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ABSTRACT

Computational provenance has many important applications, es-

pecially to reproducibility. System-level provenance collectors can

track provenance data without requiring the user to change any-

thing about their application. However, system-level provenance

collectors have performance overheads, and, worse still, di�erent

works use di�erent and incomparable benchmarks to assess their

performance overhead. This work identi�es user-space system-level

provenance collectors in prior work, collates the benchmarks, and

evaluates each collector on each benchmark. We use benchmark

minimization to select a minimal subset of benchmarks, which can

be used as goalposts for future work on system-level provenance

collectors.
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1 INTRODUCTION

In the past decade, this has inspired a diverse range of research

and development e�orts meant to give us greater control over our

software, including containers and virtual machines to capture

environments [12, 31, 55, 66], package managers for �ne-grained

management of dependencies [23, 39], interactive notebooks and

work�ows [10, 20, 38], and online platforms for archiving and shar-

ing computational experiments [16, 25, 70, 71]. In this work, we

focus on computational provenance as a complementary strategy

for managing reproducibility across the research software lifecycle.
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Computational provenance is the history of a computational task,

describing the artifacts and processes that led to or in�uenced the

result [22]; the term encompasses a spectrum of tools and tech-

niques ranging from simple logging to complex graphs decorated

with su�cient detail to replay a computational experiment.

Provenance data can provide crucial information about the hard-

ware and software environments in which a code is executed. The

use cases for this data are numerous and many di�erent tools for

collecting it have been independently developed. However a rig-

orous comparison of those available tools and the extent to which

they are practically usable in CSE application contexts has been

lacking from prior work. To summarize the state of the art and to

establish goalposts for future research in this area, our paper makes

the following contributions:

• A rapid review on available system-level provenance collectors. We

identify 45 provenance collectors from prior work, classify their

method of operation, and attempt to reproduce the ones that

meet speci�c criteria. We successfully reproduced 9 out of 15

collectors that met our criteria.

• A benchmark suite for system-level provenance collectors: Prior

work does not use a consistent set of benchmarks; publications

often use an overlapping set of benchmarks from their prior work.

We �nd the superset of all benchmarks used in the prior work,

identify unrepresented areas, and �nd a statistically valid subset

of the benchmark. Our benchmark subset is able to recover the

original benchmark results within 5% of the actual value 95% of

the time.

The remainder of the paper is structured as follows. Section 2

motivates provenance and describe the di�erent methods of col-

lecting it. Section 3 describes how we execute the rapid review,

implement and execute benchmarks, and statistically subset the

results. Section 4 shows the results of the rapid review, performance

experiment, and benchmark subsetting. Section 5 explains what the

results show and touches on some problems they bring up. Section 6

summarizes the work.
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2.1 Prior work

Each result of our rapid review (Table 2) is an obvious prior work

on provenance collection. However, those priors studies look at

only one or two competing provenance tools at a time. To the best

of our knowledge, there has been no global comparison of prove-

nance tools. ProvBench [44] uses 3 provenance collectors (CamFlow,

SPADE, and OPUS), but they are solely concerned with the di�er-

ences between representations of provenance, not performance.

On the other hand, benchmark subsetting is a well-studied area.

This work mostly follows Yi et al.’s publication [78], which evalu-

ates subsetting methodologies and determines that dimensionality

reduction and clustering ar broadly good strategies. Phansalkar et

al. [60] apply dimensionality reduction and clustering to SPEC CPU

benchmarks.

3 METHODS

3.1 Rapid Review

We preformed a rapid review to identify the research state-of-the-

art tools for automatic system-level provenance.

Rapid Reviews are a lighter-weight alternative to systematic

literature reviews with a focus on timely feedback for decision-

making. Schünemann and Moja [67] show that Rapid Reviews can

yield substantially similar results to a systematic literature review,

albeit with less detail. Although developed in medicine, Cartaxo

et al. show that Rapid Reviews are useful for informing software

engineering design decisions [14, 15].

