and postprocessing
Training data

We created a vector training dataset to represent the rele-
vant habitats in our study area for classification of all
2022 images. Training polygons were initially created
within areas previously mapped globally as mangrove,
saltmarsh, tidal mudflat and water (Bunting et al., 2022;
McOwen et al., 2017; Murray et al., 2019; Hansen
et al,, 2013). We added previously unmapped mangrove
areas to the mangrove training class, and for the purpose
of this analysis, all mangrove species were grouped into a
single class. We also added urban/built and upland vege-
tation classes to the training dataset based on the World-
View image. To ensure that training data could be used
across all images ranging in resolution from 1.85 to
30 m, we visually checked all training polygons against
the WorldView image to ensure the area represents
homogeneous habitat even if spectral noise (e.g., canopy
shading) was present in higher-resolution images. Final
habitat classes included mangrove, saltmarsh, mudflat,
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water, urban and upland vegetation. We randomly sam-
pled 1000 pixels per class to create a balanced training
dataset for each image. Data for each training sample
included the observed habitat class and covariates derived
from imagery bands and indices: blue, green, red,
near-infrared (NIR), NDVI, NDWI, SR and GCVI.

Classification algorithm comparison

We tested the modeling accuracy of different supervised
classification algorithms in performing landcover classifi-
cations in order to select the best algorithm to use for
our set of images. Random Forest (Breiman, 2001),
XGBoost (Friedman, 2001), K-nearest neighbor (Sam-
worth, 2012) and neural network (Géron, 2022) algo-
rithms were tested using the ‘tidymodels’ package in R
(v1.0.0; Kuhn & Wickham, 2020). To assess model per-
formance, we split the training dataset into a training set
(75%) for fitting models and a testing set (25%) for eval-
uating model accuracy. The validation set used a 10-fold
cross-validation and stratified sampling among classes.
We tuned and evaluated model performance using the
cross-validation set and selected the best algorithm based
on model accuracy, Cohen’s kappa coefficient, F score
and ROC area under the curve (AUC) (Table S2).

Landcover classification

The selected algorithm for each image was tuned a final
time to create a final classification model with the opti-
mal model parameter values to maximize model perfor-
mance. Final models were then applied to the full image
across our study area in order to predict land cover clas-
ses based on the pixel values of all covariate bands and
indices. Random Forest was ultimately selected as the
final classification algorithm used for all images, as it per-
formed better or was similar to other algorithms
(Table S1) and is commonly used and successful in land-
cover applications (Talukdar et al., 2020).

Classification outputs included landcover maps of pre-
dicted mangrove, saltmarsh, mudflat, water, urban/built
and upland vegetation habitats. Landcover map outputs
were produced for each image in their native resolution.
We cleaned landcover predictions using a majority filter
to remove speckling (interclass noise) for areas connected
by 4 or less pixels, opting for pixel counts over area to
deal with large differences in pixel sizes. We performed
an additional cleaning step using a weighted filter to
remove mangrove and saltmarsh areas of connected pixels
that were completely contained in urban/built and upland
vegetation classes, as these represent potential misclassifi-
cations due to confusion among specific classes
(Table S3). For our final maps, accuracy assessment and
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landscape metrics analysis, we focused on the mangrove
and saltmarsh classes by reclassifying and combining
water, bare soil, urban and upland vegetation classes to
an ‘other’ class.

Landcover accuracy assessment and area
estimation

We assessed the accuracy of the predicted landcover maps
using a stratified random sample among mangroves, salt-
marsh and other class pixels at 30 m resolution. Sample
sizes per class were weighted by the average proportion of
area of each class in the predicted landcover maps for a
total of 450 samples. For each sample, we compared the
actual habitat observed in WorldView and Google Base-
maps for 2022 to the habitat predicted in each image.
From this independent validation dataset, we calculated
area-based error matrices following Olofsson et al. (2014),
which allowed us to quantify the standard error and con-
fidence intervals for the estimated area of each habitat, as
well as user’s, producer’s accuracy and overall classifica-
tion accuracy and kappa coefficients.

