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Abstract

The prolonged continuous integration (CI) runs are affecting timely
feedback to software developers. Test-case prioritization (TCP) aims
to expose faults sooner by reordering tests such that the ones more
likely to fail are run earlier. TCP is thus especially important for
long-running test suites. While many studies have explored TCP,
they are based on outdated CI builds from over 10 years ago with
test suites that last several minutes, or builds from inaccessible,
proprietary projects. In this paper, we present LRTS, the first dataset
of long-running test suites, with 21,255 CI builds and 57,437 test-
suite runs from 10 large-scale, open-source projects that use Jenkins
CL LRTS spans from 2020 to 2023, with an average test-suite run
duration of 6.5 hours. On LRTS, we study the effectiveness of 59
leading TCP techniques, the impact of confounding test failures on
TCP, and TCP for failing tests with no prior failures. We revisit prior
key findings (9 confirmed, 2 refuted) and establish 3 new findings.
Our results show that prioritizing faster tests that recently failed
performs the best, outperforming the sophisticated techniques.
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1 Introduction

Continuous integration (CI) has been widely adopted in software
development to increase code quality and reduce release time [37,
72, 104]. CI runs test suites automatically, allowing developers to
quickly identify mistakes in their commits. However, both code-
base size and code commit frequency have grown rapidly over the
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years [3, 63, 79], which increases the test suite runtime in CI. The
prolonged test suite execution can delay development cycles and
prevent timely feedback to the developers.

Test-case prioritization (TCP) aims to expose potential faults
in the regression change sooner by reordering tests in the test
suite, such that the ones more likely to fail are run earlier [89]. The
importance of TCP grows with the size and execution time of the
test suite. If a test suite takes only seconds or minutes to run, then
prioritizing tests will not save much time. In contrast, TCP can be
especially important for long-running test suites.

To date, there is a wealth of TCP techniques, with several sur-
veys conducted [18, 29, 36, 59, 61, 80, 89, 111]. Traditional TCP
techniques use code coverage, and prioritize tests that cover more
code elements [89, 90]. However, they have limited applicability, as
code coverage is hard to collect [18, 71]. Recent empirical studies
of TCP thus focus on techniques that rely on more accessible test
features [19, 29, 110], such as history-based techniques that prior-
itize tests by their previous outcomes [48, 111], and time-based
techniques that prioritize faster tests [13, 91]. Some other pro-
posed TCP techniques use information retrieval (IR) [83, 92] or
machine learning (ML) [9, 10, 50, 98] to leverage multiple informa-
tion sources from CI to prioritize tests. For example, researchers
developed Learning-to-Rank (LTR) TCP with supervised learning
algorithms, and Ranking-to-Learn (RTL) TCP with reinforcement
learning algorithms, both of which were shown effective.

Existing studies have investigated the effectiveness of TCP tech-
niques in different contexts. Recent studies [9, 19, 67, 83, 110] evalu-
ate TCP techniques on open-source projects. These studies consider
historical test-suite runs and real test failures mostly from Java
projects that use Travis CI [7]. For example, Peng et al. [83] studied
IR-based TCP on 3,000 test-suite runs, Bertolino et al. [9] studied
both LTR and RTL TCP, Elsner et al. [19] studied LTR TCP on 20
open-source [67] and 3 proprietary projects, and Yaraghi et al. [110]
studied LTR TCP on test suites that last at least 5 minutes from 25
projects. They provide important findings on different techniques.
However, most of their studied CI builds are outdated, e.g., from
over ten years ago [8], and have test suites that are relatively short-
running, e.g., on average several minutes (§3.3). As our analysis
shows, longer-running test suites (e.g., on average several hours
or more) from recent codebases have different characteristics than
prior datasets (§3.5), which may result in different effectiveness and
ranking outcomes of existing TCP techniques.

Other studies consider TCP on software from large companies [10,
18, 21, 29, 63, 101, 106]. While providing valuable experience, these
studies focus on very few TCP techniques, e.g., history-based (§2.2).
Further, their observations and techniques are based on large testing
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infrastructures that are too costly or domain-specific for most open-

source projects, such as prioritization for parallel test jobs at large-

scale clusters or specific hardware [18, 106]. These studies also pro-
vide limited data for future investigations—their studied project(s)
are inaccessible [10, 63, 101, 106], lack heterogeneity [21, 98], or

have rather old artifacts [18].

One key challenge in studying TCP is the lack of up-to-date, high-
quality datasets, especially in cases where TCP can help the most:
long-running test suites. Moreover, many popular TCP techniques
have only been studied separately across different datasets and
settings—there has been no recent extensive evaluation of leading
TCP techniques in a unified experiment setup. These challenges
hinder researchers and practitioners from developing new research
insights and identifying techniques applicable to their context.

In this paper, we introduce the first extensive, high-quality dataset
of long-running test suites, called LRTS, curated from recent CI
builds of popular open-source repositories (§3). On LRTS, we eval-
uate 59 TCP techniques from five leading technique categories:
time-based, history-based, IR-based, learning-based (LTR and RTL)
techniques, and cost-cognizant hybrid techniques (§2). We study
the effectiveness of these techniques in three contexts: recent, long-
running test suites (§5.1); impact of flaky tests and frequently-
failing tests (§5.2); and prioritizing failing tests that have no prior
failure (§5.3). Our study revisits key findings from recent TCP stud-
ies [9, 19, 21, 83, 110] and presents new findings.

Specifically, our paper makes the following contributions:

e Dataset. We collect LRTS, an extensive dataset focused on long-
running test suites. It consists of 21,255 Jenkins CI builds with
57,437 test-suite runs from recent versions of 10 popular, large-
scale open-source GitHub projects. Curated projects have differ-
ent uses and are written in Java, Scala, Python, and C++. The
builds span from 2020 to 2023, including 15,852 builds with 30,118
test-suite runs that have failed tests. The test-suite runs last for
6.5 hours on average (§3.3). We are releasing LRTS, with our code
on: https://zenodo.org/records/12662090

o Extensive Study. We start with 26 basic TCP techniques—2 time-
based, 6 history-based, 6 IR-based, 5 LTR, 6 RTL TCP techniques,
and the Random baseline. We next apply two cost-cognizant
hybrid TCP approaches to the basic techniques, to construct 33
hybrid techniques. In total, we evaluate 59 TCP techniques, on
the widely-used metric Average Percentage of Faults Detected
per Cost (APFDc) and APFD, under different failure-to-fault
mappings [97]. We further assess how the effectiveness of these
techniques is impacted by confounding test failures (failures of
flaky tests and frequently failing tests). We also study their ef-
fectiveness in detecting the first failures of tests throughout the
collected CI history.

¢ Findings. We revisit 11 key findings from recent TCP studies,
confirming 9 and refuting 2 findings. We also present 3 new find-
ings. Table 7 provides the summary of our findings. Among basic
techniques, time-based techniques, e.g., running faster tests first,
are the most effective and the least impacted by confounding
test failures. Among all techniques, hybrid techniques that sim-
ply combine time-based and history-based heuristics perform
the best, e.g., prioritizing faster tests that have failed recently,
outperforming all sophisticated techniques. The overall ranking
of techniques on LRTS is similar to that of prior work.
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2 TCP Techniques

We first overview different TCP technique categories and describe
the techniques we use in our study. We focus on evaluating only
previously proposed TCP techniques and do not promote any new
technique to mitigate potential bias in evaluating TCP techniques on
our new dataset. TCP is the problem of finding a test execution order
that detects more faults faster [89, 111]. Depending on the heuristics
that guide the ordering, we can categorize basic TCP techniques
in four main categories: time-based, history-based, IR-based, and
learning-based. The fifth category is hybrid TCP techniques that
systematically combine heuristics from other different categories.