We conducted a rapid review with the following parameters:

• Search terms: “computational provenance” and “system-level

provenance” (two Google Scholar searches)

• Search engine: Google Scholar

• Number of results: 50 of both searches. This threshold is the

point of diminishing returns, as no new collectors came up in

the 40th – 50th results.

• Criteria: A relevant publication would center on one or more

operating system-level provenance collectors that capture �le

provenance. A tool requiring that the user use a speci�c applica-

tion or platform would be irrelevant.

3.2 Benchmark Selection

For each publication selected by the literature review, if it is a sec-

ondary study, we augment the set with the primary studies on

which the secondary study is based. In the augmented set, we ag-

gregate all benchmarks that were used to evaluate the performance

of provenance collectors. THe benchmarks genrally programs like

tar xvf that manipulate a large number of �les.

We excluded benchmarks for which we could not even �nd the

original program (e.g., TextTransfer), benchmarks that were not

available for Linux (e.g., Internet Explorer), benchmarks with a

graphical component (e.g., Notepad++), and benchmarks with an

interactive component (e.g., GNU Midnight Commander). We used

Nix package manager to build the software environment, so the

environment is buildable on many di�erent platforms2.

2Nix has o�cial installers for Linux, Mac OS X, and Windows Subsystem for Linux
on i686, x86_64, and aarch64 architectures, but FreeBSD and OpenBSD both package
Nix themselves, and it can likely be built from source on even more platforms. See
https://nixos.org/guides/how-nix-works

Table 1: Our experimental machine description.

Name Value

CPU 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

RAM 16 GiB of SODIMM DDR4 Synchronous 2400 MHz

Kernel Linux 6.1.64

Disk Sandisk Corp WD Black SN770 250GB NVMe SSD

We also added new benchmarks for data science and compiling-

from-source.

3.3 Performance Experiment

We run a complete matrix (every collector on every benchmark)

3 times in a random order on the machine described by Table 1.

We use CGroups [11] to precisely measure the CPU time, wall

time, memory utilization, and other attributes of the process (in-

cluding child processes). We enable ASLR, which introduces non-

determinism into the execution time, but helpfully randomizes a

variable that may otherwise have a confounding e�ect [53]. We

restrict the program to a single core to eliminate unpredictable

scheduling and prevent other daemons from perturbing the experi-

ment (they can run on the other N-1 cores). We wrap the programs

that exit quickly in loops so they take about 3 seconds without any

provenance system, isolating the cold-start costs.

3.4 Benchmark Subsetting

We implemented and ran many di�erent benchmarks, which may

be costly for future researchers seeking to evaluate new provenance

collectors. A smaller, less costly set of benchmarks may su�ciently

represent the larger set.

Following Yi et al. [78], we evaluate the benchmark subset in

two di�erent ways:

• Accuracy. How closely do features of the subset resemble fea-

tures of the original set? We will evaluate this by computing the

root mean squared error (RMSE) of a non-negative linear regres-

sion from the standardized features of selected benchmarks to

the mean of features of the total set.

• Representativeness. How close are benchmarks in the original

set to the closest benchmarks in the subset? We will evaluate this

by computing RMSE on the euclidean distance of standardized

features from each benchmark in the original set to the closest

benchmark in the selected subset.

We use a non-negative linear regression to account for the pos-

sibility that the total set has unequal proportions of benchmark

clusters. We require the weights to be non-negative, so doing

better on each benchmark in the subset implies a better perfor-

mance on the total. Finally, we normalize these weights by adding

several copies of the following equation to the linear regression:

weight
�
+ weight

�
+ · · · = 1. Yi et al. [78] used an unweighted

average, perhaps because they could assume the benchmarks in

SPEC CPU 2006 were already balanced.

We standardize the features by mapping G to IG = (G − Ḡ)/fG .

While G is meaningful in absolute units, IG is meaningful in relative

terms (i.e., a value of 1 means “1 standard deviation greater than

the mean”). Yi et al., by contrast, only normalize their features
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Gnorm = G/Gmax, which does not take into account the mean value.

