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Abstract—Regression testing is widely used to check whether
software changes lead to test failures. Regression Test Prioriti-
zation (RTP) aims to order tests such that tests that are more
likely to fail are run earlier. Prior RTP techniques—which we call
hierarchy-unaware (HU)—ignored an important aspect: real test
suites are organized hierarchically, and individual tests belong
to composites that can be hierarchically nested. Prior RTP work
overlooked the runtime cost to switch across hierarchical test
compositesand used the APFDc metric, which represents the
runtime of tests till test failures, to rank orders generated by
RTP techniques. However, APFDc can misleadingly rank orders
if their runtimes differ (e.g., two orders may have different
numbers of composite switches and, consequently, runtimes).
To account for runtime differences, we propose a new metric,
HAPFDc. Unlike APFDc, HAPFDc enables proper comparison
of test orders with different runtimes by “extending” runtimes as
needed. To reduce the cost of composite switching, we introduce
hierarchy-aware (HA) RTP by presenting meta-techniques that
first prioritize composites and then tests within composites. We
evaluate HA RTP on test classes in multi-module Java and Maven
projects from two large datasets used in prior work. The results
show that our HA RTP improves both HAPFDc values and time-
based metrics over HU RTP.

Index Terms—regression test prioritization, test interleaving

I. INTRODUCTION

Regression testing is an important activity to check whether

software changes lead to test failures. Researchers have de-

veloped many techniques to improve regression testing, and

several surveys [1–5] present overviews of the proposed tech-

niques. Regression Test Prioritization (RTP) [6, 7] aims to

order, i.e., prioritize, tests in a test suite to find test failures

sooner rather than later. The motivation is to provide faster

feedback to developers, so they can debug test failures [8]

as soon as possible. Conceptually, RTP techniques use infor-

mation from one or more historical runs of the test suite,

or from recent changes, to prioritize the test suite for the

current changes. Various techniques use different kinds of

information, e.g., code coverage [6, 9], historical failures [10],

timing information [8], and black-box information [11], along

with different kinds of technologies, e.g., machine learning [5,

12, 13], information retrieval [14, 15], and peer sharing [16].

Since the two seminal papers [6, 7], RTP has been studied

with increasingly realistic experiments, substantially improv-

ing four main aspects of the studies. Specifically, to evaluate

RTP techniques, earlier work used (1) automatically generated

tests instead of manually written tests [17], (2) simulated

software evolution instead of real evolution [18], (3) mutants

or manually seeded faults instead of real test failures from

continuous-integration systems [13, 14, 19–22], and (4) met-

rics based on the number of test runs till test failures, such as

Average Percentage of Faults Detected (APFD) [9], instead of

metrics based on the runtime of tests till test failures, such as

cost-cognizant APFD (APFDc) [23].

However, all RTP techniques from prior work have ignored

the fact that software projects organize tests hierarchically,

akin to the composite design pattern [24], and switching test

execution across composites incurs runtime cost. We call prior

work Hierarchy-Unaware (HU) RTP. We define a test compos-

ite as a set of tests that share the same running configuration.

For example, most Java projects use a testing framework,

such as JUnit [25] or TestNG [26], and a build system,

such as Maven [27] or Gradle [28]: individual JUnit/TestNG

test methods belong to test classes, which themselves belong

to Maven/Gradle modules that provide the running config-

uration1. Thus, we view the test suite for a multi-module

Maven project as several test composites, one for each module.

Running test classes in a prioritized order incurs additional

cost when consecutive tests belong to different modules.

While newer RTP work evaluates techniques using metrics

(e.g., APFDc [23]) that better represent real time, their

experiments [13, 14, 16, 19, 20, 30] ignored the runtime cost of

Switching Across Tests Composites (SATC), which includes

not only the runtime to launch a new virtual machine but also

the runtime to load classes, set up and tear down tests, etc. In

fact, the SATC cost is closely related to the cost of running

each test in a new JVM: studies [31–35] have shown that

such cost can be orders of magnitude higher than running

multiple tests in one JVM. The problem of SATC costs has

been considered in pairwise testing [36], but not in prior RTP

work. By ignoring SATC costs, prior RTP work can incorrectly

rank RTP techniques [13, 14]. Only one prior study [14] used

1Our evaluation uses Java projects with JUnit and Maven, but the hier-
archical organization is widespread in other programming languages, testing
frameworks, and build systems, e.g., pytest [29] for Python has test functions
that belong to test classes that belong to test files that belong to test directories.







