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to widespread reorganizations in the professional ecology of the contemporary bio-

sciences (Leonelli, 2016; Stevens, 2013). While big data biology projects are varied in 

their specifics, they share a conviction that the messiness of categorization can be made 

to disappear under the magnitude of sheer, seemingly uncomplicated scale.

Perhaps nowhere has this logic appeared more seductive than in psychiatry—not inci-

dentally a field dogged by its own thorny classification politics in the demarcation and 

discipline of human difference (Foucault, 1965; Rose, 1998, 2009). In a review in JAMA 

Psychiatry, Weissman (2020) suggests that big data solutionism has repeatedly appeared 

in response to recent field-level crises in psychiatry: in psychiatric epidemiology, large 

cohort studies, and the mass-scale repurposing of Electronic Health Records (EHRs) for 

research (see also Arribas-Ayllon et al., 2019; Panofsky, 2014). This drive for ever-larger 

data is now also enshrined within the US National Institute of Mental Health’s (NIMH) 

Research Domain Criteria (RDoC) program, which proposes to adjudicate the likely 

intractable classificatory conflicts between symptomatology and neurobiology (Insel 

et al., 2010; Pickersgill, 2019). Central to NIMH’s efforts is the accumulation of big 

genomic data, as indicated by the significant outpouring of federal funding into sequenc-

ing and data sharing consortia (Senthil et al., 2017).

Submerged within this ethos, however, is something of a chicken and egg problem: If 

you need (big) data ‘about’ a psychiatric condition to understand it, you need to already 

have decided what that condition is, or at the very least a firm definition of whom that 

category includes and an idea about which of their characteristics might be of interest for 

clinical research. This is not a trivial task: As Nelson (2019) has shown, the relationships 

between behaviors and categories in psychiatric genetics are hard-won achievements, 

and are maintained only through significant and ongoing effort. Here, examining the 

case of autism spectrum disorder (ASD),1 I show how this effort necessarily extends into 

the data infrastructures that support genomic research. As I argue, data ecologies with 

dissensus on categorical boundaries can complicate or obscure just as much as their scale 

promises to illuminate.

This article excavates how the circulation of datasets in categorical misalignment has 

contributed to a growing fracture in big data autism genomics, resourcing two distinct 

accounts of ASD and how it should be studied. By categorical misalignment, I mean that 

how these datasets demarcate autism—its salient features and the populations that it can 

be said to describe—are partially disjunct, even though each dataset is assumed to be 

representative of a unified category. These differences are discursively vivified in the 

scientific literature each dataset is used to produce; research projects solidify data-based 

categories by linking them backward to genotype as well as forward to etiologic, diag-

nostic, or therapeutic implications. In doing so, researchers both biologize and medical-

ize the innate categorical differences of their data, meaning that what appear to be minor 

technical differences between datasets can echo into significant redefinitions—or, here, 

diverging definitions—of what appears to be an otherwise stable diagnostic entity.

I argue that biobanks and other big data repositories are critical intermediaries in the 

research process, shaping and constraining the kinds of variables that can be analyzed 

and the populations under study. In the process, these organizations have had surprising 

influence over the disease entities that biomedical research reproduces, shifting 
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categorical boundaries and realigning the grammar of inquiry with the inbuilt assump-

tions of their datasets.

To make this claim, I employ mixed methods to analyze a corpus of published big 

data research on autism genetics, limited to the five-year period between 2017 and 2021 

(n = 303 articles). First, I use network mapping to demonstrate a clear bifurcation in the 

topics and citational literatures that anchor this research. This bifurcation suggests two 

distinct and increasingly non-overlapping ideas of what autism is and important meth-

odological differences in how it should be studied. Then I turn to a close textual analysis 

of a smaller set of articles, comparing research produced using two notable datasets: 

MSSNG (pronounced ‘missing’; n = 38), a biobank linked to parental advocacy organi-

zation Autism Speaks, and the direct-to-consumer genetic testing company 23andMe 

(n = 22). These organizations have significant (and well-historied) differences in their 

orientations toward autism science, underwriting differences in their data collection 

strategies and categorical implementations. I link these differences to the conceptual 

clusters indicated by the network mapping and draw out a finer-grained analysis of their 

implications for the discursive reproduction of autism(s) through big data genomics.

This project draws from critical data studies (CDS) in its attention to how data shape 

conceptual categories in biomedical research. CDS scholarship understands data not as a 

‘raw’ element of subsequent inquiry, but rather a richly social set of inscriptions that 

arrive always already ‘cooked’, theory-laden, and replete with meaning (e.g. Bowker, 

2008; Gitelman, 2013; Kitchin & Lauriault, 2014). Following broader concern for how 

research infrastructure (and particularly data infrastructure) shape scientific practice 

(Borgman, 2016; Bowker & Star, 2000; Edwards, 2010; Edwards et al., 2013; Star & 

Ruhleder, 1996), CDS research foregrounds questions about how data are produced, how 

they are maintained and mobilized over time, and in what ways they are interpreted. In 

doing so, it illuminates how data themselves—rather than just the actors who rely on 

them—can drive shifts in larger social formations. In particular I take inspiration from 

Denton et al.’s (2021) genealogy of the ImageNET machine learning dataset, which was 

similarly positioned as a big data solution to categorization problems. Rather than ‘solv-

ing’ these problems, ImageNET reinscribes and naturalizes particular sets of social val-

ues while simultaneously invisibilizing the actors who hold them.

CDS accounts (including Denton et al.’s) typically examine the development and 

deployment of a single, widely used dataset. In most big data sciences, however, notable 

datasets proliferate, and a research community might rely on a number of common 

resources. Consider, for example, the datastreams associated with large telescopes or 

satellite arrays in astronomy, physicists who rely on data from neutrino observatories or 

particle accelerators, or the small number of influential climate models whose outputs 

feed into a diverse set of research communities. (It is not incidental that these examples 

all rely on expensive and/or site-dependent research infrastructures—the more difficult 

data are to produce, the more researchers are incentivized to rely on shared data. Biobanks 

are similarly resource-intensive.) If we are to take the supposition that all data are theory-

laden seriously, then, it stands to reason that different datasets might bear with them 

different sorts of theories, values, and categorical imaginations. Comparative studies, 

like the present case, offer to draw out how the circulation of multiple datasets in a 
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research ecology can smuggle in dissimilar and potentially incompatible representations 

of their shared object.

While this case study examines the use of biobank data to make claims about a single 

diagnostic category, similar processes are well underway across the life sciences and big 

data-driven research broadly. An attention to the histories and applications of large 

reused datasets, as I argue, offers to reveal occulted processes in the construction of the 

categories they appear to simply represent.

Multiplying autisms: History of a contested diagnosis

Even among other contested psychiatric diagnoses, it’s worth underlining that autism 

swims in uniquely muddy waters, and has since long before big data arrived on the scene. 

ASD’s conceptual evolution and rapidly expanding patient population have sparked sig-

nificant debate in both the biomedical and social sciences for decades, and its defini-

tional contours have consistently defied stabilization. As Verhoeff (2013, p. 446) has 

commented: ‘Ideas about autism are not fixed but continually in flux. There is not a 

single test, definition, article or researcher that marks a definite idea of autism in a spe-

cific period.’ Elsewhere, others have identified the autism concept as ontologically ‘het-

erogeneous’ and ‘indeterminate’ (Hollin, 2017); as Singh (2015a) says, there are ‘multiple 

autisms’. Indeed, this understanding is broadly uncontroversial even in the autism 

research community: In one of the most-cited articles of the last 20 years, noted psychi-

atric geneticists Happé et al. (2006) argue that it is ‘time to give up on a single explana-

tion for autism’. That it is time to give up on a single definition for autism is implicit.

While autism may already have been multiple, particular biobanks have organized two 

distinct and relatively clear-cut autisms from within. We might even think of this as a sedi-

mentation of autisms that were previously in solution, now precipitated into identifiable—

and increasingly immiscible—layers. This argument is elaborated below. First, however, it 

is worth spending a moment on how this curious state of affairs has come to be.

