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1 INTRODUCTION

This special issue on automotive Cyber-Physical Systems(CPS) safety and security is a contin-
uation of the special issue that appeared in ACM Transactions on Cyber-Physical Systems, Vol. 7,
No. 1, in January 2023. It features a second set of seven articles, spanning across a variety of top-
ics, such as electric and autonomous vehicles, automotive control, and in-vehicle networks, again
with a focus on safety and security. To give an impression on how rich the research literature on
this domain is, we provided a brief survey in Part 1 of this special issue. In Part 2, we continue
that survey—once again, our goal is not to exhaustively list all of the problems that have been
addressed in this area but to provide a larger context for the seven articles featured here.
In particular, wewould like to highlight that the domain of automotive CPS is currently undergo-

ing a major transition. Not only are we witnessing technological revolutions in Electric Vehicles

(EVs) [1, 90, 91, 166] and autonomous vehicles [15, 97], both of which have major societal and
environmental implications, but also the automotive industry is embracing new technologies and
design flows at a very rapid pace. These include changes in in-vehicle Electrical/Electronic (E/E)
architectures, greater connectivity between vehicles, between vehicles and infrastructure, and re-
liance on vehicle-to-cloud connectivity [2, 176]. Such changes not only expose modern vehicles
to new security threats but also introduce additional safety concerns. The introduction of new
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autonomous features have also resulted in more complex automotive control strategies, the use of
Machine Learning (ML) and perception/vision processing algorithms, and more powerful elec-
tronics/hardware to support these algorithms. These have also dramatically increased both safety
concerns and security threats.
Finally, while commercially available vehicles already support powerful autonomous features,

fully autonomous vehicles are now a reality, and the sale of EVs is rapidly increasing, the technolo-
gies used in all of these cases are far from being fully mature. Safety certification for autonomous
vehicles and their reliability are still major open problems today [5, 16, 89]. Batteries used in EVs
are not yet sustainably produced [31, 151], and their environmental impact remains unclear. As the
adoption of EVs increases, how to tackle retired batteries in an environmentally sustainable and
cost-effective manner is also unclear [87]. The cost of batteries, and therefore EVs, also remains
too high to enable higher levels of adoption [35, 101]. As a result, there are still enormous research
opportunities in this domain. It is our hope that this special issue will help advance work in area
and encourage more researchers to join this burgeoning field.
In the rest of this article, we first discuss some representative work on automotive E/E archi-

tectures that have been motivated by safety and security concerns (Section 2). Next, we discuss
work on Model-Based Design (MBD) for safety and security (in Section 3). Literature on for-
mal methods for autonomous vehicles safety is discussed in Section 4, and automotive controller
design techniques for safety and for mitigating faults and threats in Section 5. Finally, we focus
on automotive security in Section 6, and certification and standardization work in Section 7. We
conclude by briefly outlining the topics of the seven articles in this special issue.

2 SAFETY AND SECURITY-ORIENTED AUTOMOTIVE E/E ARCHITECTURES

A number of studies have focused on in-vehicle E/E architectures from the lens of safety and se-
curity. These include investigating architecture frameworks, standards, protocols, and interfaces,
and classifying them according to various metrics [156]. Modern automotive E/E architectures
consist of hundreds of Electronic Control Units (ECUs) connected by various communication
buses. They support applications from a variety of domains—such as engine and brake control
to infotainment [121], comfort functions [138], and driver assistance [120, 122]. Given the large
number of ECUs and the different applications that are supported on them, determining which
connection topologies are better is an important optimization problem. Work has been done to-
ward this to qualitatively and quantitatively evaluate various in-vehicle architecture topologies,
with an emphasis on two common topology variants: domain-based and zone-based architectures.
Here, in addition to metrics like cost, total communication cable length, and communication load
distribution, safety metrics like failure probability for the different topologies have also been ac-
counted for [39]. Another line of work has developed simulation-based testing of automotive
architectures and software-defined vehicles [15], using only virtual and open source tools such
as CARLA (http://carla.org), Proxmox (http://www.proxmox.com), and ROS2 (Robot Operating
System)-based vehicle functions [51].
Additionally, work has been done on recent transformations in vehicle architectures from the

