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Abstract. We use the action of Atkin-Lehner operators to generate a family of reciprocity
formulas for newform Dedekind sums. This family of reciprocity formulas provides symme-
tries which we use to investigate the kernel of these Dedekind sums.

1. Introduction

1.1. Motivation. Dedekind sums were introduced as a means of expressing the transfor-
mation formula of the Dedekind eta function. These sums appear in numerous contexts,
including topology, quadratic reciprocity, and modular forms. More background information
on the classical Dedekind sum and Dedekind eta function can be found in [Apo90].
Newform Dedekind sums Sχ1,χ2

associated to a pair of primitive Dirichlet characters χ1, χ2

(modulo q1, q2, respectively) were defined in [SVY20], and many of their basic properties
were developed therein. The most important property is that each Dedekind sum is a group
homomorphism on Γ1(q1q2) (see Lemma 2.3). In addition, there is a reciprocity formula
relating Sχ1,χ2

to Sχ2,χ1
(see [SVY20, Thm 1.3] or (4) below for the precise statement). This

reciprocity formula generalizes the well-known reciprocity formula for the classical Dedekind
sum, which has numerous applications including a proof of quadratic reciprocity, fast calcu-
lation of Dedekind sums, etc. The main result in this paper, stated in Theorem 1.1 below,
further generalizes this by giving a family of reciprocity formulas.
The kernel of a Dedekind sum, i.e., the set of elements of Γ1(q1q2) for which the Dedekind

sum vanishes, was introduced and studied in [NRY21]. The reciprocity formula from [SVY20]
played a crucial role in [NRY21] in understanding certain experimentally-observed patterns
in the kernel. However, there were other observed patterns that were not explained in
[NRY21]. As an application of our new reciprocity formulas, our second main result, stated
in Theorem 1.3 below, identifies additional families of elements lying in the kernel.
The key tool in the proof of the reciprocity formula in [SVY20] is understanding the action

of the Fricke involution on Dedekind sums. Here we extend this by developing the action of
all the Atkin-Lehner operators on the newform Dedekind sums.

1.2. The reciprocity formula. We begin with some notation. Let χ1 (mod q1) and χ2

(mod q2) be primitive Dirichlet characters, with χ1χ2(−1) = 1. Let B1 be the first Bernoulli
function defined by

B1(x) =

{

x− +x, − 1
2
, if x ∈ R\Z

0, if x ∈ Z.

Suppose γ = ( a b
c d ) ∈ Γ0(q1q2) with c g 1. For q1, q2 > 1, define the Dedekind sum by

(1) Sχ1,χ2
(γ) = Sχ1,χ2

(a, c) =
∑

jmod c

∑

nmod q1

χ2(j)χ1(n)B1

(
j

c

)

B1

(
n

q1
+
aj

c

)

.
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To be clear, we will use a different definition of the Dedekind sum (see Section 2.3) which is
better-suited for our purposes. In fact, (1) is derived in [SVY20] only after substantial work.
Let WQ be an Atkin-Lehner operator on Γ0(N) as defined in Section 2.1, with N =

q1q2 = QR, and with (Q,R) = 1. A Dirichlet character χi (mod qi) factors uniquely as

χi = χ
(Q)
i χ

(R)
i where χ

(Q)
i has conductor (qi, Q) =: q

(Q)
i and χ

(R)
i has conductor (qi, R) =: q

(R)
i .

Define χ′
1, χ

′
2 by

(2) χ′
1 = χ

(Q)
2 χ

(R)
1 and χ′

2 = χ
(Q)
1 χ

(R)
2 .

In words, χ′
1 and χ′

2 result from exchanging the Q-portions of χ1 and χ2. Here χ′
i has

conductor q′i, where q
′
1 = q

(Q)
2 q

(R)
1 and q′2 = q

(Q)
1 q

(R)
2 .

In simplified cases, our new family of reciprocity formulas takes the following form.

