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Abstract

The opaque relationship between biology and behavior is an intractable problem for psychiatry,
and it increasingly challenges longstanding diagnostic categorizations. While various big data
sciences have been repeatedly deployed as potential solutions, they have so far complicated more
than they have managed to disentangle. Attending to categorical misalignment, this article proposes
one reason why this is the case: Datasets have to instantiate clinical categories in order to make
biological sense of them, and they do so in different ways. Here, | use mixed methods to examine
the role of the reuse of big data in recent genomic research on autism spectrum disorder (ASD). |
show how divergent regimes of psychiatric categorization are innately encoded within commonly
used datasets from MSSNG and 23andMe, contributing to a rippling disjuncture in the accounts
of autism that this body of research has produced. Beyond the specific complications this dynamic
introduces for the category of autism, this paper argues for the necessity of critical attention to
the role of dataset reuse and recombination across human genomics and beyond.
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Big data has often been presented as the final answer to problems in categorization.
Rather than attempting to carve nature at its joints via idealized examples, big data pro-
jects purport to represent natural diversity in its totality—to simply show things ‘as they
are’. In the life sciences, such imaginations have found fertile ground: Fantasies of ‘the
total archive’ have long animated ideas about objectivity and universality (Jardine &
Drage, 2018; see also Strasser, 2019), and increasing computational capacities have led
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to widespread reorganizations in the professional ecology of the contemporary bio-
sciences (Leonelli, 2016; Stevens, 2013). While big data biology projects are varied in
their specifics, they share a conviction that the messiness of categorization can be made
to disappear under the magnitude of sheer, seemingly uncomplicated scale.

Perhaps nowhere has this logic appeared more seductive than in psychiatry—not inci-
dentally a field dogged by its own thorny classification politics in the demarcation and
discipline of human difference (Foucault, 1965; Rose, 1998, 2009). In a review in JAMA
Psychiatry, Weissman (2020) suggests that big data solutionism has repeatedly appeared
in response to recent field-level crises in psychiatry: in psychiatric epidemiology, large
cohort studies, and the mass-scale repurposing of Electronic Health Records (EHRs) for
research (see also Arribas-Ayllon et al., 2019; Panofsky, 2014). This drive for ever-larger
data is now also enshrined within the US National Institute of Mental Health’s (NIMH)
Research Domain Criteria (RDoC) program, which proposes to adjudicate the likely
intractable classificatory conflicts between symptomatology and neurobiology (Insel
et al., 2010; Pickersgill, 2019). Central to NIMH’s efforts is the accumulation of big
genomic data, as indicated by the significant outpouring of federal funding into sequenc-
ing and data sharing consortia (Senthil et al., 2017).

Submerged within this ethos, however, is something of a chicken and egg problem: If
you need (big) data ‘about’ a psychiatric condition to understand it, you need to already
have decided what that condition is, or at the very least a firm definition of whom that
category includes and an idea about which of their characteristics might be of interest for
clinical research. This is not a trivial task: As Nelson (2019) has shown, the relationships
between behaviors and categories in psychiatric genetics are hard-won achievements,
and are maintained only through significant and ongoing effort. Here, examining the
case of autism spectrum disorder (ASD),! I show how this effort necessarily extends into
the data infrastructures that support genomic research. As I argue, data ecologies with
dissensus on categorical boundaries can complicate or obscure just as much as their scale
promises to illuminate.

This article excavates how the circulation of datasets in categorical misalignment has
contributed to a growing fracture in big data autism genomics, resourcing two distinct
accounts of ASD and how it should be studied. By categorical misalignment, I mean that
how these datasets demarcate autism—its salient features and the populations that it can
be said to describe—are partially disjunct, even though each dataset is assumed to be
representative of a unified category. These differences are discursively vivified in the
scientific literature each dataset is used to produce; research projects solidify data-based
categories by linking them backward to genotype as well as forward to etiologic, diag-
nostic, or therapeutic implications. In doing so, researchers both biologize and medical-
ize the innate categorical differences of their data, meaning that what appear to be minor
technical differences between datasets can echo into significant redefinitions—or, here,
diverging definitions—of what appears to be an otherwise stable diagnostic entity.

I argue that biobanks and other big data repositories are critical intermediaries in the
research process, shaping and constraining the kinds of variables that can be analyzed
and the populations under study. In the process, these organizations have had surprising
influence over the disease entities that biomedical research reproduces, shifting



Metcalf 3

categorical boundaries and realigning the grammar of inquiry with the inbuilt assump-
tions of their datasets.

To make this claim, I employ mixed methods to analyze a corpus of published big
data research on autism genetics, limited to the five-year period between 2017 and 2021
(n=303 articles). First, I use network mapping to demonstrate a clear bifurcation in the
topics and citational literatures that anchor this research. This bifurcation suggests two
distinct and increasingly non-overlapping ideas of what autism is and important meth-
odological differences in how it should be studied. Then I turn to a close textual analysis
of a smaller set of articles, comparing research produced using two notable datasets:
MSSNG (pronounced ‘missing’; n=38), a biobank linked to parental advocacy organi-
zation Autism Speaks, and the direct-to-consumer genetic testing company 23andMe
(n=22). These organizations have significant (and well-historied) differences in their
orientations toward autism science, underwriting differences in their data collection
strategies and categorical implementations. I link these differences to the conceptual
clusters indicated by the network mapping and draw out a finer-grained analysis of their
implications for the discursive reproduction of autism(s) through big data genomics.

This project draws from critical data studies (CDS) in its attention to how data shape
conceptual categories in biomedical research. CDS scholarship understands data not as a
‘raw’ element of subsequent inquiry, but rather a richly social set of inscriptions that
arrive always already ‘cooked’, theory-laden, and replete with meaning (e.g. Bowker,
2008; Gitelman, 2013; Kitchin & Lauriault, 2014). Following broader concern for how
research infrastructure (and particularly data infrastructure) shape scientific practice
(Borgman, 2016; Bowker & Star, 2000; Edwards, 2010; Edwards et al., 2013; Star &
Ruhleder, 1996), CDS research foregrounds questions about how data are produced, how
they are maintained and mobilized over time, and in what ways they are interpreted. In
doing so, it illuminates how data themselves—rather than just the actors who rely on
them—can drive shifts in larger social formations. In particular I take inspiration from
Denton et al.’s (2021) genealogy of the ImageNET machine learning dataset, which was
similarly positioned as a big data solution to categorization problems. Rather than ‘solv-
ing’ these problems, ImageNET reinscribes and naturalizes particular sets of social val-
ues while simultaneously invisibilizing the actors who hold them.

CDS accounts (including Denton et al.’s) typically examine the development and
deployment of a single, widely used dataset. In most big data sciences, however, notable
datasets proliferate, and a research community might rely on a number of common
resources. Consider, for example, the datastreams associated with large telescopes or
satellite arrays in astronomy, physicists who rely on data from neutrino observatories or
particle accelerators, or the small number of influential climate models whose outputs
feed into a diverse set of research communities. (It is not incidental that these examples
all rely on expensive and/or site-dependent research infrastructures—the more difficult
data are to produce, the more researchers are incentivized to rely on shared data. Biobanks
are similarly resource-intensive.) If we are to take the supposition that all data are theory-
laden seriously, then, it stands to reason that different datasets might bear with them
different sorts of theories, values, and categorical imaginations. Comparative studies,
like the present case, offer to draw out how the circulation of multiple datasets in a
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research ecology can smuggle in dissimilar and potentially incompatible representations
of their shared object.

While this case study examines the use of biobank data to make claims about a single
diagnostic category, similar processes are well underway across the life sciences and big
data-driven research broadly. An attention to the histories and applications of large
reused datasets, as | argue, offers to reveal occulted processes in the construction of the
categories they appear to simply represent.

