

FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, and Tianyin Xu

• Parallel test execution. Ctest4J supports running Ctests with

different configurations in parallel, addressing the limitation of

sequential-only execution of prior Ctest scripts (due to a design

limitation of sharing static configuration objects). Also, Ctest4J

incurs a low runtime overhead; a Ctest runs only ∼3% slower on

average than a regular unit test.

• Maintainability. Ctest4J provides source-code annotations to

make Ctests easy tomaintain. Ctest4J allows developers to specify

the mapping between Ctest and configuration parameters as

annotations inside the test code, without creating a dependency

on separate, external files. For backward compatibility, Ctest4J

supports original mapping files for projects that use prior scripts.

• Automation. Configuration API instrumentation is a necessary

step to enable Ctests. Ctest4J uses AspectJ to automate the instru-

mentation, thereby easing the adoption of configuration testing

for existing projects. With our automation, enabling Ctests takes

only 20 lines of code on average across 12 Java projects.

Ctest4J is available at https://github.com/xlab-uiuc/ctest4j and re-

leased in the Maven Central Repository.

2 USAGE

We present a high-level overview of configuration testing with

Ctest4J. More details are in the code documentation on GitHub.

2.1 Writing Ctests

Ctest4J provides two source-code annotations for developers to

mark Ctest classes and methods:

• @CtestClass marks that a class is a Ctest class;

• @Ctest marks that a method is a Ctest method;

These annotations specify the configuration parameters of the cor-

responding Ctest(s) in a class or a method. Making the configuration

parameter usage explicit (1) substantially aids debugging (as devel-

opers gain insights into which configuration parameters are utilized

by a Ctest), (2) enhances the capabilities of test selection [10, 12] and

prioritization [2], and (3) enables more efficient Ctest fuzzing [4].

Both annotations can specify configuration parameters used

by the Ctest(s) as a list of parameters and a regular expression to

match the parameters. For backward compatibility with the original

Ctest scripts [7], @CtestClass can also specify a file that contains

the mapping between configuration parameters and Ctest methods.

Lists, regexes, and files can be provided together, and Ctest4J unions

the mappings into one final mapping. Besides these annotations,

Ctest4J’s Ctest runner needs to be specified within the Ctest class.

For example, Ctest4J’s CtestJUnitRunner is added through the usual

@RunWith annotation in JUnit4.

Figure 1 is a simplified Ctest example from Hadoop YARN. We

annotate the existing class TestFSDownload with the Ctest4J’s run-

ner CtestJUnitRunner (line 1) and @CtestClass (line 2), and the

test method testDownload with @Ctest (lines 8-10). @CtestClass

specifies the class-level configuration parameter used by all the

Ctest methods in the class. The class-level configuration param-

eters mostly come from the test setup and teardown executions.

In this example, the method getRecordFactory() (line 6) uses the

parameter yarn.ipc.record.factory.class, making it a class-level

configuration parameter. @Ctest specifies the method-level con-

figuration parameters used in the execution of the Ctest method

1 @RunWith(CtestJUnitRunner.class)

2 @CtestClass ({"yarn.ipc.record.factory.class"})

3 public class TestFSDownload {

4 private Configuration conf = new Configuration ();

5 static final RecordFactory recordFactory =

6 RecordFactoryProvider.getRecordFactory(null);

7

8 @Ctest(regex="fs.(client.resolve.remote.symlinks|" +

9 "permissions.umask -mode|local.block.size|" +

10 "AbstractFileSystem.file.impl)")

11 public void testDownload () {

12 // Create FileContext with parameters in @Ctest

13 FileContext files =

14 FileContext.getLocalFSFileContext(conf);

15 ...

16 // Start downloading

17 FSDownload fsd = new FSDownload(files , ...)

18 Path path = fsd.download(...);

19 ...