2.1 Time-based TCP

A simple way of prioritizing tests is sorting them in ascending order
by execution time, expecting that executing more tests within a
given time can find more failures [91]. This TCP category, called
Quickest-Time-First (QTF), has been recently shown to rival or out-
perform more sophisticated TCP techniques on short-running test
suites [13, 19, 83]. We evaluate 2 time-based techniques: QTF-Last
and QTF-Avg: the former uses the execution time of the previous
test run as the prioritization heuristic, while the latter uses the
average execution time from prior test runs.

2.2 History-based TCP

History-based techniques prioritize tests based on the tests’ out-
come information from prior executions—they assume a test that
has failed or changed its outcome is more likely to detect faults in
the new code version. History-based techniques can incorporate
different outcome information, such as test failure, test transition,
or the association between the test and changed code files.

2.2.1 Test Outcome. Two history-based TCP heuristics are most
commonly used. Test failure history considers whether the test
has previously failed. Test transition history considers whether
the test outcome has changed (failing to passing, or vice versa).
We evaluate 4 history-based techniques from this sub-category:
(1) MostFail prioritizes tests that have a higher historical failure
count [4, 63, 74, 76, 77, 83], (2) LatestFail prioritizes tests that failed
more recently [4, 18, 42, 76], (3) MostTrans prioritize tests that have
a higher historical transition count [19, 52], and (4) LatestTrans
prioritizes tests that transitioned more recently [19, 52].

2.2.2  Test Outcome and Changed File Association. Test outcome
history can be more informative when associated with the change
under test. Researchers thus proposed to trace the outcome history
and changed files, and to prioritize tests whose outcomes were
more related to changed files based on previous test runs [3, 49,
75, 84, 96, 109]. We evaluate 2 history-based techniques from this
sub-category: TF-FailFreq prioritizes tests with higher failure count
with respect to the changed files, and TF-TransFreq prioritizes tests
with higher transition count with respect to the changed files [19].

2.3 IR-based TCP

IR-based techniques rely on textual similarity to identify the tests
that are more relevant to code changes [83, 92]. They extract code
tokens from tests and code (or code change diff), and process them
into a corpus of documents and a query with off-the-shelf IR models.
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Table 1: LTR TCP feature sets.

Fy: (Test,File)-history features

Max (test,file)-failure freq

Max (test file)-transition freq

Max (test,file)-failure freq (relative)
Max (test,file)-transition freq (relative)

Fy: test history features

Failure count

Last failure

Transition count

Last transition

Average duration

F3: (Test,File)-similarity features
Min file path distance

Max file path token similarity

Min file name distance

Fy: change features
Distinct authors
Changeset cardinality
Amount of commits

For a code change presented as a query, an IR-based technique
prioritizes tests whose documents are more similar to the query.
IR-based techniques can be configured to use different IR models,
e.g., Term Frequency-Inverse Document Frequency (TF-IDF) [93]
or BM25 [88], and the amount of context they consider for a code
change [83]. For example, NoContext techniques only use tokens
from the exact changed lines to construct the query, WholeFile
techniques use all the tokens from the changed files, and GitDiff
techniques use tokens from the git diff file (same as using 3 lines
of context [23]). We evaluate 6 IR-based techniques from prior
work [83] that use BM25 and TF-IDF IR models with the 3 different
context lengths mentioned above.

2.4 Learning-based TCP

With the advent of machine learning (ML), a number of TCP tech-
niques use ML algorithms to predict the ranking of tests. These
TCP techniques can be broadly put into two sub-categories [9]:
Learning-to-Rank (LTR) and Ranking-to-Learn (RTL).

2.4.1 Learning-to-Rank. LTR TCP techniques use supervised learn-
ing algorithms, in which an ML model is trained on historical CI
builds to predict ranking of tests for future builds [9, 10, 19, 63, 66,
717,80, 110]. LTR techniques train ML models with features from the
test, code or code change, and execution history [19, 110], to predict
the probability of test failure, which then determines the test order.
The effectiveness of LTR techniques depends on the underlying
ML model and the training process, even if trained on the same
data. The choice of features can also substantially impact the model
performance in LTR TCP.

Prior work evaluated how different ML algorithms impact the
effectiveness of LTR techniques [9, 19, 110]. They also explored
to what extent the training:testing data ratio, e.g., using the first
(chronologically ordered) 50% or 75% of the test runs for training and
the rest for testing, impacts the outcome of TCP. We revisit the most
studied ML algorithm (gradient boosting trees) and training:testing
data ratio (75%) [9, 19, 80]. We use the most effective features prior
work identified that are also easily accessible in CI [19, 65, 110].
Table 1 lists them categorized into four feature sets, which follow
the same definitions as in Elsner et al. [19]. In total, we evaluate 5
LTR techniques, 4 techniques using one set of features each, and 1
technique using all four feature sets.

2.4.2 Ranking-to-Learn. RTL TCP techniques use reinforcement
learning (RL) algorithms [6, 9, 78, 98]. In contrast to LTR where a
model is trained offline, RTL trains its model online—RTL TCP is
deployed without learning on historical builds, and learns a test
ranking policy for a project at runtime. It continuously (1) ranks
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tests based on test states of the current CI build, and (2) receives
feedback from the ranking to improve its policy for the next build.

A test state encodes a test’s metadata, eg., previous outcome
and duration. Given all test states of the current build, RTL TCP
selects an action for each test (i.e., giving each test a priority score)
with its current policy or by random exploration. After running the
prioritized test suite, a reward is fed back to the model to improve
the current policy—a higher reward encourages prioritizing a given
test state. The effectiveness of RL TCP is sensitive to its parameters,
e.g., RL model choice, data encoded in the test state, and definition
of the reward function. As in prior work [9, 98], we evaluate neural
network (NN) and Q-table (Tabl) as RL agents on three rewards
functions: failure count (FailCount), test failure (TestFail), and time
rank (TimeRank). In total, we study 6 RTL TCP techniques.

2.5 Hybrid TCP

After describing the basic TCP techniques, we now describe the
hybrid TCP techniques, which combine the heuristics from previous
categories for better effectiveness. For example, we can build a
hybrid technique based on MostFail by prioritizing tests not only
by higher failure count but also by shorter execution time. Hybrid
approaches have improved the effectiveness of basic techniques
in different TCP settings [14, 83], which motivated us to include
them in our study. We adopt two hybrid TCP approaches from prior
work [83]: cost-cognizant (CC) and cost-history-cognizant (CCH).

Cost-cognizant. Given a basic technique that ranks tests based
on score s in the ascending order, a CC hybrid technique prioritizes
tests in the ascending order of s = t, where t is the test execution
time from the previous run. CC techniques promote prioritizing
tests with a short execution time.

Cost-history-cognizant. Given a basic technique that ranks tests
based on score s in the ascending order, a CCH hybrid technique
prioritizes tests in the ascending order of s * t/c, where c is the
test’s failure count. CCH techniques promote prioritizing tests that
failed more often per unit of time.

3 Dataset of Long-Running Test Suites

§3.1-3.2 describe our project selection criteria and the construction
of LRTS. §3.3 provides more details on LRTS, with an analysis of the
distributions of its CI builds and test failures. §3.4 describes how
we account for confounding test failures (failures of flaky tests and
frequently failing tests). §3.5 compares characteristics of LRTS with
recent datasets of short-running test suites.

3.1 Project Selection

We sought projects that were open-source, because they often pro-
vide transparent data access to their recent CI builds, with test
failures induced by real faults [67]. In selecting projects, we priori-
tize those actively maintained, with a substantial history of commits
and builds. A large number of commits and a long build history in-
crease confidence in generalizing the empirical findings and claims
from the study. The most critical criterion for our work was the
inclusion of projects with long-running test suites, because these
projects can benefit the most from TCP.