Algorithm 1: HU & HA RTP of hierarchical test suites

1 // allTestsIn and allCompositesIn are helpers that
2 // find all tests and composites, respectively, in a test suite
3 // testsIn finds direct test children of a composite
4 Function HU_RTP(suite):
5 return sorted(allTestsIn(suite), RTPtechnique)
6 Function HA_RTP(suite):
7 // sort the composites according to the meta-technique
8 composites = sorted(allCompositesIn(suite), score)
9 sortedTests = [ ] // empty list

10 for composite in composites do
11 // sort the tests in each composite individually
12 tests = testsIn(composite)
13 sortedTests.append(sorted(tests, RTPtechnique))
14 return sortedTests
15 Function score(composite):
16 tests = testsIn(composite)
17 return metaTechnique(map(RTPtechnique, tests))

III. HA AND HU RTP ALGORITHM AND

META-TECHNIQUES

We next precisely describe Hierarchy-Unaware (HU) and

Hierarchy-Aware (HA) RTP of hierarchical test suites that

consist of tests and composites. A test is an individual atomic

test, and is what the composite design pattern [24] calls a

“leaf”. A composite has a list of “children” that can each

be either a test or (recursively) another composite. A (test)

suite is the top-level composite. HU RTP techniques treat the

suite as a list of tests, ignoring the composites to which the

tests belong; as a result, they can produce test-suite orders

that interleave tests from different composites. In contrast, HA

RTP considers the hierarchical structure of the test suite and

produces test-suite orders that do not interleave tests from

different composites.

The principle of HA RTP is general and can apply to

various existing RTP techniques, but because our evaluation

datasets [14, 19] used RTP techniques that assign a numeric

prioritization score to each test, we instantiate HU and HA

RTP utilizing the prioritization scores, shown in (Python-like

pseudo-code) Algorithm 1. Following the terminology of the

composite design pattern [24], a component is either a test or

a composite. HU_RTP first recursively finds all the tests in the

test suite and then orders the tests based on their prioritization

scores assigned by the specific RTP technique used (line 5).

HA_RTP first recursively finds all the composites and then sorts

them by their scores (line 8), which are determined by (1) the

scores of their direct test children (not including tests that

belong to their child components) and (2) the meta-technique

used to aggregate individual tests’ scores (Section III-A).

HA effectively “flattens” the hierarchical structure among

composites (but not among composites and tests), as common

in modern test runners, e.g., Maven [27] or Gradle [28]. In

each composite, HA RTP orders the tests by their scores, and

it appends the tests from different composites in a global order,

following the established composite order and test orders

within composites (lines 10-13). All sorting is done in the

descending order of scores.

In theory, developers could run tests for each composite in

parallel when testing a project with a hierarchy. The discussion

of HA or HU RTP is less meaningful in this context, because

each composite can be run individually. However, studies [51,

52] found that parallelization can lead to concurrency issues

that undermine the accuracy of the testing result. Thus, this

work considers only running composites sequentially.

A. Meta-Techniques

We propose four meta-techniques that compute a compos-

ite’s score by aggregating the scores of its test children: High-

est Total First (HTF) uses sum(scores), Highest Average

First (HAF) uses average(scores), Highest Score First

(HSF) uses max(scores), and Lowest Score Last (LSL)

uses min(scores). We call them “meta-techniques” because

they can be combined with existing RTP techniques to adapt

them from HU to HA.

The intuition is as follows. HTF is similar to the traditional

“total” techniques [9] that first run conceptually the largest

test. HAF is similar to the traditional “cost-cognizant” tech-

niques [23] that consider the potential value of the test relative

to its cost – in our case, a composite relative to the number of

tests; we do not explicitly include cost in HAF because many

RTP techniques already include cost. HSF greedily prioritizes

the test with the highest score first in the test-suite order, while

obeying the constraint of HA. LSL is the dual of HSF, greedily

putting the test with the lowest score last.

