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infrastructures that are too costly or domain-specific for most open-

source projects, such as prioritization for parallel test jobs at large-

scale clusters or specific hardware [18, 106]. These studies also pro-

vide limited data for future investigations—their studied project(s)

are inaccessible [10, 63, 101, 106], lack heterogeneity [21, 98], or

have rather old artifacts [18].

One key challenge in studying TCP is the lack of up-to-date, high-

quality datasets, especially in cases where TCP can help the most:

long-running test suites. Moreover, many popular TCP techniques

have only been studied separately across different datasets and

settings—there has been no recent extensive evaluation of leading

TCP techniques in a unified experiment setup. These challenges

hinder researchers and practitioners from developing new research

insights and identifying techniques applicable to their context.

In this paper, we introduce the first extensive, high-quality dataset

of long-running test suites, called LRTS, curated from recent CI

builds of popular open-source repositories (§3). On LRTS, we eval-

uate 59 TCP techniques from five leading technique categories:

time-based, history-based, IR-based, learning-based (LTR and RTL)

techniques, and cost-cognizant hybrid techniques (§2). We study

the effectiveness of these techniques in three contexts: recent, long-

running test suites (§5.1); impact of flaky tests and frequently-

failing tests (§5.2); and prioritizing failing tests that have no prior

failure (§5.3). Our study revisits key findings from recent TCP stud-

ies [9, 19, 21, 83, 110] and presents new findings.

Specifically, our paper makes the following contributions:

• Dataset. We collect LRTS, an extensive dataset focused on long-

running test suites. It consists of 21,255 Jenkins CI builds with

57,437 test-suite runs from recent versions of 10 popular, large-

scale open-source GitHub projects. Curated projects have differ-

ent uses and are written in Java, Scala, Python, and C++. The

builds span from 2020 to 2023, including 15,852 builds with 30,118

test-suite runs that have failed tests. The test-suite runs last for

6.5 hours on average (§3.3). We are releasing LRTS, with our code

on: https://zenodo.org/records/12662090

• Extensive Study.We start with 26 basic TCP techniques—2 time-

based, 6 history-based, 6 IR-based, 5 LTR, 6 RTL TCP techniques,

and the Random baseline. We next apply two cost-cognizant

hybrid TCP approaches to the basic techniques, to construct 33

hybrid techniques. In total, we evaluate 59 TCP techniques, on

the widely-used metric Average Percentage of Faults Detected

per Cost (APFDc) and APFD, under different failure-to-fault

mappings [97]. We further assess how the effectiveness of these

techniques is impacted by confounding test failures (failures of

flaky tests and frequently failing tests). We also study their ef-

fectiveness in detecting the first failures of tests throughout the

collected CI history.

• Findings.We revisit 11 key findings from recent TCP studies,

confirming 9 and refuting 2 findings. We also present 3 new find-

ings. Table 7 provides the summary of our findings. Among basic

techniques, time-based techniques, e.g., running faster tests first,

are the most effective and the least impacted by confounding

test failures. Among all techniques, hybrid techniques that sim-

ply combine time-based and history-based heuristics perform

the best, e.g., prioritizing faster tests that have failed recently,

outperforming all sophisticated techniques. The overall ranking

of techniques on LRTS is similar to that of prior work.

2 TCP Techniques

We first overview different TCP technique categories and describe

the techniques we use in our study. We focus on evaluating only

previously proposed TCP techniques and do not promote any new

technique tomitigate potential bias in evaluating TCP techniques on

our new dataset. TCP is the problem of finding a test execution order

that detects more faults faster [89, 111]. Depending on the heuristics

that guide the ordering, we can categorize basic TCP techniques

in four main categories: time-based, history-based, IR-based, and

learning-based. The fifth category is hybrid TCP techniques that

systematically combine heuristics from other different categories.

2.1 Time-based TCP

A simple way of prioritizing tests is sorting them in ascending order

by execution time, expecting that executing more tests within a

given time can find more failures [91]. This TCP category, called

Quickest-Time-First (QTF), has been recently shown to rival or out-

perform more sophisticated TCP techniques on short-running test

suites [13, 19, 83]. We evaluate 2 time-based techniques: QTF-Last

and QTF-Avg: the former uses the execution time of the previous

test run as the prioritization heuristic, while the latter uses the

average execution time from prior test runs.

2.2 History-based TCP

History-based techniques prioritize tests based on the tests’ out-

come information from prior executions—they assume a test that

has failed or changed its outcome is more likely to detect faults in

the new code version. History-based techniques can incorporate

different outcome information, such as test failure, test transition,

or the association between the test and changed code files.

2.2.1 Test Outcome. Two history-based TCP heuristics are most

commonly used. Test failure history considers whether the test

has previously failed. Test transition history considers whether

the test outcome has changed (failing to passing, or vice versa).

We evaluate 4 history-based techniques from this sub-category:

(1) MostFail prioritizes tests that have a higher historical failure

count [4, 63, 74, 76, 77, 83], (2) LatestFail prioritizes tests that failed

more recently [4, 18, 42, 76], (3)MostTrans prioritize tests that have

a higher historical transition count [19, 52], and (4) LatestTrans

prioritizes tests that transitioned more recently [19, 52].

2.2.2 Test Outcome and Changed File Association. Test outcome

history can be more informative when associated with the change

under test. Researchers thus proposed to trace the outcome history

and changed files, and to prioritize tests whose outcomes were

more related to changed files based on previous test runs [3, 49,

75, 84, 96, 109]. We evaluate 2 history-based techniques from this

sub-category: TF-FailFreq prioritizes tests with higher failure count

with respect to the changed files, and TF-TransFreq prioritizes tests

with higher transition count with respect to the changed files [19].

2.3 IR-based TCP

IR-based techniques rely on textual similarity to identify the tests

that are more relevant to code changes [83, 92]. They extract code

tokens from tests and code (or code change diff), and process them

into a corpus of documents and a query with off-the-shelf IR models.
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Table 1: LTR TCP feature sets.