20 // Check whether the download is done

21 assertTrue(path.isDone ())

22 ... // Check other properties of the downloaded file

23 }

24 }

Figure 1: A Ctest in YARN with Ctest4J. The configuration

parameters in the code snippet will be instantiated by values

from the configuration under test (not shown in the figure).

body. In this example, testDownload uses four method-level con-

figuration parameters, specified for illustration through a regular

expression. These parameters are used by various methods, e.g.,

createFileSystem() method invoked by getLocalFSFileContext()

uses local.block.size. During Ctest execution, Ctest4J instantiates

every configuration parameter used by each Ctest method with the

configuration under test, e.g., a production configuration.

2.2 Configuration API Instrumentation

To enable Ctests in a Java project, developers need to instrument the

configuration API with Ctest4J so that Ctest4J can instantiate Ctests

with the configuration under test at runtime. Ctest4J also provides

APIs to track the usage of configuration parameters during the

execution of Ctests; the tracking is important for debugging, main-

tenance of the input configuration parameters for each Ctest, and

adequacy measurement (e.g., coverage of configuration parameters

of a Ctest suite).

Ctest4J focuses on common configuration API patterns in Java

projects, many of which use a unified configuration class with two

basic API abstractions, configuration GET and SET APIs [5, 8–

10, 13, 15, 19, 20]. The GET APIs of the form “<T> get(String

parameter)” take a parameter name and return a value; SET APIs

of the form “void set(String parameter, <T> value)” set the

value of the given parameter with the input value. Configura-

tion APIs built on top of the common java.util.Properties and

org.apache.commons.configuration all follow such a pattern.

2.2.1 Instrumenting Configuration API. Without Ctest4J, all test

executions would use only the default configuration provided with

the project. Ctest4J modifies the execution so that tests run with the

configuration under test (e.g., a production configuration). Ctest4J

instruments the configuration API with connectProdConfig, which

connects the configuration under test to the configuration ob-

jects used by the Ctests. The connectProdConfig method is a static

method that takes the configuration SET API as input; typically,

563

Ctest4J: A Practical Configuration Testing Framework for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

connectProdConfig is added to the constructor of the configuration

class to initialize the configuration object with the configuration

under test. The following snippet shows how to instrument the

configuration API of Apache Hadoop YARN.

1 public Configuration () {

2 this(true);

3 + Ctest4J.connectProdConfig(

4 + (name , value) -> set(name , (String) value));

5 }

For projects that do not have a unified configuration class where

Ctest4J can modify the SET API, Ctest4J supports a lazy instrumen-

tation mode that modifies the configuration GET API to use the

configuration under test.

2.2.2 Tracking Configuration Parameters. Ctest4J also provides an

API (a static markParamAsUsed method) to track the usage of config-

uration parameter values during the execution of Ctests. Ctest4J

calls markParamAsUsed upon the invocation of a configuration GET

API, as shown in the following snippet (from Hadoop).

1 public String get(String name) {

2 + Ctest4J.markParamAsUsed(name);

3 String [] names = handleDeprecation(deprecationContext.get

(), name);

4 String result = null;

5 for(String n : names) {

6 + Ctest4J.markParamAsUsed(n);

7 result = substituteVars(getProps ().getProperty(n));

8 }

9 return result;

10 }

For projects that have multiple different configuration GET APIs,

markParamAsUsed is expected to be placed for every API to ensure

the completeness of tracking.

Ctest4J provides an AspectJ [3] based utility to instrument the

configuration API (by specifying the fully qualified name of the

APIs), if source-code changes are not preferred.

2.3 Running Ctests

Running a Ctest is similar to running a regular unit test. For example,

with Maven, Ctests can be run with Maven Surefire (mvn test).

Ctest4J provides three modes to run Ctests:

• debug: run the Ctest with the default configuration and check

whether all the required configuration parameters are used dur-

ing the test execution. This mode helps in developing and debug-

ging Ctests;

• prod: run the Ctest with the configuration under test;

• default: run the Ctest with the configuration under test and

check whether all the required configuration parameters are

used during the test execution.