Theorem 1.1 (Simplified Reciprocity Formula). Let q1, q2 be such that q1q2 > 1. Let N =
q1q2, suppose γ ∈ Γ1(N), and define γ′ ∈ Γ1(N) by WQγ = γ′WQ. Then

(3) Sχ1,χ2
(γ′) = ξSχ′

1
,χ′

2
(γ),

where ξ has absolute value one and depends on χ1, χ2, Q, and the entries of WQ.

The more general statement of this reciprocity formula, including an explicit value of ξ, is
presented in Theorem 3.1.
A special case of Theorem 1.1 occurs with WN = ( 0 −1

q1q2 0 ) chosen to be the Fricke invo-

lution. If γ = ( a b
cq1q2 d ) ∈ Γ1(q1q2), then γ′ = ( d −c

−bq1q2 a ). Moreover, (2) says χ′
1 = χ2 and

χ′
2 = χ1, and (3) becomes

(4) Sχ1,χ2
(γ) = ±Sχ2,χ1

(γ′)

where ± = +1 if both χi are even, and ± = −1 if both χi are odd. This is essentially
Theorem 1.3 in [SVY20].
Note that [SVY20] and [NRY21] considered Dedekind sums with q1 > 1 and q2 > 1. It

can happen in (3) that q1 > 1 and q2 > 1, but that q′1 = 1 or q′2 = 1. For this reason, we
were naturally led to extend the definition of Dedekind sums to allow at most one qi to equal
1, and to develop some of their properties generalizing results from [SVY20] and [NRY21].
The reader should beware that the formula (1) no longer holds when some qi = 1, and in
fact S1,χ2

(γ) does not depend only on the first column of γ (e.g., see (21) below). Some of
the forthcoming results, such as Theorem 1.3 below, have some hypotheses ultimately due
to subtleties arising from qi = 1.
Since [SVY20] treated properties of the newform Dedekind sum when q1 > 1 and q2 > 1,

and the present work treats q1 > 1 or q2 > 1, it is natural to ask about the case q1 = q2 = 1.
There are indeed many works that develop properties of the classical Dedekind sum from
the level 1 Eisenstein series; for instance, [Gol73] treats the Eisenstein series attached to
a cusp for a general Fuchsian group of the first kind. One of the pleasant features of the
newform Eisenstein series (see Section 2.2 for the definition) is that it does not have pole
at s = 1, except when q1 = q2 = 1. This pole at s = 1 is responsible for a term of the
form log y in the Laurent expansion around s = 1, which in turn has a dramatic effect on
the resulting formulas for the Dedekind sums. Since the classical case with q1 = q2 = 1 has
a voluminous literature, our assumption that q1 > 1 or q2 > 1 is not a significant logical
restriction. Moreover, this assumption allows for some pleasant simplifications due to the
holomorphy of the Eisenstein series at s = 1.



RECIPROCITY AND THE KERNEL OF DEDEKIND SUMS 3

1.3. The kernel of Dedekind sums.

Definition 1.2 ([NRY21] Defn. 1.4). Let χ1 and χ2 be primitive Dirichlet characters modulo

q1 and q2, respectively, with q1 > 1 and q2 > 1. Then let

Kχ1,χ2
= {γ ∈ Γ0(N) | Sχ1,χ2

(γ) = 0}, Kq1,q2 = ∩χ1,χ2
Kχ1,χ2

, K1
q1,q2

= Kq1,q2 ∩ Γ1(N).

An investigation of these kernels was undertaken in [NRY21]. The authors used SageMath
[SD21] and (1) to compute Sχ1,χ2

(a, c) for all a (mod c) and c f 10q1q2, and various small
values of q1, q2. Using this data, they recorded those elements lying in Kχ1,χ2

, Kq1,q2 , and so
on. In Figure 1, we have reproduced the elements of K3,5 from [NRY21], where the horizontal
axis corresponds to the a-value, and the vertical axis corresponds to the c-value. In the graph
of K3,5 in Figure 1, we have highlighted elements in the kernel that were proved to exist in
[NRY21] and which crucially used (4). By applying Theorem 3.1, we additionally explain all
but two of the remaining elements in Figure 1 (see Theorem 1.3 and (27)).