�1: test history features �2: (Test,File)-history features

Failure count Max (test,file)-failure freq

Last failure Max (test,file)-transition freq

Transition count Max (test,file)-failure freq (relative)

Last transition Max (test,file)-transition freq (relative)

Average duration

�3: (Test,File)-similarity features �4: change features

Min file path distance Distinct authors

Max file path token similarity Changeset cardinality

Min file name distance Amount of commits

For a code change presented as a query, an IR-based technique

prioritizes tests whose documents are more similar to the query.

IR-based techniques can be configured to use different IR models,

e.g., Term Frequency-Inverse Document Frequency (TF-IDF) [93]

or BM25 [88], and the amount of context they consider for a code

change [83]. For example, NoContext techniques only use tokens

from the exact changed lines to construct the query, WholeFile

techniques use all the tokens from the changed files, and GitDiff

techniques use tokens from the git diff file (same as using 3 lines

of context [23]). We evaluate 6 IR-based techniques from prior

work [83] that use BM25 and TF-IDF IR models with the 3 different

context lengths mentioned above.

2.4 Learning-based TCP

With the advent of machine learning (ML), a number of TCP tech-

niques use ML algorithms to predict the ranking of tests. These

TCP techniques can be broadly put into two sub-categories [9]:

Learning-to-Rank (LTR) and Ranking-to-Learn (RTL).

2.4.1 Learning-to-Rank. LTR TCP techniques use supervised learn-

ing algorithms, in which an ML model is trained on historical CI

builds to predict ranking of tests for future builds [9, 10, 19, 63, 66,

77, 80, 110]. LTR techniques train MLmodels with features from the

test, code or code change, and execution history [19, 110], to predict

the probability of test failure, which then determines the test order.

The effectiveness of LTR techniques depends on the underlying

ML model and the training process, even if trained on the same

data. The choice of features can also substantially impact the model

performance in LTR TCP.

Prior work evaluated how different ML algorithms impact the

effectiveness of LTR techniques [9, 19, 110]. They also explored

to what extent the training:testing data ratio, e.g., using the first

(chronologically ordered) 50% or 75% of the test runs for training and

the rest for testing, impacts the outcome of TCP.We revisit the most

studied ML algorithm (gradient boosting trees) and training:testing

data ratio (75%) [9, 19, 80]. We use the most effective features prior

work identified that are also easily accessible in CI [19, 65, 110].

Table 1 lists them categorized into four feature sets, which follow

the same definitions as in Elsner et al. [19]. In total, we evaluate 5

LTR techniques, 4 techniques using one set of features each, and 1

technique using all four feature sets.

2.4.2 Ranking-to-Learn. RTL TCP techniques use reinforcement

learning (RL) algorithms [6, 9, 78, 98]. In contrast to LTR where a

model is trained offline, RTL trains its model online—RTL TCP is

deployed without learning on historical builds, and learns a test

ranking policy for a project at runtime. It continuously (1) ranks

tests based on test states of the current CI build, and (2) receives

feedback from the ranking to improve its policy for the next build.

A test state encodes a test’s metadata, e.g., previous outcome

and duration. Given all test states of the current build, RTL TCP

selects an action for each test (i.e., giving each test a priority score)

with its current policy or by random exploration. After running the

prioritized test suite, a reward is fed back to the model to improve

the current policy—a higher reward encourages prioritizing a given

test state. The effectiveness of RL TCP is sensitive to its parameters,

e.g., RL model choice, data encoded in the test state, and definition

of the reward function. As in prior work [9, 98], we evaluate neural

network (NN ) and Q-table (Tabl) as RL agents on three rewards

functions: failure count (FailCount), test failure (TestFail), and time

rank (TimeRank). In total, we study 6 RTL TCP techniques.

2.5 Hybrid TCP

After describing the basic TCP techniques, we now describe the

hybrid TCP techniques, which combine the heuristics from previous

categories for better effectiveness. For example, we can build a

hybrid technique based on MostFail by prioritizing tests not only

by higher failure count but also by shorter execution time. Hybrid

approaches have improved the effectiveness of basic techniques

in different TCP settings [14, 83], which motivated us to include

them in our study. We adopt two hybrid TCP approaches from prior

work [83]: cost-cognizant (CC) and cost-history-cognizant (CCH ).

Cost-cognizant. Given a basic technique that ranks tests based

on score B in the ascending order, a CC hybrid technique prioritizes

tests in the ascending order of B ∗ C , where C is the test execution

time from the previous run. CC techniques promote prioritizing

tests with a short execution time.

Cost-history-cognizant. Given a basic technique that ranks tests

based on score B in the ascending order, a CCH hybrid technique

prioritizes tests in the ascending order of B ∗ C/2 , where 2 is the

test’s failure count. CCH techniques promote prioritizing tests that

failed more often per unit of time.

3 Dataset of Long-Running Test Suites

§3.1-3.2 describe our project selection criteria and the construction

of LRTS. §3.3 provides more details on LRTS, with an analysis of the

distributions of its CI builds and test failures. §3.4 describes how

we account for confounding test failures (failures of flaky tests and

frequently failing tests). §3.5 compares characteristics of LRTS with

recent datasets of short-running test suites.

3.1 Project Selection

We sought projects that were open-source, because they often pro-

vide transparent data access to their recent CI builds, with test

failures induced by real faults [67]. In selecting projects, we priori-

tize those actively maintained, with a substantial history of commits

and builds. A large number of commits and a long build history in-

crease confidence in generalizing the empirical findings and claims

from the study. The most critical criterion for our work was the

inclusion of projects with long-running test suites, because these

projects can benefit the most from TCP.

We focus on selecting projects from the Apache Software Founda-

tion (ASF) [5] because it offers a diversity of renowned open-source
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Table 2: LRTS dataset summary. TSR denotes test-suite run, TC denotes test class, and TM denotes test method.