Multiplying autisms: History of a contested diagnosis

Even among other contested psychiatric diagnoses, it’s worth underlining that autism
swims in uniquely muddy waters, and has since long before big data arrived on the scene.
ASD’s conceptual evolution and rapidly expanding patient population have sparked sig-
nificant debate in both the biomedical and social sciences for decades, and its defini-
tional contours have consistently defied stabilization. As Verhoeff (2013, p. 446) has
commented: ‘Ideas about autism are not fixed but continually in flux. There is not a
single test, definition, article or researcher that marks a definite idea of autism in a spe-
cific period.” Elsewhere, others have identified the autism concept as ontologically ‘het-
erogeneous’ and ‘indeterminate’ (Hollin, 2017); as Singh (2015a) says, there are ‘multiple
autisms’. Indeed, this understanding is broadly uncontroversial even in the autism
research community: In one of the most-cited articles of the last 20 years, noted psychi-
atric geneticists Happé et al. (2006) argue that it is ‘time to give up on a single explana-
tion for autism’. That it is time to give up on a single definition for autism is implicit.

While autism may already have been multiple, particular biobanks have organized two
distinct and relatively clear-cut autisms from within. We might even think of this as a sedi-
mentation of autisms that were previously in solution, now precipitated into identifiable—
and increasingly immiscible—layers. This argument is elaborated below. First, however, it
is worth spending a moment on how this curious state of affairs has come to be.

The history of autism and autism research has been extensively documented by others
at a finer degree of detail than I am able to offer here. Much of this work has focused on
the structure of its diagnostic change, tracking how expansions of ASD—through dein-
stitutionalization, ongoing population shifts, formal revisions to the DSM, and informal
changes in diagnostic practices—have repeatedly reconfigured the autism concept (Eyal,
2013; King & Bearman, 2011; Maynard & Turowetz, 2019; Navon & Eyal, 2016).

Importantly, these processes have drawn in a variety of actors with competing modes
of expertise, as well as differing claims to knowledge of and experience with autism as a
lived condition (Barker & Galardi, 2015; Eyal, 2013). Among the most influential groups
both historically and today have been the parents of autistic children, who have driven
categorical redefinitions of autism through their contributions to the development of
therapeutic strategies (Eyal, 2013; Hart, 2014) and brain science approaches (Fitzgerald,
2014; Rapp, 2016), as well as their own participation as research subjects (Lappé, 2016).
Parents have also played a significant role in lobbying for federal support, securing sub-
stantial funding for educational, clinical, and research programs through legislation like
the US Autism CARES Act (Autism Collaboration, Accountability, Research, Education,
and Support Act, passed in 2014 and renewed in 2019; Singh 2015a). While the role of
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parents in defining the autism concept (rather than autistic people themselves) remains a
point of controversy (Rosenblatt, 2018; Stevenson et al., 2011), it is clear that parents
have had an outsized effect: Their efforts have not only reshaped ASD in the laboratory
and the clinic, but intervened in broader cultural imaginations of autism.

Most importantly to the story I tell here, however, is parents’ work in coordinating
large scale genetic resources for autism research—particularly in the US and Canada. As
with a number of genetic conditions,” parent advocates have routinely sought to acceler-
ate autism genetics by contributing to the development of autism biobanks. Different
accounts have highlighted different facets of these efforts. For example, Singh (2018)
has explored how contributing biomaterials allows families to access care and support,
while Tabor and Lappé (2011) identify how the scale of biomaterials required for this
work has driven changes in the institutional and interpersonal relationships between
autism families and coordinating clinics. Through these processes, parent advocates have
since the early 2000s made autism genetics a particularly well-resourced and attractive
site for researchers from a variety of disciplines (Singh 2015a). These affordances helped
to solidify the burgeoning field as a ‘trading zone’, bridging numerous guiding interests
and imaginations of the autism concept (Navon & Eyal, 2014).

Critically, it is not just that autism has been broadly geneticized through these projects
(though this is certainly the case), but that geneticization has in turn driven significant
changes to autism as a category. Drawing on Hacking’s (2006) work on ‘looping effects’,
Navon and Eyal (2016) have painstakingly documented how notions of autism as a
genetic condition shifted how autistic groups are understood and described, leading to
cyclical changes in both the boundaries of the category and the underlying genotypes it
can be said to include. As they argue,

Every time diagnostic criteria are changed—whether to better capture phenotypic variability, to
better reflect/validate genetic evidence, or for any other reason—the genetic makeup of the
population picked out by the now-changed classification may also be modified. This new
population changes the material conditions for examining the genetic etiology of the
classification, which in turn can modify expert understandings of the condition and thereby the
self-understandings of the people picked out by the classification. When human kinds loop, their
genetic makeup can also therefore be rendered a moving target (Navon & Eyal, 2016, p. 1421).

While Navon and Eyal focus on diagnostic change as a core mechanism, we can under-
stand biobank recruiting and phenotyping as tacitly similar practices insofar as they also
serve to identify—at least for the purposes of genetic research—who constitutes the
autistic population. I specify some implications of this in connection with individual
biobanks in a later section. For now, though, it is enough to observe that genetic research
can and has had significant impacts on the autism concept, and ones that are surely con-
tinuing to unfold.

Conceptual clustering in contemporary autism research

Even in the face of continued disputes over autism’s categorical boundaries, it remains
uncontroversial to claim that autism is largely genetic. The DSM-5 is in agreement with
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mainstream autism research when it suggests that 60-90% of ASD cases are likely to
have a genetic component, and roughly 15% are clearly linked to already-known causal
genetic variance (American Psychiatric Association [APA], 2013, p. 57; see Rylaarsdam
& Guemez-Gamboa, 2019). However, this is where broad consensus ends: How research-
ers make sense of the genetic architecture of the yet-unexplained 45-75% of cases with
likely genetic contributions varies widely in methodology, topical focus, and in their
very conceptualization of autism itself.

Beyond changes to the clinical population, new language in the DSM has also
driven unanticipated epistemic shifts in academic autism research, and subsequent
knowledge claims. The DSM-5 diverges from previous editions in describing autism
as a collection of spectra: diagnostic criteria identify several domains across which a
patient can experience differently scaled levels of disability, leading to highly indi-
vidualized diagnoses that can acknowledge areas of strength as well as specific sup-
port needs. Although this conceptualization of a multidimensional ASD was intended
to lend diagnostic flexibility and specificity, the language of a ‘spectrum’ has been
adopted and extended by researchers in ways far exceeding those imagined by the
DSM committee. For example, hearkening back to DSM-IV’s multiple diagnostic
categories, which identified distinct typologies of autistic difference, many research-
ers regard the autism spectrum not as smooth continuums across symptomatic
domains, but as a fragmented collection of ‘subgroups’ bound together under an
umbrella diagnosis. Others treat the spectrum as a continuum from normal to patho-
logical, in which subclinical difference in autistic domains is a common trait, and
diagnostic thresholds are somewhat arbitrary impositions. While these orientations
lead to significant differences in research practice, they are not always clearly
explained by researchers using the same language in manifestly different ways.

Given the scale of the research literature now produced annually, however, it’s diffi-
cult to identify clear patterns in this widely heterogeneous body of work. In order to
begin to sketch its contours, then, this section employs computational bibliometrics to
identify patterns in the topics discussed and the literature cited. First, [ examine a key-
word co-appearance network: Such networks exceed traditional keyword analysis, sug-
gesting not only what sorts of topics are discussed, but which concerns tend to circulate
together—and which are rarely voiced in tandem. Here, I thematize trends in this net-
work to introduce two distinct categorical implementations of ‘autism’, demonstrating a
marked disjuncture in how ASD is described and studied in contemporary big data
genomics. Then, I turn to a bibliographic coupling analysis, a similarity measure that
maps when two studies both cite a common third reference. This allows me to make the
case that there are also two increasingly distinct bodies of scholarship cited by autism
researchers, with further implications for the conceptual unity of the field.

