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ABSTRACT
This paper proposes a two stage anti-windup compensation scheme for systems subject to both input
saturation and input quantization. The papermakes twomain contributions: (i) it proposes a newpartition-
ing of the saturation/quantization nonlinearity; and (ii) it formulates and solves a two-stage anti-windup
problem on the basis of this partitioned nonlinearity. The anti-windup compensator contains two distinct
elements: one to assuage the effects of quantization, the other to do the same when saturation occurs.
Theoretical results provide conditions whichmust be satisfied in order for the two-stage anti-windup com-
pensator to bestow stability on the resulting closed-loop system. These results are expressed as linear
matrix inequalities and naturally lead to algorithms for anti-windup design. Simulation examples illustrate
the effectiveness of the techniques.
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1. Introduction

Anti-windup compensation is a well-studied approach for deal-
ing with actuator saturation: a nominal linear controller is first
designed to provide satisfactory performance in the absence of
input saturation; following this an anti-windup compensator is
designed to aid the linear controller when saturation occurs. A
great deal of progress was made in the theoretical understand-
ing of anti-windup during the late 1990s and 2000s and there
are nowmany rigorous anti-windup approaches available to the
control engineer Galeani et al., 2009; Hippe, 2006; Tarbouriech
et al., 2011; Tarbouriech & Turner, 2009; Turner et al., 2007;
Zaccarian & Teel, 2011.

The general rationale behind anti-windup compensation
is also applicable to other forms of input nonlinearity,
and researchers have examined the anti-windup approach
to systems which experience input quantisation (Sofrony
& Turner, 2015). The idea is much the same as the saturated
case: a linear controller is designed assuming no input quan-
tisation and then an anti-windup compensator is designed to
assist the linear controller when quantisation occurs. The key
difference between this approach and the anti-windup approach
for systems experiencing input saturation is that the differ-
ence between a control signal u(t) and its quantised version
Q�(u(t)) is that u = Q�(u) only on a set of measure zero, effec-
tively meaning that an anti-windup compensator driven by the
signal u − Q�(u) is active perpetually. Despite this philosophi-
cal observation, the anti-windup approach adopted by Sofrony
and Turner (2015) provided appealing results in simulation
studies.

A more practical situation involves actuators which are
both quantised and subject to saturation. Such situations arise
in many mechanical/aerospace systems where force/moment
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is generated by a finite number of on/off actuators (Ahn
& Yokota, 2005; Chaos et al., 2013).

Indeed, the work here was inspired by space applications
where thrusters are only able to apply either zero force or maxi-
mum force, with finer control permitted by banks of thrusters
which give a finite number of thrust levels. For example, the
attitude control system for the lunar pallet lander described in
Orphee et al. (2019), uses a bank of on-off thrusters at each cor-
ner of the lander to provide control signals of coarsely quantised
levels. Since there are a finite number of these thrusters, the con-
trol is saturated at a value of N� where N is the number of
thrusters and � the thruster force. Unfortunately, there is scant
literature on the rigorous analysis of such systems, with perhaps
themost detailed analysis provided by Tarbouriech andGouais-
baut (2011). In that paper, the saturation/quantisation nonlin-
earity was partitioned into two distinct nonlinearities which
satisfied certain quadratic constraints. Then, using a Lyapunov
analysis and these quadratic constraints, (non-convex) con-
ditions were formulated which allowed one to design a state
feedback controller for such systems.

The approach suggested here uses a partition of the satura-
tion/quantisation nonlinearity which is similar, but, crucially,
different from the partition used in Tarbouriech and Gouais-
baut (2011). The difference in partition is used because it lends
itself more naturally to a two-stage anti-windup compensator
design. The reasoning behind the anti-windup architecture,
which will be explained in the forthcoming sections, is that one
nonlinearity can be used to activate one anti-windup compen-
sator during periods of quantisation, but not saturation; and
the other nonlinearity can be used to activate a second anti-
windup compensator during periods of actuator saturation but
not quantisation.
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The novelty of the approach proposed here is twofold. Firstly,
although many papers have dealt with the issue of quantisa-
tion in general (Azuma & Sugie, 2008; Bullo & Liberzon, 2006;
Delchamps, 1990; Kalman, 1956; Salton et al., 2022), fewer deal
with the issue of actuator quantisation (Sofrony&Turner, 2015)
or the combined issue of actuator quantisation and saturation
(Tarbouriech & Gouaisbaut, 2011). The anti-windup approach
to this problem appears to be rarely studied and in fact, the only
papers the the authors are aware of are the recent articles of
Richards and Turner (2023),Alsamadi et al. (2022). Secondly,
the approach to dealing with the quantisation/saturation non-
linearity in two stages appears new. Although two-stage anti-
windup was proposed in Turner et al. (2005) (see also work
on deferred-action anti-windup (Sajjadi-Kia & Jabbari, 2012;
Turner & Herrmann, 2014; Wu & Lin, 2014) and anticipatory
anti-windup (Turner et al., 2017; Wu & Lin, 2012)) and nonlin-
ear approaches to anti-windup have also appeared in Zaccarian
and Teel (2004),Turner and Kerr (2018), its use in the actuator
quantisation appears entirely new, and moreover, quite natural.

The paper is structured as follows: the next section intro-
duces the saturation/quantisation nonlinearity and discusses
ways in which it could be partitioned; the anti-windup design
approach is then proposed and solved. Some simulation results
are then reported and a brief conclusion is given.

1.1 Notation

Notation ismainly standard. For conciseness, the cone of square
n × n positive definite matrices is denoted Sn+; its diagonal sub-
set is Dn+. The trace of a square matrix M is denoted tr(M).
The shorthandHe(M) = M + M′ is sometimes used for brevity
whenM is a square matrix. Them-dimensional vector of unity
elements is denoted 1m; the m is omitted if the dimension is
clear from the neighbouring matrices. Of particular interest is
the saturation nonlinearity Satū(·) : R

m �→ U ⊂ R
m, defined as

Satū =
⎡
⎢⎣
satū1(u1)

...
satūm(um)

⎤
⎥⎦

where satūi = sign(ui)mini{ūi, |ui|}, where ūi ≥ 0. A symmet-
ric saturation function is assumed, but a non-symmetric version
is handled similarly. The deadzone function is given by the
identity

u = Satū(u) + Dzū(u)

The quantisation nonlinearity, Q�(·) : R
m �→ R

m

Q�(u) =
⎡
⎢⎣
q�(u1)

...
q�(um)

⎤
⎥⎦

where

q�(ui) := sign(ui) · floor (|ui|/�) �

and floor(u) = max{v ∈ Z : v ≤ u}. In this paper it is assumed
that ū = N�, where N is an integer.