Project Main PLs SLOC Period (days) #CI build #TSR #Failed TSR
Statistics (Averages) on failed TSRs

#TC #Failed TC #TM #Failed TM Duration (hours)

ActiveMQ Java 669K 827 207 207 109 676 3 6,081 34 4.36

Hadoop Java 4M 1,094 1,299 1,299 543 829 6 7,289 24 5.57

HBase Java 1M 504 278 553 215 1,061 2 6,369 3 9.28

Hive Java, HiveQL 2M 618 2,056 2,056 1,419 1,273 9 40,921 83 26.12

Jackrabbit Oak Java 694K 745 860 860 639 1,897 12 19,699 107 3.27

James Java, Scala 793K 786 2,404 3,147 1,399 1,864 6 34,718 37 2.15

Kafka Java, Scala 905K 984 11,843 39,006 24,047 1,232 4 19,399 12 7.59

Karaf Java, Scala 186K 959 620 620 174 205 2 841 2 0.58

Log4j 2 Java 277K 436 270 528 162 641 3 3,918 4 0.25

TVM Python, C++ 818K 631 1,418 9,161 1,411 526 3 8,564 37 4.83

Total 21,255 57,437 30,118

projects and has been studied by many researchers for over two

decades [73]. While the source code of ASF projects is easy to find,

collecting their build logs is challenging as they use different CI

services and organize their CI build data differently. In particular,

they rarely use free services, such as GitHub Actions or Travis CI,

because their test-suite runs are rather long, beyond the usual limits

offered in the free tier of these services [26]. Instead, they mostly

use Jenkins CI, on public or private servers.

We consider only ASF projects that preserve CI history on pub-

licly accessible Jenkins CI servers (e.g., [31, 45]), as these projects

can have long-running test suites, and Jenkins CI provides uni-

formed API for downloading serialized build data [40]. We select

from the longest-running projects, where the test-suite execution

time for the majority of the project’s most recent CI builds exceeds

30 minutes. Many of these projects delete build history regularly—

our dataset thus includes some CI builds that are no longer available.

Table 3: Projects in our dataset.

Project Primary Use Stars

ActiveMQ Message broker 2K

Hadoop Big-data processing 14K

HBase Big-data storage 5K

Hive Data warehouse 5K

Jackrabbit Oak Content repository 381

James Mail server 848

Kafka Stream processing 26K

Karaf Modulith runtime 669

Log4j 2 Logging API 3K

TVM Compiler stack 10K

Table 3 lists the 10

projects in LRTS. All

projects consist of sev-

eral sub-projects (e.g.,

multi-module Maven

projects in Java). They

use a mix of pro-

gramming languages

(Java, Scala, Python,

and C++) and build

systems (8 Maven [68],

1 Gradle [28], and 1 CMake); all use Jenkins CI. To our knowledge,

LRTS is the first open-source dataset for investigating the effec-

tiveness of TCP techniques on multiple large-scale projects with

long-running test suites and actual CI failures.

3.2 Dataset Curation

We collect CI builds with real test failures for each project, and

extract the corresponding test-suite runs and code change data. We

use data collection procedure similar to prior work [67, 79, 83, 110]

and describe our differences below.

3.2.1 CI Builds. We focus on CI builds triggered by PR commits,

rather than branch pushes, because builds for PRs may fail more

frequently than builds for a particular branch (e.g., trunk). Each

PR can have multiple commits and multiple builds. We first collect

build metadata from the CI server, then collect the metadata of

corresponding PRs via GitHub API [25].

A Jenkins CI build can have multiple stages [39], similar to how a

Travis CI build can have multiple jobs [8, 110]. In LRTS, we observe

some builds having multiple stages, where each stage has a test-

suite run on a different environment, and the test report of that

build records all the runs. For example, a Kafka build can run the

same code for four different environments (JDK 8, 11, 17, and 20) in

four stages [46]. Following prior work [19, 83, 110] that treated each

Travis CI ⟨build, job⟩ pair as a test-suite run, we treat the test-suite

run of each ⟨build, stage⟩ pair as a data point for evaluating TCP.

We also treat each stage in a project as having its own CI history,

which consists of all builds that included that stage.

3.2.2 Test Suite Information. We obtain test report URLs from build

metadata files, and extract test reports in JSON format via Jenkins

CI API [40]. Our process differs from the extraction of test results

from Travis CI [8] because the test report data from Jenkins CI

provides much more uniform information, with no need to parse

textual build logs. As a result, LRTS has more accurate information

about test runs than datasets built from Travis CI [8, 67, 79, 83, 110].

Each test report contains the duration, outcome, and name of each

test method and its test class in the test-suite run(s) of the build. It

also contains stack traces for failed tests, and metadata of the run.

3.2.3 Code Change Information. The code change of a PR build

is the diff between its PR commit head (denoted as head) and the

branch commit head that head is being merged into (denoted as

base) [8]. We extract head from the build metadata file, and base

from the build log. For each pair of head and base, we extract the

code change data via GitHub API [24], which includes the diff file

URL, commit identifiers, authors, and the list of changed files. We

use the diff file URL to download corresponding code change diff.

3.3 Dataset Overview

LRTS curates the data of 21, 255 unique CI builds from 10 projects.

These builds have 57, 437 test-suite runs (TSRs), of which 30, 118

(59%) TSRs had at least one failed test. A build can have more than

one TSR (§3.2.1). Table 2 provides more details on LRTS [15]. The

durations are based on Jenkins CI test reports, by summing up the

durations of all executed tests in each TSR. If tests run in parallel

to reduce the total elapsed time, TCP can prioritize and parallelize

tests to find failures sooner [11, 115]. For a fair comparison, as

in prior work [9, 19, 29, 83], we evaluate TCP techniques while

considering that each TSR runs its tests sequentially.

In Table 4, we compare LRTS with other datasets in TCP studies

since the RTPTorrent release in 2020 [29, 67]. We omit datasets
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Hadoop, HBase, Hive, and TVM) consider potential flaky test fail-

ures by re-running failed tests, using the rerun option inMaven [69]

or Pytest [85]. HBase and Hive also maintain dashboards to proac-

tively run jobs to track flaky tests and exclude them in CI runs [34,

38]. All 10 projects use JIRA [44] or GitHub issues actively to track

the discovery and resolution of flaky tests. Some identified flaky

tests are manually fixed or skipped during testing.

To properly account for flaky test failures in TCP studies, it is

crucial to identify these failures. Some prior work [63, 83] reruns

builds multiple times and finds tests with inconsistent outcomes.