We focus on selecting projects from the Apache Software Founda-
tion (ASF) [5] because it offers a diversity of renowned open-source
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Table 2: LRTS dataset summary. TSR denotes test-suite run, TC denotes test class, and TM denotes test method.

Project Main PLs | SLOC | Period (days) | #CIbuild | #TSR | #Failed TSR [ #Fail::la';‘létlcs é?;;raie;;i‘l’:df;‘;:d f)sliiﬁon (hours)
ActiveMQ Java 669K 827 207 207 109 | 676 3| 6,081 34 436
Hadoop Java aM 1,004 1,209 | 1,299 543 | 829 6| 7,289 24 5.57
HBase Java ™M 504 278 553 215 | 1,061 2| 6,369 3 9.28
Hive Java, HiveQL | 2M 618 2,056 | 2,056 1419 | 1,273 9 | 40,921 83 26.12
Jackrabbit Oak Java 694K 745 860 860 639 | 1,807 12 | 19,699 107 3.27
James Java, Scala | 793K 786 2404 | 3,147 1,399 | 1,864 6| 34,718 37 2.15
Kafka Java, Scala | 905K 984 11,843 | 39,006 24,047 | 1,232 4] 19,399 12 7.59
Karaf Java, Scala | 186K 959 620 620 174 | 205 2| sal 2 0.58
Logdj 2 Java 277K 436 270 528 162 | 64l 3| 3918 0.25
TVM Python, C++ | 818K 631 1418 | 9,161 1411 | 526 3| 8564 37 483
Total 21,255 | 57,437 30,118

projects and has been studied by many researchers for over two
decades [73]. While the source code of ASF projects is easy to find,
collecting their build logs is challenging as they use different CI
services and organize their CI build data differently. In particular,
they rarely use free services, such as GitHub Actions or Travis CI,
because their test-suite runs are rather long, beyond the usual limits
offered in the free tier of these services [26]. Instead, they mostly
use Jenkins CI, on public or private servers.

We consider only ASF projects that preserve CI history on pub-
licly accessible Jenkins CI servers (e.g., [31, 45]), as these projects
can have long-running test suites, and Jenkins CI provides uni-
formed API for downloading serialized build data [40]. We select
from the longest-running projects, where the test-suite execution
time for the majority of the project’s most recent CI builds exceeds
30 minutes. Many of these projects delete build history regularly—
our dataset thus includes some CI builds that are no longer available.

Table 3 lists the 10
projects in LRTS. All

Table 3: Projects in our dataset.

Project Primary Use Stars
projects consist of sev-  ["ActiveMQ Message broker 2K
eral sub-projects (e.g., [ Hadoop Big-data processing | 14K
multi-module Maven HBase Big-data storage 5K
projects in Java). They Hive A Data warehoyse 5K

. Jackrabbit Oak | Content repository 381
use a . mix  of pro- James Mail server 848
gramming languages Kafka Stream processing 26K
(Java, Scala, Python, Karaf Modulith runtime 669
and C++) and build | Log4j2 Logging API 3K
systems (8 Maven [68], TVM Compiler stack 10K

1 Gradle [28], and 1 CMake); all use Jenkins CI. To our knowledge,
LRTS is the first open-source dataset for investigating the effec-
tiveness of TCP techniques on multiple large-scale projects with
long-running test suites and actual CI failures.

3.2 Dataset Curation

We collect CI builds with real test failures for each project, and
extract the corresponding test-suite runs and code change data. We
use data collection procedure similar to prior work [67, 79, 83, 110]
and describe our differences below.

3.2.1 ClI Builds. We focus on CI builds triggered by PR commits,
rather than branch pushes, because builds for PRs may fail more
frequently than builds for a particular branch (e.g., trunk). Each
PR can have multiple commits and multiple builds. We first collect
build metadata from the CI server, then collect the metadata of
corresponding PRs via GitHub API [25].
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A Jenkins CI build can have multiple stages [39], similar to how a
Travis CI build can have multiple jobs [8, 110]. In LRTS, we observe
some builds having multiple stages, where each stage has a test-
suite run on a different environment, and the test report of that
build records all the runs. For example, a Kafka build can run the
same code for four different environments (JDK 8, 11, 17, and 20) in
four stages [46]. Following prior work [19, 83, 110] that treated each
Travis CI (build, job) pair as a test-suite run, we treat the test-suite
run of each (build, stage) pair as a data point for evaluating TCP.
We also treat each stage in a project as having its own CI history,
which consists of all builds that included that stage.

3.2.2  Test Suite Information. We obtain test report URLs from build
metadata files, and extract test reports in JSON format via Jenkins
CI API [40]. Our process differs from the extraction of test results
from Travis CI [8] because the test report data from Jenkins CI
provides much more uniform information, with no need to parse
textual build logs. As a result, LRTS has more accurate information
about test runs than datasets built from Travis CI [8, 67, 79, 83, 110].
Each test report contains the duration, outcome, and name of each
test method and its test class in the test-suite run(s) of the build. It
also contains stack traces for failed tests, and metadata of the run.

3.2.3 Code Change Information. The code change of a PR build
is the diff between its PR commit head (denoted as head) and the
branch commit head that head is being merged into (denoted as
base) [8]. We extract head from the build metadata file, and base
from the build log. For each pair of head and base, we extract the
code change data via GitHub API [24], which includes the diff file
URL, commit identifiers, authors, and the list of changed files. We
use the diff file URL to download corresponding code change diff.

3.3 Dataset Overview

LRTS curates the data of 21, 255 unique CI builds from 10 projects.
These builds have 57, 437 test-suite runs (TSRs), of which 30, 118
(59%) TSRs had at least one failed test. A build can have more than
one TSR (§3.2.1). Table 2 provides more details on LRTS [15]. The
durations are based on Jenkins CI test reports, by summing up the
durations of all executed tests in each TSR. If tests run in parallel
to reduce the total elapsed time, TCP can prioritize and parallelize
tests to find failures sooner [11, 115]. For a fair comparison, as
in prior work [9, 19, 29, 83], we evaluate TCP techniques while
considering that each TSR runs its tests sequentially.

In Table 4, we compare LRTS with other datasets in TCP studies
since the RTPTorrent release in 2020 [29, 67]. We omit datasets
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Figure 1: Distribution of CI builds by the duration (hours) and size (number of test classes) of all (not only failed) TSRs. The
solid dark lines and left y-axes show CDFs by TSR duration. The dashed lighter lines and right y-axes show CDFs by TSR size.

with synthetic CI failures [2, 53, 115, 116], or whose long-running
test suites come from inaccessible, proprietary projects [6, 19, 56,
65, 78, 95]. Many recent studies use the same set of builds from
before 2016 in TravisTorrent or proprietary projects [7, 8, 18, 67,
98]. In comparison, the builds in LRTS span from 2020 to 2023,
reflecting more current CI practices and are suitable for up-to-date
TCP studies [80]. We continue to collect build data from these
projects to preserve them before they get deleted: as of now, we
have over 32K builds and over 108K TSRs [58].

Table 4 shows that Table 4: Comparing TCP datasets.

the average TSR du- TCP dataset | #Proj | #ISR | Duration
ration (measured in RTPTorrent [67] 20 | 100K 0.17
hours) in LRTS is (1) Peng et al. [83] 123 3K 0.09
at least 18 times larger  |oiCL L) 6 3K <001

€ € ge Pan and Pradel [79] 242 15K 0.35
than the other datasets  [Tcp-ci[i10] 25| 21K 0.27
with multiple projects | Chrome [21] 1] 50K 7.96
and (2) similar to the LRTS (Ours) 10 57K 6.50

Google Chrome dataset that has only one project. Table 4 also
shows that some prior datasets have more projects, because Travis-
Torrent collected data from the centralized Travis CI service that
allowed mining 1000+ repositories uniformly, while we need to find
specific Jenkins CI servers for each project. Those projects are also
much smaller, with shorter-running test suites and fewer TSRs per
project [7]. Overall, LRTS complements the existing datasets with a
different set of projects that use Jenkins CI, with recent builds, and
long-running test suites.