conventional signal-oriented networks, which are reaching their limits, to service-oriented archi-
tectures and what their relative pros and cons are in terms of flexibility, safety, and security [139].
Similarly, zone-based architectures are also being considered as a promising alternative to conven-
tional E/E architectures. But being new, there is still a lack of systematic methods for designing
them. Methods to design zonal architectures, particularly to optimize their power supply system,
have been proposed in the work of Maier and Reuss [96]. Here, electric loads have been clustered
to identify suitable positions for zone control units. In addition to determining optimal wire har-
ness designs, the entire power supply system has been integrated using vehicle packaging concepts
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and safety metrics. Batteries in EVs [27] and architectural and management decisions around them
also have important safety implications, and some of the techniques used in this domain extend
to other areas like drones [77, 109, 110].

Dynamic reconfiguration of architectures for fail-operational behavior have been studied
by Oszwald et al. [108]. Similarly, the use of FPGA-based reconfigurable computing for high-
performance automotive architectures have been investigated in the work of Shreejith et al. [146],
and Shreejith and Fahmy [147] studied partial reconfiguration support on FPGAs to support
security functions. Along similar lines of hardware design, techniques for mitigating manufac-
turing variabilities, transient faults, and aging issues in automotive hardware and their impact
on software executing on them have also been studied [28, 40, 41, 85, 98]. How to automate the
mapping of safety-critical applications to hardware resources in an automotive high-performance
central computer, by taking into account predefined safety requirements and optimization goals,
has been studied by Askaripoor et al. [7]. By contrasting classical automotive architecture design
approaches, where functions are mapped onto a set of communicating control units, new data-
centric approaches to architecture design have been investigated in the RACE (Reliable Control
and Automation Environment) project [79].
Since automotive architectures are never designed from scratch but evolve over time, studies

have been done on how architecture refinement can be in accordance with ISO 26262 functional
safety standards. Toward this, sensitive parts of the architecture have been identified, along with
selecting suitable safety mechanisms to reduce failure rates and improve metrics defined in the
ISO 26262 standard [129, 130]. Similarly, Lu and Chen [88] used a fault tree analysis for ASIL (Au-
tomotive Safety Integrity Level)-oriented hardware design, again following the ISO 26262 safety
standard. Xie et al. [163] describe recent advances in automotive functional safety design method-
ologies for architecture design following both ISO 26262 and the AUTOSAR adaptive platform
standard.
In addition to considering safety, a considerable amount of work has focused on security-driven

architecture design. Using examples of future in-vehicle E/E architectures, Plappert et al. [117]
have shown how security design patterns can be used to identify and mitigate security attacks.
Similarly, security vulnerabilities stemming from service-oriented architectures, and contrasting
them with signal-oriented architectures has been discussed by Rumez et al. [128]. A case for cen-
tralized E/E architectures considering safety and security has been made in the work of Bandur
et al. [10], and an evaluation of in-vehicle communication network security based on the protec-
tion characteristics of individual network components and the topology of the network has been
presented by Petho et al. [114]. Security considerations toward adopting in-vehicle Ethernet have
been discussed in the work of Ju et al. [65]. Finally, Prasanth et al. [118] provide a tutorial on auto-
motive functional safety and security stemming from the increase in electronics, software content,
and connectivity in modern cars.

3 MBD AND VERIFICATION FOR AUTOMOTIVE SAFETY AND SECURITY

MBD is routinely used for automotive software development [29], particularly for safety-critical
components. Work in this area is also closely related to recent research on formal methods and
MBD for CPS [20, 24, 144, 178]. Among the different tools used for MBD, Simulink/Stateflow for
automotive control optimization [102] and control software development are perhaps the most
common. The work of Jaskolka et al. [64] shows how to analyze changes in Simulink/Stateflow
models to understand how particular model changes impact system evolution. A well-known chal-
lenge in MBD is the incompatibility between the tools and models used for different engineering
tasks. Toward this, the problem of bridging the gap between SysML system architecture models
and AUTOSAR software architecture models have been addressed by Siavashi et al. [148]. Along
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similar lines, a framework for transforming system requirements to code generation for safety-
critical systems has been proposed by Singh et al. [149]. The compatibility between ROS2 and
Adaptive AUTOSAR has been studied by Henle et al. [57].