An n-dimensional ellipsoid centred at the origin is defined
as,

En(P) := {
x ∈ R

n : x′Px ≤ 1
}

P ∈ Sn+
Often ellipsoids are used to approximate sets of ultimate bound-
edness, which are sets, B ⊂ R

n such that for all x(0) ∈ D ⊂
R
n, then limt→∞ x(t) ∈ B. Since the quantisation nonlinearity

Q�(u) has “no gain” around the origin, convergence of the state
to the origin may not be possible, yet the weaker requirement
of convergence to an ellipsoid surrounding the origin may be
feasible (ultimate boundness).

2. Saturation/Quantisation nonlinearities

2.1 Partitioning the input nonlinearity

In this paper, systems in which the input to the plant, û(t),
is a composite saturation/quantisation nonlinearity will be
considered:

û = Satū[Q�(u)] (1)

It is possible to impose some quite tight quadratic con-
straints on the quantisation nonlinearity alone, Q�(u), Sofrony
and Turner (2015) but not all of these hold for the composite
saturation/quantisation nonlinearity in Equation (1). In Tar-
bouriech and Gouaisbaut (2011), it was observed that the non-
linearity (1) could be written as the sum of two nonlinearities,
viz.

Satū[Q�(u)] = u − u + Satū[Q�(u)] (2)

= u − u + Q�(u) − Q�(u) + Satū[Q�(u)] (3)

= u − (Q�(u) − Satū[Q�(u)])︸ ︷︷ ︸
φ(u)

− (u − Q�(u))︸ ︷︷ ︸
ψ(u)

(4)

As shown inTarbouriech andGouaisbaut (2011), the nonlinear-
ities φ(·) and ψ(·) satisfy independent sector-like constraints.
In particular, the nonlinearity ψ(·) is identical to the one used
in Sofrony and Turner (2015) to drive an anti-windup compen-
sator for quantisation-only nonlinearities: its graph is shown
in Figure 1. Moreover, the sector-like conditions satisfied by
ψ(·) and φ(·) can be used to construct (generally non-convex)
conditions for stability analysis.

Figure 1. Graph of nonlinearityψ(·) in the scalar case.ψ(·) can be considered as
the quantisation error and was used in Tarbouriech and Gouaisbaut (2011),Sofrony
and Turner (2015).
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Figure 2. Graph of nonlinearityNū,�(·) in the scalar case when ū = 3�.

In this paper, due to the two-stage anti-windup approach
proposed in the next section, a different partition of the non-
linearity Satū[Q�(u)] is proposed. Consider instead

Satū[Q�(u)] = u − u + Satū(Q�(u)) (5)

= u − u + Satū(u) − Satū(u) + Satū[Q�(u)]
(6)

= u − Dzū(u) − (Satū(u) − Satū[Q�(u)])︸ ︷︷ ︸
Nū,�(u)

(7)

One can see that the first nonlinearity is the standard deadzone
nonlinearity (often used in anti-windup compensation); the sec-
ond nonlinearity is new with graph (for the scalar case) shown
in Figure 2. Observe this nonlinearity is only non-zero when
|u| ≤ ū. It is considered useful because it represents the error
between a quantised signal and an un-quantised signal, when
the signal is within the saturation limits.

2.2 Quadratic inequalities

Similar to the papers (Sofrony & Turner, 2015; Tarbouriech
&Gouaisbaut, 2011), themain stability results depend on a Lya-
punov analysis which is enabled by the development of several
quadratic constraints on the nonlinearities in question. These
results are stated in the following lemma.

Lemma 2.1: Consider the nonlinearitiesDz(·) : R
m �→ R

m and
Nū,�(·) : R

m �→ R
m. The following inequalities hold

Dzū(u)′W1(u − Dzū(u)) ≥ 0 ∀u ∈ R
m, ∀W1 ∈ D

m+ (8)

Nū,�(u)′W2(u − Nū,�(u)) ≥ 0 ∀u ∈ R
m, ∀W2 ∈ D

m+ (9)

�21′S1 − Nū,�(u)′SNū,�(u) ≥ 0 ∀u ∈ R
m, ∀S ∈ D

m+ (10)

Nū,�(u)′WxDzū(u) = 0 ∀u ∈ R
m, ∀Wx ∈ D

m (11)

Proof: The first inequality is the standard sector inequal-
ity for the deadzone; the second inequality follows since,
from the graph of each element of Nū,�(ui) it is clear that
Nū,�(ui) ∈ Sector[0, 1] and therefore majorisation gives the
result. The third inequality is similar to the one noted in Sofrony
and Turner (2015) and follows because of |Nū,�(ui)| ≤ � for
all i ∈ {1, 2, . . . ,m}. The final equality holds since, for all i ∈
{1, 2, . . . ,m},

Dzū(ui) = 0 ∀ui ≤ ūi (12)

Nū,�(ui) = 0 ∀ui > ūi (13)

therefore the product Dzū(ui)Nū,�(ui) is always zero. �

Remark 2.1: Inequality (11) holds for all diagonalmatricesWx;
there is no stipulation of definiteness.

A number of other quadratic inequalities can be derived for
the composite nonlinearity Satū[Q�(·)] based on ramp func-
tions – see (Richards & Turner, 2023) for some development of
these and also (Groff et al., 2019) for further results.

3. A two-stage anti-windup approach

3.1 System under consideration

The system under consideration is shown in Figure 3. The
strictly proper plant is described by the state-space equations

G(s) ∼
{
ẋp = Apxp + Bpû
y = Cpxp

(14)

where xp ∈ R
n is the plant state, û ∈ R

m is the plant input and
y ∈ R

p is the output. In this paper, the standing assumption is
that Ap is Hurwitz, for simplicity. This assumption can be omit-
ted at the price of complicating the design and losing global
stability guarantees; a discussion of this is given in Section 4.3. It
is assumed that a nominal controller has been designed, ignor-
ing any quantisation or saturation effects, with the following
state-space realisation

K(s) ∼
{

ẋc = Acxc + Bcrr + Bc(y + v21 + v22)
yc = Ccxc + Dcrr + Dc(y + v21 + v22)

(15)

where xc ∈ R
nc is the controller state, r ∈ R

nr is the reference
signal and yc ∈ R

m is the nominal controller output. Signals v21
and v22 are generated by the anti-windup compensators �1(s)
and �2(s) described shortly.