I deploy these tools in a corpus representing five years of research publications on
autism genomics (with mention of both ‘autis*’ and ‘gene*’ and/or ‘genom*’ in the
keywords, title, and/or abstract), compiled through Web of Science. Filtering for
original research articles published between 2017-2021, this resulted in a collection
of 1,472 papers. I screened these papers manually, documenting data provenance for
any paper relying on a biobank, data-sharing consortium, or other big data resource.
All other papers using other data types were excluded, including cell and animal
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Figure 1. This network shows common terms which appear in the titles and abstracts of
corpus publications. Terms that are close to each other frequently appear together in the same
publications; distance indicates words which rarely appear in the same publications.

model studies, small case series, systematic reviews, and duplicate records. This left
a final corpus of 303 articles. Comparing the cleaned corpus with the original set of
publications, it is clear that large dataset reuse is increasing over time: Only 14.3%
of papers published in 2017 used this type of data, but that number nearly doubled to
28.5% in 2021. It seems likely that reuse will continue to increase as sequencing
costs continue to decline and large whole genome resources become more available,
solidifying the role of biobanks and similar institutions in autism research and human
genetics broadly.

Keyword clusters

To get a sense of the discursive landscape figured by these articles, I used the open-
access bibliometrics tool VOSViewer (van Eck & Waltman, 2010) to map the co-occur-
rence of words and phrases which commonly appear in the titles and abstracts of articles
in this corpus. The resulting network is pictured in Figure 1.3

After excluding common words, VOSViewer maps the frequency with which any two
terms appear together (positive spring weight) versus independently (negative spring
weight) in the titles and abstracts of all papers in the corpus. Those weights are used to
construct clusters of commonly co-appearing terms, mapping relationships within and
between them. Increased distance between two nodes indicates that those terms typically
appear in the absence of one another; nearby nodes are terms which frequently appear
together in the same papers.
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As the clear bifurcation of this network indicates, two relatively distinct discur-
sive assemblages appear to be at odds in this corpus, reflecting what I will term
Categorical Alignments A and B. In this subsection, I explore patterns in this net-
work by linking particular sets of terms to the larger concepts they indicate. What
emerge are clear connections between a variety of objects of interest, theories about
genetic causation, and problematizations of the autism category that are not neces-
sarily obvious in any individual paper, but yet cohere clearly within the discursive
production of the larger field.

Some of the notable features of each categorical alignment will likely not come as a
surprise to those interested in the history or sociology of autism—they resemble particu-
lar and historied configurations of the autism concept. Nevertheless, I think it is useful to
hold these resemblances in abeyance in order to avoid assuming or misreading the actual
contents of these categories as they are instantiated within this particular body of
research—these will be explored in the final empirical section.

Now let’s consider the keyword network—beginning with Categorical Alignment A,
the orange cluster at left. An initially striking feature is a cluster of synonyms in the
lower left: ‘copy number’, ‘copy number variant’, ‘copy number variation’, ‘cnv’, and
‘cnvs’. Copy number variants (CNVs) are a form of structural genetic variation in which
certain chromosomal regions are duplicated or deleted (‘duplication’ and ‘deletion’ are
also tightly coupled here, and ‘region’ is in the center of this cluster). While everyone has
CNVs, particular variations in some regions are widely considered causative of or
strongly linked to autism (see Vicari et al., 2019). However, given that CNVs and single-
nucleotide rare variants (‘rare variants’) are together estimated to account for less than
20% of autism’s total incidence, it’s notable that interest in CNVs specifically seems to
characterize such a disproportionately large swath of the network.

We can also identify etiologic concern as primarily situated within Categorical
Alignment A. ‘Etiology’ and ‘pathogenesis’ are visible toward the top, and a variety of
keywords describing how genes are (or aren’t) expressed are clustered around them:
‘gene expression’, ‘dna methylation’, ‘enrichment’, and ‘function’ all stick out. Note
also the prevalence of words like ‘brain’, ‘brain development’, ‘blood’, and ‘cell’, sug-
gesting mechanistic inquiry as to how genetic processes shape larger biological sys-
tems—a concern for what autism ‘is’ and how it functions at the level of tissues. Finally,
this half of the network includes a collection of words describing populations of interest
in these studies, including ‘family’, ‘parent’, ‘offspring’, ‘unaffected sibling’, and
‘proband’ (the first individual in a family to be diagnosed with a particular condition,
sparking pedigree or other familial study). This suggests a concern for inheritance, for
novel genetic differences that emerge between parents and children, and for a particular
pedigree-centric approach to medical genetics.

Taken together, this set of keywords starts to frame a particular set of ideas about what
autism is and how it should be studied. Categorical Alignment A can be summarized as
follows:

Autism Spectrum Disorder is typically the result of CNVs and other rare, highly penetrant
genetic differences. These mutations can be studied and understood through their etiologic
changes in the brain and other tissues. ASD is usually identified in children.
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These terms are siloed together on one side of a relatively bifurcated network. This
means, for example, that papers that are concerned with familial inheritance are much
more likely to reference CNVs as a proximate cause to the general elision of causes
described on the other side of the network—despite the fact that CNVs are not always
novel mutations in a particular family, and a variety of other changes that aren’t CNVs
have also been linked to autism. In other words, these data make it clear that certain
epistemic approaches and topics of interest can travel together in this literature even
when they aren’t conceptually reliant on one another. In the next section this will be seen
to have critical implications.

Let’s look at Categorical Alignment B, the green cluster on the right side of the net-
work. Here, we can observe a starkly different approach to how autism should be stud-
ied—not through concern for its cellular mechanisms, but by the higher-order cognitive
and social traits with which it is identified. Toward the bottom are a number of terms
suggestive of ‘trait’ genetics projects, including ‘cognition’, ‘educational attainment’,
‘intelligence’, and ‘neuroticism’, as well as descriptive language like ‘measure’ and
‘range’. Interestingly, the only similar trait on the left side of the network is ‘intellectual
disability’, suggesting a much more limited engagement with (or measurement of) cog-
nitive difference in those projects. A similar interest informs terms at the top of the clus-
ter, which appear to be concerned with the ‘genetic overlap’ or ‘genetic correlation’
between autism and a variety of other ‘psychiatric disorder[s]’ including ‘schizophrenia’
(commonly abbreviated ‘scz’ in academic genetics), ‘major depressive disorder’ (‘mdd’),
‘bipolar disorder’ (‘bpd’), ‘obsessive compulsive disorder’ (‘ocd’) and ‘attention deficit
hyperactiv[e disorder]’ (‘adhd’). While these conditions have well documented genetic
similarities with each other and with autism (see Sullivan & Geschwind, 2019), they are
diagnostically distinguished by differences in symptoms—or, as we might name here,
differences between their associated behavioral and cognitive traits.

A concern with traits also necessitates a different mode of analysis. Rather than cel-
lular etiology, the right side of the network abounds with language describing data-inten-
sive statistical measures, including ‘genome wide association study’ (‘gwas’) and
‘summary statistic’. This follows from an interest in trait genetics: The evidence that
complex behavioral traits like educational attainment are meaningfully genetic tends to
be quite thin, and these traits are unfailingly correlated with changes in dozens or hun-
dreds of genes. This complexity means that locating causally significant biological regu-
larities (if they even exist) is near-impossible, requiring alternative epistemic strategies
that avoid the question of cell or tissue-level etiology. Researchers navigate and even
operationalize the large numbers of correlated genes by producing ‘polygenic risk
score[s]’ (‘polygenic score’, ‘prs’), which estimate the combined effect of many genes on
a given phenotype. These effects are sometimes also described as the ‘genetic liability’
or ‘genetic risk’ of that phenotype, terms included nearby.

Here we see not only evidence of a shared epistemic style, but a theory of the autism
genome. As we might summarize, in Categorical Alignment B,

Autism Spectrum Disorder is linked to various differences in cognition, behavior, and life
course. It is the product of complex, multifactorial genetic contributions in which any individual
gene is minimally penetrant, requiring statistically intensive methods of study. Both the



10 Social Studies of Science 00(0)

«
watanabe k, 204% nat commun,
lea L2010, Gl V175, p12s anney rjl, 201 mol autism, v
-
__grotzinger ad, 3018, nat hum b

anttila v, 2018yscience, V360 de rubeis s, 2084, nature, v51
-

mecarthy s, 2046, nat genet, v

watson hj, 2019) nat genet, v5 iossifowi, 2014, nature, v315
] 3 hd - ¥ satterstrom 62020, cellvi =
bulik-sullivan, 2075, nat gi grggej, 201 Q@t genet,v51, = ﬁ » sanders sis 2015 neuien; ve7,

demontisyd. 2019. nat genet. v werling dm;, 2048, nat gener, v turner tn, 2043, cell. V171, p
«

et S peCren sy american psyahiatric assaciati brandlerwm, 2018, science, v3
savage je, 2018, nat genet v5
L]
loh pr, 2015, gt genet, V47,
pardinas af, 2098, nat genet,

okbay 3, 2016;nat gener, v48,

Figure 2. This network shows which references are cited by five or more corpus publications.
References that appear close to each other tend to be cited by the same articles; references
which are farther apart are rarely cited together.

phenotypic traits and underlying genetics of ASD often overlap with those associated with
other major psychiatric disorders.