We want our features to be measured relative to the spread of those

features in prior work.

We score by RMSE over mean absolute error (MAE), used by Yi et

al. [78], because RMSE punishes outliers more. MAE permits some

distances to be large, so long it is made up for by shrinking other

distances. RMSE would prefer a more equitable distribution, which

might be worse on average but better on the outliers than MAE.

We think this aligns more with the intent of “representativeness.”

We will use features that are invariant between running a pro-

gram ten times and running it once as features. These features give

long benchmarks and short benchmarks which exercise the same

functionality similar vectorization. In particular, we use:

1. The log overhead ratio of running the benchmark in each prove-

nance collector. We use the logarithm of the ratio rather than

the ratio directly because the ratio cannot be distributed sym-

metrically, but the logarithm may be3.

2. The ratio of CPU time to wall time. When limited to a single

core on an unloaded system, wall time includes I/O, but CPU

time does not.

3. The number of syscalls in each category per wall time second,

where the categories consist of socket-related, �le-metadata-

related, directory-related, �le-related, exec-related, fork-related,

exit-related syscalls, IPC-related syscalls, and chdir syscalls.

In order to choose the subset, we will try clustering (k-means

and agglomerative clustering with Ward linkage4), preceded by

optional dimensionality reduction by principal component analysis

(PCA). Once the benchmarks are grouped into clusters, we identify

one benchmark from each of the : clusters to consist the benchmark

subset. We will determine the best : experimentally.

4 RESULTS

4.1 Selected Provenance Collectors

Table 2 shows the provenance collectors we collected and their quali-

tative features. Because there are not many open-source provenance

collectors in prior work, we also include the following tools, which

are not necessarily provenance collectors, but may be adapted as

such: strace, ltrace, fsatrace, and RR. See Appendix A.1 for more

in-depth description of notable provenance collectors. The second

column shows the “collection method” (see Appendix A.2 for their

exact de�nition).

To acquire the source code, we looked in the original publication

for links, checked the �rst 50 results in GitHub, BitBucket, and

Google for the prototype name (e.g., “LPROV”), and then tried

3Suppose some provenance collector makes programs take roughly twice as long but
with a large amount of variance, so the expected value of the ratio is 2. A symmetric
distribution would require the probability of observing a ratio of -1 for a particular pro-
gram is equal to the probability of observing a ratio of 5, but a ratio of -1 is impossible,
while 5 is possible due to the large variance. On the other hand, logG maps posi-
tive numbers (like ratios) to real numbers (which may be symmetrically distributed);

choosing 2 ≈ 4
0.3 as our center, 5 ≈ 4

0.7 and 0.9 ≈ 4
−0.1 are equidistant in log-space

(negative logs indicate a speedup rather than slowdown, which are theoretically possi-
ble when comparing two runtimes). Also note that exp(arithmean(log(x))) is the same
as geomean(x), which is preferred over arithmean(x) for performance ratios according
to Mashey [50].
4k-means and agglomerative/Ward both minimize within-cluster variance, which is
equivalent to minimizing our metric of "representativeness" de�ned earlier, although
they minimize it in di�erent ways: k-means minimizes by moving clusters laterally;
Agglomerative/Ward minimizes by greedily joining clusters.

Table 2: Provenance collectors from our search results and

from experience. See Appendix A.2 for their exact de�nition.