IV. SPECIALIZING HA RTP FOR MAVEN

The general principles of HA RTP apply in all cases

that involve hierarchical organization of test suites with test

composites. In this section, we focus in more detail on multi-

module Maven projects, because Maven is the most popular

build system for Java projects [53] and our two evaluation

datasets include such projects. In fact, multi-module Maven

projects are prevalent. Of the top-starred 100 Java, Maven-

based projects on GitHub, 73 had multiple modules [45] with

an average of 19 modules per project.

We next describe how our general HA terminology corre-

sponds to Maven projects. A test is a (JUnit) test class, and

a composite is a Maven module. Specializing Algorithm 1 for

multi-module Maven projects, the RTP techniques assign a

score to a test class, and our meta-techniques assign a score

to a Maven module, based on the scores of test classes in

the module. By default, running mvn test at the top level

visits the modules one by one to run each test suite. For

each module, Maven creates a new JVM, runs the tests, and

shuts down the JVM at the end. The creation and shutdown of

JVMs incur runtime costs. The SATC cost between modules

includes runtime cost to launch a new JVM2, load classes,

potentially load other files from disk into memory, perform

just-in-time compilation, set up and tear down a test, etc.

The overall switch runtime can greatly vary due to module

switches in test orders with and without interleavings. Test

orders with interleavings can have much longer runtime due

2While the cost to launch a JVM is small (< 100 millisecond on a modern
JVM), the other costs can be substantial, hence in most Maven modules, all
tests run in one JVM rather than each test in an isolated JVM [31–35, 54].



TABLE I
EFFECTIVE TECHNIQUES FROM PRIOR WORK [13, 14].

Technique Criteria from Peng et al. [14]

CCHIR execution time, historical failures, and IR score
CCH execution time and historical failures
HIR historical failures and IR score
CCIR execution time and IR score
QTF execution time
OptIR information-retrieval (IR) score
HIS historical failures

Technique Criteria from Elsner et al. [13]

MFFr historical (test, file)-failures and failures
MFF historical (test, file)-failures
AD average duration (execution time)
LT most recent pass-to-fail transition
HIS historical failures

to their larger numbers of module switches compared to those

without interleavings (Section VI-B).

To run test-suite orders that interleave composites, devel-

opers can either (1) invoke a test runner multiple times and

run consecutive test classes from the same module together,

referred to as Multi-JVM mode; or (2) invoke a test runner

once and run all test classes together, referred to as One-

JVM mode. The latter can be much faster than the former,

due to the SATC cost. However, attempting to run all tests

in one JVM can introduce many false positives and false

negatives (Section VI-E), because different modules can have

different classpaths and working directories. Our experiments

focus primarily on the former, motivated by the fact that

machine cost is much cheaper than that of manual test-failure

inspections [55]. We describe an approach to invoke a test

runner multiple times that is most favorable, in terms of

runtime, for HU orders that interleave classes from different

modules (Section V-B2).

V. EVALUATION SETUP

We aim to answer the following research questions (RQs):

RQ1: How do our meta-techniques compare?

RQ2: How do HA and HU RTP compare?

RQ3: Can APFDc mislead comparisons?

RQ4: Can ignoring SATC costs mislead comparisons?

RQ5: How do Multi-JVM and One-JVM modes compare?

Our overall goal is to evaluate which meta-technique pro-

duces the best HA RTP and understand whether assumptions

and metrics from prior work may provide misleading results.

A. Study Subjects

As we are the first to study HA RTP, we discuss next how

we build a dataset for our study.

1) RQ1: To answer RQ1, we use two public datasets, one

provided by Peng et al. [14], which we call IRBRTP because

it was originally used to evaluate information-retrieval (IR)

based RTP techniques, and RTPTorrent provided by Mattis et

al. [13, 19]. We selected these two datasets because they are

recent and among the largest datasets for RTP.

Modules and Jobs Selection. Both datasets are constructed

from GitHub projects that use Java and Maven, filtering for

projects that used Travis CI [56], to obtain a dataset with real

test failures instead of artificial ones. Each build on Travis

CI can have multiple jobs, which typically run the same code

version but with different commands or same commands in

different environments. Each job has its own individual overall

result (pass, fail, or error) and may run test suites for a project

with one or more Maven modules. Each test class in a test suite

has its own result (pass, fail, or error).

