Ctest4): A Practical Configuration Testing Framework for Java

Shuai Wang
University of Illinois
Urbana-Champaign

Urbana, USA
swang516@illinois.edu

Darko Marinov
University of Illinois
Urbana-Champaign
Urbana, USA
marinov@illinois.edu

ABSTRACT

We present Ctest4], a practical configuration testing framework for
Java projects. Configuration testing is a recently proposed approach
for finding both misconfigurations and code bugs. Ctest4] addresses
the limitations of configuration testing scripts from prior work,
including lack of parallel test execution, poor maintainability due
to external dependencies, limited integration with modern build
systems, and the need for manual instrumentation of configuration
APL Ctest4] is a unified framework to write, maintain, and execute
configuration tests (Ctests) and integrates with multiple testing
frameworks (JUnit4, JUnit5, and TestNG) and build systems (Maven
and Gradle). With Ctest4], Ctests can be maintained similarly to
regular unit tests. Ctest4] also provides a utility for automated
code instrumentation for common configuration API. We evaluate
Ctest4] on 12 open-source projects. We show that Ctest4] effectively
enables configuration testing for these projects and speeds up Ctest
execution by 3.4X compared to prior scripts. Ctest4] can be found
at https://github.com/xlab-uiuc/ctest4j.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging.

KEYWORDS
Configuration testing, Software testing, Software reliability

ACM Reference Format:

Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, and Tianyin Xu. 2024.
Ctest4]: A Practical Configuration Testing Framework for Java. In Compan-
ion Proceedings of the 32nd ACM International Conference on the Foundations
of Software Engineering (FSE Companion °24), July 15-19, 2024, Porto de Gal-
inhas, Brazil. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3663529.3663799

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

FSE Companion °24, July 15-19, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0658-5/24/07

https://doi.org/10.1145/3663529.3663799

Xinyu Lian
University of Illinois
Urbana-Champaign

Urbana, USA

lian7 @illinois.edu

562

Qingyu Li
University of Illinois
Urbana-Champaign
Urbana, USA
qingyul2@illinois.edu

Tianyin Xu
University of Illinois
Urbana-Champaign

Urbana, USA

tyxu@illinois.edu

1 INTRODUCTION

Configuration testing [10, 14] is a recently proposed approach for
rigorously testing software configurations, similar to how software
code is tested today. The key motivation is to test production system
configurations before deploying them. Configuration testing con-
nects configurations to software tests so that configuration changes
can be tested in the context of code affected by the changes. A
configuration test (Ctest) is a test that takes as input a system con-
figuration and checks the configuration with the code. In many
projects, configurations are key-value pairs that map configuration
parameters to their values. Prior work [10] has shown that config-
uration testing outperforms previous approaches [1, 11, 16-18] for
detecting failure-inducing configurations, including sophisticated
misconfigurations and valid configurations that trigger dormant
software bugs. Regression test selection [10, 12] and test case pri-
oritization [2] have been developed to make configuration testing
more efficient for continuous delivery and deployment.

However, despite the active research on configuration testing
from several groups [2, 4, 6, 10, 12, 14], including configuration
tests for fuzzing [4] and unsafe parameter detection [6], there is
no practical, systematic framework for configuration testing. Prior
research developed ad hoc scripts [7], which are very limited and
deficient for practical use cases—they do not support parallel test
execution, have poor maintainability due to external dependencies
(requiring a file that specifies the mapping between configuration
parameters and the tests that use them), work only for JUnit4 and
Maven, and require manual instrumentation of the configuration
APL Such deficient support makes it harder to adopt configuration
testing in practice and even hampers research. For example, all
prior papers [2, 4, 10, 12, 14] evaluated configuration testing on a
fixed set of five or six open-source projects.