The history of autism and autism research has been extensively documented by others 

at a finer degree of detail than I am able to offer here. Much of this work has focused on 

the structure of its diagnostic change, tracking how expansions of ASD—through dein-

stitutionalization, ongoing population shifts, formal revisions to the DSM, and informal 

changes in diagnostic practices—have repeatedly reconfigured the autism concept (Eyal, 

2013; King & Bearman, 2011; Maynard & Turowetz, 2019; Navon & Eyal, 2016).

Importantly, these processes have drawn in a variety of actors with competing modes 

of expertise, as well as differing claims to knowledge of and experience with autism as a 

lived condition (Barker & Galardi, 2015; Eyal, 2013). Among the most influential groups 

both historically and today have been the parents of autistic children, who have driven 

categorical redefinitions of autism through their contributions to the development of 

therapeutic strategies (Eyal, 2013; Hart, 2014) and brain science approaches (Fitzgerald, 

2014; Rapp, 2016), as well as their own participation as research subjects (Lappé, 2016). 

Parents have also played a significant role in lobbying for federal support, securing sub-

stantial funding for educational, clinical, and research programs through legislation like 

the US Autism CARES Act (Autism Collaboration, Accountability, Research, Education, 

and Support Act, passed in 2014 and renewed in 2019; Singh 2015a). While the role of 
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parents in defining the autism concept (rather than autistic people themselves) remains a 

point of controversy (Rosenblatt, 2018; Stevenson et al., 2011), it is clear that parents 

have had an outsized effect: Their efforts have not only reshaped ASD in the laboratory 

and the clinic, but intervened in broader cultural imaginations of autism.

Most importantly to the story I tell here, however, is parents’ work in coordinating 

large scale genetic resources for autism research—particularly in the US and Canada. As 

with a number of genetic conditions,2 parent advocates have routinely sought to acceler-

ate autism genetics by contributing to the development of autism biobanks. Different 

accounts have highlighted different facets of these efforts. For example, Singh (2018) 

has explored how contributing biomaterials allows families to access care and support, 

while Tabor and Lappé (2011) identify how the scale of biomaterials required for this 

work has driven changes in the institutional and interpersonal relationships between 

autism families and coordinating clinics. Through these processes, parent advocates have 

since the early 2000s made autism genetics a particularly well-resourced and attractive 

site for researchers from a variety of disciplines (Singh 2015a). These affordances helped 

to solidify the burgeoning field as a ‘trading zone’, bridging numerous guiding interests 

and imaginations of the autism concept (Navon & Eyal, 2014).

Critically, it is not just that autism has been broadly geneticized through these projects 

(though this is certainly the case), but that geneticization has in turn driven significant 

changes to autism as a category. Drawing on Hacking’s (2006) work on ‘looping effects’, 

Navon and Eyal (2016) have painstakingly documented how notions of autism as a 

genetic condition shifted how autistic groups are understood and described, leading to 

cyclical changes in both the boundaries of the category and the underlying genotypes it 

can be said to include. As they argue,

Every time diagnostic criteria are changed—whether to better capture phenotypic variability, to 

better reflect/validate genetic evidence, or for any other reason—the genetic makeup of the 

population picked out by the now-changed classification may also be modified. This new 

population changes the material conditions for examining the genetic etiology of the 

classification, which in turn can modify expert understandings of the condition and thereby the 

self-understandings of the people picked out by the classification. When human kinds loop, their 

genetic makeup can also therefore be rendered a moving target (Navon & Eyal, 2016, p. 1421).

While Navon and Eyal focus on diagnostic change as a core mechanism, we can under-

stand biobank recruiting and phenotyping as tacitly similar practices insofar as they also 

serve to identify—at least for the purposes of genetic research—who constitutes the 

autistic population. I specify some implications of this in connection with individual 

biobanks in a later section. For now, though, it is enough to observe that genetic research 

can and has had significant impacts on the autism concept, and ones that are surely con-

tinuing to unfold.

Conceptual clustering in contemporary autism research

Even in the face of continued disputes over autism’s categorical boundaries, it remains 

uncontroversial to claim that autism is largely genetic. The DSM-5 is in agreement with 
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mainstream autism research when it suggests that 60-90% of ASD cases are likely to 

have a genetic component, and roughly 15% are clearly linked to already-known causal 

genetic variance (American Psychiatric Association [APA], 2013, p. 57; see Rylaarsdam 

& Guemez-Gamboa, 2019). However, this is where broad consensus ends: How research-

ers make sense of the genetic architecture of the yet-unexplained 45-75% of cases with 

likely genetic contributions varies widely in methodology, topical focus, and in their 

very conceptualization of autism itself.

Beyond changes to the clinical population, new language in the DSM has also 

driven unanticipated epistemic shifts in academic autism research, and subsequent 

knowledge claims. The DSM-5 diverges from previous editions in describing autism 

as a collection of spectra: diagnostic criteria identify several domains across which a 

patient can experience differently scaled levels of disability, leading to highly indi-

vidualized diagnoses that can acknowledge areas of strength as well as specific sup-

port needs. Although this conceptualization of a multidimensional ASD was intended 

to lend diagnostic flexibility and specificity, the language of a ‘spectrum’ has been 

adopted and extended by researchers in ways far exceeding those imagined by the 

DSM committee. For example, hearkening back to DSM-IV’s multiple diagnostic 

categories, which identified distinct typologies of autistic difference, many research-

ers regard the autism spectrum not as smooth continuums across symptomatic 

domains, but as a fragmented collection of ‘subgroups’ bound together under an 

umbrella diagnosis. Others treat the spectrum as a continuum from normal to patho-

logical, in which subclinical difference in autistic domains is a common trait, and 

diagnostic thresholds are somewhat arbitrary impositions. While these orientations 

lead to significant differences in research practice, they are not always clearly 

explained by researchers using the same language in manifestly different ways.

Given the scale of the research literature now produced annually, however, it’s diffi-

cult to identify clear patterns in this widely heterogeneous body of work. In order to 

begin to sketch its contours, then, this section employs computational bibliometrics to 

identify patterns in the topics discussed and the literature cited. First, I examine a key-

word co-appearance network: Such networks exceed traditional keyword analysis, sug-

gesting not only what sorts of topics are discussed, but which concerns tend to circulate 

together—and which are rarely voiced in tandem. Here, I thematize trends in this net-

work to introduce two distinct categorical implementations of ‘autism’, demonstrating a 

marked disjuncture in how ASD is described and studied in contemporary big data 

genomics. Then, I turn to a bibliographic coupling analysis, a similarity measure that 

maps when two studies both cite a common third reference. This allows me to make the 

case that there are also two increasingly distinct bodies of scholarship cited by autism 

researchers, with further implications for the conceptual unity of the field.

I deploy these tools in a corpus representing five years of research publications on 

autism genomics (with mention of both ‘autis*’ and ‘gene*’ and/or ‘genom*’ in the 

keywords, title, and/or abstract), compiled through Web of Science. Filtering for 

original research articles published between 2017-2021, this resulted in a collection 

of 1,472 papers. I screened these papers manually, documenting data provenance for 

any paper relying on a biobank, data-sharing consortium, or other big data resource. 

All other papers using other data types were excluded, including cell and animal 
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model studies, small case series, systematic reviews, and duplicate records. This left 

a final corpus of 303 articles. Comparing the cleaned corpus with the original set of 

publications, it is clear that large dataset reuse is increasing over time: Only 14.3% 

of papers published in 2017 used this type of data, but that number nearly doubled to 

28.5% in 2021. It seems likely that reuse will continue to increase as sequencing 

costs continue to decline and large whole genome resources become more available, 

solidifying the role of biobanks and similar institutions in autism research and human 

genetics broadly.