Because our meta-techniques (described in Section III-A)

order the modules, we select all jobs from the two datasets

that have test classes in more than one module. IRBRTP

contains all the necessary data (e.g., test coverage, runtime,

fault history) to reproduce the numbers reported in the original

paper [14]; we could reproduce the results from Peng et

al. [14] up to the last reported digit. To understand the SATC

costs, we need to know the module that each test class

belongs to. Interestingly enough, IRBRTP already includes

the module name for each test class—the authors computed

this information but ignored it during prioritization. IRBRTP

has in total 2,980 jobs in 123 projects, with 1,368 jobs in 71

projects having test classes in more than one module. Upon

inspection of these jobs, we find that 404 jobs in the dataset

have a wrong mapping from the test class names to modules,

because one test class name can appear in multiple modules,

and IRBRTP did not carefully resolve such cases. We make

the list of projects and jobs with incorrect mappings publicly

available [45] and share it with the authors. Finally, we obtain

964 jobs from 66 projects from IRBRTP.

RTPTorrent also contains a wealth of data However, RTP-

Torrent does not include the Maven module names for tests. In

addition, the raw logs for some of the jobs are not available.

We develop an approach using Z3 [57] to compute likely

module names and publicly release an extension [45] of

RTPTorrent to facilitate future RTP research, in particular for

developing and evaluating future HA RTP. We omit the details

of the approach due to space limit. The extension contains the

module assignment for 1,393 jobs from RTPTorrent.

An important point is that the 964 jobs from IRBRTP and

1,393 jobs from RTPTorrent do not overlap. In fact, these jobs

come from a non-overlapping set of projects (66 from IRBRTP

and 13 from RTPTorrent) except for one shared project that

has no common job in the two datasets (because they focus on

different time periods, with IRBRTP having generally newer

jobs than RTPTorrent).

RTP Techniques. Both datasets were used to compare several

RTP techniques with the information from the CI order—the

default order run by the job, whose results are shown in the

Travis logs. Based on the CI order included in the datasets,

with the runtime and the expected execution result for each

test, one can compute APFDc for the orders generated by

various techniques. For IRBRTP, the authors identified seven

test prioritization techniques as the most effective (Table I).

The original RTPTorrent paper [19] aimed mainly to release a

dataset and had a relatively small comparison. Elsner et al. [13]

presented a much bigger evaluation using RTPTorrent. They

identified five RTP techniques as the most effective, one of

which overlaps with a technique from Peng et al. [14] (Table I).



TABLE II
STATISTICS FOR EACH JOB FOR RQ2-RQ5. “TSR” IS THE TEST-SUITE

RUNTIME (IN SEC) AVERAGED ACROSS ALL HU ORDERS.