We compared the area estimates of mangrove and salt-
marsh from the resulting classification maps to regional
and global landcover datasets. We used the Florida
Department of Environmental Protection 2017 Statewide
Land Use and Land Cover (LULC) dataset to summarize
the total area of mangroves and saltmarshes previously
delineated within the study area (FL DEP, 2017). We also
compare the amount of area within the study site
included in global maps of mangroves (Giri et al., 2011;
Bunting et al., 2022), saltmarsh (McOwen et al., 2017)
and intertidal habitats that represent tidal marsh, tidal flat
or mangrove ecosystems (Murray et al., 2019).

Landscape, class and patch metrics for
mangrove and saltmarshes

We calculated landscape metrics from our classification
maps to compare how image resolution impacted our
ability to measure landscape composition and complexity,
class dominance and spatial properties of habitat patches
using the ‘landscapemetrics’ package in R (v2.0.0; Hessel-
barth et al., 2019), which implements ‘FRAGSTATS’ ana-
lyses for landscape spatial patterns (McGarigal &
Marks, 1995). At the landscape level, we quantified overall
habitat configuration using the landscape shape index
(LSI), which is the ratio between the total edge length of
habitats and the minimum possible edge length defined
by 1 pixel (Patton, 1975). Higher LSI values indicate
increasingly complex, less compact habitat boundaries on
the landscape. Overall landscape complexity was estimated
using marginal entropy as the measure of diversity among
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thematic landscape classes, where more dispersed, com-
plex patterns have higher entropy (Nowosad & Ste-
pinski, 2019). Landscape composition was summarized as
the fractional cover of mangrove and saltmarsh habitats
within a 1-km hex grid over the study area, which we dis-
played using a bivariate legend with three natural (Jenks)
breaks from the ‘biscale’ R package (v1.1.0.9; Prener
et al., 2022).

At the class level, we estimated the total number of
patches and patch density per square kilometer for the
mangrove and saltmarsh classes from each image. Class
configuration on the landscape was summarized using the
clumpiness index and the patch cohesion index. Class
clumpiness indices indicate more random (0) or aggre-
gated (1) distributions of classes based on the deviation
of the proportion of same-class adjacencies compared to
a spatially random distribution with the corresponding
class (McGarigal & Marks, 1995). Patch cohesion indices
estimate how connected or isolated patches of the same
class are across the landscape (Schumaker, 1996). We esti-
mated the mean fractal dimension index (FDI), which is
a scale-dependent shape index based on patch perimeter
and area that describes patch complexity (Mandel-
brot, 1977). It has been suggested that FDI may indicate
scaling factors to correct for the variability lost in habitat
edges at coarser increasing resolutions, but more work is
needed (Turner & Gardner, 2015), so we tested this
among our classification outputs.

Patch-level metrics were used to summarize mean patch
size, shape and connectedness detected for each class in
each image. In addition to mean area, we also calculated
the core area index, which equals the percentage of interior
(non-edge pixels) area relative to total patch area. Patch
complexity was estimated using the perimeter—area ratio.
Patch intra-connectedness was summarized using the con-
tiguity index, a shape metric representing the spatial conti-
guity of pixels within a patch (LaGro, 1991). Patch inter-
connectedness, or isolation, was estimated as the Euclidean
nearest-neighbor (ENN) distance, which measures the
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edge-to-edge distance to the nearest patch of the same class
(McGarigal & McComb, 1995).

Results

Mangrove classification using random
forest improves with image resolution

VHR WorldView had the highest overall
(84.2%) in classifying mangrove, saltmarsh and other
habitats using Random Forest compared to Planet
(82.2%), Sentinel (81.4%) and Landsat (50.6%) (Table 1).
We found that Random Forest was the best overall super-

accuracy

vised classification approach compared to other machine
learning algorithms to use on each image (Table S2). The
overall accuracy of the resulting landcover maps decreased
as image resolution decreased. WorldView, Planet and
Sentinel imagery performed similarly in terms of overall
accuracy (81.4-84.2%) and kappa value (0.67-0.72), while
30-m Landsat showed a large decrease in accuracy
(50.6%, 0 kappa value) using this classification approach.

Mangrove habitats were more often correctly identified
as mangrove in the WorldView imagery (67% user’s accu-
racy), compared to 46% in Planet, 38% in Sentinel and
13% in Landsat (Table 1). Mangroves were most often
‘other’,
(Table S3). Producer’s accuracy of the mangrove class

misclassified as namely upland vegetation
ranged from 60% to 73% across the images, showing a
slight advantage in WorldView’s ability to correctly iden-
tify 5% more of the mangrove reference training data.
The landcover predictions at the leading edge of the range
limit display the increased edge definition and detection
of small patches of mangroves adjacent to tidal creeks
with WorldView (Fig. 2).