Keyword clusters

To get a sense of the discursive landscape figured by these articles, I used the open-

access bibliometrics tool VOSViewer (van Eck & Waltman, 2010) to map the co-occur-

rence of words and phrases which commonly appear in the titles and abstracts of articles 

in this corpus. The resulting network is pictured in Figure 1.3

After excluding common words, VOSViewer maps the frequency with which any two 

terms appear together (positive spring weight) versus independently (negative spring 

weight) in the titles and abstracts of all papers in the corpus. Those weights are used to 

construct clusters of commonly co-appearing terms, mapping relationships within and 

between them. Increased distance between two nodes indicates that those terms typically 

appear in the absence of one another; nearby nodes are terms which frequently appear 

together in the same papers.

Figure 1. This network shows common terms which appear in the titles and abstracts of 

corpus publications. Terms that are close to each other frequently appear together in the same 

publications; distance indicates words which rarely appear in the same publications.
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As the clear bifurcation of this network indicates, two relatively distinct discur-

sive assemblages appear to be at odds in this corpus, reflecting what I will term 

Categorical Alignments A and B. In this subsection, I explore patterns in this net-

work by linking particular sets of terms to the larger concepts they indicate. What 

emerge are clear connections between a variety of objects of interest, theories about 

genetic causation, and problematizations of the autism category that are not neces-

sarily obvious in any individual paper, but yet cohere clearly within the discursive 

production of the larger field.

Some of the notable features of each categorical alignment will likely not come as a 

surprise to those interested in the history or sociology of autism—they resemble particu-

lar and historied configurations of the autism concept. Nevertheless, I think it is useful to 

hold these resemblances in abeyance in order to avoid assuming or misreading the actual 

contents of these categories as they are instantiated within this particular body of 

research—these will be explored in the final empirical section.

Now let’s consider the keyword network—beginning with Categorical Alignment A, 

the orange cluster at left. An initially striking feature is a cluster of synonyms in the 

lower left: ‘copy number’, ‘copy number variant’, ‘copy number variation’, ‘cnv’, and 

‘cnvs’. Copy number variants (CNVs) are a form of structural genetic variation in which 

certain chromosomal regions are duplicated or deleted (‘duplication’ and ‘deletion’ are 

also tightly coupled here, and ‘region’ is in the center of this cluster). While everyone has 

CNVs, particular variations in some regions are widely considered causative of or 

strongly linked to autism (see Vicari et al., 2019). However, given that CNVs and single-

nucleotide rare variants (‘rare variants’) are together estimated to account for less than 

20% of autism’s total incidence, it’s notable that interest in CNVs specifically seems to 

characterize such a disproportionately large swath of the network.

We can also identify etiologic concern as primarily situated within Categorical 

Alignment A. ‘Etiology’ and ‘pathogenesis’ are visible toward the top, and a variety of 

keywords describing how genes are (or aren’t) expressed are clustered around them: 

‘gene expression’, ‘dna methylation’, ‘enrichment’, and ‘function’ all stick out. Note 

also the prevalence of words like ‘brain’, ‘brain development’, ‘blood’, and ‘cell’, sug-

gesting mechanistic inquiry as to how genetic processes shape larger biological sys-

tems—a concern for what autism ‘is’ and how it functions at the level of tissues. Finally, 

this half of the network includes a collection of words describing populations of interest 

in these studies, including ‘family’, ‘parent’, ‘offspring’, ‘unaffected sibling’, and 

‘proband’ (the first individual in a family to be diagnosed with a particular condition, 

sparking pedigree or other familial study). This suggests a concern for inheritance, for 

novel genetic differences that emerge between parents and children, and for a particular 

pedigree-centric approach to medical genetics.

Taken together, this set of keywords starts to frame a particular set of ideas about what 

autism is and how it should be studied. Categorical Alignment A can be summarized as 

follows:

Autism Spectrum Disorder is typically the result of CNVs and other rare, highly penetrant 

genetic differences. These mutations can be studied and understood through their etiologic 

changes in the brain and other tissues. ASD is usually identified in children.
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These terms are siloed together on one side of a relatively bifurcated network. This 

means, for example, that papers that are concerned with familial inheritance are much 

more likely to reference CNVs as a proximate cause to the general elision of causes 

described on the other side of the network—despite the fact that CNVs are not always 

novel mutations in a particular family, and a variety of other changes that aren’t CNVs 

have also been linked to autism. In other words, these data make it clear that certain 

epistemic approaches and topics of interest can travel together in this literature even 

when they aren’t conceptually reliant on one another. In the next section this will be seen 

to have critical implications.

Let’s look at Categorical Alignment B, the green cluster on the right side of the net-

work. Here, we can observe a starkly different approach to how autism should be stud-

ied—not through concern for its cellular mechanisms, but by the higher-order cognitive 

and social traits with which it is identified. Toward the bottom are a number of terms 

suggestive of ‘trait’ genetics projects, including ‘cognition’, ‘educational attainment’, 

‘intelligence’, and ‘neuroticism’, as well as descriptive language like ‘measure’ and 

‘range’. Interestingly, the only similar trait on the left side of the network is ‘intellectual 

disability’, suggesting a much more limited engagement with (or measurement of) cog-

nitive difference in those projects. A similar interest informs terms at the top of the clus-

ter, which appear to be concerned with the ‘genetic overlap’ or ‘genetic correlation’ 

between autism and a variety of other ‘psychiatric disorder[s]’ including ‘schizophrenia’ 

(commonly abbreviated ‘scz’ in academic genetics), ‘major depressive disorder’ (‘mdd’), 

‘bipolar disorder’ (‘bpd’), ‘obsessive compulsive disorder’ (‘ocd’) and ‘attention deficit 

hyperactiv[e disorder]’ (‘adhd’). While these conditions have well documented genetic 

similarities with each other and with autism (see Sullivan & Geschwind, 2019), they are 

diagnostically distinguished by differences in symptoms—or, as we might name here, 

differences between their associated behavioral and cognitive traits.

A concern with traits also necessitates a different mode of analysis. Rather than cel-

lular etiology, the right side of the network abounds with language describing data-inten-

sive statistical measures, including ‘genome wide association study’ (‘gwas’) and 

‘summary statistic’. This follows from an interest in trait genetics: The evidence that 

complex behavioral traits like educational attainment are meaningfully genetic tends to 

be quite thin, and these traits are unfailingly correlated with changes in dozens or hun-

dreds of genes. This complexity means that locating causally significant biological regu-

larities (if they even exist) is near-impossible, requiring alternative epistemic strategies 

that avoid the question of cell or tissue-level etiology. Researchers navigate and even 

operationalize the large numbers of correlated genes by producing ‘polygenic risk 

score[s]’ (‘polygenic score’, ‘prs’), which estimate the combined effect of many genes on 

a given phenotype. These effects are sometimes also described as the ‘genetic liability’ 

or ‘genetic risk’ of that phenotype, terms included nearby.

Here we see not only evidence of a shared epistemic style, but a theory of the autism 

genome. As we might summarize, in Categorical Alignment B,

Autism Spectrum Disorder is linked to various differences in cognition, behavior, and life 

course. It is the product of complex, multifactorial genetic contributions in which any individual 

gene is minimally penetrant, requiring statistically intensive methods of study. Both the 
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phenotypic traits and underlying genetics of ASD often overlap with those associated with 

other major psychiatric disorders.

As we can see, Categorical Alignments A and B contrast sharply, both in how they under-

stand the genetic architecture of autism as well as how they situate it in relation to other 

conceptual entities.

Citational clusters

So: Researchers are talking about different sorts of autistic traits, in relation to different 

groups, and they are using different analytic methods to do so. But there is one more 

bifurcation worth exploring in this corpus—a division in their reference materials. 

Again, using VOSViewer, Figure 2 maps bibliographic coupling patterns for all cited 

references used in five or more corpus publications.4

Labels refer to the first author, year and journal of each reference. Here, nearby nodes 

are those that are frequently cited by the same papers. We can observe again that there is 

a marked division in the network, suggesting that papers in this corpus are not citing the 

same body of foundational texts in autism genetics, but are instead drawing from two 

somewhat distinct sets of literature.