We present Ctest4], a practical configuration testing framework
for Java projects. Ctest4] provides new annotations so that develop-
ers can write and maintain Ctests similarly to regular unit tests. It
connects the configuration values under test with the correspond-
ing Ctests. Ctest4] also provides automated code instrumentation
for common configuration APIL The instrumentation is required to
enable Ctests. Ctest4] supports the most popular Java-based test
frameworks (JUnit4, JUnit5, TestNG) and build systems (Maven,
Gradle). In sum, Ctest4] provides the following features:

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

o Parallel test execution. Ctest4] supports running Ctests with
different configurations in parallel, addressing the limitation of
sequential-only execution of prior Ctest scripts (due to a design
limitation of sharing static configuration objects). Also, Ctest4]
incurs a low runtime overhead; a Ctest runs only ~3% slower on
average than a regular unit test.

e Maintainability. Ctest4] provides source-code annotations to
make Ctests easy to maintain. Ctest4] allows developers to specify
the mapping between Ctest and configuration parameters as
annotations inside the test code, without creating a dependency
on separate, external files. For backward compatibility, Ctest4]
supports original mapping files for projects that use prior scripts.

e Automation. Configuration API instrumentation is a necessary
step to enable Ctests. Ctest4] uses Aspect] to automate the instru-
mentation, thereby easing the adoption of configuration testing
for existing projects. With our automation, enabling Ctests takes
only 20 lines of code on average across 12 Java projects.

Ctest4] is available at https://github.com/xlab-uiuc/ctest4j and re-
leased in the Maven Central Repository.

2 USAGE

We present a high-level overview of configuration testing with
Ctest4]. More details are in the code documentation on GitHub.

2.1 Writing Ctests

Ctest4] provides two source-code annotations for developers to
mark Ctest classes and methods:

e @CtestClass marks that a class is a Ctest class;
e @Ctest marks that a method is a Ctest method;

These annotations specify the configuration parameters of the cor-
responding Ctest(s) in a class or a method. Making the configuration
parameter usage explicit (1) substantially aids debugging (as devel-
opers gain insights into which configuration parameters are utilized
by a Ctest), (2) enhances the capabilities of test selection [10, 12] and
prioritization [2], and (3) enables more efficient Ctest fuzzing [4].

Both annotations can specify configuration parameters used
by the Ctest(s) as a list of parameters and a regular expression to
match the parameters. For backward compatibility with the original
Ctest scripts [7], @CtestClass can also specify a file that contains
the mapping between configuration parameters and Ctest methods.
Lists, regexes, and files can be provided together, and Ctest4] unions
the mappings into one final mapping. Besides these annotations,
Ctest4]’s Ctest runner needs to be specified within the Ctest class.
For example, Ctest4]’s CtestJUnitRunner is added through the usual
@RunWith annotation in JUnit4.

Figure 1 is a simplified Ctest example from Hadoop YARN. We
annotate the existing class TestFSDownload with the Ctest4]’s run-
ner CtestJUnitRunner (line 1) and @CtestClass (line 2), and the
test method testDownload with @Ctest (lines 8-10). @CtestClass
specifies the class-level configuration parameter used by all the
Ctest methods in the class. The class-level configuration param-
eters mostly come from the test setup and teardown executions.
In this example, the method getRecordFactory() (line 6) uses the
parameter yarn.ipc.record. factory.class, making it a class-level
configuration parameter. @Ctest specifies the method-level con-
figuration parameters used in the execution of the Ctest method

563

Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, and Tianyin Xu

1 @RunWith(CtestJUnitRunner.class)

2 @CtestClass({"yarn.ipc.record.factory.class"})

3 public class TestFSDownload {

4 private Configuration conf = new Configuration();
5 static final RecordFactory recordFactory =

6 RecordFactoryProvider.getRecordFactory(null);

7
8
9

@Ctest(regex="fs.(client.resolve.remote.symlinks|" +
"permissions.umask-mode|local.block.size|" +
"AbstractFileSystem.file.impl)")

public void testDownload() {

// Create FileContext with parameters in @Ctest
FileContext files =
FileContext.getLocalFSFileContext(conf);

// Start downloading
FSDownload fsd = new FSDownload(files, ...)
Path path = fsd.download(...);

// Check whether the download is done
assertTrue(path.isDone())
. // Check other properties of the downloaded file

3)

24}
Figure 1: A Ctest in YARN with Ctest4]. The configuration
parameters in the code snippet will be instantiated by values
from the configuration under test (not shown in the figure).

body. In this example, testDownload uses four method-level con-
figuration parameters, specified for illustration through a regular
expression. These parameters are used by various methods, e.g.,
createFileSystem() method invoked by getLocalFSFileContext()
uses local.block.size. During Ctest execution, Ctest4] instantiates
every configuration parameter used by each Ctest method with the
configuration under test, e.g., a production configuration.