Figure 1. Elements of K3,5 with 1 f c f 10q1q2

The following relationship follows from Theorem 1.1:

(5) Sχ′

1
,χ′

2
(γ) = 0 ⇐⇒ Sχ1,χ2

(γ′) = 0.

Technically, the simplified version in Theorem 1.1 gives this relation if γ, γ′ ∈ Γ1(N), but
the more general reciprocity formula in Theorem 3.1 implies (5) for γ, γ′ ∈ Γ0(N). Using
(5), we derive the following theorem (see Section 4 for the proof).

Theorem 1.3. Let q1q2 = N = QR with (Q,R) = 1, q1 ̸= 1, and q2 ̸= R. Suppose r, u ∈ Z

with (r, R) = 1 and (u,Q) = 1. Then for any k ∈ Z, we have

Sχ1,χ2
(±1 +Nkur,NRku2) = 0.

Example 1.4. We illustrate Theorem 1.3’s ability to justify many new elements displayed
in Figure 1. Let N = 15, R = 3, k = u = 1. Taking r = 1, 2 reveals that (±1 + 15, 45)
and (±1 + 30, 45) are in the kernel. Taking k = 2, 3 demonstrates the same for the non-
highlighted points in Figure 1 with c = 90 and c = 135. Now let R = 1. Then, taking r = 1,
u = 2, and k = 1, 2 explains that the non-highlighted points with c = 60 and c = 120 are
also in the kernel. The only remaining unexplained points from Figure 1 are those such that
c = 105 and a = 29, 76. These points are not obtainable from Theorem 1.3. This can be
seen without computation by noting that the points proved to be in the kernel via Theorem
1.3 come in pairs with the values of a separated by two, yet the points in the row c = 105
do not occur in such pairs.

Also note that since a2 ≡ 1 (mod 105) for a = 29, 76, then [NRY21, Prop. 2.2] may
be used to explain these remaining points appearing in the figure; we leave the details for
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an interested reader. We caution the reader that there is no reason to expect that all the
elements of K3,5 should be understood by results of these types.

2. Background

2.1. Atkin-Lehner Operators. Let N = QR with (Q,R) = 1. Following [AL78], we
define an Atkin-Lehner operator WQ on Γ0(N) as follows. Let r0, u0 ∈ Z be such that
(r0, R) = 1 and (u0, Q) = 1. Let r, t, u, v ∈ Z with r ≡ r0 (mod R), u ≡ u0 (mod Q), and
Qrv −Rut = 1. Then we define

W
(r0,u0)
Q = WQ =

(
Qr t
Nu Qv

)

.

This definition preserves the essential properties (see Lemma 2.1 below) of the operators as
given in [AL78], which took u0 = r0 = 1. The added flexibility in u0 and r0 will be helpful
in Section 4. The relaxed restrictions also mean the Fricke involution is a specialization of
the Atkin-Lehner operators: take Q = N , R = 1, u = u0 = 1, t = −1, r = v = r0 = 0, so
WQ = ( 0 −1

N 0 ), the Fricke involution.
Suppose that WQ and W ′

Q are Atkin-Lehner operators (with possibly different values of
r, t, u, v, but the same choice of r0, u0). For γ ∈ Γ0(N), define γ′ via

(6) WQγ = γ′W ′
Q.

Lemma 2.1. With γ′ defined as in (6), we have γ′ ∈ Γ0(N). Let dγ and dγ′ be the lower-right

entries of γ and γ′, respectively. Then

(7) dγ′ ≡
{

dγ (mod R),

d−1
γ (mod Q).

Proof. Say γ = ( a b
cN d ) ∈ Γ0(N). By brute force, we compute γ′ = WQγW

′−1
Q as

(8) γ′ =

(
Qrv′a+Ntv′c−Nru′b−Rtu′d −rt′a−Rtt′c+Qrr′b+ tr′d
N(uv′a+Qvv′c−Ruu′b− vu′d) −Rut′a−Nvt′c+Nur′b+Qvr′d

)

.