Tool Method Status

strace tracing Reproduced
fsatrace tracing Reproduced
rr [56] tracing Reproduced
ReproZip [17] tracing Reproduced
CARE [30] tracing Reproduced
Sciunit [59] tracing Reproduced/rejected
PTU [59] tracing Reproduced/rejected
CDE [27] tracing Reproduced/rejected
ltrace tracing Reproduced/rejected
SPADE [24] audit, FS, or compile-time Needs more time
DTrace [1] audit Needs more time
eBPF/bpftrace audit Needs more time
SystemTap [63] audit Needs more time
PROV-IO [28] lib. ins. Needs more time
OPUS [7] lib. ins. Not reproducible
CamFlow [57] kernel ins. Requires custom kernel
Hi-Fi [62] kernel ins. Requires custom kernel
LPM/ProvMon [9] kernel ins. Requires custom kernel
Arnold[19] kern ins. Requires custom kernel
LPS [18] kern ins. Requires custom kernel
RecProv [34] tracing No source
FiPS [73] FS No source
Namiki et al. [54] audit No source
LPROV [76] kernel mod., lib. ins. No source
S2Logger [72] kernel mod. No source
ProTracer [47] kernel mod. No source
PANDDE [21] kernel ins., FS No source
PASS/Pasta [52] kernel ins., FS, lib. ins. No source
PASSv2/Lasagna [51] kernel ins. No source
Lineage FS [65] kernel ins. No source
RTAG [33] bin. ins. No source
BEEP [43] bin. ins. Requires HW
libdft [35] bin., kernel, lib. ins. Requires HW
RAIN [32] bin. ins. Requires HW
DataTracker [69] compile-time ins. Requires HW
MPI[46] compile-time ins. Requires recompilation
LDX [40] VM ins. Requires recompilation
Panorama [79] VM ins. VMs are too slow
PROV-Tracer [68] audit VMs are too slow
ETW [5] audit Not for Linux
Sysmon [49] audit Not for Linux
TREC [75] tracing Not for Linux
URSprung [64] audit Not for Linux5

Ma et al. [45] audit Not for Linux
ULTra [13] tracing Not for Linux

emailing the original authors. Several of the authors wrote back to

say that their source code was not available at all, and some never

wrote back. We mark both as “No source”.

Although we could reproduce ltrace, CDE, Sciunit, and PTU on

certain benchmarks, we couldn’t reproduce them on all benchmarks,

so we excluded them from further consideration.

4.2 Implemented Benchmarks

Of these, Table 6 shows the benchmarks used to evaluate each

tool, of which there are quite a few. We prioritized implement-

ing frequently-used benchmarks, easy-to-implement benchmarks,

and benchmarks that have value in representing a computational

science use-case.

5URSprung depends on IBM Spectrum Scale to get directory change noti�cations, so
it is not for a generic Linux system.
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Table 3: Benchmarks implemented by this work. For brevity,

we consider categories of benchmarks in Table 6. See ?? for

a description of each benchmark group and how we imple-

mented them.

Prior
works

This
work

InstancesBenchmark group and examples from prior work

12 yes 5 HTTP server/tra�c
10 yes 2 HTTP server/client
10 yes 8 Compile user packages
9 yes 19 + 1 I/O microbenchmarks (lmbench + Postmark)
9 no Browsers
6 yes 3 FTP client
5 yes 1 FTP server/tra�c
5 yes 5 × 2 Un/archive
5 yes 5 BLAST
5 yes 10 CPU benchmarks (SPLASH-3)
5 yes 8 Coreutils and system utils
3 yes 2 cp
2 yes 2 VCS checkouts
2 no Sendmail
2 no Machine learning work�ows (CleanML, Spark, Im-

ageML)
1 no Data processing work�ows (VIC, FIE)
1 no benchmarks occurring in only one prior work (RUBiS,

x64, mysqld, gocr, Memcache, Redis, php, pybench, ping,
mp3info, ngircd, CUPS)

Table 4 shows the aggregated performance of our implemented

benchmarks in our implemented provenance collectors. From this,

we observe:

• Although SPLASH-3 CPU-oriented benchmarks contain mostly

CPU-bound tasks, they often need to load data from a �le, which

does invoke the I/O subsystem. They are CPU benchmarks when

the CPU is changed and the I/O subsystem remains constant, but

when the CPU is constant and the I/O subsystem is changed, the

total running time is in�uenced by I/O-related overhead.

• cp is the slowest benchmark. It even induces a 45% overhead on

fsatrace.