Saltmarsh habitats were classified correctly 76% of the
time using WorldView, 82% using Planet and 72% using
Sentinel (Table 1). Landsat did not predict any saltmarsh
in our classification approach, explaining why the user’s
accuracy for this class is 0% and overall kappa is 0. Aside

TABLE 1. Landcover accuracy and corrected area estimates (+95% Cl) of Random Forest classification maps. Overall accuracy and Kappa values
per image summarize users’ and producers’ accuracy among mangrove, saltmarsh and other classes.

WorldView Planet Sentinel Landsat

Overall accuracy 84.2 82.2 81.4 50.6
Kappa value 0.72 0.68 0.67 0

UA  PA  Area 95% UA  PA  Area 95% UA  PA  Area 95% UA  PA  Area 95%
Class (%) (%) (ha) Cl(ha) (%) (%) (ha) Cl(ha) (%) (%) (ha) Cl(ha) (%) (%) (ha) Cl (ha)
Mangrove 67 73 800.0 214.4 46 60 590.8 215.1 38 68 373.3 169.6 13 68 125.6 107.7
Saltmarsh 76 94 32349 2813 82 88 4961.0 377.2 72 93 3385.8 319.2 0 NA NA NA
Other 94 80 5953.9 335.1 88 80 6100.9 403.8 95 76 6308.8 338.6 99 50 9942.3 107.7
6 © 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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WorldView-2 (1.8-m)

81.4°W 81.3°W 81.2°W

Mangrove

I saltmarsh

l:l Coastal AOIs &=

Planet (3-m)

VHR Mapping in Mangrove Range Limits

Sentinel-2 (10-m) Landsat (30-m)

Figure 2. Comparison of false-color images per satellite and landcover maps of mangrove individuals and stands (yellow) and saltmarshes (blue)
at the northern edge of the mangrove range limit in Florida, USA. WorldView Basemaps © 2022 Maxar/DigitalGlobe, Inc. Basemap © 2022 ESRI.

from Landsat, the saltmarsh class was more accurate to
map (88-94% producer’s accuracy) compared to the
mangrove class (60-73%). Saltmarsh was most often mis-
classified with mudflat at moderate resolutions and man-
grove and wupland vegetation at higher resolutions
(Table S3). A large saltmarsh patch in the south of our
study area identified with WorldView, Planet and Sentinel
highlights where image resolution and class confusion
impact the delineation of saltmarsh edges (Fig. 3).

81.4°W 81.3°W 81.2°W

WorldView-2 (1.8-m)

Mangrove

I saltmarsh

l:l Coastal AOIs &=

Planet (3-m)

VHR imagery detects more mangroves
compared to moderate imagery and
regional and global maps

The total area of mangroves detected in our study region
using WorldView was estimated at 800.0 & 214.4 ha
(Table 1, Fig. 4A). That is 35% more mangrove area than
was classified with Planet (590.8 & 215.1 ha), 114% more
than Sentinel (373.3 4 169.6 ha) and 537% more than

Sentinel-2 (10-m) Landsat (30-m)

Figure 3. Comparison of false-color images per satellite and landcover maps of mangroves (yellow) and saltmarshes (blue) in the southern
portion of the mangrove range limit in Florida, USA. WorldView Basemaps © 2022 Maxar/DigitalGlobe, Inc. Basemap © 2022 Google.

© 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 7
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Figure 4. Mangrove and saltmarsh areas classified in (A) this study compared to (B) regional and global coastal datasets within the study region.