Since det(WQ) = det(W ′
Q) = Q, then det(γ′) = 1. By inspection, γ′ has integer entries, and

its lower-left entry is ≡ 0 (mod N). Modulo R, the lower-right entry is

d′γ ≡ Qvr′dγ ≡ (Qvr −Rut)dγ ≡ dγ (mod R),

where we have used r′ ≡ r0 ≡ r (mod R). Similarly, using a ≡ d−1
γ (mod N), we have

d′γ ≡ −Rut′a ≡ (Qvr −Rut)d−1
γ ≡ d−1

γ (mod Q). □

Remark 2.2. By taking γ ∈ Γ1(N), Lemma 2.1 gives that γ′ defined as in (6) satisfies
γ′ ∈ Γ1(N). In particular, taking γ = ( 1 0

0 1 ) shows WQ = αW ′
Q for some α ∈ Γ1(N).

The Atkin-Lehner operators act on modular functions on Γ1(N) as follows. Suppose g is
on Γ0(N) with Dirichlet character ψ, meaning g(γz) = ψ(γ)g(z) for all γ ∈ Γ0(N) and z ∈ H;
here ψ(γ) = ψ(dγ), where dγ is the lower-right entry of γ as above. Write ψ = ψ(Q)ψ(R), where
ψ(Q) has modulus Q and ψ(R) has modulus R. Let h(z) = g(WQz) = g(W ′

Qz) (the latter
equality following from Remark 2.2). Then h(γz) = g(WQγz) = g(γ′W ′

Qz) = ψ(γ′)h(z). By
Lemma 2.1, ψ(γ′) = ψ′(γ), where

(9) ψ′ := ψ
(Q)
ψ(R).
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2.2. Eisenstein Series. Let χ1, χ2 be primitive Dirichlet characters modulo q1, q2, respec-
tively, such that χ1χ2(−1) = 1. By convention, we allow qi = 1, in which case χi(n) = 1 for
all n ∈ Z. The newform Eisenstein series attached to χ1, χ2 is defined as

Eχ1,χ2
(z, s) =

1

2

∑

(c,d)=1

(q2y)
sχ1(c)χ2(d)

|cq2z + d|2s
, Re(s) > 1.

The function Eχ1,χ2
is automorphic on Γ0(q1q2) with character ψ = χ1χ2, and we refer the

reader to [You19] as a convenient reference for this fact and others to follow.
Define the “completed” Eisenstein series by

(10) E∗
χ1,χ2

(z, s) =
(q2/π)

s

τ(χ2)
Γ(s)L(2s, χ1χ2)Eχ1,χ2

(z, s),

where τ(χ2) denotes the Gauss sum, and L(s, χ1χ2) =
∑

ng1

χ1χ2(n)n
−s. The Fourier expan-

sion takes the form

(11) E∗
χ1,χ2

(z, s) = e∗χ1,χ2
(y, s) + 2

√
y
∑

n ̸=0

λχ1,χ2
(n, s)e(nx)Ks− 1

2

(2π|n|y),

where z = x+ iy, Kν is the K-Bessel function,

(12) λχ1,χ2
(n, s) = χ2(sgn(n))

∑

ab=|n|

χ1(a)χ2(b)(b/a)
s− 1

2 ,

and the constant term e∗χ1,χ2
(y, s) is given by

(13) δq1=1q
2s
2

π−s

τ(χ2)
Γ(s)L(2s, χ2)y

s + δq2=1q
2−2s
1

π−(1−s)

τ(χ1)
Γ(1− s)L(2− 2s, χ1)y

1−s,

where δq=1 is the delta function equalling 1 if q = 1 and 0 otherwise. Throughout the
remainder of the paper, we assume that q1q2 > 1. Combined with (11), this condition
ensures that e∗χ1,χ2

(y, s) and E∗
χ1,χ2

(z, s) are analytic for all s ∈ C. With some simplifications
(see [SVY20, (1.5), (1.6)]), (11) specializes as

(14) E∗
χ1,χ2

(z, 1) = Fχ1,χ2
(z) + χ2(−1)F χ1,χ2

(z),

where

(15) Fχ1,χ2
(z) = c1z + c0 +

∞∑

n=1

λχ1,χ2
(n, 1)√
n

e(nz)

and where

(16) c1 = δq1=1
q22L(2, χ2)

2πiτ(χ2)
= δq1=1πiL(−1, χ2), and c0 = δq2=1

1
2
L(1, χ1).