3.3.1 Distribution of CI Builds. Figure 1 shows the distribution of
builds in LRTS by their TSR duration and test-suite size. For a build
with multiple TSRs, we use the average duration and test-suite size
across its TSRs. In terms of duration, 7 out of 10 projects (all but
Hadoop, Karaf, and Log4;j 2) have over 80% of the builds with TSRs
that last more than an hour, and Hadoop has over 50% of the builds
with TSRs that last more than an hour. In terms of test-suite size,
the number of test classes per TSR is several hundreds or higher
in all the projects. For example, almost all TSRs in Kafka and TVM
executed over 1000 and 400 test classes, respectively.

3.3.2 Distribution of Test Failures. In LRTS, failure frequencies of
the failed test classes in a project follow a long-tail distribution.
Namely, most of the failed test classes in a project only failed a
handful of times across builds, while a few test classes failed order(s)
of magnitude more often than the others. Table 5 shows distribu-
tions of failed test classes by their failure counts. In 7 projects, 75%
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of their failed test classes have failed at most 8 times across the
collected CT history. In all the projects, the failure count of a failed
test class is much smaller than that project’s total number of failed
TSRs in Table 2—the set of failed TSRs in each project is contributed
by a diverse set of test classes rather than being dominated by
just a few test classes. Each project also has a few test classes that
failed much more often than others. These failures are likely flaky
or intentionally ignored by developers [21, 83, 110]. §3.4 further
describes these confounding test failures.

We also analyze the  Taple 5: Distribution of failed test classes

overlap of failed tests by their #failed TSR in each project.
(excluding confound-

Project Min | Q1 | Q2 | Q3 | Max
ing test failures) across [ ActiveMQ 1] 1| 2] 3] 30
TSRs of the same multi- | Hadoop 1] 1] 2| 4 94
TSR build, by comput- | HBase 1 tp 2] 4] 22
ino th 4 ind Hive 1] 2| 7] 17] 302
ing the Jaccard index I pacpbioak [ 1] 3] 3] 7] 124
of failed tests across [ James 11 2| 51 12 67
failed TSRs for each | Kafka 1] 6] 20| 70 | 2972
build. It is rather low, far’fz 1 1 Z : 3;

O

on average 0.12. Our TVgM] T RN R B v

result shows that failed
tests in TSRs are often different even in the same build, which fur-
ther indicates that LRTS consists of diverse test failures.

3.4 Confounding Test Failures

Some test failures distract developers and provide little to no value
to be detected during regression testing, and thus should not be pri-
oritized. Datasets of real CI builds may contain these failures, which
can impact the apparent effectiveness of TCP techniques [19, 21, 51,
82, 83]. We call these failures confounding test failures—inspired by
the term “confounding variable” in causal inference: a variable that
relates the cause and outcome of interest (e.g., faults and test re-
sults) but is not of interest itself (e.g., flakiness-induced failures) [30].
We next describe two types of tests that cause confounding test
failures—flaky tests and frequently failing tests—and how we ac-
count for them in our study.

3.4.1 Flaky Tests. Flaky tests are tests that can nondeterministi-
cally pass or fail for the same code under test [60]. Because they may
impact the effectiveness of TCP techniques on detecting regression-
induced failures that developers care about, some TCP studies on
real CI failures explicitly account for flaky tests [21, 51, 82, 83].
Popular, large-scale systems often consider flaky tests in CI to
some extent [21, 63]. In LRTS, 5 out of 10 projects (ActiveMQ,
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Hadoop, HBase, Hive, and TVM) consider potential flaky test fail-
ures by re-running failed tests, using the rerun option in Maven [69]
or Pytest [85]. HBase and Hive also maintain dashboards to proac-
tively run jobs to track flaky tests and exclude them in CI runs [34,
38]. All 10 projects use JIRA [44] or GitHub issues actively to track
the discovery and resolution of flaky tests. Some identified flaky
tests are manually fixed or skipped during testing.

To properly account for flaky test failures in TCP studies, it is
crucial to identify these failures. Some prior work [63, 83] reruns
builds multiple times and finds tests with inconsistent outcomes.
Due to resource constraints, we cannot rerun all 30,118 failed long-
running TSRs multiple times [19, 21]. Unfortunately, Jenkins CI test
reports do not include “flaky” tag even when Maven or Pytest has
been used for reruns. We thus employ two alternatives to identify
flaky tests in LRTS. Our key insight is to leverage issue trackers
that all projects already actively use.

First, we manually inspect flaky-test-related JIRA and GitHub
issues. We downloaded all issues returned from fuzzy search with
the keyword “flaky” on each project’s issue tracker [43]. We auto-
matically filter out flaky test issues closed before the earliest build
in LRTS; for the remaining issues, we inspect to determine if they
indeed fix a flaky test and what the exact test name is. Across all
projects, we inspected 746 issues and identified 344 flaky tests with
their fix dates. For each identified flaky test, we label all its failures
before the fixed date as flaky test failures and all its failures after
the fixed date as actual regressions.

Second, for a build with multiple TSRs in different environments
(§3.2.1), we treat failures that were not in all its TSRs as flaky.
This approach is similar to rerunning [63] but each rerun is with
a different environment—it bears the risk of misidentifying test
failures as flaky due to actual environment-specific faults, but it
ensures the remaining test failures are more likely to be non-flaky
as they occurred in multiple environments [79]. Once we identify
flaky test failures, we can remove all such failures from the TSRs.

3.4.2 Frequently Failing Tests. As shown in §3.3.2, for most of
the projects in LRTS, some of the test classes failed frequently
across failed CI builds. These tests often fail independent of the
code changes [110], and some of the failures could be due to test
flakiness [21]. In our case, 53% of the frequently failing tests are also
identified as flaky tests. Frequently failing tests are often ignored by
developers. Following prior work [110], we remove these tests by
performing an outlier analysis with a three-sigma rule of thumb—
we remove failures of test classes whose failure frequency is above
the mean + 3 * stdev of all builds for each (project, stage) pair.

3.5 Comparison with Short-Running Test Suites

Besides having more recent builds and codebases, one key charac-
teristic of LRTS is in its long-running test suites (§3.3), which may
lead to different effectiveness and ranking results of existing TCP
techniques than the short-running test suites. Results may differ
because identifying and prioritizing failing tests on longer-running
test suites may be more difficult.

One difficulty comes from the fact that longer-running test suites
on average have more tests but not more failing tests. By comparing
LRTS and three recently used datasets (including an extended RTP-
Torrent) [19, 83, 110], we find that test suites in LRTS on average
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have 3-6 times more test classes but still a small number of failures,
e.g., four in LRTS and 2-6 in others. The probability of a failure
occurring in LRTS is thus 2-4 times smaller. Further, long-running
test suites can have more diverse failures by simply having more
tests. Failed tests in LRTS fail less frequently compared to the other
datasets: the number of times a failed test fails over the number of
failed TSRs in a project in LRTS, on average, is 6—13 times smaller.

The other difficulty stems from the increased runtime of tests
in long-running test suites. Beyond having more tests, tests in
LRTS, on average, run 10 to 20 times longer than tests in the other
datasets. For example, the 3rd quartile of test class runtime in LRTS
and extended RTPTorrent [19] are 10 and 0.4 seconds, respectively.
Longer runtime often indicates that a test has more dependencies
and interacts with more code elements, which can result in more
complex behaviors that are harder to be captured by TCP techniques
without code coverage or dependency information. Our results also
show that minor imprecision in the TCP technique can cause a large
penalty in the technique’s failure-finding effectiveness (§5.1.2).