2.2 Configuration API Instrumentation

To enable Ctests in a Java project, developers need to instrument the
configuration API with Ctest4] so that Ctest4] can instantiate Ctests
with the configuration under test at runtime. Ctest4] also provides
APIs to track the usage of configuration parameters during the
execution of Ctests; the tracking is important for debugging, main-
tenance of the input configuration parameters for each Ctest, and
adequacy measurement (e.g., coverage of configuration parameters
of a Ctest suite).

Ctest4] focuses on common configuration API patterns in Java
projects, many of which use a unified configuration class with two
basic API abstractions, configuration GET and SET APIs [5, 8-
10, 13, 15, 19, 20]. The GET APIs of the form “<T> get(String
parameter)” take a parameter name and return a value; SET APIs
of the form “void set(String parameter, <T> value)” set the
value of the given parameter with the input value. Configura-
tion APIs built on top of the common java.util.Properties and
org.apache.commons.configuration all follow such a pattern.

2.2.1 Instrumenting Configuration API. Without Ctest4], all test
executions would use only the default configuration provided with
the project. Ctest4] modifies the execution so that tests run with the
configuration under test (e.g., a production configuration). Ctest4]
instruments the configuration API with connectProdConfig, which
connects the configuration under test to the configuration ob-
jects used by the Ctests. The connectProdConfig method is a static
method that takes the configuration SET API as input; typically,

Ctest4J: A Practical Configuration Testing Framework for Java

connectProdConfig is added to the constructor of the configuration
class to initialize the configuration object with the configuration
under test. The following snippet shows how to instrument the
configuration API of Apache Hadoop YARN.

1 public Configuration() {

2 this(true);

3+ Ctest4J.connectProdConfig(

4 + (name, value) -> set(name, (String) value));
5

For projects that do not have a unified configuration class where
Ctest4] can modify the SET API, Ctest4] supports a lazy instrumen-
tation mode that modifies the configuration GET API to use the
configuration under test.

2.2.2 Tracking Configuration Parameters. Ctest4] also provides an
API (a static markParamAsUsed method) to track the usage of config-
uration parameter values during the execution of Ctests. Ctest4]
calls markParamAsUsed upon the invocation of a configuration GET
API, as shown in the following snippet (from Hadoop).

1 public String get(String name) {
2+ Ctest4J.markParamAsUsed (name);
3 String[] names = handleDeprecation(deprecationContext.get
(), name);

String result = null;

for(String n : names) {
+ Ctest4J.markParamAsUsed(n);

result = substituteVars(getProps().getProperty(n));
)

return result;

S vV ® NG

}

For projects that have multiple different configuration GET APIs,
markParamAsUsed is expected to be placed for every API to ensure
the completeness of tracking.

Ctest4] provides an Aspect] [3] based utility to instrument the
configuration API (by specifying the fully qualified name of the
APIs), if source-code changes are not preferred.

2.3 Running Ctests

Running a Ctest is similar to running a regular unit test. For example,
with Maven, Ctests can be run with Maven Surefire (mvn test).
Ctest4] provides three modes to run Ctests:

e debug: run the Ctest with the default configuration and check
whether all the required configuration parameters are used dur-
ing the test execution. This mode helps in developing and debug-
ging Ctests;

o prod: run the Ctest with the configuration under test;

e default: run the Ctest with the configuration under test and
check whether all the required configuration parameters are
used during the test execution.

Ctest4] supports running Ctests in parallel with different con-
figuration files. Ctest4] also supports input configuration through
command-line arguments. If no configuration file or command-
line argument is specified, Ctest4] runs the Ctest with the default
configuration; in this case, a Ctest falls back into a regular unit test.

Ctest4] implements parameter-aware Ctest selection [10]. We
plan to develop advanced test selection algorithms such as uRTS [12]
and test case prioritization algorithms [2] in Ctest4].

564

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Ctest Source Configuration Mapping Files
Code Under Test (Optional)
f . f
Annotation ConfUT Parameter
Library Connector Tracker

Ctest4]

| Ctest Runner |

Figure 2: Overview of Ctest4].
3 IMPLEMENTATION

The current Ctest4] implementation has ~5000 lines of Java code.
Ctest4] takes three inputs: (1) the Ctest code, (2) the configuration
under test (ConfUT), and (3) optionally a mapping file between
the parameters and the Ctest that uses them (the original Ctest
scripts [7] required such files). Ctest4] processes the test annotations
(with explicit parameter list or the file name) and instantiates the
execution of Ctests. Figure 2 shows the four main components of
Ctest4]. We next briefly describe their implementations.