As we can see, Categorical Alignments A and B contrast sharply, both in how they under-
stand the genetic architecture of autism as well as how they situate it in relation to other
conceptual entities.

Citational clusters

So: Researchers are talking about different sorts of autistic traits, in relation to different
groups, and they are using different analytic methods to do so. But there is one more
bifurcation worth exploring in this corpus—a division in their reference materials.
Again, using VOSViewer, Figure 2 maps bibliographic coupling patterns for all cited
references used in five or more corpus publications.*

Labels refer to the first author, year and journal of each reference. Here, nearby nodes
are those that are frequently cited by the same papers. We can observe again that there is
a marked division in the network, suggesting that papers in this corpus are not citing the
same body of foundational texts in autism genetics, but are instead drawing from two
somewhat distinct sets of literature.

The bibliometric methods employed mean that it is not necessarily the case that this
division maps neatly onto the last one—but there is good reason to believe so. Importantly,
it is not just that these clusters represent different citations, but that they represent differ-
ent types of citations. Table 1 thematically groups the references in each cluster.

The teal cluster is primarily concerned with twin and family studies, and it includes a
prominent reference to the Simons Simplex Collection—a biobank which indexes ‘sim-
plex’ (single autistic child) families. Conversely, the pink cluster is anchored by GWAS
studies, and includes a number of technical papers which validate statistical methods for
things like complex- and multi-trait analyses using GWAS data. It also figures references
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Table |. Thematic characterization of all references included in the network in Figure 2.

GWAS  Twin or family  Big data statistical Other

analyses analyses methods
Pink cluster 14 0 9 3 (a reference panel and
(26 total citations) citable references for the
UK Biobank and iPSYCH)
Teal cluster 3 13 | 2 (DSM and a citable
(19 total citations) reference for the Simons

Simplex Collection)

to the UK Biobank—perhaps the most notable multipurpose biobank in the world—as
well as to iPSYCH, a large Danish case-control cohort which contains five psychiatric
disorders (including autism). It is clear how the types of resources and statistical
approaches indicated by the pink cluster would facilitate the kinds of cross-disorder trait
analyses common to Categorical Alignment B.

Taken together, these networks are suggestive of a body of literature that is growing
increasingly disjoint. While autism may have long been multiple, as the previous sec-
tion described, researchers have historically worked to produce a ‘coordinate unity’
(Potochnik, 2020) which could encompass multiple understandings of both the disor-
der and its causes. Indeed, most researchers would nominally agree that ASD includes
cases that resemble both Categorical Alignments A and B as well as mixtures between
them (e.g., Happé et al., 2006; Weiner et. al, 2017). This said, and as Mol (2003) has
demonstrated, the coordination of such multiplicity is not trivial work: Autism cannot
simply be ‘both’ of these things without the ongoing and effortful coordination of the
research communities who produce them. If researchers are using ‘ASD’ to describe
markedly different ontologies of autism, evinced through divergent methods, and in
conversation with different literatures, the ties holding them together would appear
increasingly threadbare.

To reiterate, this is not to suggest that these particular categorical instantiations of
autism have become entirely irreconcilable, nor that they are wholly novel: They are
neither. It is the assemblages and divisions of concepts that make these Categorical
Alignments interesting, not the novelty of the concepts themselves. Nevertheless, it
seems that this research community is moving away from—rather than toward—a con-
sensus framework that figures both within a shared discursive landscape. Moreover, it
appears to be the case that data (and data-intensive methods) have something to do with
it. What remains to be shown is how those differences link to particular datasets, and how
these categorical gestalts are animated in specific research programs.

Database(d) differences: MSSNG and 23andMe

A brief review of the larger corpus, however, suggests how challenging this is to do.
There are: hundreds of large datasets represented in these articles, including population
registers like the Avon Longitudinal Study of Parents and Children; national biobanks
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such as Generation Scotland; autism-specific resources like the Autism Genome Project;
biobanks specific to conditions other than autism, such as the Atherosclerosis Risk in
Communities cohort; data-sharing consortia like the Psychiatric Genomics Consortium;
and a variety of other personal and institutional collections described only by reference
to their cities of origin (Adelaide, Brussels, San Diego). Complicating matters further,
most studies combine data from multiple sources, often relying on between three and ten
biobanks to assemble both autistic and control populations of sufficient size.

Rather than attempting to disentangle this larger set, I track the contributions of two
organizations: the parent advocacy-linked biobank MSSNG, and the direct-to-consumer
genetic testing company 23andMe. Each is a notable data resource in contemporary
autism genetics, and—as I return to in the conclusion—both are partially representative
of broader categories of similar actors. First, I describe these two biobanks in more
detail, and highlight how historical dissimilarities in their scientific goals and recruiting
strategies have led to fundamental differences in both the autistic populations they index
and the types of information they collect. These differences model the above keyword
analysis, demonstrating that the topical disjuncture evinced in the larger corpus falls
along the lines of data origin and specifying some of its less-obvious properties. Then, in
the final empirical section, I provide a close textual analysis of the subset of articles
produced using 23andMe or MSSNG data. This illuminates how organic differences
between groups of people are assembled into biobank data sets, ultimately resourcing a
fundamental division of categorical definition.

MSSNG

Originally introduced in 2014 as the soon-to-be-renamed AUT 10K project, MSSNG is a
collaborative effort between the parental advocacy organization Autism Speaks, Verily
(formerly Google Life Sciences), and the Toronto Hospital for Sick Children (SickKids).
MSSNG’s data represent the whole genome sequences of over 11,000 research partici-
pants as of 2022 (MSSNG, n.d.), making it the largest resource of its kind for autism
genomics. Of particular interest here, its self-stated aims strongly resemble Categorical
Alignment A. As its research team described in a recent publication: ‘Our study provides
a guidebook for exploring genotype-phenotype correlations in the 15-20% of ASD fami-
lies who carry ASD-associated rare variants, as well as an entry point to the larger and
more diverse studies that will be required to dissect the etiology in the >80% of the ASD
population that remains idiopathic’ (Trost et al., 2022, emphasis mine). I previously sug-
gested that this particular combination of interests doesn’t hang together because of sci-
entific necessity: An interest in families, in rare variants, or in etiology could be pursued
in the absence of the others. MSSNG’s institutional history makes clear, however, there
are other reasons for these concepts to travel together, and for the broader durability of
this particular categorical alignment.

As an early press release touted, MSSNG was meant to become ‘the world’s largest
collection of autism genomes’ in order to ‘transform the autism research landscape’
(Autism Speaks, 2014). However, MSSNG was not built as a novel resource from the
ground up: Rather than recruiting thousands of participants, it instead reassembled data
(and resequenced biomaterials) from a number of prior autism genomic databases. Those
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collections often represented similar imbrications of philanthropic funding and academic
coordination as does MSSNG, sometimes even through the same institutions. For exam-
ple, the largest contributing collection, the ASD: Genomes to Outcomes Study (repre-
senting 5,903 MSSNG participants as of 2022), shares MSSNG research director Stephen
Scherer as its PI, and SickKids as a home institution (Prasad et al., 2012). Other notable
contributing organizations include public-private partnerships like the Autism Simplex
Collection (529 participants) as well as advocacy-funded projects at academic research
centers like REACH (1,662 participants), iTARGET (463 participants), and the Autism
Phenome Project (231 participants).