# Test Class # JVMs TSR
ID Project Fails / Total HA HU HU

J1 abel533/Mapper 10 / 41 2 9.3 8.3

J2 apache/incubator-dubbo 1 / 142 14 77.6 175.0

J3 apache/incubator-dubbo 1 / 142 14 80.1 176.5

J4 apache/incubator-dubbo... 1 / 13 2 4.9 9.5

J5 apache/incubator-dubbo... 1 / 13 2 4.9 9.5

J6 apache/incubator-dubbo... 1 / 13 2 4.9 9.5

J7 aws/aws-sdk-java 1 / 190 3 49.7 210.0

J8 aws/aws-sdk-java 1 / 190 3 47.3 210.8

J9 aws/aws-sdk-java 1 / 190 3 48.4 211.2

J10 demoiselle/framework 2 / 8 2 2.4 4.0

J11 elasticjob/elastic-job-lite 1 / 89 3 37.7 54.1

J12 gchq/Gaffer 1 / 75 3 18.7 55.5

J13 google/auto 1 / 31 4 14.0 21.5

J14 google/auto 1 / 31 4 16.3 23.5

J15 hs-web/hsweb-framework 1 / 28 11 21.9 38.7

J16 jtablesaw/tablesaw 2 / 47 2 5.1 5.8

J17 LiveRamp/hank 1 / 63 3 27.3 175.6

J18 lukas-krecan/JsonUnit 1 / 17 5 13.4 8.0

J19 lukas-krecan/JsonUnit 1 / 17 5 13.4 8.1

J20 lukas-krecan/JsonUnit 1 / 17 5 13.4 8.0

J21 lukas-krecan/JsonUnit 1 / 17 5 13.7 8.1

J22 magefree/mage 1 / 816 6 26.4 189.8

J23 mitreid-connect/OpenID... 1 / 38 3 20.9 10.4

J24 ModeShape/modeshape 6 / 189 5 72.3 253.2

J25 networknt/light-4j 2 / 16 4 10.7 4.4

J26 ocpsoft/rewrite 74 / 151 17 107.3 76.7

J27 ocpsoft/rewrite 63 / 140 17 93.4 63.0

J28 ocpsoft/rewrite 73 / 150 17 98.3 70.0

J29 ocpsoft/rewrite 73 / 150 17 99.1 68.5

J30 ocpsoft/rewrite 33 / 67 9 29.3 15.0

J31 onelogin/java-saml 2 / 15 2 4.0 7.6

J32 onelogin/java-saml 2 / 15 2 4.0 7.7

J33 orbit/orbit 2 / 60 5 13.7 105.7

J34 pippo-java/pippo 1 / 11 2 2.7 1.9

J35 prometheus/client java 2 / 36 16 26.0 30.1

J36 protegeproject/protege 4 / 44 2 4.4 4.6

J37 rapidoid/rapidoid 1 / 82 9 50.3 190.7

J38 RIPE-NCC/whois 41 / 320 7 179.6 149.9

J39 sismics/reader 2 / 25 3 7.1 96.6

J40 spring-projects/spring... 4 / 117 2 31.0 31.8

J41 spring-projects/spring... 4 / 117 2 28.4 31.4

J42 st-js/st-js 4 / 38 3 7.9 4.5

J43 teamed/qulice 1 / 5 3 3.9 13.5

Sum × 2 / Arith. Mean × 3 428 / 3976 5.8 33.6 66.5

We evaluate as many techniques as possible on both datasets

using only the information provided by the authors. MFFr,

MFF, AD, and LT from Elsner et al. [13] require information

from passing builds, which IRBRTP does not have. On the

other hand, CCHIR, HIR, CCIR, and OptIR from Peng et

al. [14] require test IR information, which RTPTorrent does

not have. In total, we evaluate all seven technique from Peng et

al. [14] on IRBRTP, and five techniques from Elsner et al. [13]

and two techniques from Peng et al. [14] on RTPTorrent.

2) RQ2-RQ5: As RQ2-RQ5 all involve the actual test-suite

runtimes, we use the same dataset for them (but a different one

than RQ1). Unlike RQ1 where the number of module switches

for each order is exactly the same for all meta-techniques,

the number of module switches between HA RTP and HU

RTP can differ for RQ2-RQ4 (average of 5.8 switches for HA

compared to 33.6 switches for HU). Similarly, for RQ5, the

TABLE III
SELECTION PROCEDURE TO GET 43 JOBS FROM IRBRTP.

Filter Applied # Jobs # Projects

All projects 2,980 123
Multi-module projects 1,368 71
Recent 5 SHAs ≤ 111 71
Compile successfully 64 45
Corrected orders in IRBRTP 58 39
Reproducible test failures 44 28
No duplicate 43 28

two modes to run tests have a different number of switches

(i.e., One-JVM mode has zero switches while Multi-JVM

mode can have many). These differences in the number of

module switches can influence the overall test suite runtimes.

To obtain actual test suite runtimes, we look for jobs that

can be run. We cannot run all the jobs because of dependency

issues as some of them are several years old. We use the

IRBRTP dataset instead of RTPTorrent as the former is more

recent and more likely to compile and run. Of the 123 projects

in IRBRTP, we start with selecting 71 that have more than

one module with test classes. We try compiling each of these

project using the five most recent GitHub commit SHAs to

obtain the most recent SHA in which the project compiles.