4.3 Subsetted Benchmarks

Figure 2 shows the performance of various algorithms on bench-

mark subsetting. We observe:

1. The features are already standardized, so PCA has little to o�er

besides rotation and truncation. However, the truncation is

throwing away potentially valuable data. Since we have a large

number of benchmarks, and the space of benchmarks is open-

ended, the additional dimensions that PCA trims o� appear to

be important for separating clusters of data.

2. K-means and agglomerative clustering yield nearly the same

results. They both attempt to minimize within-cluster variance,

although by di�erent methods.

3. RMSE of the residual of linear regression will eventually hit

zero because the : exceeds the rank of the matrix of features by

benchmarks; Linear regression has enough degrees of freedom

to perfectly map the inputs to their respective outputs.

It seems that agglomerative clustering with : = 14 has performs

quite well, and further increases in : exhibit diminishing returns. At

that point, the RMSE of the linear regression is about 0.02. Assum-

ing the error is iid and normally distributed, we can estimate the

Table 4: The percent overhead of the mean walltime when

running with a provenance collector versus running without

provenance. A value of 3 means the execution in that cell

takes 1.03 times the execution without provenance. Negative

slowdown can occur sometimes due to random statistical

noise. We aggregate values across iterations and benchmark

cases (each cell) and across benchmark classes (last row) using

geometric mean.

(none) fsatrace CARE strace RR ReproZip

BLAST 0 0 2 2 93 8
CPU bench SPLASH-3 0 5 9 16 49 75
Compile w/Spack 0 -1 119 111 562 359
Compile w/gcc 0 4 136 206 321 344
Compile w/latex 0 7 72 40 23 288
Data science Notebook 0 4 15 32 20 174
Data science python 0 5 85 84 150 346
FTP srv/client 0 1 2 4 5 18
HTTP srv/client 0 -23 20 33 165 248
HTTP srv/tra�c 0 5 135 414 1261 724
IO bench lmbench 0 -10 1 3 11 36
IO bench postmark 0 2 231 650 259 1733
Tar Archive 0 -0 75 113 179 140
Tar Unarchive 0 4 44 114 195 149
Utils 0 17 118 280 1378 697
Utils bash 0 5 75 20 426 2933
VCS checkout 0 5 71 160 177 428
cp 0 37 641 380 232 5791

Total (gmean) 0 0 45 66 146 193

standard error of the approximation of the total benchmark by lin-

ear regression is about 0.02 (log-space) or 40.02 ≈ 1.02 (real-space).

Within the sample, 68% of the data falls within one standard error

(either multiplied or divided by a factor of 1.02) and 95% of the data

falls within two standard errors ( 42·0.02 or 1.04x). We examine the

generated clusters and benchmark subset in Figure 4 and Table 5.

Figure 3a shows the a posteriori clusters with colors. Figure 3b

shows a priori benchmark “types”, similar but more precise than

those in Table 3. From these two, we o�er the following observa-

tions:

1. It may appear that the algorithm did not select the benchmark

closest to the cluster center, but this is because we are viewing

a 2D projection of a high-dimensional space, like how three

stars may appear next to each other in the sky but in reality,

one pair may be much closer than the other, since we cannot

perceive the radial distance to each star.

2. Many clusters are singletons, e.g., simplhttp near (4, 6); this is

surprising, but given there are no points nearby, that decision

seems reasonable.

3. We might expect that benchmarks of the same type would

occupy nearby points in PCA space, but they often do not.

lmbench is particularly scattered with points at (−2, 0) and

(0, 5), perhaps because it is a microbenchmark suite where each

microbenchmark program tests a di�erent subsystem.

4. Postmark is intended to simulate the �le system tra�c of a web

server (many small �le I/O). Indeed the Postmark at (3.5,−2)

falls near several of the HTTP servers at (6,−3) and (7,−3).

Copy is also similar.
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interrupting, using their interruption store a copy of the �les that

would be read or appended to by the process. None of the inter-

rupting provenance collectors we tested use library interposition

or eBPF (although PROV-IO does, we did not have time to imple-

ment it). Perhaps a faster underlying method would allow powerful

features of interrupting collectors in a reasonable overhead budget.