Due to resource constraints, we cannot rerun all 30,118 failed long-

running TSRs multiple times [19, 21]. Unfortunately, Jenkins CI test

reports do not include “flaky” tag even when Maven or Pytest has

been used for reruns. We thus employ two alternatives to identify

flaky tests in LRTS. Our key insight is to leverage issue trackers

that all projects already actively use.

First, we manually inspect flaky-test-related JIRA and GitHub

issues. We downloaded all issues returned from fuzzy search with

the keyword “flaky” on each project’s issue tracker [43]. We auto-

matically filter out flaky test issues closed before the earliest build

in LRTS; for the remaining issues, we inspect to determine if they

indeed fix a flaky test and what the exact test name is. Across all

projects, we inspected 746 issues and identified 344 flaky tests with

their fix dates. For each identified flaky test, we label all its failures

before the fixed date as flaky test failures and all its failures after

the fixed date as actual regressions.

Second, for a build with multiple TSRs in different environments

(§3.2.1), we treat failures that were not in all its TSRs as flaky.

This approach is similar to rerunning [63] but each rerun is with

a different environment—it bears the risk of misidentifying test

failures as flaky due to actual environment-specific faults, but it

ensures the remaining test failures are more likely to be non-flaky

as they occurred in multiple environments [79]. Once we identify

flaky test failures, we can remove all such failures from the TSRs.

3.4.2 Frequently Failing Tests. As shown in §3.3.2, for most of

the projects in LRTS, some of the test classes failed frequently

across failed CI builds. These tests often fail independent of the

code changes [110], and some of the failures could be due to test

flakiness [21]. In our case, 53% of the frequently failing tests are also

identified as flaky tests. Frequently failing tests are often ignored by

developers. Following prior work [110], we remove these tests by

performing an outlier analysis with a three-sigma rule of thumb—

we remove failures of test classes whose failure frequency is above

the<40= + 3 ∗ BC34E of all builds for each ⟨project, stage⟩ pair.

3.5 Comparison with Short-Running Test Suites

Besides having more recent builds and codebases, one key charac-

teristic of LRTS is in its long-running test suites (§3.3), which may

lead to different effectiveness and ranking results of existing TCP

techniques than the short-running test suites. Results may differ

because identifying and prioritizing failing tests on longer-running

test suites may be more difficult.

One difficulty comes from the fact that longer-running test suites

on average have more tests but not more failing tests. By comparing

LRTS and three recently used datasets (including an extended RTP-

Torrent) [19, 83, 110], we find that test suites in LRTS on average

have 3–6 times more test classes but still a small number of failures,

e.g., four in LRTS and 2–6 in others. The probability of a failure

occurring in LRTS is thus 2–4 times smaller. Further, long-running

test suites can have more diverse failures by simply having more

tests. Failed tests in LRTS fail less frequently compared to the other

datasets: the number of times a failed test fails over the number of

failed TSRs in a project in LRTS, on average, is 6–13 times smaller.

The other difficulty stems from the increased runtime of tests

in long-running test suites. Beyond having more tests, tests in

LRTS, on average, run 10 to 20 times longer than tests in the other

datasets. For example, the 3rd quartile of test class runtime in LRTS

and extended RTPTorrent [19] are 10 and 0.4 seconds, respectively.

Longer runtime often indicates that a test has more dependencies

and interacts with more code elements, which can result in more

complex behaviors that are harder to be captured by TCP techniques

without code coverage or dependency information. Our results also

show that minor imprecision in the TCP technique can cause a large

penalty in the technique’s failure-finding effectiveness (§5.1.2).

Overall, our analysis shows that projects with a longer TSR

runtime often correlate with other properties such as (1) more

tests, (2) longer-running individual tests, (3) more diverse set of

failures, and (4) lower fail ratio (relative number of failures to the

number of tests). Thus, TCP techniques that work well on short-

running test suites may not work as well on long-running test

suites. Therefore, it is not obvious a priori which TCP technique

can effectively prioritize failing tests ahead of the passing tests in a

much larger test suite, which motivates our study.

4 Experimental Setup

In this section, we describe our evaluation settings. We also discuss

our data collection process and implementation for the studied TCP

techniques and experimental procedure.

4.1 Evaluation Settings

4.1.1 Failure-to-Fault Mappings. Mapping test failures to the faulty

code is crucial for evaluating TCP techniques—the goal of TCP is

to find different faults, not just many failures due to the same fault.

Some prior work injects artificial faults into the code to have the

exact mapping from test failures to the injected faults. Recent stud-

ies [19, 67, 83], including ours, consider actual test failures from CI

builds. In such cases, it is difficult to know the exact mapping with-

out a deep investigation of each TSR. Prior work thus mostly uses

two failure-to-fault mappings while evaluating TCP techniques:

��"0?( that assumes that all test failures in a TSR map to the

same fault; and ��"0?* that assumes that each test failure in a

TSR maps to a unique fault [19, 83]. We evaluate on both mappings,

following prior work [97].

4.1.2 Test Granularity. To better revisit findings from prior studies

in our new context, we use the same test granularity for prioriti-

zation as they use, at the level of test classes [9, 19, 83, 110] rather

than test methods [16, 70] or test suites [18, 55].

4.1.3 Evaluation Metrics. Common metrics used to evaluate TCP

techniques are Average Percentage of Faults Detected (APFD) [111]

and Average Percentage of Faults Detected per Cost (APFDc) [17,

29, 64]. Both metrics are normalized to [0, 1]; a small difference
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can indicate a large time for longer-running test suites. APFDc

commonly uses the execution time of the evaluated TSR as the

cost [13, 20]. Thus, it effectively measures how many faults are

found per time, e.g., a 0.1 increase reduces the time to detect all

faults by 10% of the test suite time on average (or 39 minutes in our

studied projects based on Table 2). We evaluate on both metrics.