Perhaps most notable, however, is MSSNG’s inclusion of participants from the
Autism Genetic Resource Exchange (AGRE, pronounced ‘agree’, 2,303 participants).
AGRE was the first large-scale autism biobank in the US, founded in 1997 by the now-
defunct advocacy organization Cure Autism Now! (CAN!). Its debut represented a turn-
ing point within both the research and advocacy movements coalescing around ASD at
the dawn of the postgenomic era: as Singh (2015a, pp. 56—77) accounts, AGRE solidified
the role of parental advocates as organizers who could coordinate resources, researchers,
and federal funding. In the process, they established autism genetics as a particularly
attractive and well-resourced subfield for up-and-coming molecular biologists, creating
the conditions for the explosion of big data autism genomics through the 2000s and into
the present day. In this sense, AGRE is the project that made MSSNG possible—not only
by recruiting a plurality of its participants, but by fertilizing the landscape of autism
research such that both researchers and funding would be plentiful by the time it arrived.
Put another way, MSSNG is the logical end result of decades of parent advocacy, and can
be seen to stand in for (and, in the case of these particular institutions, literally continue)
the work of a host of previous groups with partially overlapping interests.

All of MSSNG’s contributing organizations are focused on infants and young chil-
dren, and many tout affiliations ranging from pediatric hospitals to educational early
intervention programs. The majority describe themselves as ‘family-centered’ in their
public communications or on their websites. Unsurprisingly, then, MSSNG’s reassem-
bled data are also familial, primarily representing grouped DNA samples from parents
and their autistic child (‘simplex’ families) or children (‘multiplex’ families). These chil-
dren often experience significant disability, as is typical of families that become involved
in disease advocacy—more subtle phenotypic differences don’t necessarily create the
same impetus for participation in time-intensive clinical research. Such families are
often motivated by imaginations that research will result in meaningful differences in
their children’s lives (Lappé, 2014; Silverman, 2011). For genomic research, then, that
often means orienting toward the discovery of genetic markers which are likely to be
linked to cellular or tissue-based differences that can become the basis of novel therapeu-
tics—again joining etiology to this conceptual cluster not scientifically, but socially.

This aim is shared and specified in MSSNG’s own mission, which describes its ulti-
mate goal as to contribute to ‘personalized and more accurate treatments’ via ‘the identi-
fication of many subtypes of autism’ (MSSNG, n.d.). ‘Subtyping’ is a commonly-used
epistemic strategy toward the management and treatment of complex conditions, as with
the identification of biomarkers to distinguish previously synonymous diseases (e.g. the
recently mobilized distinction between HER2 * breast cancers). In contradistinction to
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approaches resembling Categorical Alignment B, which seeks to expand its frame of
interest outward across multiple conditions with genetic or phenotypic overlap, MSSNG
proposes to do the opposite—to disintegrate the category of autism from the inside out,
amplifying elusive differences in order to identify potential avenues of therapeutic
ingress. This is, in short, a ‘splitters’ and ‘lumpers’ distinction. While ‘subtype’ does not
appear in the keyword network, then, we can understand this epistemic opposition as
driving much of the distance between the two categorical alignments.

23andMe

In contrast to MSSNG’s clearly defined conceptual orientation, 23andMe seems some-
what unmoored from any particular stake in ASD communities or research—indeed, it
seems barely invested in basic research at all. However, while the company is better
known for its direct-to-consumer genetic testing service, it has courted a robust second-
ary market circulating its customers’ genetic data for biomedical research. Much of this
effort derives from its economic model, in which the company is able to use its data
toward preliminary analyses establishing potentially lucrative drug targets or pharma-
ceutical pathways. In recent years this approach has begun to pay out, as 23andMe has
sold a significant stake in the company to pharmaceutical giant to GlaxoSmithKline
(Molteni, 2018), and rights to its first drug candidate to the Spanish biotech company
Almirall (Wetsman, 2020). Beyond the spectacle of these high-dollar exchanges,
23andMe additionally provides data to academic and other nonprofit researchers. It also
employs its own research team, which frequently collaborates and publishes with aca-
demic investigators on a diverse set of conditions, including autism and other neuropsy-
chiatric disorders.

Importantly, 23andMe’s genomic data are single nucleotide polymorphism (SNP)
sequences—not, like MSSNG, whole genomes. While humans share the overwhelming
majority of their DNA, SNPs are the roughly 1% of base pairs that represent common
points of variance between individuals. While some SNPs are strongly associated with
disease, they are definitionally common: They do not include the ‘rare variants’ that can
be found in the remaining expanse of the genome and constitute the main interest of
Categorical Alignment A. They also cannot be readily used to identify CNVs. To geno-
type an individual on a SNP chip costs hundreds of dollars less than whole genome
sequencing, making it a generally more suitable tool for the cost constraints of a con-
sumer product like 23andMe. However, SNP genotyping does significantly limit the
kinds of genomic inquiry that can be pursued with the resulting data, demanding differ-
ent epistemic strategies that orient toward other affordances.

Instead, 23andMe produces data with two other notable qualities: scale, and multidi-
mensionality. First, scale. Of its more than 12 million accounts, nearly 80% have open
consent for their data to be used for research purposes (23andMe Research Team, n.d.),
vastly outnumbering MSSNG’s 11,000 participants. Second, those users contribute a
huge variety of data about their health and personal traits, far exceeding the sort of clini-
cal data collection common in autism biobank curation.’ This function allows the com-
pany to produce polygenic scores for their participants across a variety of both health and
novelty traits, such as having a higher likelihood of developing glaucoma, or disliking
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cilantro. More interestingly, however, the expansive collection of health and trait data
provides more potential variables to researchers looking for genotype-phenotype corre-
lations, thus improving their likelihood of finding a statistically significant association.
This flexibility is sometimes described as ‘researcher degrees of freedom’, and while it
can be productive—particularly when dealing with extremely subtle statistical signals, as
is often the case in psychiatric genetics—it is often linked to concerns about ‘data dredg-
ing’: exhaustively searching all variables including those likely to be in spurious correla-
tion. Nevertheless, the abundance of traits (and the absence of more comprehensive
genomic data) represented in 23andMe datasets are what makes statistically intensive
trait genetics approaches like those represented in Categorical Alignment B not only pos-
sible, but practical epistemic strategies tied to the particular affordances of this data.

Population differences

To this point I have argued that the research imaginations of the actors who shape
MSSNG and 23andMe’s data diverge on a number of points, which systematically ori-
ent them toward different knowledge production practices broadly resembling
Categorical Alignments A and B. However, there is one more critical difference
between these data sets—or rather, between the populations that they index. As has
been well documented, 23andMe users are not, on the whole, population-representa-
tive: they are significantly more educated and of a higher socioeconomic status than
the average US citizen (Tung et al., 2011). Because research cohorts are selected from
within 23andMe’s large user base, it is not always clear if and how they resemble its
overall makeup. However, within the studies I analyze below, several describe their
autistic cohorts as having higher-than-average IQ and educational attainment, and the
majority rely on survey instruments like the Systematizing Quotient-Revised (SQ-R)
that are indicated for people of average or higher intelligence (Wheelwright et al.,
2006). In MSSNG’s cohort, however, IQ ranges from well above to well below the
population average, with roughly 20% exhibiting clinically defined intellectual disa-
bility (Yuen et al., 2015). Many of the studies produced using MSSNG data rely solely
on participants drawn from that 20%, exploring genetic markers correlated with what
they describe as ‘severe’ or ‘low-functioning’ autism.