Current provenance collectors are too slow for “always

on”. One point of friction when using system-level provenance

collection is that users have to remember to turn it on, or else the

system is useless. An “always on” provenance system could alleviate

that problem; for example, a user might change their login shell to

start within a provenance collector. Unfortunately, the conventional

provenance collectors exhibit an intolerably high overhead to be

always used, with the exception of fsatrace. fsatrace is able to so

much faster because it uses library interpositioning rather than

ptrace (see “fast-and-powerful” discussion above), but fsatrace is

one of the weakest collectors; it only collects �le reads, writes,

moves, deletes, queries, and touches (nothing on process forks and

execs).

The space of benchmark performance in provenance sys-

tems is highly dimensional.The space of benchmarks is naturally

embedded in a space with features as dimensions. If there were

many linear relations between the features (e.g., slowdown = (app

syscalls / sec) * (prov syscall latency)), then we would expect cluster-

ing to reveal fewer clusters than the number of features. However,

there are more clusters than features (14 > 12); it seems that most

dimensions are not linearly redundant. Even the relationship be-

tween workloads is non-linear; if workload A is a weighted average

of B and C in feature-space (e.g., num of syscalls), its runtime is not

necessarily the same weighted average of B and C’s runtime.

Computational scientists may already be using work�ows.

While system-level provenance is the easiest way to get provenance

out of many applications, if the application is already written in a

work�ow engine, such as Pegasus [37], they can get provenance

through the engine. Computational scientists may move to work-

�ows for other reasons because they make it easier to parallelize

code on big machines and integrate loosely coupled components.

That may explain why prior work on system-level provenance

focuses more on security applications.

5.1 Threats to Validity

Internal validity: We mitigate measurement noise by:

• Isolating the sample machine Section 3.3

• Running the code in cgroups with a �xed allocation of CPU and

RAM

• Rewriting benchmarks that depend on internet resources to only

depend on local resources

• Averaging over 3 iterations helps mitigate noise.

• Randomizing the order of each pair of collector and benchmark

within each iteration.

External validity: When measuring the representativeness of

our benchmark subset, we use other workload characteristics, not

just performance in each collector. Therefore, our set also maintains

variety and representativeness in underlying characteristics, not

just in the performance we observe. Rather than select the highest

cluster value, we select the point of diminishing return, which is

more likely to be generalizable.

5.2 Future Work

In the future, we plan to implement compilation for more packages,

particularly xSDK [8] packages. Compilation for these packages

may di�er from ApacheHttpd and Linux because xSDK is orga-

nized into many dozens of loosely related packages. We also plan

to implement computational work�ows. Work�ows likely have a

di�erent syscall access pattern, unlike HTTP servers because the

�les may be quite large, unlike cp because work�ows have CPU

work blocked by I/O work, and unlike archiving because there are

multiple “stages” to the computation.

We encourage future work that implements an interrupting

provenance collector using faster methods like library interposi-

tion or eBPF instead of ptrace. Between them, there are pros and

cons: eBPF requires privileges but could be exposed securely by a

setuid/setgid binary; library interposition assumes the tracee only

uses libc to make I/O operations. Another optimization postponing

work to o� the critical path: if a �le is read, it can be copied at

any time unless/until it gets mutated (“copy-on-write-after-read”).

Other reads can be safely copied after the program is done, and

new �le writes obviously do not need to be copied at all. Perhaps

the performance overhead would be low enough to be “always on”,

however storage and querying cost need to be dispatched with as

well.

6 CONCLUSION

We intend this work to bridge research to practical use of prove-

nance collectors and an invitation for future research. In order to

bridge research into practice, we identi�ed reproducible and usable

provenance collectors from prior work and evaluated their perfor-

mance on synthetic and real-world workloads. In order to invite

future research, we collated and minimized a benchmark suite and

identi�ed gaps in prior work. We believe this work and the work it

enables will address the practical concerns of a user wanting to use

a provenance collector.
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A APENDICES

A.1 Notable provenance collectors

CDE is a record/replay tool proposed by Guo and Engler [27].