Landsat (125.6 £ 107.7 ha). Planet predicted the most
saltmarsh area  (4961.0 £ 377.2 ha), followed by
3385.8 £ 319.2 ha predicted with Sentinel,
3234.9 £ 281.3 ha predicted with WorldView and 0 ha
predicted with Landsat (Table 1). Despite similar accura-
cies among WorldView, Planet and Sentinel classifications
(81.4-84.2%), they estimated substantially different pro-
portions of mangrove and saltmarsh across the landscape
(Fig. 5). Total mangrove area estimates ranged from
125.6 to 800.0 ha across all images, while the estimated
range of saltmarsh area varied from 0.0 to 4961.0 ha
(Table 1, Fig. 4A). The mangrove class was most accu-
rately mapped with WorldView (67% user’s accuracy)
which estimated the most mangroves (800.0 £+ 214.4 ha).
Similarly, the most saltmarsh (4961.0 £ 377.2 ha) was
predicted with Planet, which also had the highest user’s
accuracy (82%).

The 800.0 ha of mangroves we identified represent an
additional 455.0 ha of mangroves that were not included
in the 345.0 ha of mangroves mapped in the 2017 FL
statewide landcover dataset (Fig. 4B). For saltmarshes,
our classifications underestimated the 6,049 ha mapped
by FL DEP by —47% using WorldView, —44% using Sen-
tinel and —100% using Landsat, but just —17% with
Planet. Compared to global maps, our classifications
detected upwards of 800.0 ha of mangroves that were not

identified in the 2011 Global Mangrove Forest or 2022
Global Mangrove Watch datasets (Giri et al., 2011; Bun-
ting et al., 2022). However, compared to the 8,702 ha of
saltmarsh in our study area (2017 Global Map of Salt-
marsh; McOwen et al., 2017) and to the 7534 ha of inter-
tidal (2018 Global Intertidal Map; Murray et al., 2019),
overall, our classifications underestimated both the total
saltmarsh area and the combined wetland area (saltmarsh
and mangrove) by as much as 93% and 26%, respectively
(Fig. 4).

Complexity of mangrove and saltmarsh
habitats at range limits increases with
image resolution

At the landscape level, the proportion of mangrove and
saltmarsh habitats derived from the multiresolution classi-
fications largely revealed similar distributions throughout
the range limit and identified large habitat patches (Figs. 5
and 6A). Mangroves dominated coastal areas (<40%)
south of 29.9°N in all images. Saltmarshes occupied a
higher proportion of coastal area (<80%) largely to the
north and in several large patches to the south (Fig. 5).
The complexity of habitats, measured as LSI, decreased as
image resolution increased, with WorldView
(LSI = 158.4) identifying 1067% more complexity in

8 © 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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VHR Mapping in Mangrove Range Limits

Saltmarsh (0-80%) =

Mangrove (0-40%)—

81.35°W 81.25°W

81.35°W 81.25°W

Figure 5. Landscape composition of mangrove (yellow) and saltmarsh (blue) habitats proportionate cover detected with (A) WorldView, (B)

Planet, (C) Sentinel and (D) Landsat.

habitat edges than Landsat (LSI = 13.7, Fig. 6A). Planet
and Sentinel LSI estimates were 79.6 and 64.1, respec-
tively, indicating similar measures of habitat configuration
detected at 3-m and 10-m image resolutions. Marginal
entropy, the metric for thematic complexity, was highest
for WorldView (0.64), followed by Sentinel (0.55) and
Planet (0.46).

At the class level (Fig. 6B), patch counts and density
for the mangrove class were highest in WorldView with
5848 patches at 123.2 patches km ™2, more than the 1142
patches from Planet (19.6 patches km ?), the 457 from
Sentinel (9.2 patches km?) and 142 patches from Land-
sat (55.1 patches km 2). Similarly, counts of saltmarsh
patches identified were highest in WorldView (13 899),
more than the 5665 patches from Planet, the 2750 patches
from Sentinel and no patches identified from Landsat
(Fig. 6B, Table S4). Patch clumpiness indices for both
mangrove and saltmarsh fell within a small range from
0.971 to 0.977 for WorldView, Planet and Sentinel

images, which indicates similar detection of highly uneven
spatial aggregation among the two classes across the land-
scape. Patch cohesion indices measuring intraclass con-
nectedness of mangroves increased with image resolution:
WorldView (98.6), Planet (98.3), Sentinel (96.1) and
Landsat (89.5). No pattern appeared with image resolu-
tion in the cohesion indices for saltmarsh, which suggests
that increased image resolutions help detect more connec-
tions only for the highly aggregated mangrove class. FDI,
a metric of patch complexity, increased with image reso-
lution for both classes. Mangrove FDI was 1.120 £ 0.077,
1.103 £+ 0.059, 1.075 £ 0.050 and 1.045 £ 0.041 for
Worldview, Planet, Sentinel and Landsat, respectively.
Saltmarsh FDI was 1.121 £ 0.090, 1.076 £ 0.073 and
1.066 £ 0.061, for Worldview, Planet and Sentinel,
respectively.