In pointing out these differences, I do not mean to naturalize ‘high-functioning/low-
functioning’ distinctions, or to forward intelligence (particularly as proxied by instru-
ments as fundamentally flawed as IQ tests) as the most important marker of autistic
diversity. As disability studies scholars and advocates have articulated, the rhetoric of
functional severity relies on a deficit model, obscures how ‘functioning’ is itself a prod-
uct of social environments and redirects attention from widely heterogeneous individual
needs toward binaristic understandings of ability (Anderson-Chavarria, 2022; Baker,
2006). However, it is clear that these datasets index phenotypically—and, thus, almost
certainly also genotypically—different populations. As Navon and Eyal (2016) have
shown, expanding the population under analysis in autism genetics has already driven
‘looping’ effects, fundamentally altering the contours of the category. What, then, might
happen when that population is not simply expanded, but splintered?
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From data to disorder

A first glance at the published research produced using 23andMe (n=22 articles) and
MSSNG (n=38 articles)® data does not suggest this split—indeed, the two sets of articles
appear rather similar on the surface. These papers were published across a similar range
of journals, from high impact generalist venues like Science and Nature to specialist
publications like Molecular Psychiatry and Molecular Autism, and both groups of arti-
cles have average citation counts north of 30. The set of author-elected keywords (the
keywords requested by the publisher, not the keywords examined above) attached to the
articles is also broadly shared. Taken together, these publication metrics are (albeit
roughly) indicative of a group of generally well-regarded papers contributing to a rela-
tively well-defined research community.

However, as the rest of this section shows, these studies ultimately describe very dif-
ferent ideas about what autism is and rely on divergent approaches as to how it should be
studied. Here, I attend to the disciplinary authorship, topics of concern, analytic
approaches, and rhetorical strategies deployed in these articles to trace how differences
in their data have echoed into much larger disjunctures in their accounts of autism. In
doing so, I specify further differences between the categorical alignments embedded in
their data and point to several resulting incompatibilities between these bodies of research
literature.

First, though, it bears considering how these sets of articles square against the key-
word network presented in Figure 1, which mapped co-appearance between common
topics across the entire body of big data autism genetics published during this period.
Figure 3 shows the frequency with which a selection of the respectively most common
keywords appeared in 23andMe (blue) and MSSNG (red) articles.

As the inversion of frequency suggests, these bodies of literature have some overlap
but are largely concerned with different conceptual sets. Further, and as the recolored
overlay of Figure 1 in the right corner of Figure 3 shows, those sets clearly map onto the
two clusters representing Categorical Alignments A and B. This should come as no sur-
prise—as the previous section showed, 23andMe data are poorly suited for work inves-
tigating CNVs, rare variants, or cellular etiology, but have scalar affordances that enable
cross-disorder investigation of various traits; it is the opposite for MSSNG. Datasets
shape and constrain the kinds of topics that animate subsequent research.

There is one more notable difference between these sets of articles worth examining
before digging into their contents—their authorship. Table 2 presents the disciplinary
affiliations of the last author (conventionally the Principle Investigator [PI] of the pro-
ject) of each paper using publicly available biographical information.

It’s notable that a majority of the last authors using MSSNG data are molecular biolo-
gists—mostly appointed in genetics or genomics departments. 23andMe last authors, in
contrast, tend to have joint appointments or to work solely in a psy-science. While this is
a small sample of the larger group of PIs working in autism genetics during this period,
it points to something interesting: there’s a relationship between home discipline and
choice of dataset—and with it, its particular affordances and constraints.

The fragmentation of behavioral genetics is well-documented: as Panofsky (2014)
describes, behavioral genetics is a disciplinarily antagonistic field in which mutually
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Figure 3. This figure reanalyzes the common terms indicated in Figure |, showing comparative
frequency of the top five terms from articles which use data from either MSSNG or 23andMe.
An overlay of Figure | is shown in the corner, indicating where in the original network those
terms can be found.

Table 2. Disciplinary affiliations of the last authors of papers in the 23andMe and MSSNG
corpuses based on publicly available biographical data.

Molecular  Brain and psy- Both molecular biology Other

biology sciences and psy-science
23andMe last | 6 (5 psy-science, | 10 2 (public health
authors (19 unique) neuroscience) and radiology)
MSSNG last authors 17 9 (5 psy-science, 4 5 0
(31 unique) neuroscience)

distrusting groups of scientists compete for authority within controversial problem
spaces. Along these lines it makes sense that geneticists would develop projects that seek
to identify causal rare variants and trace occulted cellular pathways—the imagined use-
case for which MSSNG was designed. Similarly, a concern with symptomatology and
the relationship between disorders aligns with the psy-science's longstanding authority
over the evolution of ASD’s diagnostic categorization. Work in that tradition requires
phenotypically detailed data such as 23andMe’s surveys. All of this is to say, another way
of telling this story with different protagonists could follow preexisting disagreements
between disciplinary researchers, who select the data that seem sufficient for their diverg-
ing interests and goals.
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But, and as I will argue in the remainder of this section, there is more to gain from
focusing on the datasets. The disciplinary fragmentation at play certainly helps to explain
some of the differences between these two sets of papers, as well as the citational split
within the larger corpus. However, it is not simply that the papers authored by psy-scien-
tists tend to build on similar discourses, but that the papers using shared data do so even
when authored across disciplines. Rhetorical, epistemic, and categorical patterns in these
papers are distinctly shaped by the imaginations and affordances of their data.

Looking first at the MSSNG papers, a notable feature is in fact how little they discuss
what they understand autism to be. Articles routinely start with a single sentence describ-
ing the core DSM diagnostic domains of ASD before immediately turning to genetic
analysis. Consider the first lines of these papers:

Autism is a neurodevelopmental condition currently defined by atypical social communication
and interaction, intense interests, and repetitive behaviour. (Douard et al., 2021)

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that often involves
impaired cognition, communication difficulties and restrictive, repetitive behaviors. (Jangjoo
etal., 2021)

Others elide diagnostic criteria entirely, skipping clinical definition and beginning
directly with epidemiological or mechanistic descriptions of autism:

Autism spectrum disorder (ASD) is a phenotypically heterogeneous disorder affecting about 1
in 59 children in the United States. (Wilfert et al., 2021)

The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from
de novo mutations in variant-intolerant genes. (Brandler et al., 2018)

While behavioral genetics research does not tend to spill substantial ink on questions of
symptomatology, it is typical to include at least some discussion of the behaviors under
investigation. The descriptions of ASD in this corpus are strikingly brief, and are gener-
ally not elaborated further in the bodies of these articles. To these researchers, then, it
seems that what autism is as a socio-behavioral category is entirely self-evident—so
obvious, in some cases, as to not even merit a clinical description. Moreover, as the
unchallenged repetition (or assumption) of a DSM-adjacent definition of ASD suggests,
the expanse of the diagnostic category appears synonymous with the population under
investigation in these studies. It is worth repeating here that MSSNG’s cohort is not nec-
essarily broadly representative of the total population diagnosable under DSM-5, as the
previous section showed.

Despite these narrative beats, however, this body of literature is not entirely bought
into the DSM’s conceptual schema. Several papers deal with disease ‘subtyping’ by
name, and many more implicitly rely on subtyping as their primary epistemic approach.
The DSM does not allow for conditions with the ‘same’ symptoms to be broken out sepa-
rately: Subtyping challenges the DSM’s categorical unity by identifying genotypes that
can be linked to a clear, if subtle, pattern of phenotypic difference within the broader
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diagnostic category. Importantly, however, the phenotypic ‘subtypes’ in these articles are
near-totally limited to the autistic domains associated with DSM criteria: IQ, Language,
Social Responsiveness, Social Communication, and Repetitive Behaviors. These traits
are formalized and measured by the standardized diagnostic instruments with which
MSSNG collects data. However, by assessing the comparative ‘severity’ of individual
domains when associated with particular genetic variants, these articles attempt to make
the case that genetically distinct subtypes exist. These subtypes are commonly linked to
CNVs and other rare variants in these papers, as the frequency of ‘copy number’ and
‘mutation’ in the corpus also indicates.

After making these genotype-phenotype links through statistical analysis, the major-
ity of the papers in this corpus then follow their gene(s) of interest into mechanistic
investigation. These projects take a variety of forms, ranging from animal model experi-
mentation to in vitro cell culture studies to neural mapping and brain tissue analysis. In
all cases the goal is to demonstrate that the gene(s) are not merely associated with the
phenotype but are definitively causal—or at least, causal of an isolable biological change
that can then be speculatively linked to autistic symptomatology. In doing so, these
works serve to construct autism as an increasingly biologized disorder. This also serves
to orient their larger contribution toward the development of future clinical interven-
tions: ‘therapeutics’ and ‘diagnostics’ are topics referenced in the majority of discussion
sections in this corpus, but uncommonly in the 23andMe papers. However, and while the
particular biological pathways examined here may one day be clinically actionable, it’s
important to note that research in this corpus is extremely distant from drug development
projects: the invocation of therapeutics is as much a rhetorical strategy as it is a plan for
future research, discursively constructing an autism that can be genetically decomposed
into readily interpretable and manipulable biological pathways.