During record, CDE uses ptrace to intercept its syscalls, and copy

relevant �les into an archive. During rerun, can use ptrace to

intercept syscalls and redirect them to �les in the archive. PTU uses

a modi�ed version of CDE that works on all of our benchmarks, so

we can use that as a proxy.

ltrace similar to strace, but it traces dynamic library calls not

necessarily syscalls. It still uses ptrace.

strace is a well-known system program that uses Linux’s ptrace

functionality to record syscalls, their arguments, and their return
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code to a �le. strace even parses datastructures to write strings

and arrays rather than pointers. In this work, we use an strace

con�guration that captures all �le-related syscalls but read/write7,

�le-metadata realated syscalls, socket- and IPC- related sycalls but

send/recv, and process-related syscalls.

fsatrace reports �le I/O using library-interpositioning, a tech-

nique where a program mimics the API of a standard library. Pro-

grams are written to call into the standard library, but the loader

sends those calls to the interpositioning library instead. The inter-

positioning library can log the call and pass it to another library

(possibly the “real” one), so the program’s functionality is preserved.

This avoids some context-switching overhead of ptrace, since the

logging happens in the tracee’s process.

CARE is a record/replay tool inspired by CDE. However, CARE

has optimizations enabling it to copy fewer �les, and CARE archives

can be replayed using chroot, lxc, or ptrace (by emulating chroot);

CDE only supports ptrace, which is slower than the other two.

RR [56] is a record/replay tool. It captures more syscalls than just

�le I/O, including getrandom and clock_gettime and it is able to

replay its recordings in a debugger. Where other record/replay tools

try to identify the relevant �les, RR only memorizes the responses

to each syscall, so it can only replay that exact code path. CDE,

CARE, ReproZip, PTU, and Sciunit allow one to replay a di�erent

binary or supply di�erent inputs in the �lesystem of an existing

recording.

ReproZip is a record/replay inspired by CDE. ReproZip archives

can be replayed in Vagrant, Docker, Chroot, or natively. Unlike other

record/replay tools, ReproZip explicitly constructs the computa-

tional provenance graph.

PTU (Provenance-To-Use) is an adaptation of CDE which explic-

itly constructs the computational provenance graph.

Sciunit is a wrapper around PTU that also applies block-based

deduplication.

A.2 Collection methods

User-level tracing: A provenance tool may use “debugging” or

“tracing” features provided by the kernel, e.g., ptrace(2) [4], to

trace another program’s I/O operations.

Built-in auditing service: A provenance tool may use auditing

service built in to the kernel, e.g., Linux Auditing Framework [48],

enhanced Berkeley Packet Filter (eBPF) [2], kprobes [36], and ETW

[5] for Windows.

Filesystem instrumentation: A provenance tool may set up

a �le system, so it can log I/O operations, e.g., using Filesystem

in User SpacE (FUSE) interface [3], or Virtual File System (VFS)

interface [26].

Dynamic library instrumentation: A provenance tool may

replace a library used to execute I/O operations (e.g., glibc) with

one that logs the calls before executing them.

Binary instrumentation: A provenance tool may use binary

instrumentation (dynamic or static) to identify I/O operations in

another program.

7We do not need to capture individual reads and writes, so long as we capture that the
�le was opened for reading/writing.

Compile-time instrumentation: A provenance tool may be a

compiler pass that modi�es the program to emit provenance data,

especially intra-program control �ow.

Kernel instrumentation: A provenance tool may be a modi�ed

kernel either by directly modifying and recompiling the kernel’s

source tree.

Kernelmodule: Rather than directly modify the kernel’s source,

the provenance tool may simply require that the user load a custom

kernel module.

VM instrumentation: A provenance tool may execute the pro-

gram in a virtual machine, where it can observe the program’s I/O

operations.