4.2 TCP Data Collection

We first order all the builds in LRTS chronologically to respect

temporal dependencies in regression testing [19, 84, 102]. For time-

based TCP, we collect relevant test execution time data from builds

prior to the current build. We add 0.001 s to all execution times

because Maven and Gradle report execution times as 0.000 s if less

than 0.001 s [14]. For history-based TCP, we collect test outcome

data from builds prior to the current build. For IR-based TCP, we

checkout the base code version of the current build and apply the

corresponding code change (diff between base and head). After

applying the change, we collect code tokens from all test files and

all changed files to construct documents and query. For LTR TCP,

we collect all features from Table 1 following prior work [19, 110].

4.3 TCP Technique Implementation

4.3.1 General Logic. We wrote a generic pipeline to run and eval-

uate different TCP techniques. Given a TCP technique, the pipeline

first processes the test data to compute the priority score of each

test in the to-be-prioritized test suite. It then ranks the tests in the

ascending order of the scores. For example, to evaluate theMostFail

technique on a test suite ) , the pipeline loads the historical failure

counts of all tests in) , computes the priority score as the reciprocal

of failure count, and sorts tests by their scores.

4.3.2 IR-based TCP. Prior work used an NLP-based or AST-based

tokenizer to parse the content of the collected files into tokens. Both

approaches yield similar performance [83]. We use the NLP-based

tokenizer from Peng et al. [83] as it is language-agnostic. Tokens

from a test file are treated as an individual document, and tokens

from all the changed files are collectively treated as the query. The

IR model takes test documents and a query as input, and outputs

the similarity score between each test and the code change.

4.3.3 LTR TCP. We follow the same data processing, implemen-

tation, and training procedure as prior work [19, 110]. Given that

we order LRTS chronologically, we use its first 75% (older builds)

as training data to the ML algorithms, and evaluate the trained

ML models on the remaining 25% (§2.4.1). Each data sample corre-

sponds to a ⟨TSR, test⟩ pair, represented as a pair of a feature vector

(consisting of features in Table 1) and test outcome. Given a TSR ',

LTR TCP predicts the probability of failure for each test C in ' based

on ⟨', C⟩’s feature vector, then prioritizes tests that have higher

probabilities. As in prior work, we use gradient boosting regression

model as the ML algorithm, and its lightGBM implementation from

scikit-learn [19, 47, 94]; we use default hyper-parameter values

provided by the scikit-learn package for training [13, 19, 110].

4.3.4 RTL TCP. We use the released implementations of RL agents

and reward functions [35] for RTL TCP from Spieker et al. [98], as in

prior RTL TCP studies [6, 9, 78]. We evaluate RTL techniques with

the same hyper-parameter values as prior work [6, 9, 78], and new

values that double the number of hidden layers and training itera-

tions for neural network agent to account for the larger test suites.

The effectiveness of different hyper-parameter configurations is

similar [98]; we present the best one.

4.4 Experimental Procedure

Table 6: Dataset versions.

Version #Failed TSR

LRTS-All 30,118

LRTS-DeConf 9,683

LRTS-FirstFail 2,076

We use 3 LRTS versions to

study TCP: (1) LRTS-All keeps

all test failures, (2) LRTS-DeConf

omits identified confounding test

failures, (3) LRTS-FirstFail only

keeps the first failure of each

non-flaky test over the collected builds of a stage. Table 6 lists

the number of failed TSRs for evaluation per version. Each tech-

nique has its data collection and possible training done only on

LRTS-All, then we directly evaluate its effectiveness on all versions.

To reduce randomness in the experiments, as prior work [19,

20, 98], we ran each non-LTR technique 10 times (with 10 random

seeds) on each TSR of each project on each dataset version. For the

LTR techniques, we trained the ML algorithm on the same training

data of each project 10 times to obtain 10 ML models per project.

We also evaluate a randomized TCP technique (denoted as Random)

to serve as a baseline, which randomly shuffles all tests.

In total, we evaluated 59 TCP techniques: 26 basic techniques, of

which 25 are described in §2.1-2.4, and the randomized baseline; and

33 hybrid techniques, of which 17 use CC hybrid approach and 16

use CCH hybrid approach. Applying hybrid approaches to a basic

TCP with the same heuristic provides little value, e.g., applying CC

to QTF-Last—we thus omit these combinations. We also omit ap-

plying hybrid approaches to RTL TCP because it solely learns from

pre-defined states, actions, and rewards during runtime. Adding

external heuristics would interfere with the learning process.

5 Evaluation

We aim to answer the following research questions:

• RQ1: How do different TCP techniques perform in detecting

real test failures on long-running test suites from recent builds?

• RQ2: How do failures of flaky tests and frequently failing tests

impact the effectiveness of different TCP techniques?

• RQ3: How do TCP techniques perform in detecting the first

failure throughout CI history for each failed test?

Table 7 summarizes the revisited and new findings in our study.

For each revisited finding throughout this section, we describe

our expectation of its potential outcome, the actual outcome, the

experiment results, and our analyses.

5.1 RQ1: Effectiveness of TCP Techniques

This RQ compares different TCP techniques on LRTS-DeConf that

omits confounding test failures. In Figure 2, each box plot shows

the distribution of APFDc or APFD values for each technique. For

non-learning-based techniques, the values are from all failed TSRs;

for learning-based techniques, the values are from failed TSRs of the

latest 25% of the builds as the older 75% are used for training (and

should not be used for evaluation [19, 63, 84, 102, 110]). Each box

plot represents 100 (10*10) values, for 10 projects and 10 experiment
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Table 8: APFDc-��"0?* results on LRTS-DeConf . Horizontal

lines separate TCP technique categories.