It is assumed thatwhen û = yc andwhen all signals generated
by the anti-windup compensator are zero (vij = 0, i, j ∈ {1, 2}),
the closed-loop interconnection of K(s) and G(s) is stable and
provides satisfactory performance which is in some sense ideal:
this is precisely the assumption made in standard anti-windup
compensation.

In the remainder of the paper, it is assumed that the
plant input is generated through a quantisation and saturation

Figure 3. Systemwith input saturation/quantisation nonlinearity and a two-stage
anti-windup compensator, represented by�1(s) and�2(s).
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operator, namely,

û = Satū[Q�(u)] = Satū[Q�(yc − v11 − v12)] (16)

where u = yc − v11 − v12 indicates that the control signal is the
sum of that from the linear controller, yc, and supplementary
signals, v11 and v12 generated by the anti-windup compensators.

The anti-windup compensators �1(s) and �2(s) are present
to prevent stability and performance problems which occur as
a result of the input nonlinearity Satū[Q�(u)]. They are acti-
vated by different nonlinearities, corresponding to the parti-
tion of the Satū[Q�(·)] nonlinearity given in Equation (7). The
compensators have the following state-space realisations

�1(s) ∼

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = (Ap + BpF1)x1 + G1x1
−G2x2 + BpNū,�(u)

v11 = F1x1
v21 = Cpx1

(17)

�2(s) ∼

⎧⎪⎪⎨
⎪⎪⎩

ẋ2 = (Ap + BpF2)x2 + G2x2
−G1x1 + BpDzū(u)

v12 = F2x2
v22 = Cpx2

(18)

where F1,F2 ∈ R
m×np and G1,G2 ∈ R

np×np are the anti-
windup gain matrices which are to be designed. In the above
equation x1, x2 ∈ R

np are the anti-windup compensator state
vectors and the signals v11, v21 ∈ R

m and v12, v22 ∈ R
p are the

outputs of the anti-windup compensators. WhenG1 = G2 ≡ 0,
both anti-windup compensators have identical forms to that
proposed in Turner et al. (2007) (also similar to the MRAW
of Zaccarian and Teel (2011)). The anti-windup compensators
are primarily driven by the signalsNū,�(u) and Dzū(u) respec-
tively; the intuition behind the operation of the compensators is
described shortly.

Remark 3.1: The anti-windup compensator proposed here is
tailored to the particular nonlinearity Satū[Q�(·)], which is not
normally considered. However, since Satū[Q�(·)] ∈ Sector[0, I]
it is still possible to use many standard anti-windup synthe-
sis approaches for this problem. However, when the quantisa-
tion level, �, is large, some existing anti-windup approaches
do not perform as well as they would for a simple saturation
nonlinearity. This performance deficit is illustrated later in the
paper.

Remark 3.2: This paper focuses on designing full order anti-
windup compensators (17) and (18) which both have very par-
ticular “state-feedback-like” structures but also the same num-
ber of states as the plant. Alternatively, it is possible to use
low-order/static approaches for the design of one or either com-
pensator – see (Biannic&Tarbouriech, 2009; Turner&Postleth-
waite, 2004). Themain advantage of using dynamic anti-windup
compensators is that they have a natural filtering effect on the
control signals and the lack of direct feed-through terms causes
fewer issues with the well-posedness of the feedback intercon-
nection.

3.2 Two-stage anti-windup strategy

The rationale behind the anti-windup approach advocated in
this paper is the following:

Table 1. Modes of behaviour in a quantised/saturated system with anti-windup
compensation.

Mode Behaviour AW compensator active

0 Linear n/a
1 Quantised Primarily�1(s)
2 Saturated Primarily�2(s)
3 Recovery from saturation Primarily�1(s)

(1) When only quantisation occurs, that is when Nū,�(u) =
Satū(u) − Satū[Q�(u)] 
= 0 andDzū(u) = 0, the AW com-
pensator �1(s) is activated and should limit performance
degradation due to quantisation.

(2) When the control input u saturates, that is when Dzū(u) 
=
0 and Nū,�(u) = 0, the AW compensator �2(s) is acti-
vated and should limit performance degradation due to
saturation.

The above implies that �1(s), the first stage of anti-windup,
is primarily responsible for ameliorating the effects of quantisa-
tion; the second stage of anti-windup, �2(s), is focused on limit-
ing degradation due to saturation. A summary of the behaviour
of the saturated/quantised system with two-stage anti-windup
is described in Table 1 where the idea of behaviour modes is
introduced, in a similar manner to that inWeston and Postleth-
waite (2000): linear behaviour is denoted “Mode 0” since, in
practice, it never takes place.

Remark 3.3: There is a subtlety to the above two-stage anti-
windup strategy: each anti-windup compensator is also driven
by a secondary input, namely, the state of the other anti-windup
compensator. For instance,�2(s) is also activated throughG1x1
i.e. when�1(s) becomes active; similarly�1(s) is also activated
when �2(s) is activated. This cross-coupling between compen-
sators seems counter-intuitive, but it transpires to be useful in
practice: the existence of the two matrices G1 and G2 gives the
anti-windup compensators both a useful extra degree of free-
dom which can provide better time-domain performance. Of
course, G1 and/or G2 can be, and often are, set to zero.

The problem addressed in the remainder of the paper is then:
Given the plant G(s), the controller K(s), design anti-windup
compensators �1(s) and �2(s) such that (i) the state of the
closed-loop system is globally ultimately bounded when exoge-
nous inputs are zero; and (ii) when the exogenous inputs are
non-zero, ensure that the deviation between “nominal” (un-
saturated and un-quantised) behaviour and nonlinear (satu-
rated and quantised) behaviour is minimised in some sense.
This will be formalised in the results developed in the next
section.