The bibliometric methods employed mean that it is not necessarily the case that this 

division maps neatly onto the last one—but there is good reason to believe so. Importantly, 

it is not just that these clusters represent different citations, but that they represent differ-

ent types of citations. Table 1 thematically groups the references in each cluster.

The teal cluster is primarily concerned with twin and family studies, and it includes a 

prominent reference to the Simons Simplex Collection—a biobank which indexes ‘sim-

plex’ (single autistic child) families. Conversely, the pink cluster is anchored by GWAS 

studies, and includes a number of technical papers which validate statistical methods for 

things like complex- and multi-trait analyses using GWAS data. It also figures references 

Figure 2. This network shows which references are cited by five or more corpus publications. 

References that appear close to each other tend to be cited by the same articles; references 

which are farther apart are rarely cited together.
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to the UK Biobank—perhaps the most notable multipurpose biobank in the world—as 

well as to iPSYCH, a large Danish case-control cohort which contains five psychiatric 

disorders (including autism). It is clear how the types of resources and statistical 

approaches indicated by the pink cluster would facilitate the kinds of cross-disorder trait 

analyses common to Categorical Alignment B.

Taken together, these networks are suggestive of a body of literature that is growing 

increasingly disjoint. While autism may have long been multiple, as the previous sec-

tion described, researchers have historically worked to produce a ‘coordinate unity’ 

(Potochnik, 2020) which could encompass multiple understandings of both the disor-

der and its causes. Indeed, most researchers would nominally agree that ASD includes 

cases that resemble both Categorical Alignments A and B as well as mixtures between 

them (e.g., Happé et al., 2006; Weiner et. al, 2017). This said, and as Mol (2003) has 

demonstrated, the coordination of such multiplicity is not trivial work: Autism cannot 

simply be ‘both’ of these things without the ongoing and effortful coordination of the 

research communities who produce them. If researchers are using ‘ASD’ to describe 

markedly different ontologies of autism, evinced through divergent methods, and in 

conversation with different literatures, the ties holding them together would appear 

increasingly threadbare.

To reiterate, this is not to suggest that these particular categorical instantiations of 

autism have become entirely irreconcilable, nor that they are wholly novel: They are 

neither. It is the assemblages and divisions of concepts that make these Categorical 

Alignments interesting, not the novelty of the concepts themselves. Nevertheless, it 

seems that this research community is moving away from—rather than toward—a con-

sensus framework that figures both within a shared discursive landscape. Moreover, it 

appears to be the case that data (and data-intensive methods) have something to do with 

it. What remains to be shown is how those differences link to particular datasets, and how 

these categorical gestalts are animated in specific research programs.

Database(d) differences: MSSNG and 23andMe

A brief review of the larger corpus, however, suggests how challenging this is to do. 

There are: hundreds of large datasets represented in these articles, including population 

registers like the Avon Longitudinal Study of Parents and Children; national biobanks 

Table 1. Thematic characterization of all references included in the network in Figure 2.

GWAS 

analyses

Twin or family 

analyses

Big data statistical 

methods

Other

Pink cluster  

(26 total citations)

14 0 9 3 (a reference panel and 

citable references for the 

UK Biobank and iPSYCH)

Teal cluster  

(19 total citations)

3 13 1 2 (DSM and a citable 

reference for the Simons 

Simplex Collection)
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such as Generation Scotland; autism-specific resources like the Autism Genome Project; 

biobanks specific to conditions other than autism, such as the Atherosclerosis Risk in 

Communities cohort; data-sharing consortia like the Psychiatric Genomics Consortium; 

and a variety of other personal and institutional collections described only by reference 

to their cities of origin (Adelaide, Brussels, San Diego). Complicating matters further, 

most studies combine data from multiple sources, often relying on between three and ten 

biobanks to assemble both autistic and control populations of sufficient size.

Rather than attempting to disentangle this larger set, I track the contributions of two 

organizations: the parent advocacy-linked biobank MSSNG, and the direct-to-consumer 

genetic testing company 23andMe. Each is a notable data resource in contemporary 

autism genetics, and—as I return to in the conclusion—both are partially representative 

of broader categories of similar actors. First, I describe these two biobanks in more 

detail, and highlight how historical dissimilarities in their scientific goals and recruiting 

strategies have led to fundamental differences in both the autistic populations they index 

and the types of information they collect. These differences model the above keyword 

analysis, demonstrating that the topical disjuncture evinced in the larger corpus falls 

along the lines of data origin and specifying some of its less-obvious properties. Then, in 

the final empirical section, I provide a close textual analysis of the subset of articles 

produced using 23andMe or MSSNG data. This illuminates how organic differences 

between groups of people are assembled into biobank data sets, ultimately resourcing a 

fundamental division of categorical definition.

MSSNG

Originally introduced in 2014 as the soon-to-be-renamed AUT10K project, MSSNG is a 

collaborative effort between the parental advocacy organization Autism Speaks, Verily 

(formerly Google Life Sciences), and the Toronto Hospital for Sick Children (SickKids). 

MSSNG’s data represent the whole genome sequences of over 11,000 research partici-

pants as of 2022 (MSSNG, n.d.), making it the largest resource of its kind for autism 

genomics. Of particular interest here, its self-stated aims strongly resemble Categorical 

Alignment A. As its research team described in a recent publication: ‘Our study provides 

a guidebook for exploring genotype-phenotype correlations in the 15-20% of ASD fami-

lies who carry ASD-associated rare variants, as well as an entry point to the larger and 

more diverse studies that will be required to dissect the etiology in the >80% of the ASD 

population that remains idiopathic’ (Trost et al., 2022, emphasis mine). I previously sug-

gested that this particular combination of interests doesn’t hang together because of sci-

entific necessity: An interest in families, in rare variants, or in etiology could be pursued 

in the absence of the others. MSSNG’s institutional history makes clear, however, there 

are other reasons for these concepts to travel together, and for the broader durability of 

this particular categorical alignment.

As an early press release touted, MSSNG was meant to become ‘the world’s largest 

collection of autism genomes’ in order to ‘transform the autism research landscape’ 

(Autism Speaks, 2014). However, MSSNG was not built as a novel resource from the 

ground up: Rather than recruiting thousands of participants, it instead reassembled data 

(and resequenced biomaterials) from a number of prior autism genomic databases. Those 
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collections often represented similar imbrications of philanthropic funding and academic 

coordination as does MSSNG, sometimes even through the same institutions. For exam-

ple, the largest contributing collection, the ASD: Genomes to Outcomes Study (repre-

senting 5,903 MSSNG participants as of 2022), shares MSSNG research director Stephen 

Scherer as its PI, and SickKids as a home institution (Prasad et al., 2012). Other notable 

contributing organizations include public-private partnerships like the Autism Simplex 

Collection (529 participants) as well as advocacy-funded projects at academic research 

centers like REACH (1,662 participants), iTARGET (463 participants), and the Autism 

Phenome Project (231 participants).

Perhaps most notable, however, is MSSNG’s inclusion of participants from the 

Autism Genetic Resource Exchange (AGRE, pronounced ‘agree’, 2,303 participants). 

AGRE was the first large-scale autism biobank in the US, founded in 1997 by the now-

defunct advocacy organization Cure Autism Now! (CAN!). Its debut represented a turn-

ing point within both the research and advocacy movements coalescing around ASD at 

the dawn of the postgenomic era: as Singh (2015a, pp. 56–77) accounts, AGRE solidified 

the role of parental advocates as organizers who could coordinate resources, researchers, 

and federal funding. In the process, they established autism genetics as a particularly 

attractive and well-resourced subfield for up-and-coming molecular biologists, creating 

the conditions for the explosion of big data autism genomics through the 2000s and into 

the present day. In this sense, AGRE is the project that made MSSNG possible—not only 

by recruiting a plurality of its participants, but by fertilizing the landscape of autism 

research such that both researchers and funding would be plentiful by the time it arrived. 

Put another way, MSSNG is the logical end result of decades of parent advocacy, and can 

be seen to stand in for (and, in the case of these particular institutions, literally continue) 

the work of a host of previous groups with partially overlapping interests.