TCP Technique
Basic CC CCH

Avg G.Cat G.All Avg Imp Avg Imp

QTF-Avg .740 A A - - - -

QTF-Last .739 A A - - - -

LatestFail .735 A A .835 13% .797 8%

LatestTrans .728 A A .830 13% .795 9%

TF-FailFreq .627 B BCD .788 25% .773 23%

TF-TransFreq .614 B BCD .777 26% .764 24%

MostFail .613 B BCDE .773 26% - -

MostTrans .598 B CDE .765 27% .743 24%

Random .502 C F - - - -

IR-GitDiff (TF-IDF) .647 A B .767 18% .789 21%

IR-GitDiff (BM25) .633 AB BC .743 17% .771 21%

IR-WholeFile (TF-IDF) .631 AB BCD .761 20% .785 24%

IR-NoContext (BM25) .630 AB BCD .741 17% .770 22%

IR-NoContext (TF-IDF) .630 AB BCD .758 20% .784 24%

IR-WholeFile (BM25) .605 B BCDE .739 22% .767 26%

LTR (�0;; ) .736 A A .809 9% .781 6%

LTR (�1) .614 B BCD .767 24% .739 20%

LTR (�3) .593 B CDE .706 19% .741 24%

LTR (�2) .588 B DE .727 23% .735 24%

LTR (�4) .505 C F .717 41% .747 47%

RTL (NN-TCFail) .616 A BCD - - - -

RTL (NN-TimeRank) .570 B E - - - -

RTL (NN-FailCount) .511 C F - - - -

RTL (Tabl-TCFail) .504 C F - - - -

RTL (Tabl-FailCount) .495 C F - - - -

RTL (Tabl-TimeRank) .485 C F - - - -

shows that the ranking of many techniques is similar across APFDc

and APFD, but the ranking of time-based and RTL techniques are

opposite. We thus focus on APFDc results in the following sections.

5.1.2 Analysis of Basic TCP Techniques. As prior studies [9, 13,

14, 19, 83, 110], we perform statistical tests on APFDc-��"0?*
values to analyze the effectiveness difference across different tech-

niques. We first perform a one-way ANOVA analysis and find that

the APFDc values across techniques significantly differ (p-value

< 0.001). We then perform Tukey HSD test as a post-hoc test [103],

which assesses the difference and puts techniques into different

groups if their APFDc values differ significantly [13, 59, 62, 83].

Groups are named by letters: “A” represents the best group, and the

effectiveness degrades alphabetically. A technique with multiple

letters performs in between these letter groups.

In Table 8, “Basic” columns show the results of basic techniques;

“CC” and “CCH” columns show the results of hybrid techniques

after applying CC and CCH hybrid approaches, respectively. “Avg”

shows the mean APFDc values; “G.Cat” and “G.All” show the effec-

tiveness group fromTukeyHSD test within each basic TCP category

and across all basic techniques, respectively; “Imp” columns show

improvement from “Basic” values to hybrid values.

Time-based and history-based TCP. Prior studies have shown

the effectiveness of sophisticated IR and ML TCP techniques in

industrial settings [10, 12, 13, 100, 107], while more recent stud-

ies showed the simplest time-based and history-based techniques

are equally effective on short-running test suites [19, 83]. Because

longer-running test suites have different characteristics (§3.5), we

expect that the simplest time-based and history-based techniques

may perform worse than sophisticated techniques.

However, our evaluation confirms the prior finding from more

recent studies that time-based and history-based techniques can

match and often outperform the sophisticated IR andML techniques

(F3 ✓). Table 8 shows that QTF-Avg and QTF-Last achieve the top-2

highest mean APFDc (0.740 and 0.739). Among history-based tech-

niques, prioritizing recently failed or transitioned tests (LatestFail

and LatestTrans) have the highest APFDc (0.735 and 0.728). They are

also in the best effectiveness group with the time-based techniques

and one LTR technique (group A).

To understand why QTF is the most cost-effective, we first ana-

lyzed the positions of failed tests in TSRs after QTF-Avg prioritiza-

tion. We found that failed tests run much longer than the majority

of the tests in their TSRs—75% of the failed tests in LRTS-DeConf

are in 76% or later positions of their TSRs; on average, failed tests

are in 83% positions of their TSRs. APFD values in Figure 2 are very

low for QTF. We then study why QTF performs well even when

it orders failed tests late. It turns out that long-running test suites

commonly have a number of tests that run substantially longer

than others, e.g., tens of minutes. These tests are often end-to-end

and integration tests that largely contribute to a TSR’s duration,

but QTF runs them last. For example, TestYarnNativeServices from

Hadoop runs for 15 minutes (i.e., 4.5% of Hadoop’s average TSR

duration) to start mini-clusters and test deploying services [32].

IR-based TCP. IR-based techniques have been shown to often out-

perform time-based and history-based techniques on short-running

test suites [83]. We expected the prior finding to stand on LRTS,

because test method bodies in long-running test suites are larger,

and IR TCP is effective precisely because it captures textual rela-

tionships between documents [92].

Contrary to our expectation, however, our evaluation results re-

fute the prior finding (F4 ✗). In Table 8, the best IR-based technique,

i.e., IR-GitDiff (TF-IDF), achieves a mean APFDc of 0.647 in group B,

worse than the 4 time-based and history-based techniques in group

A that all have APFDc above 0.727. Our results also refute that IR

model and query context length configuration substantially impact

the effectiveness of IR-based TCP [83] (F5 ✗). Figure 2 shows all 6

IR-based techniques have similar distributions; Table 8 shows that

all 6 techniques differ by at most one effectiveness group, while 4

of them perform statistically the same (group AB).

To understand why IR-based TCP’s effectiveness differs from

prior work, we first explore the difference between LRTS-DeConf

and the prior IR TCP dataset (denoted as IRDataset) [1, 83]. In LRTS-

DeConf TSRs, the average duration and number of failures are 76

and 2 times larger, respectively, while the average code change size

is 20% smaller. We then perform controlled experiments on each of

these variables in LRTS-DeConf (selecting TSRs by the percentile

ranges of each variable) for all basic IR-based techniques.

Table 9: IR experiment.

Variable
Variable Value Range

<Q1 Q1-2 Q2-3 >Q3

Duration .644 .642 .628 .605

#Failure .679 .672 .640 .569

Fail ratio .693 .686 .607 .577

Chg size .617 .612 .632 .648

Table 9 shows our experiment

results; each cell is the APFDc-

��"0?* values averaged across

all IR-based techniques. From Ta-

ble 9, we observed that IR-based

techniques: (1) perform worse

when TSRs have longer durations; (2) perform worse when TSRs

have more failures (“#Failure”) or more failures relative to test suite

size (“Fail ratio”); and (3) perform better when code changes are
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larger. These results suggest that IR-based techniques performing

worse in our study is likely due to LRTS having longer-running test

suites with more failures. Another possible reason is that smaller

code change query in LRTS has less information, which leads to a

lower retrieval accuracy [83].