In general, different techniques have been studied to address the problems of model-model
mismatch and model-implementation mismatch. With the growing volume of software in the
automotive domain, there is a necessity to share computation/communication resources. This
has resulted in a variety of task modeling [22, 115], scheduling [133], and management tech-
niques [19, 23, 84, 176], whose impact is typically not accounted for in high-level models from
which the software is synthesized. Such policies can be both time triggered [46, 92, 175]and event
triggered, as well as hybrid in nature, and a variety of automotive-specific scheduling techniques
for these paradigms have been proposed [132]. Efforts to account for this mismatch have led to
work on both testing [11, 155] and verification [17, 53, 67, 160], including reachability analysis
techniques for safety verification [58, 59, 76, 165, 169].

A review of research and practice in automotive cybersecurity testing, verification, and valida-
tion, particularly from the perspective of cybersecurity standards and regulations such as ISO/SAE
21434 and UNECE WP.29, has been presented in the work of Luo et al. [93]. Verification in this
domain is not restricted to functional correctness but also involves non-functional properties like
drivability. The research reported in the work of Formica et al. [36] presents an automated search-
based software testing framework for generating failure-revealing test cases for functional and
drivability requirements. Formal methods to derive ISO 26262-compliant certificates for service-
oriented automotive architecture have been discussed in the work of Krauter et al. [81]. To test
motion planning algorithms in autonomous vehicles, critical scenarios have been automatically
generated using evolutionary algorithms to tackle the highly non-linear optimization problems in-
volved in the process [78]. Similarly,MBD and formal verification techniques have been extensively
studied for automotive security, and more on this is discussed later. For example, formal security
analysis of SOME/IP (Scalable service-Oriented MiddlewarE over IP), which is an Ethernet-based
service-oriented communication middleware, has been studied in the work of Zelle et al. [173].
Here, multiple security extensions for authentication and authorization of service provisioning
and usage have been proposed. How to ensure safety and security using formal verification, in the
case of over-the-air protocols for firmware updates of in-car control units, has been studied in the
work of Pedroza et al. [112].

3.1 Methods for Ensuring Timing Safety

There is a substantial volume of literature on timing analysis for automotive architectures [43],
software, and communication protocols, from the perspective of timing safety [125]. How to use
assurance cases to provide timing guarantees in automotive TSN (Time-Sensitive Networking)
Ethernet networks has been shown in the work of Kapinski et al. [75]. As mentioned previously,
there is now a move from signal-oriented to service-oriented in-vehicle architectures [82]. Here,
techniques for bounding service discovery times in in-vehicle networks have been presented by
Fraccoroli et al. [37].
One of the primary causes for model-implementation mismatch and safety violation stems from

timing issues. Toward this, techniques to account for delays in control loops have been studied in
several works [50, 69, 94]. Along the same lines, delay-tolerant controllers [33, 49, 103], controllers
that support multiple sampling rates [25, 47, 134], and the co-synthesis of controllers and con-
trol task schedules have been studied as well [13, 48, 95, 126, 141, 172]. The problem of verifying
whether automotive control safety properties are satisfied in the presence of timing uncertainties
has been addressed [42], and the related problem of synthesizing schedules to satisfy control safety
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has been explored [167]. Finally, timing isolation techniques for critical control software have been
proposed [38, 44, 99, 100], as well as the scheduling of mixed-criticality tasks [140].

4 FORMAL METHODS FOR AUTONOMOUS VEHICLE SAFETY

The use of formal methods has been particularly relevant to ensure safety in autonomous vehi-
cles [60, 72, 135, 159], and recent years have witnessed a tremendous volume of work in this do-
main. Here, we sample a variety of work in this area. Checking whether safely driving automated
vehicles would harmonize well with regular traffic flows has been studied by Althoff and Lösch [3].
Formal methods to derive what a safe driving distance for autonomous vehicles should be, along
with checkers for it, have been presented by Rizaldi et al. [124].