4. Main results

4.1 Mismatch system

Similar to the so-called “model recovery anti-windup” approach
championed by Zaccarian and Teel (2011) and also advocated in
other papers (Kahveci et al., 2008; Villota et al., 2006; Weston
& Postlethwaite, 2000), the performance of the anti-windup
compensator is measured by its deviation from the behaviour
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of the linear system. First note that the plant dynamics (14) can
be equivalently written, using (7), as

G(s) ∼
{

ẋp = Apxp + Bp
(
u − Dzū(u) − Nū,�(u)

)
y = Cpxp

(19)

Then, using the change of coordinates xe = xp + x1 + x2, then
the system (14) – equivalently (19) –, (15), (17) and (18) can be
written as

Glin(s) ∼
⎧⎨
⎩

ẋlin = Alinxlin + Blinr
ulin = Clinxlin + Dlinr
ylin = [Cp 0]xlin

(20)

ẋ1 = (Ap + BpF1)x1 + G1x1 − G2x2 + BpNū,�(u) (21)

ẋ2 = (Ap + BpF2)x2 + G2x2 − G1x1 + BpDzū(u) (22)

u = ulin − F1x1 − F2x2 (23)

y = ylin − C(x1 + x2) (24)

where xlin = [x′
e x′

c]′ and

[
Alin Blin
Clin Dlin

]
=

⎡
⎣ Ap + BpDcyCp BpCc BpDcr

BcyCp Ac Bcr
DcpCp Cc Dcr

⎤
⎦ (25)

Glin(s) describes the behaviour of the nominal system without
saturation or quantisation. Assuming that the linear controller
K(s) has been designed such that Alin is Hurwitz, and the nom-
inal system exhibits desirable behaviour, the problem to be
addressed can be formally stated as:-

Problem 4.1: Consider the system (20)–(24) and define z1 =
Cx1 and z2 = Cx2. Findmatrices F1, F2,G1 andG2, of appropri-
ate dimension such that the state x1, x2 of (21)–(22) is ultimately
bounded in as small a ball as possible, when ulin ≡ 0; and
find the smallest γ such that when ulin 
= 0, ‖[z′1 z′2]‖2,[0,T] <
γ ‖ulin‖2,[0,T] holds for all ulin ∈ L2,[0,T] and ‖ulin(t)‖ ≥ τ for
some τ > 0 and t ∈ [0,T].

A diagram showing themismatch system is given in Figure 4.
Note that since the quantisation nonlinearity Q�(u) = 0 for all
|u| < �, asymptotic stability andL2 gain resultsmaynot always
be possible; hence stability is relaxed to ultimate boundedness
(as in Sofrony&Turner, 2015; Tarbouriech&Gouaisbaut, 2011)
and the L2 gain is relaxed to an integral quadratic inequality
holding over a finite period T.

Figure 4. Mismatch system showing linear dynamics and a perturbation consist-
ing of the anti-windup compensators of the nonlinearitiesNū,�(u) and Dzū(u).

4.2 Stability and performance analysis

Problem 4.1 contains non-standard performance and stability
objectives. The following lemma, essentially proved in Richards
and Turner (2023) (see also Sofrony & Turner, 2015) is a generic
result which gives sufficient conditions under which ultimate
boundedness and a pseudo-L2 gain condition hold. The pres-
ence of the quantisation nonlinearity makes the system dis-
continuous and thus, no Lipschitz assumptions are invoked.
Instead, it is assumed that the system is well-posed; that is
unique solutions, in the sense of Caratheodory, exist to the
feedback equations.

Lemma 4.1: Consider the well-posed 1 dynamic system

S ∼
{

ẋ = f (x,w)
z = h(x,w)

(26)

where f (·, ·) : R
n × R

m �→ R
n and h(·, ·) : R

n × R
m �→ R

p.
Consider a quadratic Lyapunov function V(x) = x′Px, P ∈ S

n+,
an ellipsoid set En(P̄) (P̄ > 0), and positive scalars τ and γ .
Assume the following inequality holds for all x 
= 0, all w and
some scalar ε > 0,

V̇(x) + εV(x) + ‖z‖2/γ 2 − ‖w‖2 + τ(x′P̄x − 1) < 0 (27)

Then the following are true:

(1) When w = 0, ∀x(0) ∈ R
n, the state x(t) converges to the

smallest level set containing En(P̄) in finite time.
(2) When w is such that ‖w(t)‖2 ≥ τ for all t ∈ [0,T], then the

following L2 gain condition holds∫ T

0
‖z(t)‖2dt < 2γ 2

∫ T

0
‖w(t)‖2dt + β (28)

for some β > 0.

Proof: The proof is similar to Lemma 1 in Sofrony and Turner
(2015), withmodifications accounting for the local behaviour of
the system.

(1) When w = 0, and x 
∈ En(P̄), inequality (27) implies
V̇(x) < −εV(x), meaning that the state converges to the
smallest level set containing the set En(P̄) in finite time

(2) From (27), the assumptions imply

V̇(x) + ‖z‖2
γ 2 < ‖w‖2 + τ ≤ 2‖w‖2 (29)

Therefore, integrating from 0 to T gives

V(x(T)) − V(x(0)) + 1
γ 2

∫ T

0
‖z(t)‖2 dt < 2

∫ T

0
‖w(t)‖2 dt

(30)
from which the inequality (28) with V(x(0)) = β follows.

�

The main result of the paper is an application of Lemma 4.1
to themismatch system,making use of the quadratic constraints
of Lemma 2.1.
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Theorem 4.1: There exist matrices F1, F2, G1 and G2 satisfying
Problem 4.1 if there exist positive definite matrices Q1, Q2, Q̄1,
Q̄2 ∈ Sn+, positive definite diagonal matrices U1,U2, S ∈ Dm+ , a
diagonal matrix Ux ∈ D

m and unstructured matrices L1, L2 ∈
R
m×n and H1,H2 ∈ R

n×n, and scalars γ > 0, η > 0 satisfy-
ing the linear matrix inequality (32). Furthermore, the required

matrices can be calculated as

F1 = L1Q−1
1 , F2 = L2Q−1

2 G1 = H1Q−1
1 , G2 = H2Q−1

2
(31)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He(ApQ1 + BpL1 + H1) −H2 − H′
1 BpU1 − L′

1 −L′
1 0 Q1C′

p 0 Q1 0
� He(ApQ2 + BpL2 + H2) −L′

2 BpU2 − L′
2 0 0 Q2C′

p 0 Q2
� � −2U1 − S Ūx I 0 0 0 0
� � � −2U2 I 0 0 0 0
� � � � −γ I 0 0 0 0
� � � � � −γ I 0 0 0
� � � � � � −γ ηI 0 0
� � � � � � � −Q̄1 0
� � � � � � � � −Q̄2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(32)