3.1 Annotation Library

The annotation library processes the annotations in the test code.
The annotations are conceptually similar to the @Test annotation for
regular unit tests. @testClass and @Ctest mark that the annotated
class or method, respectively, is a Ctest. As described in §2.1, both
annotations specify the configuration parameters of the Ctest using
a list or a regex. To get a precise set of configuration parameters
from a regex, Ctest4] does not accept patterns with match-any
operators ".*" or ".+", which could match too many parameters.

@CtestClass can also specify configuration parameters from a
mapping file in JSON that has two fields: class-level parameters (a
list of configuration parameters required by all Ctests in the class)
and method-level parameters (a map between Ctest method names
and configuration parameters required by the method).

3.2 ConfUT Connector

The configuration connector connects the ConfUT with Ctests, ef-
fectively to run each test with the configuration under test (rather
than the default configuration). The original Ctest scripts [7] im-
plemented the connector by writing the ConfUT to a dedicated
configuration file and changing the code for the initialization of the
configuration object to read the dedicated file and instantiate the
Ctest for execution. However, the dedicated file was shared among
all Ctests, and Ctests could not run concurrently with different con-
figurations. As different Ctests may be suitable for testing different
scenarios, some projects (e.g., HDFS) have various configuration
files (e.g., in test/resources) for different tests.

Ctest4]’s configuration connector directly writes the ConfUT
into the configuration object via the configuration SET APIs, with
no dedicated configuration file. For each Ctest run, it creates a map
with each configuration parameter and its value from the ConfUT.
To create configuration objects during Ctests run, the instrumented
configuration API invokes the Ctest4]’s connectProdConfig method.
The connector uses the SET API to instantiate each configuration
parameter with the corresponding value. The design enables Ctest4]
to support parallel execution of Ctests with distinct configurations.

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

3.3 Parameter Tracker

The parameter tracker monitors the usage of configuration parame-
ters during Ctests runs. For a given Ctest class, the tracker manages
two levels of parameter usage list: (1) class-level list records the
configuration parameters used by all Ctest methods within the class,
including the Before and After methods; and (2) method-level list
records the configuration parameters used by each Ctest method.
Invocations of the instrumented configuration GET APIs call the
tracker. To record the parameter in the class- and method-level
lists, the tracker distinguishes whether the test execution is in the
shared, class-level setup and teardown (BeforeClass, Before, After,
and AfterClass methods) or in the method-level body execution.

3.4 Ctest Runner

The Ctest4] runner launches the Ctests using the ConfUT connector
and the parameter tracker. For each test class, the runner first checks
if the class is annotated with @CtestClass. If not, the runner executes
the test as a regular unit test but issues a warning about the missing
Ctest annotation. Otherwise, the Ctest4] runner executes the test
class as a Ctest and proceeds to extract the required configurations
for both the Ctest class and its methods from the annotations.
For each Ctest class, the runner creates a new connector and
a new tracker. The isolation is important, as it ensures that the
execution of one Ctest class does not interfere with the others.
The runner fails Ctests under any of the following conditions:

o missing parameter usage: the Ctest fails if the tracker identifies a
required parameter that was not used during the Ctest run;

e exceptions or errors: the Ctest fails if it encounters an exception
or error during execution (as for a regular unit test);

o timeout: the Ctest fails if its execution fails to finish within a
specified timeout (as for a regular unit test).

3.5 Integration with Testing Frameworks

We integrated Ctest4] with JUnit4, JUnit5, and TestNG. To support
JUnit4, we implement the Ctest runner as a custom JUnit4 run-
ner that extends the BlockJUnit4ClassRunner class and implements
the CtestRunner interface. We integrated Ctest4] with JUnit5 as a
JUnit5 extension and with TestNG as a TestNG listener. To inte-
grate with a new testing framework, one needs to implement the
CtestRunner interface, which involves invoking the connector and
tracker methods in the target framework’s runner or listener.