Overall, our analysis shows that projects with a longer TSR
runtime often correlate with other properties such as (1) more
tests, (2) longer-running individual tests, (3) more diverse set of
failures, and (4) lower fail ratio (relative number of failures to the
number of tests). Thus, TCP techniques that work well on short-
running test suites may not work as well on long-running test
suites. Therefore, it is not obvious a priori which TCP technique
can effectively prioritize failing tests ahead of the passing tests in a
much larger test suite, which motivates our study.

4 Experimental Setup

In this section, we describe our evaluation settings. We also discuss
our data collection process and implementation for the studied TCP
techniques and experimental procedure.

4.1 Evaluation Settings

4.1.1  Failure-to-Fault Mappings. Mapping test failures to the faulty
code is crucial for evaluating TCP techniques—the goal of TCP is
to find different faults, not just many failures due to the same fault.
Some prior work injects artificial faults into the code to have the
exact mapping from test failures to the injected faults. Recent stud-
ies [19, 67, 83], including ours, consider actual test failures from CI
builds. In such cases, it is difficult to know the exact mapping with-
out a deep investigation of each TSR. Prior work thus mostly uses
two failure-to-fault mappings while evaluating TCP techniques:
FFMapg that assumes that all test failures in a TSR map to the
same fault; and FFMapy that assumes that each test failure in a
TSR maps to a unique fault [19, 83]. We evaluate on both mappings,
following prior work [97].

4.1.2  Test Granularity. To better revisit findings from prior studies
in our new context, we use the same test granularity for prioriti-
zation as they use, at the level of test classes [9, 19, 83, 110] rather
than test methods [16, 70] or test suites [18, 55].

4.1.3  Evaluation Metrics. Common metrics used to evaluate TCP
techniques are Average Percentage of Faults Detected (APFD) [111]
and Average Percentage of Faults Detected per Cost (APFDc) [17,
29, 64]. Both metrics are normalized to [0, 1]; a small difference
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can indicate a large time for longer-running test suites. APFDc
commonly uses the execution time of the evaluated TSR as the
cost [13, 20]. Thus, it effectively measures how many faults are
found per time, e.g., a 0.1 increase reduces the time to detect all
faults by 10% of the test suite time on average (or 39 minutes in our
studied projects based on Table 2). We evaluate on both metrics.

4.2 TCP Data Collection

We first order all the builds in LRTS chronologically to respect
temporal dependencies in regression testing [19, 84, 102]. For time-
based TCP, we collect relevant test execution time data from builds
prior to the current build. We add 0.001 s to all execution times
because Maven and Gradle report execution times as 0.000 s if less
than 0.001 s [14]. For history-based TCP, we collect test outcome
data from builds prior to the current build. For IR-based TCP, we
checkout the base code version of the current build and apply the
corresponding code change (diff between base and head). After
applying the change, we collect code tokens from all test files and
all changed files to construct documents and query. For LTR TCP,
we collect all features from Table 1 following prior work [19, 110].

4.3 TCP Technique Implementation

4.3.1 General Logic. We wrote a generic pipeline to run and eval-
uate different TCP techniques. Given a TCP technique, the pipeline
first processes the test data to compute the priority score of each
test in the to-be-prioritized test suite. It then ranks the tests in the
ascending order of the scores. For example, to evaluate the MostFail
technique on a test suite T, the pipeline loads the historical failure
counts of all tests in T, computes the priority score as the reciprocal
of failure count, and sorts tests by their scores.

4.3.2 IR-based TCP. Prior work used an NLP-based or AST-based
tokenizer to parse the content of the collected files into tokens. Both
approaches yield similar performance [83]. We use the NLP-based
tokenizer from Peng et al. [83] as it is language-agnostic. Tokens
from a test file are treated as an individual document, and tokens
from all the changed files are collectively treated as the query. The
IR model takes test documents and a query as input, and outputs
the similarity score between each test and the code change.

4.3.3 LTR TCP. We follow the same data processing, implemen-
tation, and training procedure as prior work [19, 110]. Given that
we order LRTS chronologically, we use its first 75% (older builds)
as training data to the ML algorithms, and evaluate the trained
ML models on the remaining 25% (§2.4.1). Each data sample corre-
sponds to a (TSR, test) pair, represented as a pair of a feature vector
(consisting of features in Table 1) and test outcome. Given a TSR R,
LTR TCP predicts the probability of failure for each test ¢ in R based
on (R, t)’s feature vector, then prioritizes tests that have higher
probabilities. As in prior work, we use gradient boosting regression
model as the ML algorithm, and its light GBM implementation from
scikit-learn [19, 47, 94]; we use default hyper-parameter values
provided by the scikit-learn package for training [13, 19, 110].

4.3.4 RTL TCP. We use the released implementations of RL agents
and reward functions [35] for RTL TCP from Spieker et al. [98], as in
prior RTL TCP studies [6, 9, 78]. We evaluate RTL techniques with
the same hyper-parameter values as prior work [6, 9, 78], and new
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values that double the number of hidden layers and training itera-
tions for neural network agent to account for the larger test suites.
The effectiveness of different hyper-parameter configurations is
similar [98]; we present the best one.

4.4 Experimental Procedure

We use 3 LRTS versions to Table 6: Dataset versions.

study TCP: (1) LRTS-All keeps  [vorsion #Failed TSR
all test failures, (2) LRTS-DeConf [ rTs-All 30118
omits identified confounding test  |"LRTS-DeConf 9,683
failures, (3) LRTS-FirstFail only LRTS-FirstFail 2,076

keeps the first failure of each
non-flaky test over the collected builds of a stage. Table 6 lists
the number of failed TSRs for evaluation per version. Each tech-
nique has its data collection and possible training done only on
LRTS-All, then we directly evaluate its effectiveness on all versions.

To reduce randomness in the experiments, as prior work [19,
20, 98], we ran each non-LTR technique 10 times (with 10 random
seeds) on each TSR of each project on each dataset version. For the
LTR techniques, we trained the ML algorithm on the same training
data of each project 10 times to obtain 10 ML models per project.
We also evaluate a randomized TCP technique (denoted as Random)
to serve as a baseline, which randomly shuffles all tests.

In total, we evaluated 59 TCP techniques: 26 basic techniques, of
which 25 are described in §2.1-2.4, and the randomized baseline; and
33 hybrid techniques, of which 17 use CC hybrid approach and 16
use CCH hybrid approach. Applying hybrid approaches to a basic
TCP with the same heuristic provides little value, e.g., applying CC
to QTF-Last—we thus omit these combinations. We also omit ap-
plying hybrid approaches to RTL TCP because it solely learns from
pre-defined states, actions, and rewards during runtime. Adding
external heuristics would interfere with the learning process.

5 Evaluation
We aim to answer the following research questions:

e RQ1: How do different TCP techniques perform in detecting
real test failures on long-running test suites from recent builds?

o RQ2: How do failures of flaky tests and frequently failing tests
impact the effectiveness of different TCP techniques?

e RQ3: How do TCP techniques perform in detecting the first
failure throughout CI history for each failed test?

Table 7 summarizes the revisited and new findings in our study.
For each revisited finding throughout this section, we describe
our expectation of its potential outcome, the actual outcome, the
experiment results, and our analyses.

5.1 RQ1: Effectiveness of TCP Techniques

This RQ compares different TCP techniques on LRTS-DeConf that
omits confounding test failures. In Figure 2, each box plot shows
the distribution of APFDc or APFD values for each technique. For
non-learning-based techniques, the values are from all failed TSRs;
for learning-based techniques, the values are from failed TSRs of the
latest 25% of the builds as the older 75% are used for training (and
should not be used for evaluation [19, 63, 84, 102, 110]). Each box
plot represents 100 (10*10) values, for 10 projects and 10 experiment
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Table 7: List of findings in our study. A finding from prior work is marked “/” if our study confirms the same on LRTS; it is
marked “X” if a finding differs in our study from that of prior work. New findings are marked “9”.