Sketch of proof: The proof follows a similar pattern to standard anti-windup proofs, but with somemodifications for the quan-
tisation case suggested by Sofrony and Turner (2015). Consider the system (21)–(24): with state x = [x′

1 x′
2]

′, exogenous input
w = ulin and output z = C(x1 + x2). Following Lemma 4.1, consider the following expression

J = d
dt

(
x′
1P1x1 + x′

2P2x2
) + 1

γ
‖z1‖2 + 1

γ η
‖z2‖2 − γ ‖ulin‖2 + τ1(x′

1P̄1x1 − x′
2P̄2x2 − 1) (33)

where z1 = Cpx1 and z2 = Cpx2, P1,P2, P̄1, P̄2 ∈ S
np
+ , and η > 0. This has the same form as inequality (27) in Lemma 4.1 with

V(x) = x′
1P1x1 + x′

2P2x2, z = [z′1 ηz′2]′ and other terms are defined similarly. Note that the deviation from linear behaviour
during periods of only quantisation is governed by z1 and during periods of saturation by z2.

Using the S-procedure, it is clear that J< 0 for all x1, x2, ulin 
= 0 if

J + Dzū(u)′W1(u − Dzū(u)) + Nū,�(u)′W2(u − N(u)) +
(
�21′S1 − Nū,�(u)′SNū,�(u)

)
+ Nū,�(u)′WxDzū(u) < 0 (34)

since, by Lemma 2.1, the final four terms are positive semi-definite. Using the expressions (21)–(24) in the above inequality, and
choosing τ1 = �21̄′S1̄, then yields the expression ⎡

⎢⎢⎣
x1
x2

N (u)
Dz(u)
ulin

⎤
⎥⎥⎦

′

M

⎡
⎢⎢⎣

x1
x2

N (u)
Dz(u)
ulin

⎤
⎥⎥⎦ < 0 (35)

where M is defined in Equation (36). This expression thus holds if M itself is negative definite. Applying the Schur complement
to remove the nonlinear terms in γ and also to remove P̄1 and P̄2 from the (1,1) and (2,2) elements, respectively, it follows that
M< 0 if and only if inequality (37) holds. Then, using congruence transformations and definingQ1 = P−1

1 ,Q2 = P−1
2 ,U1 = W−1

1 ,
U2 = W−1

2 , L1 = F1Q1,H1 = G1Q1, L2 = F2Q2,H2 = G2Q2, S = U1SU1, Ux = U1WxU2, Q̄1 = (τ1P̄1)−1 and Q̄2 = (τ1P̄2)−1,
inequality (32) follows. Finally, the satisfaction of this inequality guarantees, by Lemma 4.1 that the conditions of Problem 4.1 are
satisfied.

M =⎡
⎢⎢⎢⎢⎣
He

(
P1(Ap + BpF1 + H1)

) + P̄1 + 1
γ C

′
pCp −P1G1 − P2G2 P1Bp − F′

1W1 −F′
1W2 0

� He
(
P2(Ap + BpF2 + H2)

) + P̄2 + 1
γ ηC

′
pCp −F′

2W1 P2Bp − F′
2W2 0

� � −2W1 − S Wx W1
� � � −2W2 W2
� � � � −γ I

⎤
⎥⎥⎥⎥⎦

(36)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He(P1(Ap + BpF1 + H1)) −P1G1 − P2G2 P1Bp−F′
1W1 −F′

1W2 0 C′
p 0 I 0

� He(P2(Ap + BpF2 + H2)) −F′
2W1 P2Bp−F′

2W2 0 0 C′
p 0 I

� � −2W1 − S Wx W1 0 0 0 0
� � � −2W2 W2 0 0 0 0
� � � � −γ I 0 0 0 0
� � � � � −γ I 0 0 0
� � � � � � −γ ηI 0 0
� � � � � � � −P̄−1

1 0
� � � � � � � � −P̄−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(37)

4.3 Local stability results

A drawback of the results described in the previous subsection are that they only apply to stable plants i.e. Ap needs to be Hur-
witz for the matrix inequality (32) to be feasible. This obviously precludes the use of the results for unstable systems. In Richards
and Turner (2023), this issue was overcome by using the modified sector bound of Gomes da Silva and Tarbouriech (2005) and a
bound on the input energy of the unconstrained control signal Zaccarian & Teel, 2011. However, the approach here enables stan-
dard “sector narrowing” techniques often used in constrained control to be applied: note that Equation (7) splits the nonlinearity
into one nonlinearity which captures the effect of quantisation, Nū,�(·) and the deadzone nonlinearity. As usual, it can thus be
seen that,

Dzū(u) ∈ Sector[0,A], ∀u ∈ U ⊂ R
m

whereA = diag(α1, . . . αm) and

U = [−β1ū1,β1ū1] × . . . × [−βmūm,βmūm]

and αi = (βi − 1)/βi ∈ (0, 1) for βi > 1 and i ∈ {1, . . . ,m}. The use of sector narrowing has been considered extensively in the
constrained control literature but the upshot of this is that, for all ui < βiūi, the narrower sector inequality

Dzū(u)′W1(Au − Dzū(u)) ≥ 0 (38)

can be used in place of inequality (8) in Lemma 2.1 in the derivation of a local version of Theorem 4.1, where the LMI (32) is
replaced by inequality (39). The designer then chooses αi ∈ (0, 1) to trade-off the region of local stability with performance.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

He(ApQ1 + BpL1 + H1) −H2 − H′
1 BpU1 − L′

1 −L′
1A 0 Q1C′

p 0 Q1 0
� He(ApQ2 + BpL2 + H2) −L′

2 BpU2 − L′
2A 0 0 Q2C′

p 0 Q2
� � −2U1 − S Ux I 0 0 0 0
� � � −2U2 I 0 0 0 0
� � � � −γ I 0 0 0 0
� � � � � −γ I 0 0 0
� � � � � � −γ ηI 0 0
� � � � � � � −Q̄1 0
� � � � � � � � −Q̄2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(39)

Remark 4.1: The beauty of the partition in Equation (7) is that
it allows the effects of the saturation and quantisation to beman-
aged independently. Since the effects of quantisation, described
using Nū,�(·) only appear for control signals below the satura-
tion limit (notice its graph disappears for |u| > ū from Figure
2) no sector narrowing needs to be applied to this nonlinearity,
and indeed none can be since an inspection of Figure 2 shows
the smallest sector to which it can belong is indeed Sector [0, I].