At the patch level, image resolution impacted landscape
metrics describing patch size, shape and connectedness
per class (Fig. 6C). Mean mangrove patch areas were

© 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 9
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Figure 6. Landcover metrics at the (A) landscape, (B) class and (C) patch levels for mangrove (yellow) and saltmarsh (blue) detected from
WorldView (W), Planet (P), Sentinel (S) and Landsat (L). Values reported for classes and patches are means + standard (see Table S4). Note that

only the mangrove class was present for Landsat.

0.13 £ 1.25 ha for WorldView, 0.50 £ 2.25 ha for Planet,
1.37 + 4.42 ha for Sentinel and 1.81 £ 4.37 ha for
Landsat. Mean saltmarsh patch areas were 0.29 £ 5.02 ha
for WorldView, 093 + 17.85 ha for Planet and
1.57 £ 14.35 ha for Sentinel. The mean core area index
varied greatly among classes and imagery with higher
values in the mangrove class indicating more compact, or
square, patch shapes compared to the relatively more
complex shapes of saltmarsh habitats detected in the same
image. Core area index for Planet-derived mangroves was
53.4 £ 27.4%, while WorldView and Sentinel produced
more  similar  estimates of 343 £ 29.7% and
32.4 £ 28.9%, respectively. Perimeter—area ratios per class
increased with resolution, as the complexity in patch
boundaries is increasingly revealed with higher-resolution
imagery (Fig. 6C; Table S4).

The contiguity index measuring patch interconnectivity
was 18% higher on average in mangroves (0.59 % 0.31)
versus saltmarsh (0.50 £ 0.31) from WorldView, nearly
doubled in mangroves (0.75 & 0.23) versus saltmarsh
(0.39 £ 0.33) from Planet and 42% higher on average in
mangroves (0.58 £ 0.30) versus saltmarsh (0.41 £ 0.28)
from Sentinel. Landsat mangrove contiguity was an

estimated 0.40 £ 0.28. Higher contiguity index values
indicate more contiguous patches. ENN distance measur-
ing the connection among same-class patches decreased
with image resolution for the mangrove class, but not the
saltmarsh class. The mean distance detected between
mangrove patches was 24.4 £ 52.2 m in WorldView,
78.5 &£ 211.7 m in Planet, 133.5 & 441.7 m in Sentinel
and 339.1 &+ 1000.4 m in Landsat. ENN distances were
smaller for saltmarsh patches overall compared to man-
grove: WorldView (8.6 £ 18.2 m), Planet
(15.7 & 23.0 m), Sentinel (30.7 + 43.2 m) and none in
Landsat.

Discussion

Discrepancies between the scales of mangrove observation
and mapping have led to uncertainty in the limits and
extents of mangroves at the leading edge of their geo-
graphical ranges, but we found by comparing across dif-
ferent satellite images that mapping at higher resolutions
can supplement regional and global mapping efforts and
reveal important ecological properties at local scales.
Along the northeast Florida coastline, VHR mapping

10 © 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.
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uncovered at least 240.6 ha of mangroves that were previ-
ously unmapped. These vanguard mangroves represent
the leading edge of this range shift and are important to
monitor as encroaching mangroves influence ecosystem
services and future responses to climate change.