See Table 6 for a list of prior publications and what benchmarks

they use, if, for example, one wishes to see the original contexts in

which Firefox was used.

Table 6: Benchmarks used by prior works on provenance

collectors (sorted by year of publication).

Publication Benchmarks Comparisons

TREC [75] open/close, compile Apache, LaTeX Native
ULTra [13] getpid, LaTeX, Apache, compile package Native,

strace
PASS [52] BLAST Native ext2
Panorama [79] curl, scp, gzip, bzip2 Native
PASSv2 [51] BLAST, compile Linux, Postmark, Mercurial, Kepler Native ext3,

NFS
SPADEv2 [24] BLAST, compile Apache, Apache Native
Hi-Fi [62] lmbench, compile Linux, Postmark Native
libdft [35] scp, {tar, gzip, bzip2} x {extract, compress} PIN
PTU [59] Work�ows (PEEL0, TextAnalyzer) Native

LogGC [42] RUBiS, Firefox, MC, Pidgin, Pine, Proftpd, Sendmail, sshd,
vim, w3m, wget, xpdf, yafc, Audacious, bash, Apache,
mysqld

None8

CARE [30] Compile perl, xz Native
Arnold[19] cp, CVS checkout, make libelf, LaTeX, Apache, gedit, Fire-

fox, spreadsheet, SPLASH-2
Native

LPM/ProvMon [9] lmbench, compile Linux, Postmark, BLAST Native
Ma et al. [45] TextTransfer, Chromium, DrawTool, NetFTP, Ad-

vancedFTP, Apache, IE, Paint, Notepad, Notepad++,
simplehttp, Sublime Text

Native

ProTracer [47] Apache, miniHTTP, ProFTPD, Vim, Firefox, w3m, wget,
mplayer, Pine, xpdf, MC, yafc

Auditd,
BEEP

LDX [40] SPEC CPU 2006, Firefox, lynx, nginx, tnftp, sysstat,
gif2png, mp3info, prozilla, yopsweb, ngircd, gocr, Apache,
pbzip2, pigz, axel, x264

Native

PANDDE [21] ls, cp, cd, lpr Native
MPI [46] Apache, bash, Evince, Firefox, Krusader, wget, most, MC,

mplayer, MPV, nano, Pine, ProFTPd, SKOD, TinyHTTPd,
Transmission, Vim, w3m, xpdf, Yafc

Audit, LPM-
HiFi

CamFlow [57] lmbench, postmark, unpack kernel, compile Linux,
Apache, Memcache, redis, php, pybench

Native

BEEP [43] Apache, Vim, Firefox, wget, Cherokee, w3m, ProFTPd,
yafc, Transmission, Pine, bash, mc, sshd, sendmail

Native

RAIN [32] SPEC CPU 2006, cp linux, wget, compile libc, Firefox,
SPLASH-3

Native

Sciunit [74] Work�ows (VIC, FIE) Native
LPS [18] IOR benchmark, read/write, MDTest, HPCG Native
LPROV [76] Apache, simplehttp, proftpd, sshd, �refox, �lezilla, lynx,

links, w3m, wget, ssh, pine, vim, emacs, xpdf
Native

MCI [41] Firefox, Apache, Lighttpd, nginx, ProFTPd, CUPS, vim,
elinks, alpine, zip, transmission, lftp, yafc, wget, ping,
procps

BEEP

RTAG [33] SPEC CPU 2006, scp, wget, compile llvm, Apache RAIN
URSPRING [64] open/close, fork/exec/exit, pipe/dup/close,

socket/connect, CleanML, Vanderbilt, Spark, Im-
ageML

Native,
SPADE

PROV-IO [28] Work�ows (Top Reco, DASSA), I/O microbenchmark
(H5bench)

Native

Namiki et al. [54] I/O microbenchmark (BT-IO) Native

8LogGC measures the o�ine running time and size of garbage collected logs; there is
no comparison to native would be applicable.
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