4.4 Region of ultimate boundedness

Theorem 4.1 guarantees ultimate boundedness of the anti-
windup state, (x1, x2) ∈ R2np and, therefore, an important con-
sideration is the size of this set of ultimate boundedness: to
what set will the state eventually converge? The conditions of
Theorem 4.1 guarantee that the state xi ∈ R

np (i = 1, 2) will
converge to the smallest ellipsoid E2np

i (blockdiag(P1,P2)) such
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that

E2np
i (blockdiag(P1,P2)) ⊃ E2np

i (blockdiag(P̄1, P̄2))

It is therefore natural tominimise the size of E2np
i (blockdiag(P̄1,

P̄2)), which roughly speaking means minimising either the
determinant or trace of blockdiag(P̄1, P̄2). Unfortunately, this is
not possible directly, because, in terms of the decision variables
in the LMI (32),

P̄i = Q̄−1
i /τ1 i = 1, 2

One might instead try to maximise μ such that

P̄i > μ i = 1, 2

Unfortunately this is still not a convex problem, since

Q̄iτ1 = P̄−1
i i = 1, 2

and τ1 = �2tr(U−1
1 SU−1

1 ). However, the above maximisa-
tion problem can be replaced by the surrogate minimisation
problem:

min μ̃ subject to (40){
�2Q̄i < μ̃ i = 1, 2

tr(U−1
1 SU−1

1 ) < μ̃
(41)

It is routine to see that this implies that

Q̄iτ1 < μ̃2 1 = 1, 2

and thus that

P̄i > μ = √
1/μ̃ i = 1, 2

so by minimising μ̃ subject to the constraints (41) helps one to
maximiseμ and thereforeminimise the size of the region of ulti-
mate boundedness. Note that the second constraint in (41) is
not an LMI, but it is straightforward to verify that this indeed
holds if

S < μ̃ U1 > I (42)

Therefore, the size of the region of ultimate boundedness can be
minimised if one solves the minimisation problem:

min μ̃ subject to (43)⎧⎨
⎩

�2Q̄i < μ̃ i = 1, 2
S < μ̃I
I < U1

(44)

which is a convex problem.

4.5 Optimisation and construction of AW compensators

Theorem 4.1 places no constraints on any of the anti-windup
parameters. In the course of the numerical experiments,
reported in the next section, it was observed that if no con-
straints were placed on the pole locations, then either “IMC-
like” anti-windup compensators, or compensators containing
extremely large poles were returned. “IMC-like” compensators,

where F1 and/or F2 are close to zero are well-known from
standard anti-windup (see either Grimm et al., 2003; Turner
et al., 2007) to provide optimal L2 gain performance, but, if
the plant poles are slow/under-damped, can yield poor time-
domain performance (Weston & Postlethwaite, 2000). In con-
trast, compensators with too fast dynamics can be difficult to
implement in practice. For these reasons, additional constraints
in the LMI-optimisation were imposed.

To prevent IMC-like behaviour, constraints on the real parts
of the compensator poles were imposed by simply changing the
(1,1) and (2,2) elements of inequality (32), or inequality (39) for
local stability, to

(1, 1) = Q1A′
p + L′

1B
′
p + ApQ1 + BpL1 + 2ε1Q1 (45)

(2, 2) = Q2A′
p + L′

2B
′
p + H′

2 + ApQ2 + BpL2 + H2 + 2ε2Q2

(46)

where εi, i = 1, 2, determines the upper (negative) bound on the
real part of the poles of�i(s). SinceG1 is used to excite the com-
pensator �2(s) before saturation is encountered, it was decided
to setG1 ≡ 0 in all the examples which follow; therefore it is not
present in inequality (45) or any of the othermatrix inequalities.

To prevent large poles from appearing in the AW compen-
sator dynamics, two approaches may be followed. Firstly, it was
noted that sometimesG2 was chosen to have very large elements
and hence its size was limited by imposing:

G′
2G2 < δ2I

for some δ2. This condition can also be imposed via the LMI,[
δ2I G′

2
G2 I

]
> 0 (47)

which obviously requires the designer to choose an additional
parameter, δ2. A second approach, which was not used in the
examples, but which could be used to directly limit the magni-
tude of the real part of the compensator poles was to enforce the
inequalities:

Q1A′
p + L′

1B
′
p + ApQ1 + BpL1 + 2λ1Q1 > 0 (48)

Q2A′
p + L′

2B
′
p + H′

2 + ApQ2 + BpL2 + H2 + 2λ2Q2 > 0
(49)

for positive constants λ1 and λ2 which determine the lower
(negative) bound on the real part of the compensator poles.

Algorithm 1 provides the algorithm used to design the anti-
windup compensators �1(s) and �2(s).

5. Examples

Several examples are used to demonstrate the effectiveness of
the anti-windup approach developed in the foregoing sections:
the first example is a simple academic example which illustrates
the effectiveness of the result and also the extent to which a
standard anti-windup scheme (developed primarily for systems
with input saturation) fails in the presence of a saturation and
quantisation nonlinearity. The second example, taken from the
literature, is known to exhibit poor responses in the presence of
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Algorithm 1 Algorithm to synthesise anti-windup compen-
sators
(1) Require:

(Ap,Bp,Cp) Plant state-space matrices
α ∈ (0, 1) Sector size
η > 0 Weighting on saturated performance
λ > 0 Importance of size of region of ultimate

boundedness
ε1, ε2 Maximum desired value of real parts of

poles
δ2 Bound onmaximum singular value ofG2

(2) Solve optimisation problem:

min γ + λμ̃

subject to linear matrix inequalities (32), (41), (47), with
replacements (45)-(46)

(3) Construct matrices F1,F2,G1 and G2 according to
Theorem 4.1.

(4) Generate anti-windup compensators using (17) and (18).

saturation; the example shows this is also the case in the pres-
ence of quantisation, but also shows it can be remedied with the
proposed anti-windup approach. The final example is inspired
by the lunar pallet lander in Orphee et al. (2019); an interesting
aspect of this example is that the system both i) with quanti-
sation and without saturation and ii) without quantisation but
with saturation give rise to stable responses, but the combina-
tion of the two nonlinearities causes instability. The proposed
anti-windup approach, however, guarantees stability and greatly
improves performance.