All of MSSNG’s contributing organizations are focused on infants and young chil-

dren, and many tout affiliations ranging from pediatric hospitals to educational early 

intervention programs. The majority describe themselves as ‘family-centered’ in their 

public communications or on their websites. Unsurprisingly, then, MSSNG’s reassem-

bled data are also familial, primarily representing grouped DNA samples from parents 

and their autistic child (‘simplex’ families) or children (‘multiplex’ families). These chil-

dren often experience significant disability, as is typical of families that become involved 

in disease advocacy—more subtle phenotypic differences don’t necessarily create the 

same impetus for participation in time-intensive clinical research. Such families are 

often motivated by imaginations that research will result in meaningful differences in 

their children’s lives (Lappé, 2014; Silverman, 2011). For genomic research, then, that 

often means orienting toward the discovery of genetic markers which are likely to be 

linked to cellular or tissue-based differences that can become the basis of novel therapeu-

tics—again joining etiology to this conceptual cluster not scientifically, but socially.

This aim is shared and specified in MSSNG’s own mission, which describes its ulti-

mate goal as to contribute to ‘personalized and more accurate treatments’ via ‘the identi-

fication of many subtypes of autism’ (MSSNG, n.d.). ‘Subtyping’ is a commonly-used 

epistemic strategy toward the management and treatment of complex conditions, as with 

the identification of biomarkers to distinguish previously synonymous diseases (e.g. the 

recently mobilized distinction between HER2 ± breast cancers). In contradistinction to 
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approaches resembling Categorical Alignment B, which seeks to expand its frame of 

interest outward across multiple conditions with genetic or phenotypic overlap, MSSNG 

proposes to do the opposite—to disintegrate the category of autism from the inside out, 

amplifying elusive differences in order to identify potential avenues of therapeutic 

ingress. This is, in short, a ‘splitters’ and ‘lumpers’ distinction. While ‘subtype’ does not 

appear in the keyword network, then, we can understand this epistemic opposition as 

driving much of the distance between the two categorical alignments.

23andMe

In contrast to MSSNG’s clearly defined conceptual orientation, 23andMe seems some-

what unmoored from any particular stake in ASD communities or research—indeed, it 

seems barely invested in basic research at all. However, while the company is better 

known for its direct-to-consumer genetic testing service, it has courted a robust second-

ary market circulating its customers’ genetic data for biomedical research. Much of this 

effort derives from its economic model, in which the company is able to use its data 

toward preliminary analyses establishing potentially lucrative drug targets or pharma-

ceutical pathways. In recent years this approach has begun to pay out, as 23andMe has 

sold a significant stake in the company to pharmaceutical giant to GlaxoSmithKline 

(Molteni, 2018), and rights to its first drug candidate to the Spanish biotech company 

Almirall (Wetsman, 2020). Beyond the spectacle of these high-dollar exchanges, 

23andMe additionally provides data to academic and other nonprofit researchers. It also 

employs its own research team, which frequently collaborates and publishes with aca-

demic investigators on a diverse set of conditions, including autism and other neuropsy-

chiatric disorders.

Importantly, 23andMe’s genomic data are single nucleotide polymorphism (SNP) 

sequences—not, like MSSNG, whole genomes. While humans share the overwhelming 

majority of their DNA, SNPs are the roughly 1% of base pairs that represent common 

points of variance between individuals. While some SNPs are strongly associated with 

disease, they are definitionally common: They do not include the ‘rare variants’ that can 

be found in the remaining expanse of the genome and constitute the main interest of 

Categorical Alignment A. They also cannot be readily used to identify CNVs. To geno-

type an individual on a SNP chip costs hundreds of dollars less than whole genome 

sequencing, making it a generally more suitable tool for the cost constraints of a con-

sumer product like 23andMe. However, SNP genotyping does significantly limit the 

kinds of genomic inquiry that can be pursued with the resulting data, demanding differ-

ent epistemic strategies that orient toward other affordances.

Instead, 23andMe produces data with two other notable qualities: scale, and multidi-

mensionality. First, scale. Of its more than 12 million accounts, nearly 80% have open 

consent for their data to be used for research purposes (23andMe Research Team, n.d.), 

vastly outnumbering MSSNG’s 11,000 participants. Second, those users contribute a 

huge variety of data about their health and personal traits, far exceeding the sort of clini-

cal data collection common in autism biobank curation.5 This function allows the com-

pany to produce polygenic scores for their participants across a variety of both health and 

novelty traits, such as having a higher likelihood of developing glaucoma, or disliking 
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cilantro. More interestingly, however, the expansive collection of health and trait data 

provides more potential variables to researchers looking for genotype-phenotype corre-

lations, thus improving their likelihood of finding a statistically significant association. 

This flexibility is sometimes described as ‘researcher degrees of freedom’, and while it 

can be productive—particularly when dealing with extremely subtle statistical signals, as 

is often the case in psychiatric genetics—it is often linked to concerns about ‘data dredg-

ing’: exhaustively searching all variables including those likely to be in spurious correla-

tion. Nevertheless, the abundance of traits (and the absence of more comprehensive 

genomic data) represented in 23andMe datasets are what makes statistically intensive 

trait genetics approaches like those represented in Categorical Alignment B not only pos-

sible, but practical epistemic strategies tied to the particular affordances of this data.

Population differences

To this point I have argued that the research imaginations of the actors who shape 

MSSNG and 23andMe’s data diverge on a number of points, which systematically ori-

ent them toward different knowledge production practices broadly resembling 

Categorical Alignments A and B. However, there is one more critical difference 

between these data sets—or rather, between the populations that they index. As has 

been well documented, 23andMe users are not, on the whole, population-representa-

tive: they are significantly more educated and of a higher socioeconomic status than 

the average US citizen (Tung et al., 2011). Because research cohorts are selected from 

within 23andMe’s large user base, it is not always clear if and how they resemble its 

overall makeup. However, within the studies I analyze below, several describe their 

autistic cohorts as having higher-than-average IQ and educational attainment, and the 

majority rely on survey instruments like the Systematizing Quotient-Revised (SQ-R) 

that are indicated for people of average or higher intelligence (Wheelwright et al., 

2006). In MSSNG’s cohort, however, IQ ranges from well above to well below the 

population average, with roughly 20% exhibiting clinically defined intellectual disa-

bility (Yuen et al., 2015). Many of the studies produced using MSSNG data rely solely 

on participants drawn from that 20%, exploring genetic markers correlated with what 

they describe as ‘severe’ or ‘low-functioning’ autism.

In pointing out these differences, I do not mean to naturalize ‘high-functioning/low-

functioning’ distinctions, or to forward intelligence (particularly as proxied by instru-

ments as fundamentally flawed as IQ tests) as the most important marker of autistic 

diversity. As disability studies scholars and advocates have articulated, the rhetoric of 

functional severity relies on a deficit model, obscures how ‘functioning’ is itself a prod-

uct of social environments and redirects attention from widely heterogeneous individual 

needs toward binaristic understandings of ability (Anderson-Chavarria, 2022; Baker, 

2006). However, it is clear that these datasets index phenotypically—and, thus, almost 

certainly also genotypically—different populations. As Navon and Eyal (2016) have 

shown, expanding the population under analysis in autism genetics has already driven 

‘looping’ effects, fundamentally altering the contours of the category. What, then, might 

happen when that population is not simply expanded, but splintered?
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From data to disorder

A first glance at the published research produced using 23andMe (n = 22 articles) and 

MSSNG (n = 38 articles)6 data does not suggest this split—indeed, the two sets of articles 

appear rather similar on the surface. These papers were published across a similar range 

of journals, from high impact generalist venues like Science and Nature to specialist 

publications like Molecular Psychiatry and Molecular Autism, and both groups of arti-

cles have average citation counts north of 30. The set of author-elected keywords (the 

keywords requested by the publisher, not the keywords examined above) attached to the 

articles is also broadly shared. Taken together, these publication metrics are (albeit 

roughly) indicative of a group of generally well-regarded papers contributing to a rela-

tively well-defined research community.