In addition, we argue that textual similarity is not the perfect

indicator of test failure probability, and the outcome of such impre-

cision can be amplified on longer-running test suites. By inspecting

IR-prioritized TSRs in LRTS-DeConf , we saw that IR scores of dif-

ferent tests often differ marginally (e.g., less than 0.0001 in cosine

similarity), while their durations have much bigger difference, es-

pecially on long-running test suites (e.g., standard deviation of test

duration in LRTS is 15 times larger than that of IRDataset). Thus,

even a minor IR score difference can substantially impact failure

finding effectiveness—during inspection, we often saw that a failed

test class is delayed for hundreds of seconds behind some passed

tests because its code has some more or fewer tokens.

Learning-based TCP. We expected LTR TCP to be competitive

on long-running test suites as LTR techniques can model a large

amount of test and change data. Indeed, Table 8 shows LTR (�0;; )

is in the best effectiveness group (group A), with the third highest

mean APFDc (0.736) across all techniques (F6 ✓). LTR is effective

because its supervised learning algorithm learns which feature(s)

can minimize test outcome prediction loss from historical builds

at training time, and uses those features more often on unseen

builds at inference time. We expected �0;; to outperform individual

feature sets, as using more features is often better in ML, but we

have no expectation on the ranking of individual sets. Our results

confirm prior finding (F7 ✓): using all features (�0;; ) is the best in

LTR; test time and history features (�1) are better than similarity

features (�2, �3) which are better than change features (�4).

Compared to supervised learning (LTR), reinforcement learning

(RTL) has been shown harder to optimize due to its large search

space and random exploration, which leads to unstable TCP effec-

tiveness [9, 98]. We thus expected, and confirm that, while some

RTL techniques are certainly better than Random [98], they are

usually outperformed by LTR techniques [9] (F8 ✓). Table 8 shows

that 2 RTL techniques are in better groups than Random, and 4 other

RTL techniques are the same as Random. Most RTL techniques are

in worse groups than most LTR techniques.

We also evaluated effectiveness degradation with time and found

it only for LTR techniques in 4/10 projects, likely due to the common

ML issue of distribution shift, where data of the latest builds become

less similar to the older builds used for training. Because many

LTR/RTL techniques perform no better than simpler techniques,

while requiring elaborated effort to develop (feature engineering)

and maintain (retraining) [19, 80, 110], we recommend time-based

and history-based techniques over current learning-based ones.

5.1.3 Analysis of Hybrid TCP Techniques. We expected the evalu-

ated cost-cognizant hybrid approaches to only marginally improve

basic TCP techniques on longer-running test suites (based on §5.1.2).

To our surprise, they lead to a much bigger improvement because

of the high cost-effectiveness of test time and outcome heuristics

as observed from basic time-based and history-based techniques

(F9 ✓). Table 8 shows CC and CCH approaches improve the mean

APFDc of basic techniques by 9%-41% and 6%-47%, respectively.

Table 8 further shows that fusing heuristics from the best basic

TCP techniques QTF-Last and LatestFail gives LatestFail+CC that

achieves the highest APFDc (0.835) among all techniques (F10 ✓).

5.2 RQ2: Impact of Confounding Test Failures

Recent studies use real CI datasets that have confounding test fail-

ures [9, 19, 67, 110, 112], and detecting these failures earlier in

TCP may provide no value to the developers [21, 51, 82, 83, 110].

However, there is very limited evaluation on the effectiveness of

TCP techniques under the impact of confounding test failures [21,

82, 83]—prior work has only studied how flaky tests impacted one

time-based, two history-based, and a few IR-based techniques on

short-running test suites [83] or single-project dataset [21]. In this

RQ, we aim to provide a broader investigation on a wider range

of TCP techniques under the impact of confounding test failures.

Compared to prior work, we evaluate 3 times more TCP techniques

on a 10-project dataset (with the first evaluation of LTR and RTL

TCP), and consider both flaky tests and frequently-failing tests.

Following prior work [21], we evaluate TCP techniques on two

versions of the dataset—one version considers confounding test

failures as relevant failures that need to be investigated (LRTS-All),

while another version does not (LRTS-DeConf ). We then compare

the evaluation results between both versions.

We perform the same statistical analysis as in RQ1 (§5.1.2) and

present our results in Table 10, which compares the mean APFDc

values and effectiveness group of techniques between LRTS-DeConf

and LRTS-All (it also presents results on LRTS-FirstFail, which we

discuss in the next RQ). The top-5 techniques, with the highest

APFDc values, on each dataset version are bolded.

We expected TCP techniques that rely on calculating test out-

come frequency to be the most impaired by confounding test fail-

ures, because failure count can easily include confounding test

failures. From LRTS-All to LRTS-DeConf in Table 10, we indeed

observe significant drops in the ranking and APFDc values for tech-

niques using test outcome frequency, e.g., MostFail and LTR (�1),

which confirms the prior finding [21, 83] (F11 ✓).

However, not all history-based techniques are heavily impacted

by confounding test failures—in Table 10, LatestFail, LatestTrans,

and LTR (�0;; ) are in top-5 on both LRTS-All and LRTS-DeConf . Our

results show that techniques that account for recent history (either

by updating heuristic with recent builds or by weighing with other

features) are resilient (F12 �).

We also find that time-based and change-aware techniques are

the least impacted by confounding test failures (F13 �). From LRTS-

All to LRTS-DeConf : QTF techniques rise to the best with large

increases in APFDc; IR-based techniques also have higher APFDc.

Overall, we recommend LatestFail, QTF, and LTR (�0;; ) as they

outperform others when properly accounting for confounding test

failures, and LTR (�0;; ) should be checked to not overly rely on

outcome frequency features.

5.3 RQ3: Effectiveness on First Failures

Failing builds are relatively common in practice [21, 82]. For ex-

ample, 52% of the TSRs (and 75% of the CI builds) in LRTS fail.

Accordingly, uncommon failures, such as failures from tests that

have been passing, may be more worthy of developer’s attention
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Table 10: Mean APFDc-��"0?* and effectiveness group of

TCP techniques on all three versions of LRTS.