Note that the calculation of both constants c1 and c0 used the functional equation of the
Dirichlet L-function.

A key feature of the newform Eisenstein series is that they are pseudo-eigenfunctions of
the Atkin-Lehner operators. By [You19, (9.3)] (see also [Wei77]),

(17) Eχ1,χ2
(WQz, s) = CEχ′

1
,χ′

2
(z, s),

where C = χ
(Q)
1 (−1)ψ(Q)(q

(R)
1 u0)ψ

(R)
(q

(Q)
2 r0). This evaluation of C can be found in [You19,

Section 9.1] with r0, u0 = 1, but it is easy to extend the calculation for general r0 and u0.
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Note that ψ′ defined by (9) equals χ′
1χ2

′. Similarly, for the completed Eisenstein series, we
derive

(18) E∗
χ1,χ2

(WQz, 1) = βE∗
χ′

1
,χ′

2

(z, 1), where β =
q2τ(χ

′
2)

q′2τ(χ2)
C.

2.3. Dedekind Sums. We now turn to the newform Dedekind sums that are constructed
with the newform Eisenstein series. These Dedekind sums were defined in [SVY20], though
with the assumption that q1 ̸= 1 and q2 ̸= 1, in which case (1) was derived after some
extensive calculations. We will extend their definition to cover the cases where at most one
of the qi is 1. Some of the proofs from [SVY20] carry over nearly verbatim, in which case we
will omit the details here and refer the reader to [SVY20].

For γ ∈ Γ0(N), define the function

(19) φχ1,χ2
(γ, z) = Fχ1,χ2

(γz)− ψ(γ)Fχ1,χ2
(z),

where recall ψ = χ1χ2 and χ1χ2(−1) = 1. This definition of φχ1,χ2
extends that of [SVY20]

by allowing at most one of c1 or c0 to be nonzero. The function φχ1,χ2
(γ, z) is constant in

terms of z; see [SVY20, Lemma 2.1] for a proof that applies to this extended definition.
Therefore we write φχ1,χ2

(γ, z) more simply as φχ1,χ2
(γ). As in [SVY20], we define the

newform Dedekind sum by

(20) Sχ1,χ2
(γ) =

τ(χ1)

πi
φχ1,χ2

(γ).

The most important property of the newform Dedekind sum is that it is a group homo-
morphism on Γ1(N). Precisely, we have

Lemma 2.3 ([SVY20] Lemma 2.2). Let γ1, γ2 ∈ Γ0(N). Then

Sχ1,χ2
(γ1γ2) = Sχ1,χ2

(γ1) + ψ(γ1)Sχ1,χ2
(γ2).

The proof in [SVY20] carries over identically to the case where q1 = 1 or q2 = 1.
Note that Sχ1,χ2

(γ) = 0 if and only if Fχ1,χ2
(γz) = ψ(γ)Fχ1,χ2

(z) for all z ∈ H. So, the
elements of Kχ1,χ2

are those for which Fχ1,χ2
transforms like an automorphic form. This is

some motivation for studying the kernel of the Dedekind sum.

Proposition 2.4. Suppose γ1, γ2 ∈ Γ0(N) have the same left column and suppose q1 ̸= 1.
Then Sχ1,χ2

(γ1) = Sχ1,χ2
(γ2).

Proof. It follows from our conditions on γ1, γ2 that γ1 = γ2ω with ω = ( 1 b
0 1 ) for some b ∈ Z.