For the following examples, anti-windup compensators were
constructed according to Algorithm 1 with data described
below andwith the additional constraint that thematrixG1 = 0
in all cases. This is not necessary but it seemed to lead to better
performance.

5.1 Lightly damped pole example

The plant data is:

G(s) ∼
[
Ap Bp
Cp −

]
=

⎡
⎣ 0 1 0

−0.1 −0.1 1
1 0 −

⎤
⎦ (50)

A PID controller is used to stabilise the system and bestow
desirable performance in the absence of saturation. It is given by:

K(s) ∼
[
Ac Bc Bcr
Cp Dc Dcr

]

=
⎡
⎣ −20 0 −64 64

1 0 0 0
−62.48 0.31 −200.1 200.1

⎤
⎦ (51)

To design the anti-windup compensators, the parameters in
Table 2 were chosen. Note that, although choosing α = 1 would
ensure global stability, significantly better performance was
obtained with a slightly smaller value, at the expense of only

Table 2. Anti-windup compensator design parameters.

Example η μ δ2 α ε1 ε2

5.1 10−2 10−10 0.1 0.99 300 0.04
5.2 10−2 10−10 0.1 0.999 2 0.5
5.3 10−5 10−6 0.1 0.99 2 0.5

ensuring stability when |u| ≤ 100ū. The relatively small value
of η was chosen to focus on limiting performance degradation
due to saturation and the extremely small value ofμmeant little
weight was given to optimising the size of the region of ultimate
boundedness. The choice of ε1 and ε2 was less straightforward;
these parameters were chosen to ensure the AW compensator
dynamics were not too slow, so that the recovery from linear
behaviour was not too slow. Note that in general, trying to force
the poles of both compensators to be too fast canmake the opti-
misation problem infeasible. Some trial and error was involved
in this choice. Recall thatG1 was set to zero, and henceH1 = 0.
The quantisation levels were set at � = 5 units and the control
saturation limits were ū = 20 units.

The quantisation level used in the simulationswas coarse and
sufficient to cause a detrimental effect on the system’s perfor-
mance. A finer level of quantisation, for example � = 1, would
lead to a much lower level of performance degradation.

Figure 5 shows the system output response, y(t) to a
pulse-like input of unity magnitude. The green trace shows
the response with no saturation/quantisation and the blue
trace shows a severely degraded response when quantisa-
tion/saturation is present, but no anti-windup is present. The
red trace shows the response when saturation/quantisation is
present and the two-stage anti-windup strategy of Theorem 4.1
is used along with the parameter choice above. Clearly, the
anti-windup strategy enables a recovery of linear performance
despite the presence of both saturation and quantisation. The
control response is shown in Figure 6: as expected the anti-
windup compensator makes the control signal quite active, but

Figure 5. Output response of lightly damped pole example: green represents
the linear response; blue is the saturated/quantised response; red is the satu-
rated/quantised responsewith the anti-windupof Algorithm1present; anddashed
black the response with “standard” anti-windup.
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Figure 6. Control response of lightly damped pole example: green represents
the linear response; blue the saturated/quantised response; and red the satu-
rated/quantised response with anti-windup present.

in steady state, it returns to zero (partly because Ap is Hurwitz
for this example).

It is also interesting to compare the approach of the two-stage
anti-windup to “standard anti-windup” to verify that the two-
stage architecture provides an improvement.

Recall that, since the composite nonlinearity satū[Q�(u)]
still belongs to the Sector[0, I], many existing anti-windup
approaches could, in principle be applied to such systems.
Therefore a standard anti-windup compensator of the type
advocated in Turner et al. (2007) was developed. This compen-
sator had a similar structure to �2(s) except that it was driven
by the signal

Dzū[Q�(u)]

(i.e. the deadzoned and quantised control signal) and �1(s)
was not used. Since Ap is Hurwitz and since Dzū[Q(u)] is
sector bounded, the results of Turner et al. (2007) guaran-
tee that the arising anti-windup compensator could be used
to bestow global asymptotic stability on the closed-loop sys-
tem. The compensator was designed using similar parameters
to those described above, except the “performance” weight was
chosen asWp = 1, the robustness weights asWr = 1 and then,
similar to the design of �2(s), poles were constrained to have
real part less than−0.04 (i.e. ε2) and again, a local compensator
was designed with the sector bound parameter α = 0.99. The
output response of the system equipped with this anti-windup
compensator is shown by the black trace in Figure 5. It can be
seen that the response is noticeably worse than the response
obtained with the new approach designed using Algorithm 1:
tracking is far less assiduous. Figure 7 shows the control system
response: this is much more active than the response obtained
using the new two-stage anti-windup compensator, with the
control signal active long after the output has settled. Some tun-
ing, in particular setting α = 1, can result in a better “standard”
compensator, but in all designs, responses were worse than the
two-stage approach, especially in terms of control signal activity
which always seemed to be much higher.

Figure 7. Control response of lightly damped pole example: green repre-
sents the linear response; blue the saturated/quantised response; red the satu-
rated/quantised response with anti-windup present; black dashed with “standard”
anti-windup.

Of course, when the quantisation level is reduced to a much
smaller ratio of the saturation limit, the responses with the
approach proposed in this paper and the existing approach of
Turner et al. (2007) become much closer. The main merit of the
proposed approach is when quantisation levels are coarse, such
as in this example.

5.2 Example fromOrtseifen and Adamy

The plant and controller for this example are taken from
Ortseifen and Adamy (2011), with the plant representing a
hydraulic actuator and the controller a simple linear con-
troller providing good nominal control. The anti-windup com-
pensator design parameters were chosen along similar lines
to the previous example; these are given in Table 2. Again,
although α = 1 could be used, superior local performance
was obtained with slightly smaller values, so α = 0.999 was
used.

Deliberately coarse quantisation levels were chosen for this
example: � = 5 volts and the control saturation limits were
ū = 10 volts i.e. the control signal could only take values in
{−10,−5, 0, 5, 10}. These quantisation levels were responsible
for significant performance deterioration and show that the
anti-windup compensation approach works well on such a chal-
lenging example.