Ctest4J supports running Ctests in parallel with different con-

figuration files. Ctest4J also supports input configuration through

command-line arguments. If no configuration file or command-

line argument is specified, Ctest4J runs the Ctest with the default

configuration; in this case, a Ctest falls back into a regular unit test.

Ctest4J implements parameter-aware Ctest selection [10]. We

plan to develop advanced test selection algorithms such as uRTS [12]

and test case prioritization algorithms [2] in Ctest4J.

Annotation

Library

Parameter

Tracker

ConfUT

Connector

Ctest Runner

C
te

st
4

J

Ctest Source

Code

Mapping Files

(Optional)

Configuration

Under Test

Figure 2: Overview of Ctest4J.

3 IMPLEMENTATION

The current Ctest4J implementation has ∼5000 lines of Java code.

Ctest4J takes three inputs: (1) the Ctest code, (2) the configuration

under test (ConfUT), and (3) optionally a mapping file between

the parameters and the Ctest that uses them (the original Ctest

scripts [7] required such files). Ctest4J processes the test annotations

(with explicit parameter list or the file name) and instantiates the

execution of Ctests. Figure 2 shows the four main components of

Ctest4J. We next briefly describe their implementations.

3.1 Annotation Library

The annotation library processes the annotations in the test code.

The annotations are conceptually similar to the @Test annotation for

regular unit tests. @CtestClass and @Ctest mark that the annotated

class or method, respectively, is a Ctest. As described in §2.1, both

annotations specify the configuration parameters of the Ctest using

a list or a regex. To get a precise set of configuration parameters

from a regex, Ctest4J does not accept patterns with match-any

operators ".*" or ".+", which could match too many parameters.

@CtestClass can also specify configuration parameters from a

mapping file in JSON that has two fields: class-level parameters (a

list of configuration parameters required by all Ctests in the class)

and method-level parameters (a map between Ctest method names

and configuration parameters required by the method).

3.2 ConfUT Connector

The configuration connector connects the ConfUT with Ctests, ef-

fectively to run each test with the configuration under test (rather

than the default configuration). The original Ctest scripts [7] im-

plemented the connector by writing the ConfUT to a dedicated

configuration file and changing the code for the initialization of the

configuration object to read the dedicated file and instantiate the

Ctest for execution. However, the dedicated file was shared among

all Ctests, and Ctests could not run concurrently with different con-

figurations. As different Ctests may be suitable for testing different

scenarios, some projects (e.g., HDFS) have various configuration

files (e.g., in test/resources) for different tests.

Ctest4J’s configuration connector directly writes the ConfUT

into the configuration object via the configuration SET APIs, with

no dedicated configuration file. For each Ctest run, it creates a map

with each configuration parameter and its value from the ConfUT.

To create configuration objects during Ctests run, the instrumented

configuration API invokes the Ctest4J’s connectProdConfigmethod.

The connector uses the SET API to instantiate each configuration

parameter with the corresponding value. The design enables Ctest4J

to support parallel execution of Ctests with distinct configurations.

564

Ctest4J: A Practical Configuration Testing Framework for Java FSE Companion ’24, July 15–19, 2024, Porto de Galinhas, Brazil

REFERENCES
[1] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.

2020. Understanding and Discovering Software Configuration Dependencies in
Cloud and Datacenter Systems. In Proceedings of the 2020 ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’20). https://doi.org/10.1145/3368089.3409727

[2] Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-
Case Prioritization for Configuration Testing. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’21).
https://doi.org/10.1145/3460319.3464810

[3] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP’01).