We find that 45 projects successfully compile in one of the

five most recent SHAs. We do not attempt to compile more

than the five most recent SHAs because projects that do not

compile on the most recent versions are less likely to compile

on even older versions (e.g., 39 of our 45 projects compiled

on the most recent SHA, while the other 6 projects compiled

between the second and fifth most recent SHA). We then filter

out 6 projects that have a wrong mapping from the test class

names to modules in the IRBRTP dataset.

For each of the remaining 39 projects, we run 36 test orders

on the project and SHA of each job: 28 orders generated

by combining 4 meta-techniques (Section III-A) and 7 RTP

techniques from Table I, 1 CI order from the original dataset,

and 7 orders generated directly by the 7 (HU) RTP techniques.

We call the orders directly generated by the 7 RTP techniques

HU orders, and the others HA orders. We run each test order

five times to filter out tests that exhibit flaky test outcomes [58]

and to filter out jobs that have no failure in every order. We

obtain 44 jobs (from 28 projects) after such filtering. We then

inspect and filter out 1 job that has the same 36 orders. In

total, we obtain a dataset of 43 jobs from 28 projects. Table II

shows statistics for these jobs, and Table III summarizes how

we obtained these jobs.

We run all the timing experiments on various isolated virtual

machines with the same configuration: 4CPUs, 8GB RAM,

2.5 GHz/3.2 GHz clock speed, and Intel Xeon processor. The

experiment is conducted under Java 1.8.0 311 and Maven 3.8.

To reduce runtime noise from affecting our results, we run

every order five times. We do not run more because we observe

that the runtime of each order is relatively stable in five runs—

the average Coefficient of Variance [59] of the runtimes among

all orders from all 43 jobs is 0.04 seconds.

Table II shows the real times to run the tests for these jobs.

These times are obtained with our scripts that aim to minimize



the time for HU techniques. Running without our scripts, e.g.,

using the existing mvn commands, would make these times

longer. One can question (1) whether relatively short times

(up to a few minutes) make it relevant to prioritize these test

suites, and (2) whether HA provides benefit over HU only

for short-running test suites. For (1), we note that these same

datasets were used in multiple recent studies on RTP [13, 14,

19, 20]; the key contributions are novel algorithms/techniques

that are expected to scale well (or even better) on longer-

running test suites. We also note that our experiments run each

test suite for dozens of various configurations (e.g., the choices

of techniques and meta-techniques, plus repeating experiments

five times), so the overall machine time for experiments is

vastly greater than the runtime for one test-suite run. For (2),

in Section VI-B, we study and find that the benefit that HA

provides over HU does not go down with the test-suite length;

if anything, the relationship is slightly positive for these jobs

(but the correlation is not statistically significant).

B. Methodology

1) RQ1: For the jobs from the two datasets (Section V-A1),

we use the selected techniques to reproduce the HU experi-

ments [13, 14, 19] and add our HA experiments. We follow all

experimental settings from Peng et al. [14] for both datasets:

breaking ties based on the CI test order rather than randomly,

prioritizing newly added before existing tests, adding a small

overhead for test runtimes (especially for tests whose runtime

was seemingly 0), using specific settings for information-

retrieval techniques, etc.

To evaluate RQ1, we rely on APFDc [23] as it is the

most popular RTP metric that takes the test-suite runtimes into

account. We do not evaluate our proposed metric, HAPFDc,

because we are comparing only meta-techniques, which have

no interleavings. If the number of interleavings is similar,

then the test-suite runtimes of different orders are similar, and

consequently, each order’s HAPFDc is similar to APFDc.

2) RQ2-RQ5: To evaluate RQ2-RQ5, we use HAPFDc

as it takes into account that different orders of the same

test suite can have different runtimes. For RQ3, we compare

APFDc [23] to HAPFDc. For RQ4, we evaluate how HA

RTP compares to HU RTP when ignoring SATC costs.

For RQ2-RQ4, we run tests in only Multi-JVM mode, which

invokes a test runner multiple times (i.e., runs test classes

from the same module together before running test classes

in another module). In RQ5, we evaluate how one may run all

test classes in one JVM, referred to as One-JVM mode, and

show why that is likely less desirable than Multi-JVM mode.