Considerations when studying the safety of autonomous vehicles pertain to (a) controllers im-
plementing autonomous functions and (b) ML algorithms for perception processing. Formal verifi-
cation has been applied to both of these. The verification of neural network controllers that process
LiDAR images to produce control actions has been presented in the work of Sun et al. [154]. Sim-
ilarly, Habeeb et al. [54] studied the safety of trajectories of a camera-based autonomous vehicle
that navigates a 3D scene. Formal verification of autonomous vehicles in arbitrary urban traffic
situations, by focusing on its motion planning component, has been described in the work of Pek
et al. [113]. How to check that the software used in an autonomous vehicle conforms to specified
functional requirements has been presented in the work of Yasmine et al. [168]. Computationally
efficient verification of neural network controllers for non-linear continuous-time dynamical sys-
tems has been proposed by Jafarpour et al. [63].
The correctness of any control system behind an autonomous feature depends also on the cor-

rectness of the perception system feeding the controller. Hsieh et al. [61] construct approximations
of perception models from system-level safety requirements, data, and program analysis of the
modules that are downstream from perception. Since such approximations are more analyzable,
they are used in conjunction with closed-loop control strategies to provide correctness guarantees.
Similarly, formal probabilistic analysis techniques have been applied to compact abstractions of
neural network based perception models in the work of Păsăreanu et al. [111]. A concept of per-
ception contracts has been proposed by Astorga et al. [8] to reason about the safety of controllers.
Finding closed-loop vision failures has been formulated as a Hamilton-Jacobi reachability analysis
problem for vision-based controllers in the work of Chakraborty and Bansal [18].

5 CONTROLLER DESIGN TECHNIQUES FOR SAFETY AND MITIGATING FAULTS

AND THREATS

Instead of verifying a given controller, a different line of work pursues the problem of designing
controllers to ensure safety andmitigating faults and security threats. Toward this, how (a) sensing
and communication technologies, (b) human factors, and (c) information-aware controller design
impact the correctness of autonomous vehicles have been surveyed by Sarker et al. [137]. The
work of Dey et al. [34] argues for the rethinking of basic CPS design methods, and migrating
from a safety-aware and resource-level approach to making security a first-class design constraint.
Toward this, new security-aware CPS design techniques for the automotive domain were proposed.

How to mitigate security attacks launched onto the perception sensors and communication
channels of autonomous vehicles has been studied by Ju et al. [68]. Work on mitigating denial of
service attacks in autonomous vehicles by relying on techniques from switched control systems
has been presented by Sun et al. [153]. Kang et al. [74] address the problem that control poli-
cies in autonomous vehicles are not publicly available and therefore cannot be trusted. Hence, a
data-driven control policy based driving safety analysis has been proposed to identify potentially
hazardous driving scenarios. Kang et al. [71] proposed velocity optimization techniques for EVs
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to optimize energy consumption while ensuring safety at traffic lights (i.e., green lights can be
passed without braking, and rear-end collisions are avoided at red lights). Cybersecurity assess-
ment of lane-keeping control in an autonomous vehicle has been studied in the work of Wang
et al. [157], along with experimental evaluations using hardware-in-the-loop simulation. Different
detection mechanisms for cyber-attacks have been experimentally studied in the work of Stabili
et al. [150] using an internal combustion engine and a speed controller communicating via a Con-
troller Area Network (CAN) bus.

5.1 Security and Fault Monitoring and Fault Tolerance in Automotive CPS

In addition to controller design and verification, various techniques for fault monitoring and fault
tolerance for automotive CPS have also been proposed. For example, monitoring of in-vehicle
traffic [73, 104, 161] to detect out-of-order behavior [177] and potential security breaches have
been studied. A ROS2-based architecture for collecting and filtering cybersecurity information
from multiple sources within the vehicle has been proposed in the work of Grimm et al. [52].
Methods to recognize mistimed and/or unintended deactivation of vehicle functions have been
outlined by Segler et al. [142]. An intrusion detection system to monitor CAN network activities
and detect suspicious behavior has been presented byMansourian et al. [97]. Management of safety
assurance and using it as a basis for runtimemonitoring has been proposed in the work of Hawkins
and Conmy [56].