The 23andMe corpus paints a starkly different picture of autism—or, rather, pictures.
Consider these opening lines, representative of the how this literature tends to frame a
variety of concerns far exceeding DSM diagnostic criteria:

People who experience childhood abuse are at increased risk of mental illness. Twin studies
suggest that inherited genetic risk for mental illness may account for some of these associations.
(Ratanatharathorn et al., 2021)

Use of tobacco is (still) prevalent in the Western world: about 20% of the population (15+
years) in Europe and the United States is a regular smoker. This percentage is remarkably
higher in people with psychiatric disorders. (Vink et al., 2021)

Empathy is the ability to recognize and respond to the emotional states of other individuals. It
is an important psychological process that facilitates navigating social interactions and
maintaining relationships, which are important for well-being. (Warrier et al., 2018)

The word ‘autism’ doesn’t appear here, despite being a central topic in all three papers.
Instead, unnamed ‘psychological process[es]’, ‘mental illness[es]’, and ‘psychiatric disor-
ders’ mediate traits of more immediate interest. In turn these accounts push back against the
assumed boundaries of autism as a category: Beyond classic cardinal symptoms, readers
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are invited to consider autistic populations who smoke, or have experienced childhood
abuse. This narrative style and topical framing is common throughout the 23andMe arti-
cles, examining how autism is genetically associated with traits as diverse as the frequency
of mouth ulcers, aneurysms, and left handedness.

Moreover, several of these articles attempt to render internal attitudes and emotions as
measurable—and (at least partially) genetically-determined—autistic traits. While the
DSM criteria are firmly rooted in psychiatric measures, those are strictly external (and
generally interpersonal) displays common to clinical evaluation. For example, ‘repetitive
behavior’ is easily quantified, and ‘social responsiveness’ is distilled within diagnostic
interview guides as discrete actions like eye contact, facial expressions, or verbal reac-
tions. In contrast, something like ‘empathy’—or ‘neuroticism’, another common topic in
these articles—is a much more abstract psychological (rather than clinically psychiatric)
concept, and the survey-based measures deployed through 23andMe rely on self-reflec-
tive subjects capable of participating in extended documentation of their emotions and
personal histories. Here, we can observe that these instruments don’t simply assess one
phenotype, but necessitate others: it would be straightforwardly impossible for many of
the children represented in the MSSNG data to complete such an exercise (nor are these
instruments designed or validated for children younger than teenagers). Thus, while
overtly expanding the sorts of traits that we might associate with autism, we can observe
that these articles also implicitly foreclose a variety of others.

Due in part to the complexity of the behaviors under investigation, all but one of these
studies evince dozens of correlated genes, and often describe their findings as indicative
of ‘polygenic risk’. Given the sometimes tenuous relationship between autism and these
traits, many papers also talk about ‘pleiotropy’, the idea that one gene can have multiple
and apparently unrelated phenotypic effects. This means that—and unlike the MSSNG
papers, which often include biological experimentation—projects in this corpus by and
large cannot directly examine biological pathways. The tens of genes implicated in
something like a polygenic risk score can be involved in many more cellular processes,
with no clear indication which might play an important role. Instead, the majority of
these studies have to rely solely on computational/statistical approaches to substantiate
their findings, and turn to biological intermediaries between genes and behavior only
through theoretical speculation.

In the absence of biologized ‘proof’, then, many of these authors turn to other
approaches to underline the importance of their work. Because each gene in a polygenic
score represents an extraordinarily subtle statistical signal, this type of research requires
significantly larger research cohorts than does the identification of a highly-penetrant
rare variant. Indeed, the 23andMe papers average a staggering 913,515 participants per
study, while the MSSNG publications average only 10,611. This is an important point of
contrast: While both 23andMe and MSSNG describe themselves using the language of
‘big data’—and while both are big, compared to the autism data of a decade ago—this
demonstrates that ‘bigness’ cannot be treated as an epistemic monolith. MSSNG’s data
are ‘big’ in part because they are whole genomes, but include minimal phenotypic infor-
mation per participant. 23andMe have ‘small’ SNP data but huge numbers of participants
and access to other types of data about them. These scalar differences are tied to different
affordances and favor different meaning-making strategies. Indeed, as we see in the
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23andMe papers, the repeated invocation of scale serves as much of a rhetorical purpose
as it does a scientific one: Nearly all of these articles reference the size of their partici-
pant cohort in the abstract, and several underline its magnitude as an epistemic virtue
setting their study apart from previous work within their methods sections. These fea-
tures are uncommon in MSSNG papers.

Further, the trait-first approach allowed many of the 23andMe projects other means
by which to maximize their study size. Traditional genetic analyses of a diagnostic entity
like ASD look for genetic patterns in research participants with that diagnosis. Here,
however, several projects seek to determine the underlying genetics of ‘autistic traits’ in
participants without a diagnosis of autism, including those with other psychiatric diagno-
ses representing partially overlapping symptoms, and those without psychiatric history
who may yet identify with a certain trait (e.g., a high ‘neuroticism’ score on a personality
survey). Genetic correlates in those groups then become candidate genes for ‘autism
risk’, providing additional avenues for triangulating very weakly-penetrant genes.
Through these strategies, autism itself begins to appear as an accumulation of dissociable
traits, and correlation is justified as a meaningful epistemic approach to autism genetics
even in the absence of testable biological mechanisms.

An implication of a trait-driven epistemology is that the majority of these articles
aren’t singularly ‘about’ autism—as nearly all of the MSSNG papers are—but are instead
about clusters of neurodevelopmental and psychiatric disorders that include autism along
with a number of other conditions (as also indicated by the high keyword frequency of
‘schizophrenia’ and ‘bipolar disorder’ in Figure 3). Because these diagnostic entities
include some symptomatic overlap, regarding those symptoms as genetically dissociable
explains the additional (and well-documented) genetic overlap between these conditions.
This is to say, if individual psychiatric fraits are genetically determined, two diagnostic
entities that share a trait must also share those genes. Some articles go a step further and
refer to diagnostic categories themselves as ‘psychiatric traits’, invoking a flat ontology
in which diagnostic categorization has no more authority than any other approach to the
categorization of human behavioral difference. This is in stark contrast to the MSSNG
papers, which analyze cross-disorder symptomatology only when specific genetic vari-
ants are linked to multiple diagnoses—a gene-first, rather than trait-first, approach.

As this section has shown, both bodies of literature challenge ideas of ASD as a unifi-
able category, but they do so from opposite directions. Articles using MSSNG data
attempt to decompose autism from the inside out, identifying genetic subtypes that can
be biologically analyzed toward the development of eventual clinical interventions. In
contrast, 23andMe papers leverage ‘traits’ to disintegrate the category from the outside
in, using autism’s phenotypic similarity with other diagnostic entities and populations to
make sense of its polygenic complexity. In both cases researchers draw on the strengths
of their respective datasets, deploying methodological strategies that would not be prac-
tical (or even possible) with the other data. This demonstrates that datasets do not shape
subsequent research simply by constraining the available variables: rather, their inbuilt
affordances echo the epistemic values of their creators and users in a variety of subtle but
impactful ways.

Critically, and as the previous section also argued, these datasets additionally repre-
sent groups of research participants with markedly different phenotypes—almost
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certainly indicating underlying genetic differences between them as well. As a result,
even if direct replications of these studies using the other dataset were possible (which
they are typically not), it is unclear if results produced using MSSNG data would hold in
the 23andMe population or vice versa. Indeed, underlying population differences are
likely to be a significant factor in repeated failures to reproduce candidate gene findings
across different cohorts—and while accounts of failed replication attempts often argue
that even larger populations will resolve this issue (e.g., Torrico et al., 2017), what this
study suggests is that scale alone has not and likely cannot solve that problem. Moreover,
that these data resource incomparable levels of explanation and epistemic approaches
serves to further obscure this fact.