F1 Different failure-to-fault mappings lead to similar ranking of TCP techniques [83]. v
F2 APFD can be misleading and give different ranking of TCP techniques than APFDc [13, 64]. v
F3 Basic time-based and history-based techniques can rival or outperform sophisticated IR-based and learning-based techniques [19, 83]. v
F4 All IR-based techniques perform worse than time-based and history-based techniques [83]. X
F5 Different configurations have little impact on the effectiveness of IR-based techniques [83, 92]. X
F6 LTR TCP is among the most effective TCP techniques when training with all available features [19]. v
F7 In LTR TCP, training with all features (F,;;) outperforms every individual feature set; execution time and outcome features (F1) | v/
outperform associated history and similarity features (F2 and F3) which outperform change features (F4) [19, 110].
F8 RTL techniques generally perform better than random [98] but worse than LTR techniques [9]. v
F9 Cost-cognizant hybrid TCP approaches can substantially improve the effectiveness of basic TCP techniques [83]. v
F10 Among all techniques, hybrid perform the best [83], specifically techniques that combine time-based and history-based heuristics. v
F11 Techniques that rely on test outcome frequency, e.g., MostFail and LTR (F; ), are heavily impaired by confounding test failures [21]. v
F12 Techniques that favor more recent test history, e.g., LatestFail and RTL (NN-TestFail), are resilient to confounding test failures. Q
F13 Time-based and change-aware techniques, e.g., IR-based, are the least affected by the presence of confounding test failures. Q
F14 Time-based and change-aware techniques are effective in finding the first failures of tests, followed by Random, then history-based. Q
QTF-Avg o Mean —r + i —— e == ==
QTF-Last = — + —f—h —r— + —fr— +
Latestrail { — Median e — = g .
LatestTrans —— p— == =] —
TF-FailFreq —g — +— ——
TF-TransFreq —ap— o o ——
MostFail o ——— — T
MostTrans ———— — e — —h —
Random wle —Coi— ot ——
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 L0
IR-GitDiff (TF-IDF) T = T —eo—
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Figure 2: Evaluation results of TCP techniques on LRTS-DeConf . Four rows from top to bottom show the results of (1) time-based,
history-based TCP, and Random baseline, (2) IR-based TCP, (3) LTR TCP, and (4) RTL TCP, respectively. Four columns from left
to right show the value distributions of APFDc¢ with FFMapy and FFMaps, and APFD with FFMapy and FFMapg, respectively.
TCP techniques in each row are organized in the descending order by their mean APFDc-FFMapy values.

runs. We use average values across TSRs in each project to weigh
all projects equally regardless of the number of TSRs [9, 14, 83].

5.1.1 Evaluation Settings. For failure-to-fault mappings, because
over 70% of the TSRs in LRTS have multiple failures, the FFMapg
values are 20% higher than FFMapy; values for each of APFDc and
APFD (Figure 2). For the same reason, we also expected the ranking
of some techniques to differ between mappings, e.g., when test
suites are larger (§3.5), it is more likely that a technique A puts
failed tests at both ends of the TSR, while a technique B puts them
in the middle, so A and B would be ranked differently across the two
mappings. However, the ranking of all techniques is similar across
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mappings for each metric. By inspecting the prioritized positions
of failed tests, we found that the similarity is because each TCP
technique ran failed tests either early or late for all TSRs but rarely
ran them in the middle (except Random where failed tests appeared
anywhere with uniform probability). Our overall results confirm the
prior finding (F1 V'), thus we only show results from one mapping
(FFMapy ) in the following sections.

For metrics, prior work argued how APFD can be misleading
because it does not consider the test execution time and could
rank techniques greatly differently than APFDc [13, 14, 17, 64]. We
expect the prior finding to not differ on test suites where tests
run longer. Indeed, we confirm the prior finding (F2 ). Figure 2
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Table 8: APFDc-FFMapy results on LRTS-DeConf. Horizontal
lines separate TCP technique categories.

. Basic cC CCH

TCP Technique Avg G.Cat G.All | Avg Imp | Avg Imp
QTF-Avg 740 A A - - - -
QTF-Last 739 A A - - - -
LatestFail 735 A A .835 13% 797 8%
LatestTrans 728 A A 830  13% | .795 9%
TF-FailFreq 627 B BCD 788 25% 773 23%
TF-TransFreq .614 B BCD | .777  26% | .764  24%
MostFail 613 B BCDE | .773  26% - -
MostTrans .598 B CDE 765 27% | 743 24%
Random .502 C F - - - -
IR-GitDiff (TF-IDF) .647 A B 767  18% | .789  21%
IR-GitDiff (BM25) .633 AB BC 743 17% 771 21%
IR-WholeFile (TF-IDF) 631 AB BCD 761 20% | 785  24%
IR-NoContext (BM25) .630 AB BCD | .741 17% | .770  22%
IR-NoContext (TF-IDF) | .630 AB BCD 758 20% 784 24%
IR-WholeFile (BM25) .605 B BCDE | .739 22% | .767 26%
LTR (Fa11) 736 A A 809 9% | 781 6%
LTR (Fy) 614 B BCD | 767 24% | 739 20%
LTR (F5) 593 B CDE | 706 19% | 741 24%
LTR (F2) 588 B DE 727 23% 735 24%
LTR (F4) 505 C F 717 41% | 747 47%
RTL (NN-TCFail) 616 A BCD - - - -
RTL (NN-TimeRank) .570 B E - - - -
RTL (NN-FailCount) 511 C F - - - -
RTL (Tabl-TCFail) 504 C F - - - -
RTL (Tabl-FailCount) .495 C F - - - -
RTL (Tabl-TimeRank) .485 C F - - - -

shows that the ranking of many techniques is similar across APFDc
and APFD, but the ranking of time-based and RTL techniques are
opposite. We thus focus on APFDc results in the following sections.

5.1.2  Analysis of Basic TCP Techniques. As prior studies [9, 13,
14, 19, 83, 110], we perform statistical tests on APFDc-FFMapy
values to analyze the effectiveness difference across different tech-
niques. We first perform a one-way ANOVA analysis and find that
the APFDc values across techniques significantly differ (p-value
< 0.001). We then perform Tukey HSD test as a post-hoc test [103],
which assesses the difference and puts techniques into different
groups if their APFDc values differ significantly [13, 59, 62, 83].
Groups are named by letters: “A” represents the best group, and the
effectiveness degrades alphabetically. A technique with multiple
letters performs in between these letter groups.

In Table 8, “Basic” columns show the results of basic techniques;
“CC” and “CCH” columns show the results of hybrid techniques
after applying CC and CCH hybrid approaches, respectively. “Avg”
shows the mean APFDc values; “G.Cat” and “G.All” show the effec-
tiveness group from Tukey HSD test within each basic TCP category
and across all basic techniques, respectively; “Imp” columns show
improvement from “Basic” values to hybrid values.

Time-based and history-based TCP. Prior studies have shown
the effectiveness of sophisticated IR and ML TCP techniques in
industrial settings [10, 12, 13, 100, 107], while more recent stud-
ies showed the simplest time-based and history-based techniques
are equally effective on short-running test suites [19, 83]. Because
longer-running test suites have different characteristics (§3.5), we
expect that the simplest time-based and history-based techniques
may perform worse than sophisticated techniques.
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However, our evaluation confirms the prior finding from more
recent studies that time-based and history-based techniques can
match and often outperform the sophisticated IR and ML techniques
(F3 V). Table 8 shows that QTF-Avg and QTF-Last achieve the top-2
highest mean APFDc (0.740 and 0.739). Among history-based tech-
niques, prioritizing recently failed or transitioned tests (LatestFail
and LatestTrans) have the highest APFDc (0.735 and 0.728). They are
also in the best effectiveness group with the time-based techniques
and one LTR technique (group A).