However, as the rest of this section shows, these studies ultimately describe very dif-

ferent ideas about what autism is and rely on divergent approaches as to how it should be 

studied. Here, I attend to the disciplinary authorship, topics of concern, analytic 

approaches, and rhetorical strategies deployed in these articles to trace how differences 

in their data have echoed into much larger disjunctures in their accounts of autism. In 

doing so, I specify further differences between the categorical alignments embedded in 

their data and point to several resulting incompatibilities between these bodies of research 

literature.

First, though, it bears considering how these sets of articles square against the key-

word network presented in Figure 1, which mapped co-appearance between common 

topics across the entire body of big data autism genetics published during this period. 

Figure 3 shows the frequency with which a selection of the respectively most common 

keywords appeared in 23andMe (blue) and MSSNG (red) articles.

As the inversion of frequency suggests, these bodies of literature have some overlap 

but are largely concerned with different conceptual sets. Further, and as the recolored 

overlay of Figure 1 in the right corner of Figure 3 shows, those sets clearly map onto the 

two clusters representing Categorical Alignments A and B. This should come as no sur-

prise—as the previous section showed, 23andMe data are poorly suited for work inves-

tigating CNVs, rare variants, or cellular etiology, but have scalar affordances that enable 

cross-disorder investigation of various traits; it is the opposite for MSSNG. Datasets 

shape and constrain the kinds of topics that animate subsequent research.

There is one more notable difference between these sets of articles worth examining 

before digging into their contents—their authorship. Table 2 presents the disciplinary 

affiliations of the last author (conventionally the Principle Investigator [PI] of the pro-

ject) of each paper using publicly available biographical information.

It’s notable that a majority of the last authors using MSSNG data are molecular biolo-

gists—mostly appointed in genetics or genomics departments. 23andMe last authors, in 

contrast, tend to have joint appointments or to work solely in a psy-science. While this is 

a small sample of the larger group of PIs working in autism genetics during this period, 

it points to something interesting: there’s a relationship between home discipline and 

choice of dataset—and with it, its particular affordances and constraints.

The fragmentation of behavioral genetics is well-documented: as Panofsky (2014) 

describes, behavioral genetics is a disciplinarily antagonistic field in which mutually 
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distrusting groups of scientists compete for authority within controversial problem 

spaces. Along these lines it makes sense that geneticists would develop projects that seek 

to identify causal rare variants and trace occulted cellular pathways—the imagined use-

case for which MSSNG was designed. Similarly, a concern with symptomatology and 

the relationship between disorders aligns with the psy-science's longstanding authority 

over the evolution of ASD’s diagnostic categorization. Work in that tradition requires 

phenotypically detailed data such as 23andMe’s surveys. All of this is to say, another way 

of telling this story with different protagonists could follow preexisting disagreements 

between disciplinary researchers, who select the data that seem sufficient for their diverg-

ing interests and goals.

Figure 3. This figure reanalyzes the common terms indicated in Figure 1, showing comparative 

frequency of the top five terms from articles which use data from either MSSNG or 23andMe. 

An overlay of Figure 1 is shown in the corner, indicating where in the original network those 

terms can be found.

Table 2. Disciplinary affiliations of the last authors of papers in the 23andMe and MSSNG 

corpuses based on publicly available biographical data. 

Molecular 

biology

Brain and psy-

sciences

Both molecular biology 

and psy-science

Other

23andMe last 

authors (19 unique)

1 6 (5 psy-science, 1 

neuroscience)

10 2 (public health 

and radiology)

MSSNG last authors 

(31 unique)

17 9 (5 psy-science, 4 

neuroscience)

5 0
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But, and as I will argue in the remainder of this section, there is more to gain from 

focusing on the datasets. The disciplinary fragmentation at play certainly helps to explain 

some of the differences between these two sets of papers, as well as the citational split 

within the larger corpus. However, it is not simply that the papers authored by psy-scien-

tists tend to build on similar discourses, but that the papers using shared data do so even 

when authored across disciplines. Rhetorical, epistemic, and categorical patterns in these 

papers are distinctly shaped by the imaginations and affordances of their data.

Looking first at the MSSNG papers, a notable feature is in fact how little they discuss 

what they understand autism to be. Articles routinely start with a single sentence describ-

ing the core DSM diagnostic domains of ASD before immediately turning to genetic 

analysis. Consider the first lines of these papers:

Autism is a neurodevelopmental condition currently defined by atypical social communication 

and interaction, intense interests, and repetitive behaviour. (Douard et al., 2021)

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that often involves 

impaired cognition, communication difficulties and restrictive, repetitive behaviors. (Jangjoo 

et al., 2021)

Others elide diagnostic criteria entirely, skipping clinical definition and beginning 

directly with epidemiological or mechanistic descriptions of autism:

Autism spectrum disorder (ASD) is a phenotypically heterogeneous disorder affecting about 1 

in 59 children in the United States. (Wilfert et al., 2021)

The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from 

de novo mutations in variant-intolerant genes. (Brandler et al., 2018)

While behavioral genetics research does not tend to spill substantial ink on questions of 

symptomatology, it is typical to include at least some discussion of the behaviors under 

investigation. The descriptions of ASD in this corpus are strikingly brief, and are gener-

ally not elaborated further in the bodies of these articles. To these researchers, then, it 

seems that what autism is as a socio-behavioral category is entirely self-evident—so 

obvious, in some cases, as to not even merit a clinical description. Moreover, as the 

unchallenged repetition (or assumption) of a DSM-adjacent definition of ASD suggests, 

the expanse of the diagnostic category appears synonymous with the population under 

investigation in these studies. It is worth repeating here that MSSNG’s cohort is not nec-

essarily broadly representative of the total population diagnosable under DSM-5, as the 

previous section showed.

Despite these narrative beats, however, this body of literature is not entirely bought 

into the DSM’s conceptual schema. Several papers deal with disease ‘subtyping’ by 

name, and many more implicitly rely on subtyping as their primary epistemic approach. 

The DSM does not allow for conditions with the ‘same’ symptoms to be broken out sepa-

rately: Subtyping challenges the DSM’s categorical unity by identifying genotypes that 

can be linked to a clear, if subtle, pattern of phenotypic difference within the broader 
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diagnostic category. Importantly, however, the phenotypic ‘subtypes’ in these articles are 

near-totally limited to the autistic domains associated with DSM criteria: IQ, Language, 

Social Responsiveness, Social Communication, and Repetitive Behaviors. These traits 

are formalized and measured by the standardized diagnostic instruments with which 

MSSNG collects data. However, by assessing the comparative ‘severity’ of individual 

domains when associated with particular genetic variants, these articles attempt to make 

the case that genetically distinct subtypes exist. These subtypes are commonly linked to 

CNVs and other rare variants in these papers, as the frequency of ‘copy number’ and 

‘mutation’ in the corpus also indicates.

After making these genotype-phenotype links through statistical analysis, the major-

ity of the papers in this corpus then follow their gene(s) of interest into mechanistic 

investigation. These projects take a variety of forms, ranging from animal model experi-

mentation to in vitro cell culture studies to neural mapping and brain tissue analysis. In 

all cases the goal is to demonstrate that the gene(s) are not merely associated with the 

phenotype but are definitively causal—or at least, causal of an isolable biological change 

that can then be speculatively linked to autistic symptomatology. In doing so, these 

works serve to construct autism as an increasingly biologized disorder. This also serves 

to orient their larger contribution toward the development of future clinical interven-

tions: ‘therapeutics’ and ‘diagnostics’ are topics referenced in the majority of discussion 

sections in this corpus, but uncommonly in the 23andMe papers. However, and while the 

particular biological pathways examined here may one day be clinically actionable, it’s 

important to note that research in this corpus is extremely distant from drug development 

projects: the invocation of therapeutics is as much a rhetorical strategy as it is a plan for 

future research, discursively constructing an autism that can be genetically decomposed 

into readily interpretable and manipulable biological pathways.

The 23andMe corpus paints a starkly different picture of autism—or, rather, pictures. 