Conclusion

The differences we see in the above analysis also appear to characterize the larger
body of research literature on autism genomics, mapped in the earlier keyword anal-
ysis (see Figure 1). Despite the fact that those publications draw from dozens of
other datasets, this is not necessarily surprising: In many ways MSSNG is a paradig-
matic example of autism advocacy biobanks, which have played a major role in the
field since the 1990s (Navon & Eyal, 2014; Singh, 2015a). Resources like the Simons
Simplex Collection share research imaginations, recruiting strategies, and data col-
lection practices with MSSNG, and it stands to reason that those data would produce
discursively similar accounts of ASD. Indeed, in publications using multiple data-
sets, MSSNG’s data were combined with those from Simons and/or the Autism
Genome Project (another family biobank) to the near exclusion of all other organiza-
tions. In contrast, 23andMe better resembles a more recent wave of databasing pro-
jects like the UK Biobank or the Psychiatric Genomics Consortium (PGC). These
organizations work to collect massive amounts of highly dimensional data in order
to facilitate data reuse across diagnostic conditions and topical concerns.
Unsurprisingly, then, the biobanks whose data were most commonly combined with
23andMe were PGC and iPSYCH.

Although there are certainly important differences between individual datasets in both
groups, this broad dichotomy appears to be a proximate cause for the disjuncture across
the field. Datasets must have common instruments or commensurable variables in order
to be combined or compared. It is not just that the categorical imaginations of autism in
these datasets differ, but that their pragmatic approaches to producing inscriptions are
not, on the whole, compatible: they measure largely non-overlapping sets of traits. These
sets of traits, in turn, shape what can be said about autism, and the methods with which
it can be evinced. When these organizations additionally index different populations, it
becomes impossible to make claims using one set of categorical concepts regarding the
other group. For example, there are no publications about the genetics of neuroticism or
empathy in autistic children with significant disability because large scale data about
those traits in that group do not exist. There are few publications about autism cases
linked to CN'Vs or rare variants in independent adults for the same reason. It is not sim-
ply that research accounts of autism produced using divergent data don  overlap, it’s that
they largely can t.
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I suggested above that research produced using these data might be productively
described with the metaphor of sedimentation: While elements of these different imagi-
nations have long coexisted within the landscape of autism research, dataset disjunctures
have precipitated them into distinct and increasingly immiscible layers. But these layers
do not exhaust all the possible categorical configurations of autism—far from it. Here, it
is interesting to note that recent years have seen a spate of new autism biobanking pro-
jects that are oriented toward different uses and situated within different national con-
texts. Both MSSNG and 23andMe are North American institutions: While their data may
be used globally, their epistemic genealogies can be firmly situated within US histories
of genetics and autism research. As Evans (2013, 2017) has explored, however, ideas
about autism in the UK have evolved along different cultural lines and in response to
different political pressures. Take, for example, British psychologist Simon Baron-
Cohen’s controversial proposal’ for Spectrum 10K—a UK-based autism biobank which
includes MSSNG and its scientific director Daniel Geschwind as ‘partners’. It is interest-
ing to note that the project includes a wide, 23andMe-like array of trait questionnaires
and is designed for research into ‘co-occurring disorders’, apparently responsive to a
very different set of research trajectories and institutional actors than MSSNG. If the
project comes to fruition, it will be interesting to observe how these data circulate. It is
easy to imagine a future in which they bolster 23andMe-adjacent research literature
while resituating traits of particular interest in the UK.

Moreover, differences between autism science in the US and UK narrow when com-
pared with the broader global landscape: The huge number of culturally-sensitive con-
cepts involved in autism research makes it quite difficult to even begin to work across
contexts, much less collect large-scale data for comparative analysis (de Leeuw et al.,
2020). Currently, projects like the NeuroDev Study—an autism and ADHD biobank
recruiting in South Africa and Kenya, affiliated with the Broad Institute in the US—use
instruments standardized in Global North research in order to produce commensurable
data (de Menil et al., 2019). Nevertheless, it’s unclear how the sorts of contextual specifi-
cities, population differences, and local knowledges that de Leeuw et al. (2020) identify
will shape the production and interpretation of these and similar data. It is certainly pos-
sible that datasets like this could precipitate very different categorical configurations
than the ones I’ve described here.

This is not to give datasets the final word on which research trends take hold or which
categorical alignments become definitive. Instead, this case study shows the messy
coproduction of data, field, and object over time. In the institutional histories of MSSNG
and 23andMe we can observe formative encounters with a variety of other actors: parents
and their children, lay genetics enthusiasts and pharmaceutical investors, and the net-
works of researchers that form with and around them. Here, decisions about desirable
research futures and the data they require far exceed the laboratory and the clinic, and the
datasets they produce shape the kinds of big data inquiry that become possible in their
wake. These datasets then enter a research ecology already rich with available concepts,
epistemic approaches, and disciplinary intuitions. The affordances of particular data
encourage, but don’t determine, what assemblages can form out of this mass.

In focusing on databases, I have pointed to a set of critical but often neglected actors
in psychiatric genomic research. An attention to the origins of data reveals dynamics that
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are often obscured in research reporting, particularly regarding how choices about par-
ticipant recruitment and data collection are managed. When multiple databases enact
conflicting practices, then, the larger research ecologies that rely on them can echo and
elaborate these points of divergence—even while appearing to represent ‘the same’ pop-
ulations or phenomena. For autism genomics, this has led to a marked split not only in
the conceptual category of ASD, but in the epistemology by which it is known. Given the
rapid rise of large open access databases and other forms of dataset reuse across the sci-
ences, then, similar forms of categorical misalignment are likely to represent important
sources of controversy and reproducibility problems in the years to come.
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Notes

1. Isometimes refer to autism as a ‘disorder’ insofar as I examine ‘ASD’ as an actor’s category
established through clinical and institutionally-prescribed domains of biomedical research.
Otherwise, I use language of disability, identity, and difference rather than biomedical disor-
der following language guidelines set forth by autism self-advocates (Autistic Self Advocacy
Network, 2012).

2. Forinstance, research into the genetic bases of pseudoxanthoma elasticum (Terry et al., 2007)
and muscular dystrophy (Rabinow, 2002) were significantly accelerated by the availability of
biobank materials coordinated by parents and patient advocates.

3. To generate Figure 1, clustering resolution was slightly reduced from 1.0 to 0.9 to slightly
simplify the network. All other settings, including spring weights, were left at default values.
No nodes have been removed or repositioned from the network as generated by VOSViewer.
Some labels that were obscured or too small to view with VOSViewer’s label overlays were
subsequently readded in an image editing program.

4. Like Figure 1, clustering resolution for Figure 2 was slightly reduced from 1.0 to 0.9 to
slightly simplify the network. All other settings, including spring weights, were left at default
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values. No nodes have been removed or repositioned from the network as generated by
VOSViewer.

5. MSSNG records limited phenotypic data strictly in relation to autism as a clinical category.
Per Yuen et al. (2015), its data rely on standardized instruments including the ADI (Autism
Diagnostic Interview), ADOS (Autism Diagnostic Observation Schedule), Vineland (diag-
nostic interview), and the Child Behavior Checklist, and provide information on domains
including 1Q, Language, Social Responsiveness, Social Communication, and Repetitive
Behaviors (Trost et al., 2022).

6. In sampling MSSNG papers, I have also chosen to include papers that cite their data as
‘AGRE’. Because the bulk of AGRE data has been repurposed within MSSNG, AGRE itself
was not organizationally active during the sampled time period, and because the MSSNG
website lists several of these papers as using its own data, I regard this as a citational abnor-
mality rather than an institutional difference.

7.  Following backlash from autistic self-advocacy groups over Baron-Cohen’s involvement
and concerns about the project’s eugenic potential, development of Spectrum 10K has been
paused since 2021 for further ethics review.
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