Multi-JVM Mode. A natural way to run the orders in Multi-

JVM mode is to use the existing build systems such as

Maven and Gradle, but these build systems do not currently

support running orders that interleave tests from composites.

For example, to run such an order in Maven, one has to

invoke mvn test multiple times. Since mvn test does more

tasks than just running the tests (e.g., checking coding style,

checking re-compilation), launching multiple mvn test adds

unnecessary runtime costs to HU orders. To fairly compare

different orders (with or without interleavings), we do not use

build systems to run the orders and instead run the orders in

a more favorable way in terms of the SATC cost.

Our scripts to run Multi-JVM mode minimize the number of

JVMs (and thus the runtime costs from JVM and test startups

and teardowns) that need to be run for a given order, by

running all consecutive tests from the same module in one

JVM before switching to another JVM. For example, given

the order ⟨T1, T2, T3, T4⟩, where tests T1, T2, and T4 belong

to one module, and T3 belongs to another module, our scripts

run three JVMs: ⟨T1, T2⟩, ⟨T3⟩, and ⟨T4⟩. To run the tests in

each module, we run java JUnitCore T_1 T_2... with

as many consecutive test classes as possible in the module

directory. Each java command sets up a JVM, runs all tests,

and tears down the JVM.

One-JVM Mode. One-JVM mode follows a similar process

as Multi-JVM but runs all the tests in one JVM with the

concatenation of the classpaths of all modules at the project

base directory.

Timing. To collect timing information for each test class and

the overhead between switching classes, we use a simple

customized JUnit Wrapper that lets JUnit core run each

test class one by one, and prints the test class info before

running it. Our wrapper outputs the test class start time in the

testRunStarted method, and collects its end time in the

testRunFinished method.

3) All RQs: We use one-to-one failure-to-fault mapping for

all the experiments, following the default from prior work [14].

We also aggregate the metric values across all projects when

comparing RTP techniques. We obtain a metric value for each

order generated by RTP techniques on each job. Following

prior work [14], we (1) first compute metric value for each

project as the arithmetic mean of the values for each job,

thus obtaining a distribution of values for a technique; and

(2) use two statistic tests to compare the distributions for the

techniques. One statistic we use is the arithmetic mean of the

values across all projects. (Computing the mean first for each

project and then across projects provides an “unweighted”

average [14], making the results more representative.)

Another statistical approach we use to compare the

techniques is the Tukey’s Honest Significant Difference

test [60]. We aggregate the score of all the techniques (or

meta+technique pairs), including a default run of the CI order,

into a single batch, and apply the Tukey’s test on them. The

test compares multiple distributions of metric values to identify

which differences are statistically significant. Specifically, the

test assigns to each distribution one or more letters to indicate

how it overlaps with the others. For example, if four techniques

T1, T2, T3, and T4 obtain letters “A”, “A”, “AB”, and “B”,

respectively, then T1 and T2 are significantly better than T4,

while T3 partly overlaps with the other three and does not

statistically significantly differ.

Tables IV and V show the results for each combination of

meta-technique and RTP technique (HA RTP). Each cell shows

the unweighted average metric value of the technique, and we

highlight in yellow color the cells of the technique(s) from the







E. RQ5: One-JVM vs. Multi-JVM Mode

When we run the One-JVM mode for 43 jobs and compare

the results with the Multi-JVM mode, we find that One-

JVM can lead to a non-trivial percentage of false positives

(tests that fail in One-JVM but pass in Multi-JVM) and false

negatives (tests that pass in One-JVM but fail in Multi-JVM).

To avoid non-determinism (or flaky tests [58]) from affecting

One-JVM, we run each order in One-JVM five times and take

the intersection of false positives from the five runs and the

union of false negatives from the five runs. The average False

Discovery Rate (FDR, the number of false positives divided by

the number of failures, ignoring the jobs that show no failure in

One-JVM) of One-JVM for each meta+technique pair, across

all 43 jobs is above .35. The average False Negative Rate (the

number of false negatives divided by the number of actual

failures) is .105 for all pairs.

We find that 30 jobs (69.8% of 43 jobs) have at least one

false positive or false negative. We inspect a sample of false

positives from the One-JVM mode and find several reasons.