To understand why QTF is the most cost-effective, we first ana-
lyzed the positions of failed tests in TSRs after QTF-Avg prioritiza-
tion. We found that failed tests run much longer than the majority
of the tests in their TSRs—75% of the failed tests in LRTS-DeConf
are in 76% or later positions of their TSRs; on average, failed tests
are in 83% positions of their TSRs. APFD values in Figure 2 are very
low for QTF. We then study why QTF performs well even when
it orders failed tests late. It turns out that long-running test suites
commonly have a number of tests that run substantially longer
than others, e.g., tens of minutes. These tests are often end-to-end
and integration tests that largely contribute to a TSR’s duration,
but QTF runs them last. For example, TestYarnNativeServices from
Hadoop runs for 15 minutes (i.e., 4.5% of Hadoop’s average TSR
duration) to start mini-clusters and test deploying services [32].

IR-based TCP. IR-based techniques have been shown to often out-
perform time-based and history-based techniques on short-running
test suites [83]. We expected the prior finding to stand on LRTS,
because test method bodies in long-running test suites are larger,
and IR TCP is effective precisely because it captures textual rela-
tionships between documents [92].

Contrary to our expectation, however, our evaluation results re-
fute the prior finding (F4 X). In Table 8, the best IR-based technique,
i.e., IR-GitDiff (TF-IDF), achieves a mean APFDc of 0.647 in group B,
worse than the 4 time-based and history-based techniques in group
A that all have APFDc above 0.727. Our results also refute that IR
model and query context length configuration substantially impact
the effectiveness of IR-based TCP [83] (F5 X). Figure 2 shows all 6
IR-based techniques have similar distributions; Table 8 shows that
all 6 techniques differ by at most one effectiveness group, while 4
of them perform statistically the same (group AB).

To understand why IR-based TCP’s effectiveness differs from
prior work, we first explore the difference between LRTS-DeConf
and the prior IR TCP dataset (denoted as IRDataset) [1, 83]. In LRTS-
DeConf TSRs, the average duration and number of failures are 76
and 2 times larger, respectively, while the average code change size
is 20% smaller. We then perform controlled experiments on each of
these variables in LRTS-DeConf (selecting TSRs by the percentile
ranges of each variable) for all basic IR-based techniques.

Table 9 shows our experiment
results; each cell is the APFDc-

Table 9: IR experiment.

Variable Variable Value Range
FFMapy values averaged across <Q1[ Q12 ] Q23 | ~Q3
. Duration | .644 | .642 628 | .605
all IR-based techniques. From Ta TFailre T e70 T e72 T ea0 260
ble 9, we observed that IR-based  [Failratio | 693 | 686 | 607 | 577
techniques: (1) perform worse [ Chesize [ 617 612 | 632 [ 648

when TSRs have longer durations; (2) perform worse when TSRs
have more failures (“#Failure”) or more failures relative to test suite
size (“Fail ratio”); and (3) perform better when code changes are
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larger. These results suggest that IR-based techniques performing
worse in our study is likely due to LRTS having longer-running test
suites with more failures. Another possible reason is that smaller
code change query in LRTS has less information, which leads to a
lower retrieval accuracy [83].

In addition, we argue that textual similarity is not the perfect
indicator of test failure probability, and the outcome of such impre-
cision can be amplified on longer-running test suites. By inspecting
IR-prioritized TSRs in LRTS-DeConf, we saw that IR scores of dif-
ferent tests often differ marginally (e.g., less than 0.0001 in cosine
similarity), while their durations have much bigger difference, es-
pecially on long-running test suites (e.g., standard deviation of test
duration in LRTS is 15 times larger than that of IRDataset). Thus,
even a minor IR score difference can substantially impact failure
finding effectiveness—during inspection, we often saw that a failed
test class is delayed for hundreds of seconds behind some passed
tests because its code has some more or fewer tokens.

Learning-based TCP. We expected LTR TCP to be competitive
on long-running test suites as LTR techniques can model a large
amount of test and change data. Indeed, Table 8 shows LTR (F;;)
is in the best effectiveness group (group A), with the third highest
mean APFDc (0.736) across all techniques (F6 v'). LTR is effective
because its supervised learning algorithm learns which feature(s)
can minimize test outcome prediction loss from historical builds
at training time, and uses those features more often on unseen
builds at inference time. We expected F,; to outperform individual
feature sets, as using more features is often better in ML, but we
have no expectation on the ranking of individual sets. Our results
confirm prior finding (F7 v'): using all features (F,j;) is the best in
LTR; test time and history features (F;) are better than similarity
features (F2, F3) which are better than change features (Fy).

Compared to supervised learning (LTR), reinforcement learning
(RTL) has been shown harder to optimize due to its large search
space and random exploration, which leads to unstable TCP effec-
tiveness [9, 98]. We thus expected, and confirm that, while some
RTL techniques are certainly better than Random [98], they are
usually outperformed by LTR techniques [9] (F8 V). Table 8 shows
that 2 RTL techniques are in better groups than Random, and 4 other
RTL techniques are the same as Random. Most RTL techniques are
in worse groups than most LTR techniques.

We also evaluated effectiveness degradation with time and found
it only for LTR techniques in 4/10 projects, likely due to the common
ML issue of distribution shift, where data of the latest builds become
less similar to the older builds used for training. Because many
LTR/RTL techniques perform no better than simpler techniques,
while requiring elaborated effort to develop (feature engineering)
and maintain (retraining) [19, 80, 110], we recommend time-based
and history-based techniques over current learning-based ones.

5.1.3  Analysis of Hybrid TCP Techniques. We expected the evalu-
ated cost-cognizant hybrid approaches to only marginally improve
basic TCP techniques on longer-running test suites (based on §5.1.2).
To our surprise, they lead to a much bigger improvement because
of the high cost-effectiveness of test time and outcome heuristics
as observed from basic time-based and history-based techniques
(F9 V). Table 8 shows CC and CCH approaches improve the mean
APFDc of basic techniques by 9%-41% and 6%-47%, respectively.
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Table 8 further shows that fusing heuristics from the best basic
TCP techniques QTF-Last and LatestFail gives LatestFail+CC that
achieves the highest APFDc (0.835) among all techniques (F10 V).

5.2 RQ2: Impact of Confounding Test Failures

Recent studies use real CI datasets that have confounding test fail-
ures [9, 19, 67, 110, 112], and detecting these failures earlier in
TCP may provide no value to the developers [21, 51, 82, 83, 110].
However, there is very limited evaluation on the effectiveness of
TCP techniques under the impact of confounding test failures [21,
82, 83]—prior work has only studied how flaky tests impacted one
time-based, two history-based, and a few IR-based techniques on
short-running test suites [83] or single-project dataset [21]. In this
RQ, we aim to provide a broader investigation on a wider range
of TCP techniques under the impact of confounding test failures.
Compared to prior work, we evaluate 3 times more TCP techniques
on a 10-project dataset (with the first evaluation of LTR and RTL
TCP), and consider both flaky tests and frequently-failing tests.

Following prior work [21], we evaluate TCP techniques on two
versions of the dataset—one version considers confounding test
failures as relevant failures that need to be investigated (LRTS-All),
while another version does not (LRTS-DeConf). We then compare
the evaluation results between both versions.

We perform the same statistical analysis as in RQ1 (§5.1.2) and
present our results in Table 10, which compares the mean APFDc
values and effectiveness group of techniques between LRTS-DeConf
and LRTS-AII (it also presents results on LRTS-FirstFail, which we
discuss in the next RQ). The top-5 techniques, with the highest
APFDc values, on each dataset version are bolded.