Mapping at higher resolutions is necessary to supple-
ment our global understanding of mangrove distributions
and dynamics. In some range limits across the world,
especially in western North America, western Australia
and northern West Africa, latitudinal discrepancies of up
to 10° exist in the detected limits from each global data-
set, and this has significant consequences as we make
global inferences on the climatic drivers of mangrove
change or make area-based extrapolations of global man-
grove carbon accounting, deforestation rates and mitiga-
tion potential (Ximenes et al., 2022). Our mapping
analysis across different scales estimated different total
extents of mangrove and saltmarsh habitats, however, all
sensors were able to detect the same large northward
patch of mangroves within our study area at
29.959471°N, 81.330311°W. This same patch was the
northernmost mangrove mapped in the FL LCLUC
(2017) but was missing from global maps. The patch
extent derived from only partial coverage with Landsat
was 1.32 ha, whereas Sentinel, Planet and WorldView
identified the patch size as 2.31, 1.77 and 2.97 ha, respec-
tively. Compared to this patch, the northernmost patch
of mangroves identified by Sentinel was located c. 6.2 km
to the north (30.0141906°N, 81.3446904°W). With Planet,
the northernmost patch detected was just 442 m to the
north (29.9632769°N, 81.3318483°W). Worldview identi-
fied the northernmost patch of mangroves 11.65 km fur-
ther than Landsat (30.05996325°N, 81.36519184°W). The
northernmost patches detected in all images were within
0.1° latitude.

Comparing mangrove extents derived from different
methodological approaches or points in time makes it
challenging to assess change within the mangrove—salt-
marsh ecotone. We estimated a total of 800.0 £+ 214.4 ha
of mangroves as of 2022 using WorldView. The best
available estimate of 345 ha of mangroves in the region
from the FL DEP LULC dataset was published in 2017
and is based on earlier data dating back to 2012 (FL
DEP, 2017). The updated FL Cooperative Land Cover
Map (FL Fish and Wildlife Conservation Commis-
sion, 2022) is based on data from 2018 to 2021, however,
some mangroves in the study area are now reclassified as
other coastal habitats. Although we cannot interpret the
difference as true mangrove gains or losses from 2017 to
2023, we estimated less saltmarsh in all three of our
higher-resolution classifications compared to the 6049 ha
of saltmarsh mapped in the FL DEP LULC dataset and
8702 ha identified in the Global Map of Saltmarsh dataset

VHR Mapping in Mangrove Range Limits

(McOwen et al., 2017). Marsh loss has been predicted in
areas of the GTMNERR using field-based measures of
saltmarsh productivity to parameterize a tide-marsh equi-
librium model, Hydro-MEM (Bacopoulos et al., 2019).
The coastal wetland equilibrium model (CWEM), devel-
oped specifically to predict future response to sea level
rise (SLR) in mangrove-saltmarsh ecotones, also found
that although mangroves have higher surface elevation
gain rates than saltmarsh, the elevation gain is abruptly
lost with mangrove mortality and both habitat types are
projected to drown under SLR of 100 cm (Morris
et al., 2023). SLR-induced changes will not be limited to
saltmarshes, as the landward migration of mangroves is
expected to displace adjacent freshwater and upland eco-
systems (Osland, Chivoiu, et al., 2022). In addition to
SLR, boat wakes and coastal storms will add to the vul-
nerability of the mangrove—saltmarsh ecotone (Verutes
et al., 2024). Improved maps of current mangrove distri-
bution at range limits will allow us to more directly assess
coastal wetlands changes, gains and losses at relevant
scales.

Our approach to range-limit mapping identified
important spatial patterns across the mangrove—saltmarsh
ecotone that will likely have consequences to ecosystem
structure, function and services as the landscape continues
to undergo rapid climate-driven changes. Understanding
the boundaries of habitats at range limits is necessary to
understand mangrove dispersal and connect establishment
dynamics across plot, patch and landscape scales (Yando
et al., 2021). WorldView, Planet and Sentinel images indi-
cated similar patterns of highly uneven spatial aggregation
among the two classes across the landscape, but high res-
olutions provided more insights into patch inter- and
intra-class connectivity measured by contiguity indices
and ENN distances. The spatial relationship between
mangroves and saltmarsh measured by satellites is the cul-
mination of ecological phenomena occurring at fine
scales. Eutrophication has been attributed to mangrove
expansion in the region, as nitrogen availability increases
mangrove growth, canopy size and reproduction (Dangre-
mond et al., 2020). Mangroves pioneering the leading
edge have shown precocious reproductive rates and adap-
tive genetic traits, which can accelerate population growth
and expansion into salt marsh (Dangremond &
Feller, 2016; Kennedy et al., 2022). Recruitment of man-
grove propagules into adjacent habitats can also be influ-
enced by grass or succulent saltmarsh growth forms and
by spring or storm tidal events (Peterson & Bell, 2012,
2015; Adgie & Chapman, 2021). Boundaries created by
tides and saltmarsh properties ultimately influence where
propagules can disperse and recruit, resulting in different
landward versus seaward expansion (Peterson &
Bell, 2015). Abiotic conditions at fine scales, namely

© 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 11
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temperature, precipitation, hydrology and salinity, can
also impact growth rates, belowground biomass allocation
and carbon storage of each habitat differently in addition
to dispersal in changing saltmarsh and mangrove ecotones
(Yando et al., 2016, 2018, 2021; Chapman et al., 2021).