Classpaths: Tests from different modules may require con-

flicting classpaths. This issue often manifests in exceptions,

such as ClassDefNotFound or reflection not finding some

fields or methods [63].

Directories: Tests may expect to be run in a specific directory,

e.g., to find some resource files for the module. For example,

in job J42, the test AnnotationsTest reads a Java source file

from the path src/... and generates some Javascript code for

it. The path for this file from the project’s top-level directory

is generator/src/.... When run in the One-JVM mode,

the test fails because it cannot find the file.

Build configurations: Tests from different modules may use

different test runners, require different setups/teardowns, etc.

that are handled by Maven. When tests from different modules

are run together, it is difficult to provide correct configurations.

Program states: In One-JVM mode, the tests may create

different program states than in Multi-JVM mode. The tests

may then pass in some program states but fail in others. Such

tests are often called order-dependent (OD) flaky tests [32].

Lam et al. [54] proposed RTP techniques aware of OD tests.

We also inspect and find the causes of some false negatives

in the One-JVM mode. For example, in job J36, the setUp

of the GOProfile_TestCase test reads a file with the path

protege-desktop/src/.... This test passes only when it

is run from the top-level directory. In fact, the test actually fails

in mvn test and the Multi-JVM mode, because they run the

test in the module directory, protege-desktop, and thus the

test cannot find the file. The failure is masked in One-JVM

because it runs the test in the project’s top-level directory.

Test-Suite Runtime Differences. To understand the differ-

ences of the two modes, we focus on the 13 jobs that have no

false positive or false negative. We do not compare test-suite

runtimes for runs with different test failures, because tests may

run much slower or much faster when they fail. We find that

One-JVM reduces the time by ∼15% over Multi-JVM HA

runs, and substantially (∼43%) over the Multi-JVM HU runs.

Overall, One-JVM does not appear to be a practical alterna-

tive. The false positive rates are high; ∼34.5% of test failures

are not real, while developers usually tolerate under 10% of

false positives, e.g., in static analysis tools [64]. Additionally,

the speedup of ∼15% does not appear motivating enough when

developers may prefer test reliability; Candido et al. [51] report

a similar finding for test parallelization.

A5: One-JVM negatively affects test reliability and is not used

in practice, despite the speedups that it could provide.

VII. THREATS TO VALIDITY

We evaluate on a limited number of jobs and projects, so

the results we derive may not generalize to other projects. To

mitigate this threat, we select two datasets from prior work [13,

14, 19], which are recent and among the largest RTP datasets.

We run each test order five times to mitigate the effect of

noise. We also remove any jobs and flaky-test classes that

have different test outcomes in different runs to prevent them

from affecting the results. Although we run tests in isolated

virtual machines with identical configurations, there can be

fluctuations in the test runtimes due to physical machine

differences and other workloads on the machines. To mitigate

such concerns, we measure the runtime variance between

different runs of the same job to verify that our result is

stable. The projects that we study are relatively small. To

mitigate scalability concerns, we check that HA benefits do

not diminish with the increase of test-suite runtime.

Another threat to validity is that some jobs in the datasets

from prior work did not run all project modules. Maven by

default stops execution for the first module for which some

test fails. The modules that would have run after the failing

module may have all their tests pass or some tests fail. Thus,

our results could differ if we have also used those modules.

VIII. CONCLUSIONS

We have pointed out an important but ignored aspect of hier-

archical test organization and its impact on test-suite runtime.

More importantly, our results show that proper evaluations

of RTP should account for test orders with different SATC

costs and thus different test-suite runtimes. We propose a

new metric, HAPFDc, that allows properly comparing test-

suite orders with different test-suite runtimes. We propose four

meta-techniques that adapt existing hierarchy-unaware (HU)

RTP techniques to become hierarchy-aware (HA), and our

evaluation shows that Lowest Score Last (LSL) is often the

best. Moreover, our evaluation shows that HA orders are better

than HU orders in many aspects. We hope that our positive

results will motivate more work on HA RTP (e.g., techniques

that tolerate SATC cost for prioritization by allowing the

interleaving of tests across different composites).
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