TCP Technique LRTS-DeConf LRTS-All LRTS-FirstFail

QTF-Avg .740 A .671 CD .796 A

QTF-Last .739 A .677 CD .798 A

LatestFail .735 A .795 A .467 DE

LatestTrans .728 A .788 A .464 DEF

TF-FailFreq .627 BCD .666 CD .440 EF

TF-TransFreq .614 BCD .656 D .422 F

MostFail .613 BCDE .720 B .312 G

MostTrans .598 CDE .701 BC .313 G

Random .502 F .502 I .504 D

IR-GitDiff (TF-IDF) .647 B .589 EF .691 B

IR-GitDiff (BM25) .633 BC .576 FG .667 BC

IR-WholeFile (TF-IDF) .631 BCD .576 FG .679 B

IR-NoContext (BM25) .630 BCD .579 FG .666 BC

IR-NoContext (TF-IDF) .630 BCD .583 EFG .680 B

IR-WholeFile (BM25) .605 BCDE .557 FG .632 C

LTR (�0;; ) .736 A .764 A - -

LTR (�1) .614 BCD .724 B - -

LTR (�3) .593 CDE .548 GH - -

LTR (�2) .588 DE .618 E - -

LTR (�4) .505 F .505 I - -

RTL (NN-TCFail) .616 BCD .549 GH - -

RTL (NN-TimeRank) .570 E .516 HI - -

RTL (NN-FailCount) .511 F .481 I - -

RTL (Tabl-TCFail) .504 F .508 I - -

RTL (Tabl-FailCount) .495 F .501 I - -

RTL (Tabl-TimeRank) .485 F .517 HI - -

as they are more likely due to recent change. Moreover, although

history-based techniques have been shown effective (e.g., Latest-

Fail), they often rely on failure history that is only informative for

tests that had failed. But many tests often may not fail, e.g., 67%

of the executed tests in LRTS had never failed. It is important to

know how techniques prioritize failing tests that have no prior

failures. This RQ thus studies the effectiveness of TCP techniques

in detecting the first failure of each test in our CI history.

We evaluate on LRTS-FirstFail that only keeps the first failure of

each non-flaky test. The first failures are with respect to the entire

CI history, not the failures that transition a test suite from passing

to failing [42, 79]. We omit learning-based techniques, because the

latest 25% of the builds used for evaluating learning-based TCP

have insufficient first failures to make generalizable observations.

The LRTS-FirstFail columns in Table 10 show that all history-

based techniques perform as Random, because they prioritize tests

based on failures, so tests without prior failures are prioritized

randomly. In fact, history-based techniques are even worse than

Random on a build if all previously failed tests pass but a new test

fails. But they can be better than Random on a build if both a new

test and some previously failed tests fail.

Time-based TCP remains the most effective in this RQ (F14 �).

Overall, our study has shown that the simplest QTF stands as the

most cost-effective TCP technique across different RQs we studied.

IR-based techniques also outperform Random when they priori-

tize tests similar to the change, which indicates that test failures

in LRTS-FirstFail are more often related to current changes com-

pared to LRTS-All or LRTS-DeConf . Our results motivate novel TCP

techniques that lexicographically prioritize tests by history-based

heuristics, and use time-based or IR-based to break ties.

6 Threats to Validity

External. The threats to external validity lie in the generalizabil-

ity of our study. We use real build data from a heterogeneous set

of projects. We evaluate on a large number of CI runs with sta-

tistical analyses as prior work [13, 19, 59, 62, 83, 110]. To reduce

threat from (1) the evaluated TCP techniques, we use the same TCP

data collection [19, 83, 98], settings, and implementations as prior

work [9, 19, 83, 98, 110]; (2) randomness, we run all experiments

10 times [9, 19, 98]; (3) flaky tests [19, 63, 110], we perform both

manual inspection and automated filtering (§3.4). Due to high cost

of running test suites, we do not run the generated test orders [105].

Internal. The main threats to internal validity lie in the potential

bugs of our techniques and experimental scripts. To address such

threats, we regularly check the collected data and our experimental

results with unit tests and manual examination.

7 Related Work

TCP Techniques. TCP has been extensively studied as summa-

rized in several surveys [18, 29, 36, 59, 61, 80, 89, 111]. Besides the

techniques in §2, prior work has also proposed techniques based

on code coverage [89, 90], adaptive random testing [41], constraint

solving [113], and genetic algorithms [54]. TCP has been applied to

mutation testing [114], fault localization and repair [22, 27, 57, 86],

testing configurable systems [14, 87, 99], and deep neural net-

works [81, 108]. We focus on studying techniques most widely

used in recent work [9, 19, 21, 83, 98, 110].

TCP Datasets and Studies. TCP datasets are crucial for studying

TCP techniques. Mattis et al. [67] listed TCP datasets prior to 2020

and released RTPTorrent that curated real CI builds from 20 projects

via TravisTorrent. Prior to RTPTorrent, only 18 TCP datasets en-

tirely consisted of real CI builds, and only two of them made their

TSR data available [33, 98]. TCP studies in industrial settings exist

but provide limited data for future work [10, 18, 63, 65, 101, 106].

Recent studies on open-source datasets extend RTPTorrent with pro-

prietary projects [19, 65], and some collect their own TCP datasets

from more Travis CI Java projects [6, 9, 21, 79, 83, 110].

8 Conclusion

We present LRTS, an extensive dataset focusing on recent, long-

running test suites with 21,255 CI builds and 57,437 test-suite

runs (average duration of 6.5 hours) of 10 large-scale, open-source

projects that use Jenkins CI. On LRTS, we evaluate the effectiveness

of 59 techniques from 5 leading TCP technique categories on longer-

running test suites and on prioritizing tests with no prior failure.

We also study the impact of confounding test failures on these

techniques. Our study both revisits major findings (9 confirmed

and 2 refuted) from prior work and establishes 3 new findings on

the effectiveness and ranking of TCP techniques. We show that the

best techniques combine the simplest time-based and history-based

heuristics, e.g., prioritizing faster tests that have failed recently.
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