Consider these opening lines, representative of the how this literature tends to frame a 

variety of concerns far exceeding DSM diagnostic criteria:

People who experience childhood abuse are at increased risk of mental illness. Twin studies 

suggest that inherited genetic risk for mental illness may account for some of these associations. 

(Ratanatharathorn et al., 2021)

Use of tobacco is (still) prevalent in the Western world: about 20% of the population (15+ 

years) in Europe and the United States is a regular smoker. This percentage is remarkably 

higher in people with psychiatric disorders. (Vink et al., 2021)

Empathy is the ability to recognize and respond to the emotional states of other individuals. It 

is an important psychological process that facilitates navigating social interactions and 

maintaining relationships, which are important for well-being. (Warrier et al., 2018)

The word ‘autism’ doesn’t appear here, despite being a central topic in all three papers. 

Instead, unnamed ‘psychological process[es]’, ‘mental illness[es]’, and ‘psychiatric disor-

ders’ mediate traits of more immediate interest. In turn these accounts push back against the 

assumed boundaries of autism as a category: Beyond classic cardinal symptoms, readers 
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are invited to consider autistic populations who smoke, or have experienced childhood 

abuse. This narrative style and topical framing is common throughout the 23andMe arti-

cles, examining how autism is genetically associated with traits as diverse as the frequency 

of mouth ulcers, aneurysms, and left handedness.

Moreover, several of these articles attempt to render internal attitudes and emotions as 

measurable—and (at least partially) genetically-determined—autistic traits. While the 

DSM criteria are firmly rooted in psychiatric measures, those are strictly external (and 

generally interpersonal) displays common to clinical evaluation. For example, ‘repetitive 

behavior’ is easily quantified, and ‘social responsiveness’ is distilled within diagnostic 

interview guides as discrete actions like eye contact, facial expressions, or verbal reac-

tions. In contrast, something like ‘empathy’—or ‘neuroticism’, another common topic in 

these articles—is a much more abstract psychological (rather than clinically psychiatric) 

concept, and the survey-based measures deployed through 23andMe rely on self-reflec-

tive subjects capable of participating in extended documentation of their emotions and 

personal histories. Here, we can observe that these instruments don’t simply assess one 

phenotype, but necessitate others: it would be straightforwardly impossible for many of 

the children represented in the MSSNG data to complete such an exercise (nor are these 

instruments designed or validated for children younger than teenagers). Thus, while 

overtly expanding the sorts of traits that we might associate with autism, we can observe 

that these articles also implicitly foreclose a variety of others.

Due in part to the complexity of the behaviors under investigation, all but one of these 

studies evince dozens of correlated genes, and often describe their findings as indicative 

of ‘polygenic risk’. Given the sometimes tenuous relationship between autism and these 

traits, many papers also talk about ‘pleiotropy’, the idea that one gene can have multiple 

and apparently unrelated phenotypic effects. This means that—and unlike the MSSNG 

papers, which often include biological experimentation—projects in this corpus by and 

large cannot directly examine biological pathways. The tens of genes implicated in 

something like a polygenic risk score can be involved in many more cellular processes, 

with no clear indication which might play an important role. Instead, the majority of 

these studies have to rely solely on computational/statistical approaches to substantiate 

their findings, and turn to biological intermediaries between genes and behavior only 

through theoretical speculation.

In the absence of biologized ‘proof’, then, many of these authors turn to other 

approaches to underline the importance of their work. Because each gene in a polygenic 

score represents an extraordinarily subtle statistical signal, this type of research requires 

significantly larger research cohorts than does the identification of a highly-penetrant 

rare variant. Indeed, the 23andMe papers average a staggering 913,515 participants per 

study, while the MSSNG publications average only 10,611. This is an important point of 

contrast: While both 23andMe and MSSNG describe themselves using the language of 

‘big data’—and while both are big, compared to the autism data of a decade ago—this 

demonstrates that ‘bigness’ cannot be treated as an epistemic monolith. MSSNG’s data 

are ‘big’ in part because they are whole genomes, but include minimal phenotypic infor-

mation per participant. 23andMe have ‘small’ SNP data but huge numbers of participants 

and access to other types of data about them. These scalar differences are tied to different 

affordances and favor different meaning-making strategies. Indeed, as we see in the 
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23andMe papers, the repeated invocation of scale serves as much of a rhetorical purpose 

as it does a scientific one: Nearly all of these articles reference the size of their partici-

pant cohort in the abstract, and several underline its magnitude as an epistemic virtue 

setting their study apart from previous work within their methods sections. These fea-

tures are uncommon in MSSNG papers.

Further, the trait-first approach allowed many of the 23andMe projects other means 

by which to maximize their study size. Traditional genetic analyses of a diagnostic entity 

like ASD look for genetic patterns in research participants with that diagnosis. Here, 

however, several projects seek to determine the underlying genetics of ‘autistic traits’ in 

participants without a diagnosis of autism, including those with other psychiatric diagno-

ses representing partially overlapping symptoms, and those without psychiatric history 

who may yet identify with a certain trait (e.g., a high ‘neuroticism’ score on a personality 

survey). Genetic correlates in those groups then become candidate genes for ‘autism 

risk’, providing additional avenues for triangulating very weakly-penetrant genes. 

Through these strategies, autism itself begins to appear as an accumulation of dissociable 

traits, and correlation is justified as a meaningful epistemic approach to autism genetics 

even in the absence of testable biological mechanisms.

An implication of a trait-driven epistemology is that the majority of these articles 

aren’t singularly ‘about’ autism—as nearly all of the MSSNG papers are—but are instead 

about clusters of neurodevelopmental and psychiatric disorders that include autism along 

with a number of other conditions (as also indicated by the high keyword frequency of 

‘schizophrenia’ and ‘bipolar disorder’ in Figure 3). Because these diagnostic entities 

include some symptomatic overlap, regarding those symptoms as genetically dissociable 

explains the additional (and well-documented) genetic overlap between these conditions. 

This is to say, if individual psychiatric traits are genetically determined, two diagnostic 

entities that share a trait must also share those genes. Some articles go a step further and 

refer to diagnostic categories themselves as ‘psychiatric traits’, invoking a flat ontology 

in which diagnostic categorization has no more authority than any other approach to the 

categorization of human behavioral difference. This is in stark contrast to the MSSNG 

papers, which analyze cross-disorder symptomatology only when specific genetic vari-

ants are linked to multiple diagnoses—a gene-first, rather than trait-first, approach.

As this section has shown, both bodies of literature challenge ideas of ASD as a unifi-

able category, but they do so from opposite directions. Articles using MSSNG data 

attempt to decompose autism from the inside out, identifying genetic subtypes that can 

be biologically analyzed toward the development of eventual clinical interventions. In 

contrast, 23andMe papers leverage ‘traits’ to disintegrate the category from the outside 

in, using autism’s phenotypic similarity with other diagnostic entities and populations to 

make sense of its polygenic complexity. In both cases researchers draw on the strengths 

of their respective datasets, deploying methodological strategies that would not be prac-

tical (or even possible) with the other data. This demonstrates that datasets do not shape 

subsequent research simply by constraining the available variables: rather, their inbuilt 

affordances echo the epistemic values of their creators and users in a variety of subtle but 

impactful ways.

Critically, and as the previous section also argued, these datasets additionally repre-

sent groups of research participants with markedly different phenotypes—almost 
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certainly indicating underlying genetic differences between them as well. As a result, 

even if direct replications of these studies using the other dataset were possible (which 

they are typically not), it is unclear if results produced using MSSNG data would hold in 

the 23andMe population or vice versa. Indeed, underlying population differences are 

likely to be a significant factor in repeated failures to reproduce candidate gene findings 

across different cohorts—and while accounts of failed replication attempts often argue 

that even larger populations will resolve this issue (e.g., Torrico et al., 2017), what this 

study suggests is that scale alone has not and likely cannot solve that problem. Moreover, 

that these data resource incomparable levels of explanation and epistemic approaches 

serves to further obscure this fact.