The spatial relationships we found among landscape
metrics in mangrove and saltmarsh habitats in northeast-
ern Florida at multiple resolutions could potentially pro-
vide a basis for quantifying uncertainty in mangrove
extents or for correcting for differences in area detected
among satellite sensors. The fractal dimension index
(FDI) summarizes the complexity of patch edges, with the
underlying assumption that smaller units of measurement
allow us to measure more variation in the habitat perime-
ter. Coastlines typically have fractal dimensions around
1.2 (Lam & Quattrochi, 1992). We found FDI for man-
grove patches unsurprisingly increased with image resolu-
tion, from 1.045 4 0.041 with Landsat to 1.120 £ 0.077
with WorldView. Using the WoldView FDI as a scaling
factor to correct Landsat estimates, we would estimate
that the 125.6 &+ 107.7 ha of mangrove measured by
Landsat in this study could really represent upward of
277.7 ha of mangroves if the same areas were measured
at the scale of 1.8 m versus 30 m. Sentinel and Planet
estimates could similarly be revised upward to 646.1 and
958.0 ha, respectively. However, more work needs to be
done to test using FDI as a scaling factor in different
mangrove regions before being used to bookend uncer-
tainty in mangrove area estimates.

Multiresolution classification highlights the tradeoffs
between the spatial resolution of satellite imagery, the
global coverage of satellite data and the computational
power required to run machine learning models. At local
to regional scales, fine-scale mapping efforts can require
extensive time and resources for manual digitization. We
observed that 1.8-m WorldView and 10-m Sentinel per-
formed similarly in correctly classifying mangrove and
saltmarsh areas and in identifying similar patterns in class
clumpiness, cohesion and shape/compactness on the land-
scape, despite differences in overall estimated extents.
Landscape metrics of habitat complexity, patch density,
patch complexity, patch size, edge complexity and con-
nectedness per class, however, were found to improve
with image resolutions. In addition to the resolution of
satellite imagery, data accessibility and the ease of work-
ing with public versus commercial satellite data on large
geographic scales will be important tradeoffs to consider
in selecting the correct data to measure ecological phe-
nomena at range limits.

No matter how fine the scales are at which we conduct
remote sensing, our ability to detect mangrove expansion
at the leading edge will always be limited, but the scales
at which analyses are conducted and observations are

C. L. Doughty et al.

made matter (Li and Wu 2004). Our work illustrates that
VHR improves mapping and identification of landscape,
class and patch properties of mangroves and saltmarshes
at the leading edge of a range limit. We identified the
northernmost mangrove patch within our study area at
30.05996325°N, 81.36519184°W with remote sensing,
which is still 0.4° south of the northernmost reported
field observation of mangroves made in the Timucuan
Ecological and Historic Preserve near Jacksonville, Flor-
ida, in recent years (Cavanaugh et al., 2019). These pio-
neer mangroves have since suffered diebacks caused by
extreme freeze events (Kaalstad et al. 2023), further
emphasizing the need for more dynamic mapping
approaches. The scales of the satellite imagery tested in
this study are not capable of detecting individual seed-
lings; however, unoccupied aerial systems (UASs) that can
collect imagery at centimeter scales may provide more
appropriate scales for observation. As higher and higher
resolutions become available, it may become easier to
identify mangroves newly emerging into saltmarsh and
other coastal habitats. There is a clear need for better
coordinated regional networks of coastal monitoring that
use consistent very high resolution spatiotemporal data
and methods paired with field observations to advance
the understanding of past, current and future coastal
dynamics in the southeastern United States and beyond
(Bardou et al. 2023). For the time being, no remote sens-
ing can replace the power of fieldwork in uncovering
mangrove pioneers at the leading edge, and more work
will be needed to further reduce the gap between our field
and remotely sensed observations.
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Table S2. Comparison of classification model accuracy
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