6 AUTOMOTIVE SECURITY THREATS, THEIR MODELING, AND MITIGATION

The two areas that have witnessed the maximum activity in this research space are perhaps veri-
fication of autonomous vehicles [4, 9] and automotive security [86, 123, 131]. Formal verification
techniques like model checking [62, 105, 106, 116] have also been proposed for automotive secu-
rity. In a landmark paper, it was shown how to experimentally evaluate the vulnerability of the
electronics and software in a modern car and infiltrate virtually any ECU to completely circum-
vent a broad array of safety-critical systems [80]. This paper triggered a considerable volume of
work on automotive security for more than a decade, which still continues to be an active area of
research. Soon afterward, it was shown that even physical access to vehicle components is not nec-
essary; vehicles are susceptible to remote compromise and even control, for example, via wireless
communication channels [30]. The use of ML techniques [158] in autonomous vehicles, especially
for perception processing, also introduces new safety and security vulnerabilities.
Security threats in cars have grown considerably because of their increased connectivity. In

addition to connectivity between vehicles, between vehicles and the infrastructure, and because
of communication between charging stations and battery management systems [152] in EVs,
security risks have increased. Yoshizawa et al. [171] have studied protocols and standards for
emerging V2X (Vehicle-to-Everything) communication and identified multiple security- and
privacy-related shortcomings and inconsistencies in them. Some solutions to address these, partic-
ularly for pseudonym certificate management in V2X communication, was proposed by Yoshizawa
and Preneel [170]. Han et al. [55] have investigated security threats stemming from collaborative
interaction and decision making in connected and autonomous vehicles.
In recent years, there has been an enormous amount of work on security vulnerabilities in the

CAN bus, which is widely used in automotive in-vehicle architectures [70] but still lacks suit-
able security mechanisms such as message authentication and encryption, primarily because of
resource constraints. Here, we sample some recent work in this area. Several intrusion detection
techniques for CAN use generative adversarial networks to detect out-of-distribution traffic [177]
and generate usable attacked samples to supplement training samples [164]. The research of Xie
et al. [162] developed security-aware obfuscated priority assignment for CAN-FD (which is CAN
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with flexible data rates). A survey on artificial intelligence based intrusion detection systems for
attacks on CAN has been presented in the work of Rajapaksha et al. [119]. Recently, using graph
neural networks, Zhang et al. [174] propose an anomaly detection mechanism that can detect all—
message injection, suspension, and falsification—attacks in real time, whereas most other anomaly
detection methods can detect only one or two of these attacks. Other recent anomaly detection
mechanisms include those in the work of Shahriar et al. [145] that use a deep learning based
signal-level intrusion detection framework. It performs better than anomaly detection methods
that either monitor sequences of CAN messages IDs or the binary payload data.
Basing an ECU’s hardware characteristics to create its voltage fingerprint has been used as an

authenticationmechanism on the CAN bus. But a technique has been proposed by Bhatia et al. [14]
to corrupt the bus voltages in such an authentication mechanism and launch an attack. In fact,
several papers have shown that even a single compromised ECU on a CAN bus can launch many
different types of attacks. As an attempt to address resource constraints, and especially the limited
bandwidth of the CAN bus, Serag et al. [143] propose an authentication mechanism that uses the
spacing between CAN frames instead of any space in the frame for authentication information.
Other lines of work focus on attacks on an autonomous vehicle’s CAN bus, as they have more

external interfaces and sensors then regular vehicles. Toward this, a lightweight encryption and
authentication scheme for the CAN bus was proposed in the work of Cui et al. [32]. Finally, exam-
ples of attack detection and mitigation mechanisms that use a vehicle’s dynamics include the work
of Kang and Shen [73]. Here, a vehicle state space model that incorporates features like real-time
road friction coefficients are used. When the predicted values of these model parameters based on
historical measurements differ too much from currently measured values, such differences are at-
tributed to potential attacks. Such changes are then subtracted away from measured vehicle states
to generate correct state estimates.

