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Abstract— In this paper, an anti-windup compensation
scheme is proposed for the manual mode of a rigid body
attitude control system to make the angular velocity dynamics
globally asymptotically stable despite actuator saturation. The
addressed anti-windup design problem is challenging since the
nominal control law includes a nonlinear dynamic inversion
element to cancel the nonlinearity in the angular velocity
dynamics. The stability of the compensated closed-loop system
is proved via the Lyapunov stability criterion appropriately.
Moreover, the superiority of the compensated system versus
the uncompensated one is demonstrated by simulation.

I. INTRODUCTION

The rigid body attitude control problem has been ad-
dressed by researchers for many years [1]–[3]. The problem
has an attractive structure, but the dynamics are inherently
nonlinear. Although actuator constraints have not been taken
into account in most of the studies, there are some works
in which these limitations are considered like [4], [5], and
references therein. For example, [6] considers the constrained
attitude control problem and proves global stability with
PD controllers. In [4], [7], a partitioned controller with
PD structure is proposed and almost global stability is
demonstrated. In [8], an adaptive control scheme is proposed
for a spacecraft input-constrained attitude-tracking control
problem. An anti-windup approach is proposed in [9] for
constrained rigid body attitude stabilization which is different
from the aforementioned studies as the gains of its PD-
like attitude controller can be chosen independently and are
not restricted. However, attitude tracking with bounded error
can be achieved by the nominal controller due to attitude
dynamics nonlinearities [6].

In this paper, we propose an anti-windup compensation
scheme for a rigid body control system in the so-called
manual control mode, where one attempts to regulate the
angular velocity of the rigid body. Our approach is able to
guarantee (global) angular velocity stabilization in the pres-
ence of both actuator saturation and the nonlinear dynamic
inversion (NDI) elements present in the control law. The
ideas developed in this paper also form the first steps in a
more general treatment of the anti-windup problem for rigid
body control with NDI-type control laws.

II. PROBLEM STATEMENT

The rigid body angular velocity dynamics are represented
by the following equation:

J~̇ω =−~ω× J~ω + satu(u) (1)
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where J ∈ R3×3 is the inertia matrix, ~ω is the angular
velocity vector, u ∈ R3 is the control input vector, and the
satu(u) function is defined as

satu(u) := [satu1(u1) satu2(u2) satu3(u3)]
′

(2)

to represent the actuators’ constraints where satui(ui) =
sign(ui)min{|ui| , ūi} and ūi > 0 denotes the maximum
amount of torque producible by the ith actuator. The
nominal controller is the attitude control proposed in [10]
which provides almost global exponential stability for
the attitude tracking error dynamics of a rigid body with
unconstrained actuators. In manual mode, the controller
output uc can be represented as

uc = ~ω× J~ω +K(~ω− ~ωd)− J(~ω× ~ωd− ~̇ωd) (3)

where ~ωd is the desired angular velocity vector and K is a
diagonal 3×3 matrix with negative real elements. Note that
~ωd is set to zero in the analysis since the approach aims
to achieve global asymptotic stability for angular velocity.
Note further, that this control law is nonlinear with, in the
absence of saturation, the term ~ω× J~ω precisely cancelling
the nonlinear terms in the plant (1).

III. ANTI-WINDUP DESIGN

The structure of the proposed compensation scheme is
depicted in Fig.1. The dynamics of the anti-windup com-
pensator is adopted as

J~̇ωa =−~ωa×J~ωa−~ωa×J~ω −~ω×J~ωa−F~ωa+Dz(u) (4)

where ~ωa is the compensator state vector, F is a diagonal
3× 3 matrix with positive real elements, and Dz(u) := u−
satu(u). The output of the anti-windup system ua is defined
as

ua = ~ωa× J(~ω +~ωa)+~ω× J~ωa +K~ωa +F~ωa (5)

which is added to the original controller output to form the
control input torque vector u.

Fig. 1: The Compensated Control System Block Diagram
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IV. STABILITY ANALYSIS

Stability can be proved, as is typical in anti-windup design
(e.g. [9]), by examining the stability problem in different
coordinates. Letting, ~ωe = ~ω + ~ωa, allows the ~ωe dynamics
to be written as

Jω̇e = Kωe (6)

which are exactly the dynamics of the system (1) in the
absence of saturation and with the control law (3) applied.
With an appropriate choice of K, ~ωe converges to zero ex-
ponentially. Moreover, the closed loop compensated angular
velocity dynamics can be represented as

J~̇ω =−~ω× J~ω + satū (~ωe× J~ωe +K~ωe +F~ωe−F~ω) (7)

To prove global asymptotic stability of the angular velocity
V = ~ω

′
J~ω is adopted as the Lyapunov function. Taking its

time derivative results in

V̇ = ~ω
′
satū (~ωe× J~ωe +K~ωe +F~ωe−F~ω) (8)

Letting ue = ~ωe× J~ωe +K~ωe +F~ωe and uaw = F~ω together
with adding and subtracting ~ω

′
ue to the recent equation, we

have

V̇ =
3

∑
i=1

ωiuei−F−1
i uawi (uei − satui (uei−uawi)) (9)

Absolute continuity of ue and exponential stability of ~ωe
dynamics, imply there exists a finite time t1 > 0 such that

|uei|<
ui

2
∀t > t1 ∀i ∈ 1,2,3 (10)

Therefore, using lemma 2 from [9] gives

V̇ ≤
3

∑
i=1
|ωi| |uei|−min{εi |ωi| ,Fi |ωi|2}︸ ︷︷ ︸

Wi

(11)

where εi = ui−|uei|. Two cases can be considered for each
i:
A) if |ωi|> εi

Fi
then

Wi =−(ui−2 |uei|) |ωi| (12)

which implies that Wi < 0 as |uei|< ui
2 .

B) if |ωi|< εi
Fi

then

Wi = −(Fi |ωi|− |uei|) |ωi| (13)

which is negative if |ωi|> |uei|
Fi

.

So, after a while, |ω| will be bounded by F−1 |ue| which
converges to zero asymptotically. Therefore, the angular
velocity closed loop dynamics is globally asymptotically
stable.

V. SAMPLE SIMULATIONS

Fig.2a and Fig.2b show the uncompensated and com-
pensated control system responses to the same initial con-
dition. As expected, the compensated system can stabilize
the angular velocity despite the actuators’ constraints while
the uncompensated control system cannot, with the angular
velocity eventually diverging.
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Fig. 2: (a) Uncompensated system response, (b) Compen-
sated system response

VI. CONCLUSION

This paper has addressed anti-windup design problem for
a nonlinear rigid body attitude control system to attain global
asymptotic stability of angular velocity in manual mode
even if the actuators are saturating. The proposed method
stabilizes the angular velocity dynamics in the considered
operational mode successfully. However, the anti-windup
compensation problem for this type of attitude control system
to achieve global attitude tracking is more challenging and is
under study by the authors. The work here forms a first step
in the development of more general anti-windup schemes for
rigid body control problems involving NDI.
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