4 EVALUATION

We evaluate Ctest4] using 12 open-source Java projects, including all
five projects used in prior Ctest work [2, 4, 10, 12] (Alluxio, HBase,
HCommon, HDFS, ZooKeeper) and seven new projects (Figure 3).
These projects use different testing frameworks (eight JUnit4, three
JUnit5, one TestNG) and different build systems (ten Maven, two
Gradle). We report our experience of enabling Ctests using Ctest4]
for the 12 projects and the performance of Ctest4].

4.1 Enabling Ctests

We enabled Ctests for 12 mature, widely used Java projects using
Ctest4]. The main effort is to understand each project’s configura-
tion API to instrument the configuration API (see §2.2). It took us

565

Shuai Wang, Xinyu Lian, Qingyu Li, Darko Marinov, and Tianyin Xu

45 L L L L L L L L L L L L

B VanillaRunner
E 40 B Ctestd)
= B OldScripts
B 35— L
N —_
=
£ 501
S
Z 25
0.0+
P QLY E PO S ER &
P S o N &
FFETEFTIFFT T LS

Figure 3: Execution time of running Ctests with Ctest4], the
Ctest scripts [7] (OldScripts), and the vanilla runner such as
JUnit4 (VanillaRunner), normalized by VanillaRunner.

on average around one hour to find the correct configuration API
for each project. We were able to use our Ctest4]’s Aspect] utility
to instrument the configuration API. Note that no paper author
is a developer on any evaluated project, so we expect developers
more familiar with the configuration API of their projects to add
Ctest4]’s instrumentation even faster. With the instrumentation in
place, we transform existing tests that use configuration parameters
into Ctests following the original approach [10]. We write scripts
to automatically add the Ctest4] annotations in the Ctest code.

4.2 Performance

We measure the Ctest running time using Ctest4] and compare it
with the original Ctest scripts [7]. We also measure the overhead of
Ctest4] by comparing the running time with and without Ctest4]
(using default configuration). Note that we only use the original
scripts to run ten projects because the scripts do not support Gradle.
We use the default parallelism configured in the projects. Ctest4]
supports parallel execution, not requiring tests to run sequentially.
Figure 3 shows that Ctest4] can speed up the Ctest execution by
up to 41.3X times (3.4X on average), compared to the original Ctest
scripts. The speedup mostly comes from the parallel execution
of Ctest4], while the original scripts need to run Ctests one by
one. Therefore, for projects that configure high parallelism for test
execution (e.g., Alluxio, Camel, and Flink), the speedup is significant;
for projects that run tests sequentially, the difference is smaller.
The overhead of Ctest4] is negligible. It mainly comes from
the configuration usage tracking and additional checking logic in
Ctest4] that checks whether all the required parameters are used
during test execution. In Figure 3, the execution time of Ctest4]
compared with VanillaRunner is up to 1.27X and 1.03X on average.

5 CONCLUSION

We present Ctest4], a practical configuration testing framework
for Java. Ctest4] can help Java projects enable configuration test-
ing with modest manual effort and low runtime overhead. Ctest4]
provides direct support for writing and maintaining configuration
tests. We aim to broaden configuration testing research and reduce
the barrier to adopting configuration testing in practice.

Acknowledgements. We thank the reviewers for their useful com-
ments. This work was supported in part by NSF grants CCF-1763788,
CCF-1956374, and CNS-2145295. We acknowledge support from
Meta, Microsoft, and Qualcomm.

Ctest4J: A Practical Configuration Testing Framework for Java

REFERENCES

(1]

[2

=

3

=

=

[10]

Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.
2020. Understanding and Discovering Software Configuration Dependencies in
Cloud and Datacenter Systems. In Proceedings of the 2020 ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’20). https://doi.org/10.1145/3368089.3409727

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-
Case Prioritization for Configuration Testing. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’21).
https://doi.org/10.1145/3460319.3464810

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of Aspect]. In Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP’01).