Conclusion

The differences we see in the above analysis also appear to characterize the larger 

body of research literature on autism genomics, mapped in the earlier keyword anal-

ysis (see Figure 1). Despite the fact that those publications draw from dozens of 

other datasets, this is not necessarily surprising: In many ways MSSNG is a paradig-

matic example of autism advocacy biobanks, which have played a major role in the 

field since the 1990s (Navon & Eyal, 2014; Singh, 2015a). Resources like the Simons 

Simplex Collection share research imaginations, recruiting strategies, and data col-

lection practices with MSSNG, and it stands to reason that those data would produce 

discursively similar accounts of ASD. Indeed, in publications using multiple data-

sets, MSSNG’s data were combined with those from Simons and/or the Autism 

Genome Project (another family biobank) to the near exclusion of all other organiza-

tions. In contrast, 23andMe better resembles a more recent wave of databasing pro-

jects like the UK Biobank or the Psychiatric Genomics Consortium (PGC). These 

organizations work to collect massive amounts of highly dimensional data in order 

to facilitate data reuse across diagnostic conditions and topical concerns. 

Unsurprisingly, then, the biobanks whose data were most commonly combined with 

23andMe were PGC and iPSYCH.

Although there are certainly important differences between individual datasets in both 

groups, this broad dichotomy appears to be a proximate cause for the disjuncture across 

the field. Datasets must have common instruments or commensurable variables in order 

to be combined or compared. It is not just that the categorical imaginations of autism in 

these datasets differ, but that their pragmatic approaches to producing inscriptions are 

not, on the whole, compatible: they measure largely non-overlapping sets of traits. These 

sets of traits, in turn, shape what can be said about autism, and the methods with which 

it can be evinced. When these organizations additionally index different populations, it 

becomes impossible to make claims using one set of categorical concepts regarding the 

other group. For example, there are no publications about the genetics of neuroticism or 

empathy in autistic children with significant disability because large scale data about 

those traits in that group do not exist. There are few publications about autism cases 

linked to CNVs or rare variants in independent adults for the same reason. It is not sim-

ply that research accounts of autism produced using divergent data don’t overlap, it’s that 

they largely can’t.
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I suggested above that research produced using these data might be productively 

described with the metaphor of sedimentation: While elements of these different imagi-

nations have long coexisted within the landscape of autism research, dataset disjunctures 

have precipitated them into distinct and increasingly immiscible layers. But these layers 

do not exhaust all the possible categorical configurations of autism—far from it. Here, it 

is interesting to note that recent years have seen a spate of new autism biobanking pro-

jects that are oriented toward different uses and situated within different national con-

texts. Both MSSNG and 23andMe are North American institutions: While their data may 

be used globally, their epistemic genealogies can be firmly situated within US histories 

of genetics and autism research. As Evans (2013, 2017) has explored, however, ideas 

about autism in the UK have evolved along different cultural lines and in response to 

different political pressures. Take, for example, British psychologist Simon Baron-

Cohen’s controversial proposal7 for Spectrum 10K—a UK-based autism biobank which 

includes MSSNG and its scientific director Daniel Geschwind as ‘partners’. It is interest-

ing to note that the project includes a wide, 23andMe-like array of trait questionnaires 

and is designed for research into ‘co-occurring disorders’, apparently responsive to a 

very different set of research trajectories and institutional actors than MSSNG. If the 

project comes to fruition, it will be interesting to observe how these data circulate. It is 

easy to imagine a future in which they bolster 23andMe-adjacent research literature 

while resituating traits of particular interest in the UK.

Moreover, differences between autism science in the US and UK narrow when com-

pared with the broader global landscape: The huge number of culturally-sensitive con-

cepts involved in autism research makes it quite difficult to even begin to work across 

contexts, much less collect large-scale data for comparative analysis (de Leeuw et al., 

2020). Currently, projects like the NeuroDev Study—an autism and ADHD biobank 

recruiting in South Africa and Kenya, affiliated with the Broad Institute in the US—use 

instruments standardized in Global North research in order to produce commensurable 

data (de Menil et al., 2019). Nevertheless, it’s unclear how the sorts of contextual specifi-

cities, population differences, and local knowledges that de Leeuw et al. (2020) identify 

will shape the production and interpretation of these and similar data. It is certainly pos-

sible that datasets like this could precipitate very different categorical configurations 

than the ones I’ve described here.

This is not to give datasets the final word on which research trends take hold or which 

categorical alignments become definitive. Instead, this case study shows the messy 

coproduction of data, field, and object over time. In the institutional histories of MSSNG 

and 23andMe we can observe formative encounters with a variety of other actors: parents 

and their children, lay genetics enthusiasts and pharmaceutical investors, and the net-

works of researchers that form with and around them. Here, decisions about desirable 

research futures and the data they require far exceed the laboratory and the clinic, and the 

datasets they produce shape the kinds of big data inquiry that become possible in their 

wake. These datasets then enter a research ecology already rich with available concepts, 

epistemic approaches, and disciplinary intuitions. The affordances of particular data 

encourage, but don’t determine, what assemblages can form out of this mass.

In focusing on databases, I have pointed to a set of critical but often neglected actors 

in psychiatric genomic research. An attention to the origins of data reveals dynamics that 



24 Social Studies of Science 00(0)

are often obscured in research reporting, particularly regarding how choices about par-

ticipant recruitment and data collection are managed. When multiple databases enact 

conflicting practices, then, the larger research ecologies that rely on them can echo and 

elaborate these points of divergence—even while appearing to represent ‘the same’ pop-

ulations or phenomena. For autism genomics, this has led to a marked split not only in 

the conceptual category of ASD, but in the epistemology by which it is known. Given the 

rapid rise of large open access databases and other forms of dataset reuse across the sci-

ences, then, similar forms of categorical misalignment are likely to represent important 

sources of controversy and reproducibility problems in the years to come.
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Notes

1. I sometimes refer to autism as a ‘disorder’ insofar as I examine ‘ASD’ as an actor’s category 

established through clinical and institutionally-prescribed domains of biomedical research. 

Otherwise, I use language of disability, identity, and difference rather than biomedical disor-

der following language guidelines set forth by autism self-advocates (Autistic Self Advocacy 

Network, 2012). 

2. For instance, research into the genetic bases of pseudoxanthoma elasticum (Terry et al., 2007) 

and muscular dystrophy (Rabinow, 2002) were significantly accelerated by the availability of 

biobank materials coordinated by parents and patient advocates.

3. To generate Figure 1, clustering resolution was slightly reduced from 1.0 to 0.9 to slightly 

simplify the network. All other settings, including spring weights, were left at default values. 

No nodes have been removed or repositioned from the network as generated by VOSViewer. 

Some labels that were obscured or too small to view with VOSViewer’s label overlays were 

subsequently readded in an image editing program.

4. Like Figure 1, clustering resolution for Figure 2 was slightly reduced from 1.0 to 0.9 to 

slightly simplify the network. All other settings, including spring weights, were left at default 



Metcalf 25

values. No nodes have been removed or repositioned from the network as generated by 

VOSViewer.

5. MSSNG records limited phenotypic data strictly in relation to autism as a clinical category. 

Per Yuen et al. (2015), its data rely on standardized instruments including the ADI (Autism 

Diagnostic Interview), ADOS (Autism Diagnostic Observation Schedule), Vineland (diag-

nostic interview), and the Child Behavior Checklist, and provide information on domains 

including IQ, Language, Social Responsiveness, Social Communication, and Repetitive 

Behaviors (Trost et al., 2022).

6. In sampling MSSNG papers, I have also chosen to include papers that cite their data as 

‘AGRE’. Because the bulk of AGRE data has been repurposed within MSSNG, AGRE itself 

was not organizationally active during the sampled time period, and because the MSSNG 

website lists several of these papers as using its own data, I regard this as a citational abnor-

mality rather than an institutional difference.

7. Following backlash from autistic self-advocacy groups over Baron-Cohen’s involvement 

and concerns about the project’s eugenic potential, development of Spectrum 10K has been 

paused since 2021 for further ethics review.
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