We expected TCP techniques that rely on calculating test out-
come frequency to be the most impaired by confounding test fail-
ures, because failure count can easily include confounding test
failures. From LRTS-All to LRTS-DeConf in Table 10, we indeed
observe significant drops in the ranking and APFDc values for tech-
niques using test outcome frequency, e.g., MostFail and LTR (Fy ),
which confirms the prior finding [21, 83] (F11 V).

However, not all history-based techniques are heavily impacted
by confounding test failures—in Table 10, LatestFail, LatestTrans,
and LTR (F,;;) are in top-5 on both LRTS-All and LRTS-DeConf . Our
results show that techniques that account for recent history (either
by updating heuristic with recent builds or by weighing with other
features) are resilient (F12 ).

We also find that time-based and change-aware techniques are
the least impacted by confounding test failures (F13 ¥). From LRTS-
All to LRTS-DeConf: QTF techniques rise to the best with large
increases in APFDc; IR-based techniques also have higher APFDc.
Overall, we recommend LatestFail, QTF, and LTR (F,;) as they
outperform others when properly accounting for confounding test
failures, and LTR (F,y;) should be checked to not overly rely on
outcome frequency features.

5.3 RQ3: Effectiveness on First Failures

Failing builds are relatively common in practice [21, 82]. For ex-
ample, 52% of the TSRs (and 75% of the CI builds) in LRTS fail.
Accordingly, uncommon failures, such as failures from tests that
have been passing, may be more worthy of developer’s attention
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Table 10: Mean APFDc-FFMapy and effectiveness group of
TCP techniques on all three versions of LRTS.

TCP Technique | LRTS-DeConf | LRTS-All | LRTS-FirstFail
QTF-Avg 740 A 671 CD 796 A
QTF-Last 739 A 677 CD .798 A
LatestFail 735 A .795 A 467 DE
LatestTrans 728 A .788 A 464 DEF
TF-FailFreq 627 BCD 666 CD 440 EF
TF-TransFreq 614 BCD .656 D 422 F
MostFail 613  BCDE | .720 B 312 G
MostTrans 598 CDE 701  BC 313 G
Random 502 F .502 I .504 D
IR-GitDiff (TF-IDF) .647 B 589 EF | .691 B
IR-GitDiff (BM25) .633 BC 576  FG | .667 BC
IR-WholeFile (TF-IDF) 631 BCD 576  FG | .679 B
IR-NoContext (BM25) .630 BCD 579  FG | .666 BC
IR-NoContext (TF-IDF) | .630 BCD .583 EFG | .680 B
IR-WholeFile (BM25) .605  BCDE 557  FG | .632 C
LTR (Fa11) 736 A 764 A - -
LTR (F;) 614 BCD |.724 B - -
LTR (Fs) 593  CDE | 548 GH - -
LTR (F) 588 DE 618 E - -
LTR (F,) 505 F 505 I - -
RTL (NN-TCFail) 616 BCD | 549 GH | - -
RTL (NN-TimeRank) 570 E 516 HI - -
RTL (NN-FailCount) 511 F 481 1 - -
RTL (Tabl-TCFail) 504 F 508 I - -
RTL (Tabl-FailCount) .495 F .501 I - -
RTL (Tabl-TimeRank) .485 F 517 HI - -

as they are more likely due to recent change. Moreover, although
history-based techniques have been shown effective (e.g., Latest-
Fail), they often rely on failure history that is only informative for
tests that had failed. But many tests often may not fail, e.g., 67%
of the executed tests in LRTS had never failed. It is important to
know how techniques prioritize failing tests that have no prior
failures. This RQ thus studies the effectiveness of TCP techniques
in detecting the first failure of each test in our CI history.

We evaluate on LRTS-FirstFail that only keeps the first failure of
each non-flaky test. The first failures are with respect to the entire
CI history, not the failures that transition a test suite from passing
to failing [42, 79]. We omit learning-based techniques, because the
latest 25% of the builds used for evaluating learning-based TCP
have insufficient first failures to make generalizable observations.

The LRTS-FirstFail columns in Table 10 show that all history-
based techniques perform as Random, because they prioritize tests
based on failures, so tests without prior failures are prioritized
randomly. In fact, history-based techniques are even worse than
Random on a build if all previously failed tests pass but a new test
fails. But they can be better than Random on a build if both a new
test and some previously failed tests fail.

Time-based TCP remains the most effective in this RQ (F14 9).
Overall, our study has shown that the simplest QTF stands as the
most cost-effective TCP technique across different RQs we studied.
IR-based techniques also outperform Random when they priori-
tize tests similar to the change, which indicates that test failures
in LRTS-FirstFail are more often related to current changes com-
pared to LRTS-All or LRTS-DeConf . Our results motivate novel TCP
techniques that lexicographically prioritize tests by history-based
heuristics, and use time-based or IR-based to break ties.
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6 Threats to Validity

External. The threats to external validity lie in the generalizabil-
ity of our study. We use real build data from a heterogeneous set
of projects. We evaluate on a large number of CI runs with sta-
tistical analyses as prior work [13, 19, 59, 62, 83, 110]. To reduce
threat from (1) the evaluated TCP techniques, we use the same TCP
data collection [19, 83, 98], settings, and implementations as prior
work [9, 19, 83, 98, 110]; (2) randomness, we run all experiments
10 times [9, 19, 98]; (3) flaky tests [19, 63, 110], we perform both
manual inspection and automated filtering (§3.4). Due to high cost
of running test suites, we do not run the generated test orders [105].
Internal. The main threats to internal validity lie in the potential
bugs of our techniques and experimental scripts. To address such
threats, we regularly check the collected data and our experimental
results with unit tests and manual examination.

7 Related Work

TCP Techniques. TCP has been extensively studied as summa-
rized in several surveys [18, 29, 36, 59, 61, 80, 89, 111]. Besides the
techniques in §2, prior work has also proposed techniques based
on code coverage [89, 90], adaptive random testing [41], constraint
solving [113], and genetic algorithms [54]. TCP has been applied to
mutation testing [114], fault localization and repair [22, 27, 57, 86],
testing configurable systems [14, 87, 99], and deep neural net-
works [81, 108]. We focus on studying techniques most widely
used in recent work [9, 19, 21, 83, 98, 110].

TCP Datasets and Studies. TCP datasets are crucial for studying
TCP techniques. Mattis et al. [67] listed TCP datasets prior to 2020
and released RTPTorrent that curated real CI builds from 20 projects
via TravisTorrent. Prior to RTPTorrent, only 18 TCP datasets en-
tirely consisted of real CI builds, and only two of them made their
TSR data available [33, 98]. TCP studies in industrial settings exist
but provide limited data for future work [10, 18, 63, 65, 101, 106].
Recent studies on open-source datasets extend RTPTorrent with pro-
prietary projects [19, 65], and some collect their own TCP datasets
from more Travis CI Java projects [6, 9, 21, 79, 83, 110].

8 Conclusion

We present LRTS, an extensive dataset focusing on recent, long-
running test suites with 21,255 CI builds and 57,437 test-suite
runs (average duration of 6.5 hours) of 10 large-scale, open-source
projects that use Jenkins CI. On LRTS, we evaluate the effectiveness
of 59 techniques from 5 leading TCP technique categories on longer-
running test suites and on prioritizing tests with no prior failure.
We also study the impact of confounding test failures on these
techniques. Our study both revisits major findings (9 confirmed
and 2 refuted) from prior work and establishes 3 new findings on
the effectiveness and ranking of TCP techniques. We show that the
best techniques combine the simplest time-based and history-based
heuristics, e.g., prioritizing faster tests that have failed recently.
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