Jungiang Li, Senyi Li, Keyao Li, Falin Luo, Hongfang Yu, Shanshan Li, and Xiang
Li. 2024. ECFuzz: Effective Configuration Fuzzing for Large-Scale Systems. In
Proceedings of the 46th International Conference on Software Engineering (ICSE’24).
https://doi.org/10.1145/3597503.3623315

Max Lillack, Christian Kastner, and Eric Bodden. 2014. Tracking Load-time Con-
figuration Options. In Proceedings of the 29th IEEE/ACM International Conference
on Automated Software Engineering (ASE’14). https://doi.org/10.1109/TSE.2017.
2756048

Sixiang Ma, Fang Zhou, Michael D. Bond, and Yang Wang. 2021. Finding
heterogeneous-unsafe configuration parameters in cloud systems. In Proceed-
ings of the Sixteenth European Conference on Computer Systems (EuroSys’21).
https://doi.org/10.1145/3447786.3456250

OpenCtest. 2020. Research Artifact for “Testing Configuration Changes in Con-
text to Prevent Production Failures”. https://github.com/xlab-uiuc/openctest.
Ariel Rabkin and Randy Katz. 2011. Static Extraction of Program Configura-
tion Options. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE’11). https://doi.org/10.1145/1985793.1985812

Mohammed Sayagh, Zhen Dong, Artur Andrzejak, and Bram Adams. 2017. Does
the Choice of Configuration Framework Matter for Developers? Empirical Study
on 11 Java Configuration Frameworks. In 2017 IEEE 17th International Working
Conference on Source Code Analysis and Manipulation (SCAM’17). https://doi.
org/10.1109/SCAM.2017.25

Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen,
and Tianyin Xu. 2020. Testing Configuration Changes in Context to Prevent
Production Failures. In Proceedings of the 14th USENIX Conference on Operating
Systems Design and Implementation (OSDI’20).

566

[11

[12

(13

[15

[16

[17

[18

[19

[20

]

]

FSE Companion ’24, July 15-19, 2024, Porto de Galinhas, Brazil

Chungiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Configuration Management at Facebook. In Proceedings of the 25th ACM Sympo-
sium on Operating System Principles (SOSP’15). https://doi.org/10.1145/2815400.
2815401

Shuai Wang, Xinyu Lian, Darko Marinov, and Tianyin Xu. 2023. Test Selection
for Unified Regression Testing. In Proceedings of the 45th International Conference
on Software Engineering (ICSE’23). https://doi.org/10.1109/ICSE48619.2023.00145
Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16).

Tianyin Xu and Owolabi Legunsen. 2019. Configuration Testing: Testing Con-
figuration Values Together with Code Logic. CoRR abs/1905.12195 (July 2019).
https://doi.org/10.48550/arXiv.1905.12195

Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Mis-
configurations. In Proceedings of the 24th ACM Symposium on Operating System
Principles (SOSP’13). https://doi.org/10.1145/2517349.2522727

Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Con-
figuration Errors: A Survey. ACM Computing Surveys (CSUR) 47, 4 (July 2015).
https://doi.org/10.1145/2791577

Jialu Zhang, Ruzica Piskac, Ennan Zhai, and Tianyin Xu. 2021. Static Detection of
Silent Misconfigurations with Deep Interaction Analysis. In Proceedings of the 36th
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’21). https://doi.org/10.1145/3485517
Jiaqi Zhang, Lakshmi Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala,
Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: Exploiting System Environment
and Correlation Information for Misconfiguration Detection. In Proceedings of the
19th International Conference on Architecture Support for Programming Languages
and Operating Systems (ASPLOS’14). https://doi.org/10.1145/2644865.2541983
Sai Zhang and Michael D. Ernst. 2013. Automated Diagnosis of Software Con-
figuration Errors. In Proceedings of the 35th International Conference on Software
Engineering (ICSE’13). https://doi.org/10.1109/ICSE.2013.6606577

Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong, and
Tianyin Xu. 2021. An Evolutionary Study of Configuration Design and Imple-
mentation in Cloud Systems. In Proceedings of the 43rd International Conference
on Software Engineering (ICSE’21). https://doi.org/10.1109/ICSE43902.2021.00029

Received 2024-01-29; accepted 2024-04-15

	Abstract
	1 Introduction
	2 Usage
	2.1 Writing Ctests
	2.2 Configuration API Instrumentation
	2.3 Running Ctests

	3 Implementation
	3.1 Annotation Library
	3.2 ConfUT Connector
	3.3 Parameter Tracker
	3.4 Ctest Runner
	3.5 Integration with Testing Frameworks

	4 Evaluation
	4.1 Enabling Ctests
	4.2 Performance

	5 Conclusion
	References