Now, by Lemma 2.3, Sχ1,χ2
(γ1) = Sχ1,χ2

(γ2ω) = Sχ1,χ2
(γ2) + ψ(γ2)Sχ1,χ2

(ω). By (19) and
(15), if q1 ̸= 1 then Sχ1,χ2

(ω) = 0. □

Proposition 2.4 justifies our earlier notation Sχ1,χ2
( a b
c d ) = Sχ1,χ2

(a, c), provided q1 ̸= 1.
On the other hand, we have

(21) S1,χ2
( 1 b
0 1 ) = bL(−1, χ2),

showing the condition q1 ̸= 1 is necessary in Proposition 2.4. Now define

(22) φχ1,χ2
(WQ, z) = φχ1,χ2

(WQ) = Fχ1,χ2
(WQz)− βFχ′

1
,χ′

2
(z)

for z ∈ H. Note, φχ1,χ2
(WQ) may depend on the choice of r, t, u, and v in WQ, but β does

not (though β does depend on u0, r0, the characters χi, and so on).

Lemma 2.5. The function φχ1,χ2
(WQ, z) is independent of z.
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Proof. From (14) and (18), it immediately follows that

φχ1,χ2
(WQ, z) = −χ2(−1)φχ1,χ2

(WQ, z).

Since φχ1,χ2
(WQ, z) is holomorphic and φχ1,χ2

(WQ, z) is anti-holomorphic, φχ1,χ2
(WQ, z) must

be constant in z. □

Lemma 2.5 justifies writing φχ1,χ2
(WQ, z) = φχ1,χ2

(WQ). Analogously to (20), we define
the Dedekind sum Sχ1,χ2

associated to WQ as

(23) Sχ1,χ2
(WQ) =

τ(χ1)

πi
φχ1,χ2

(WQ).

3. Proof of the generalized reciprocity formula

Theorem 3.1 (Generalized Reciprocity Formula). Let χ1, χ2 be primitive Dirichlet charac-

ters with moduli q1, q2, respectively, such that q1q2 > 1, and χ1χ2(−1) = 1. Let N = q1q2 and
letWQ andW ′

Q be Atkin-Lehner operators as described in Section 2.1. Then for γ, γ′ ∈ Γ0(N)
related by WQγ = γ′W ′

Q, we have the following reciprocity formula:

(24) Sχ1,χ2
(WQ) + ξSχ′

1
,χ′

2
(γ) = ψ′(γ)Sχ1,χ2

(W ′
Q) + Sχ1,χ2

(γ′),

where ξ = τ(χ1)

τ(χ′

1
)
β and ψ′ = χ′

1χ
′
2. Here |ξ| = 1.

Proof. Recall (19) and (22). Now we calculate

(25) Fχ1,χ2
(WQγz)− βψ′(γ)Fχ′

1
,χ′

2
(z)

in two ways. First, note that it equals

Fχ1,χ2
(WQγz)− βFχ′

1
,χ′

2
(γz)

︸ ︷︷ ︸

φχ1,χ2
(WQ)

+β (Fχ′

1
,χ′

2
(γz)− ψ′(γ)Fχ′

1
,χ′

2
(z))

︸ ︷︷ ︸

φχ′

1
,χ′

2

(γ)

.

Alternatively, we use WQγ = γ′W ′
Q to see that (25) equals

Fχ1,χ2
(γ′W ′

Qz)− ψ′(γ)Fχ1,χ2
(W ′

Qz) + ψ′(γ)(Fχ1,χ2
(W ′

Qz)− βFχ′

1
,χ′

2
(z)).

Using ψ′(γ) = ψ(γ′), this becomes

Fχ1,χ2
(γ′W ′

Qz)− ψ(γ′)Fχ1,χ2
(W ′

Qz)
︸ ︷︷ ︸

φχ1,χ2
(γ′)

+ψ′(γ) (Fχ1,χ2
(W ′

Qz)− βFχ′

1
,χ′

2
(z))

︸ ︷︷ ︸

φχ1,χ2
(W ′

Q
)

.

Since the value of β depends solely on r0 and u0 and not r, t, u, and v, it remains unchanged
between the formulas involving WQ and W ′

Q. Equating the two expressions for (25), we infer

φχ1,χ2
(WQ) + βφχ′

1
,χ′

2
(γ) = φχ1,χ2

(γ′) + ψ′(γ)φχ1,χ2
(W ′

Q).

By (20) and (23), we deduce (24). Note that |β| = (q2/q
′
2)

1/2, so |ξ| = 1, since q1q2 = q′1q
′
2.