Figure 8 shows the system output response, y(t) to a
pulse-like input of magnitude 25cm. The green trace shows
the response with no saturation/quantisation and the blue
trace shows a rather oscillatory response when quantisa-
tion/saturation is present, but no anti-windup is present. The
red trace shows the response when saturation/quantisation is
present and the two-stage anti-windup strategy of Theorem 4.1
is used along with the parameter choice above. While satura-
tion/quantisation do not lead to instability, some degradation
from linear performance is noticeable. The anti-windup com-
pensation, by and large, rectifies this with only a slightly slower
response resulting. The control response is shown in Figure 9:
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Figure 8. Output response of hydraulic actuator example from Ortseifen
and Adamy (2011): green represents the linear response; blue is the satu-
rated/quantised response; and red is the saturated/quantised response with
anti-windup present.

Figure 9. Control response of hydraulic actuator example from Ortseifen
and Adamy (2011): green represents the linear response; blue the satu-
rated/quantised response; and red the saturated/quantised response with
anti-windup present.

as with the first example the control signal is quite active but
seems to settle down by the end of the simulation. When stan-
dard anti-windup is used (since Dzū[Q�(·)] ∈ Sector[0, I]) the
situation is very similar to the previous example: one sees an
improvement over not using any anti-windup but the behaviour
with the two-stage anti-windup is superior (results not shown).

5.3 Rigid-body dynamics

The final example considered is that of a three-axis rigid
body system. The problem is more challenging than the ear-
lier examples since the model is nonlinear with three inputs
and three outputs m = p = 3. When linearised, in each chan-
nel there are two imaginary axis poles, meaning the matrix
Ap is not Hurwitz and hence the local stability approach of
Section 4.3 must be used. This example captures some of the

features of the lunar pallet attitude control system in Orphee
et al. (2019) and therefore it was assumed that the three con-
trol torques were constructed from three banks of three on-off
actuators with maximum torques of 20 Nm. This meant that
� = 20Nm and the actuator saturation limit ū = 60Nm in each
channel.

The system model was taken from Turner and Richards
(2020) where the inertia matrix was given by J = diag(2, 1, 0.5)
kg m2. Linearisation around θi = 0, θ̇i = 0, i = 1, 2, 3, yielded
the dynamics

θ̈i = 1
Ji
ui i = {1, 2, 3} (52)

where θi is an Euler angle, ui is the torque input to the i’th axis
and Ji is the mass moment of inertia of this axis. Since, each axis
is, in the linear case, decoupled, state-feedback controllers with
integral action were designed for each axis such that the closed-
loop poles were located on the real axis at values:

{−5,−7.5,−10}

Similar controllers were used in Richards andTurner (2020) and
Richards and Turner (2023), and, when neither saturation or
quantisation was present, gave good responses in both linear
and nonlinear simulation. Interestingly, when either quantisa-
tion or saturation was present (but not both), degradation of the
responses was not too severe – as can be seen by comparing the
responses in Figure 10 with the blue traces in Figure 11.

The two-stage anti-windup compensators �1(s) and
�2(s) were designed using Algorithm 1 with the choice of
design parameters given in Table 2. In this case, since the eigen-
values ofApwere situated on the imaginary axis, it was necessary
to choose α < 1 in order for Algorithm 1 to provide a solution:
a value of α = 0.99 seemed satisfactory.

Figure 11 shows the angular position of the nonlinear rigid
body responses to a sequence of pulses similar to those used
in previous examples. In addition, a short pulse disturbance
of magnitude 2Nm is applied around the y-axis of the rigid
body after 10 s. Three types of response are shown: nominal
linear (no quantisation/saturation) in green; quantisation and
saturation but no anti-windup in blue; and quantisation and sat-
uration, with the two-stage anti-windup strategy of Theorem 1
and the parameter choice above, in red. Although early on in
the simulations the presence of anti-windup does not appear
necessary, once the system experiences saturation, the sys-
tem not equipped with anti-windup quickly becomes unstable
and enters a perpetual spin. This behaviour is avoided, and a
response fairly close to linear is preserved, when anti-windup is
present in the loop.

The plant input is shown in Figure 12. The presence of quan-
tisation leads to chattering in the control signal for the system
with and without anti-windup compensation. A broad obser-
vation is that anti-windup compensation leads to a more active
control signal when a non-zero demand is to be tracked, but
the system without anti-windup seems to have more active
control signals in general. In the simulation results shown,
when quantisation/saturation is present without anti-windup,
the second channel control signal, typically associated with
pitch manoeuvres, becomes permanently saturated – despite
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Figure 10. Attitude response of rigid-body example: red dashed line shows the response with saturation but not quantisation; blue solid line, the response with
quantisation but no saturation.

Figure 11. Attitude response of rigid-body example: green represents the linear response; blue the saturated/quantised response; and red the saturated/quantised
response with anti-windup present.

no pitch demand – and the remaining channels exhibit large
oscillations.

Remark 5.1: For the simulations reported here, the anti-
windup compensators had no specific structure imposed on

them. However, since the linear plant (not the nonlinear plant)
is entirely decoupled, the anti-windup compensators could be
designed on a channel-by-channel basis similar to those for
magnitude saturation in Ofodile and Turner (2016),Richards
and Turner (2020). This would give the compensators a block



INTERNATIONAL JOURNAL OF CONTROL 13

Figure 12. Control response of rigid body example: green represents the linear response; blue the saturated/quantised response; and red the saturated/quantised
response with anti-windup present.

diagonal structure which would be attractive in
practice.

6. Conclusion

This paper has addressed the quantisation+saturation prob-
lem from an anti-windup perspective. The paper has two main
novelties: i) a partitioning of the saturation/quantisation non-
linearity into two distinct elements; and ii) the formulation and
solution of a novel two-stage anti-windup problembased on this
partitioning. The paper has proposed LMI-based synthesis algo-
rithms which enable the design of the two anti-windup stages in
an efficient manner, enabling the designer to trade-off perfor-
mance, measured using an L2 -gain-like approach, and the size
of a ball of ultimate boundedness. Simulation results of vary-
ing complexity have illustrated the promise of the technique.
There are a number of parameters which the designer can use
as tuning knobs and these still need to be investigated further
as the approach advocated in the examples is rather superficial
and worthy of more scrutiny.

Also worthy of further investigation are improved methods
of assessing local performance and stability. The local approach
suggested in Section 4.3 works well when the eigenvalue of Ap
are on the imaginary axis, but when they are far into the right-
half complex plane, the approach of Gomes da Silva and Tar-
bouriech (2005) is more appealing.

Note

1. A system is well-posed if a unique x(t) and z(t) exist to the feedback
equations for all exogenous inputs w(t).
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