7 CERTIFICATION AND STANDARDIZATION FOR AUTOMOTIVE SAFETY AND

SECURITY

A considerable volume of literature also exists on the topic of standardization and certification
for safety and security in the automotive domain; a literature review on this may be found in the
work of Sanguino et al. [136]. Ardila and Gallina [6] show how to prove compliance with auto-
motive standards such as ISO 26262 and SAE J3061. How to establish compliance with standards
by considering an autonomous vehicle’s full ecosystem has has studied in the work of Benyahya
et al. [12].
While certification in other safety-critical domains like avionics is more well established, the

automotive domain is significantly more cost and, hence, resource sensitive. As a result, it is not
possible to over-provision resources to meet safety constraints [45]. To address this issue, both for-
mal verification [21, 83] and systematic testing has been used for the purpose of certification [107].
Optimization techniques [26] to address resource constraints have also been designed with
verification and certification in view [26], and model-based techniques have been used for certifi-
cation [66]. But a remaining open challenge is to translate verification certificates derived at the
model level to corresponding certificates for implementations generated from the models [127].

8 ARTICLES IN THIS SPECIAL ISSUE

As in Part 1 of this special issue, Part 2 also features seven articles. The first article, entitled
“EVScout2.0: Electric Vehicle Profiling Through Charging Profile” by Brighente et al., discusses
techniques for profiling exchanges that EVs have with charging stations and use the resulting
information to identify them. Such information leakage during charging is a privacy threat, and
the goal of this work is to use the proposed profiling and associated benchmarks to help develop
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future techniques to plug such vehicle identity leakage. The second article, entitled “Control Per-
formance Analysis of Automotive Cyber-Physical Systems: A Study on Efficient Formal Verifica-
tion” by Panahi et al., proposes verification techniques to ensure that automotive controllers meet
their performance and safety requirements even when the resources available to them vary over
time. These variations might stem from schedulers that manage multiple software tasks sharing
common resources. Such verification techniques are usually not scalable, and one of the main con-
tributions of this work is to suitably prune the state space to improve scalability while ensuring
the soundness of the verification process.
As our review illustrated, security for the CAN bus has attracted a lot of attention, and the third

article, entitled “CANOA: CAN Origin Authentication Through Power Side-Channel Monitoring”
by Thakur et al., uses an ECU’s power consumption to authenticate it. The fourth article, “Remote
Perception Attacks against Camera-Based Object Recognition Systems and Countermeasures” by
Man et al., is also on automotive security and shows how camera-based perception systems, such as
in autonomous vehicles, can be attacked using lens flare and auto-exposure control to manipulate
what its vision system perceives. The work also proposes countermeasures for such attacks.

The fifth article, entitled “Performance Comparison of Timing-Based Anomaly Detectors for
Controller Area Network: A Reproducible Study” by Pollicino et al., is again on CAN security, for
which several anomaly detection techniques have been proposed in the past. This work presents
a systematic comparison of eight different CAN anomaly detection algorithms. It releases their
implementations and labeled datasets, thereby allowing a fair comparison of different algorithms.
The sixth article of this special issue, entitled “Towards Safe Autonomy in Hybrid Traffic: Detect-
ing Unpredictable Abnormal Behaviors of Human Drivers via Information Sharing” byWang et al.,
studies safety in hybrid traffic scenarios, where roads are shared by human-driven and autonomous
vehicles. The work proposes algorithms for autonomous vehicles to improve their trajectories by
fusing information from surrounding autonomous vehicles, along with detecting abnormal behav-
iors of human-driven vehicles. Finally, the seventh and the last article, entitled “ADeep Time Delay
Filter for Cooperative Adaptive Cruise Control” by Hsueh et al., studies the stability of cooperative
adaptive cruise control in the presence of delays. In particular, it proposes to use a neural network
to reconstruct state signals that would otherwise not be available—because of delays–to compute
control inputs and maintain system performance.
It is our hope that this second set of articles, along with those that appeared in Part 1 of this

special issue, will push the envelope in automotive CPS research, particularly on safety and se-
curity. We again thank all of the reviewers, Editor-in-Chief Chenyang Lu of ACM TCPS, and all
members of the TCPS editorial team, especially Rebecca Malone and Gita Delsing, without whom
this special issue would not have been possible.
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