Finally, we deduce Theorem 1.1, which is the special case that γ ∈ Γ1(N) and W ′
Q = WQ.

In this case, γ′ ∈ Γ1(N) as well, and (24) simplifies via ψ′(γ) = 1. In addition, the term
Sχ1,χ2

(WQ) appears on both sides of (24) and may be cancelled. □



8 ALEXIS LABELLE, EMILY VAN BERGEYK, AND MATTHEW P. YOUNG

4. Kernel

In this section, we use Theorem 3.1 to further the study initiated in [NRY21] of the kernel
of Dedekind sums.

Proof of Theorem 1.3. Given r, u as stated in the theorem, let WQ = ( Qr t
Nu Qv ) be an Atkin-

Lehner operator (the conditions (r, R) = 1 and (u,Q) = 1 are sufficient to ensure such a
matrix exists, and then r0, u0 are determined).

Let γ = ( 1 −k
0 1 ). Recall γ′ is defined by WQγ = γ′WQ and is calculated in (8), giving

(26) γ′ =

(
1 +Nkur ∗
NRku2 ∗

)

.

The strategy for the proof is now to show that the assumptions in Theorem 1.3 imply that
Sχ′

1
,χ′

2
(γ) = 0, and so the reciprocity formula Theorem 3.1 implies Sχ1,χ2

(γ′) = 0. The
condition q1 ̸= 1 is required for Sχ1,χ2

(γ′) to only depend on the left column of γ′.
We now show that the condition q2 ̸= R implies that q′1 ̸= 1. Recall that q′1 = (q2, Q)(q1, R),

so that q′1 = 1 implies (q2, Q) = 1 and (q1, R) = 1. However, these latter two conditions
imply q2 = R (and also q1 = Q), a contradiction.

Using q′1 ̸= 1, and by (19) and (15), we conclude Sχ′

1
,χ′

2
(γ) = 0. Therefore, Sχ1,χ2

(γ′) = 0,

by the reciprocity formula. That is, Sχ1,χ2
(1 + Nkur,NRku2) = 0, where we have used

q1 ̸= 1 in order to invoke Proposition 2.4.
Finally, by taking γ = ( −1 −k

0 −1 ), we obtain

□(27) Sχ1,χ2
(−1 +Nkur,NRku2) = 0.

In the following example, we elaborate on a special case of Theorem 1.3 to demonstrate
its versatility.

Example 4.1. Consider K7,11 displayed in Figure 2. It follows from Theorem 1.3 (with
R = 7, Q = 11, u = 1, and (r, 7) = 1) that (±1 + 77kr, 539k) is in the kernel. This
encompasses all elements with c = 539k, which are those circled in Figure 2 (note that due
to the ±1 term in Theorem 1.3, each circle contains a pair of kernel elements with close
upper-left entries).

Figure 2. Elements of K7,11 for 1 f c f 10q1q2

Note that in Figures 1 and 2, the only kernel elements present in rows c = Nkq2 are
those equivalent to (±1, Nkq2). We refer the reader to [NRY21] for additional examples
of this phenomenon. The following proposition gives some evidence for this sparseness by
demonstrating that no element of the form (a, c) = (±1 + Nkr,Nkq2) with nonzero k is in
the kernel.
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Proposition 4.2. Let q1q2 = N with (q1, q2) = 1, q1 ̸= 1. Suppose r ∈ Z with (r, q2) = 1.
Then for any nonzero k ∈ Z, we have

(28) Sχ1,χ2
(±1 +Nkr,Nkq2) ̸= 0.

Proof. The proof follows the same framework as Theorem 1.3. Let WQ be an Atkin-Lehner
operator with Q = q1 and R = q2, so (q1, R) = 1 and (q2, Q) = 1. The effect of WQ on q1, q2
is such that q′1 = 1. Let γ = ( 1 −k

0 1 ). By (21), S1,χ′

2
(γ) = −kL(−1, χ2

′) ̸= 0. Therefore, with
γ′ as in (26), we have Sχ1,χ2

(γ′) ̸= 0. This shows the claim (28). □
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