[4] Junqiang Li, Senyi Li, Keyao Li, Falin Luo, Hongfang Yu, Shanshan Li, and Xiang
Li. 2024. ECFuzz: Effective Configuration Fuzzing for Large-Scale Systems. In
Proceedings of the 46th International Conference on Software Engineering (ICSE’24).
https://doi.org/10.1145/3597503.3623315

[5] Max Lillack, Christian Kästner, and Eric Bodden. 2014. Tracking Load-time Con-
figuration Options. In Proceedings of the 29th IEEE/ACM International Conference
on Automated Software Engineering (ASE’14). https://doi.org/10.1109/TSE.2017.
2756048

[6] Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang. 2021. Finding
heterogeneous-unsafe configuration parameters in cloud systems. In Proceed-
ings of the Sixteenth European Conference on Computer Systems (EuroSys’21).
https://doi.org/10.1145/3447786.3456250

[7] OpenCtest. 2020. Research Artifact for “Testing Configuration Changes in Con-
text to Prevent Production Failures”. https://github.com/xlab-uiuc/openctest.

[8] Ariel Rabkin and Randy Katz. 2011. Static Extraction of Program Configura-
tion Options. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE’11). https://doi.org/10.1145/1985793.1985812

[9] Mohammed Sayagh, Zhen Dong, Artur Andrzejak, and Bram Adams. 2017. Does
the Choice of Configuration Framework Matter for Developers? Empirical Study
on 11 Java Configuration Frameworks. In 2017 IEEE 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM’17). https://doi.
org/10.1109/SCAM.2017.25

[10] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen,
and Tianyin Xu. 2020. Testing Configuration Changes in Context to Prevent
Production Failures. In Proceedings of the 14th USENIX Conference on Operating
Systems Design and Implementation (OSDI’20).

[11] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Configuration Management at Facebook. In Proceedings of the 25th ACM Sympo-
sium on Operating System Principles (SOSP’15). https://doi.org/10.1145/2815400.
2815401

[12] Shuai Wang, Xinyu Lian, Darko Marinov, and Tianyin Xu. 2023. Test Selection
for Unified Regression Testing. In Proceedings of the 45th International Conference
on Software Engineering (ICSE’23). https://doi.org/10.1109/ICSE48619.2023.00145

[13] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16).

[14] Tianyin Xu and Owolabi Legunsen. 2019. Configuration Testing: Testing Con-
figuration Values Together with Code Logic. CoRR abs/1905.12195 (July 2019).
https://doi.org/10.48550/arXiv.1905.12195

[15] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Mis-
configurations. In Proceedings of the 24th ACM Symposium on Operating System
Principles (SOSP’13). https://doi.org/10.1145/2517349.2522727

[16] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Con-
figuration Errors: A Survey. ACM Computing Surveys (CSUR) 47, 4 (July 2015).
https://doi.org/10.1145/2791577

[17] Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static Detection of
SilentMisconfigurationswith Deep Interaction Analysis. In Proceedings of the 36th
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’21). https://doi.org/10.1145/3485517

[18] Jiaqi Zhang, Lakshmi Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala,
Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: Exploiting System Environment
and Correlation Information for Misconfiguration Detection. In Proceedings of the
19th International Conference on Architecture Support for Programming Languages
and Operating Systems (ASPLOS’14). https://doi.org/10.1145/2644865.2541983

[19] Sai Zhang and Michael D. Ernst. 2013. Automated Diagnosis of Software Con-
figuration Errors. In Proceedings of the 35th International Conference on Software
Engineering (ICSE’13). https://doi.org/10.1109/ICSE.2013.6606577

[20] Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong, and
Tianyin Xu. 2021. An Evolutionary Study of Configuration Design and Imple-
mentation in Cloud Systems. In Proceedings of the 43rd International Conference
on Software Engineering (ICSE’21). https://doi.org/10.1109/ICSE43902.2021.00029

Received 2024-01-29; accepted 2024-04-15

566

	Abstract
	1 Introduction
	2 Usage
	2.1 Writing Ctests
	2.2 Configuration API Instrumentation
	2.3 Running Ctests

	3 Implementation
	3.1 Annotation Library
	3.2 ConfUT Connector
	3.3 Parameter Tracker
	3.4 Ctest Runner
	3.5 Integration with Testing Frameworks

	4 Evaluation
	4.1 Enabling Ctests
	4.2 Performance

	5 Conclusion
	References

