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ABSTRACT. We use the action of Atkin-Lehner operators to generate a family of reciprocity
formulas for newform Dedekind sums. This family of reciprocity formulas provides symme-
tries which we use to investigate the kernel of these Dedekind sums.

1. INTRODUCTION

1.1. Motivation. Dedekind sums were introduced as a means of expressing the transfor-
mation formula of the Dedekind eta function. These sums appear in numerous contexts,
including topology, quadratic reciprocity, and modular forms. More background information
on the classical Dedekind sum and Dedekind eta function can be found in [Apo90].

Newform Dedekind sums S, ,, associated to a pair of primitive Dirichlet characters x1, x2
(modulo 1, g2, respectively) were defined in [SVY20], and many of their basic properties
were developed therein. The most important property is that each Dedekind sum is a group
homomorphism on I'1(¢q1¢2) (see Lemma 2.3). In addition, there is a reciprocity formula
relating Sy, v, 10 Sy,xs (see [SVY20, Thm 1.3] or (4) below for the precise statement). This
reciprocity formula generalizes the well-known reciprocity formula for the classical Dedekind
sum, which has numerous applications including a proof of quadratic reciprocity, fast calcu-
lation of Dedekind sums, etc. The main result in this paper, stated in Theorem 1.1 below,
further generalizes this by giving a family of reciprocity formulas.

The kernel of a Dedekind sum, i.e., the set of elements of I'1(g;¢2) for which the Dedekind
sum vanishes, was introduced and studied in [NRY21]. The reciprocity formula from [SVY20]
played a crucial role in [NRY21] in understanding certain experimentally-observed patterns
in the kernel. However, there were other observed patterns that were not explained in
INRY21]. As an application of our new reciprocity formulas, our second main result, stated
in Theorem 1.3 below, identifies additional families of elements lying in the kernel.

The key tool in the proof of the reciprocity formula in [SVY20] is understanding the action
of the Fricke involution on Dedekind sums. Here we extend this by developing the action of
all the Atkin-Lehner operators on the newform Dedekind sums.

1.2. The reciprocity formula. We begin with some notation. Let y; (mod ¢;) and ys
(mod ¢o) be primitive Dirichlet characters, with x1x2(—1) = 1. Let B; be the first Bernoulli
function defined by

By (x) = z—|z] -3, ifzeR\Z
" o, if v € Z.

Suppose v = (¢%) € T'g(q1g2) with ¢ > 1. For ¢1, g2 > 1, define the Dedekind sum by

0 Sue) =Saed= 3 5w (3) (5 Y)
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To be clear, we will use a different definition of the Dedekind sum (see Section 2.3) which is
better-suited for our purposes. In fact, (1) is derived in [SVY20] only after substantial work.
Let Wy be an Atkin-Lehner operator on I'g(N) as defined in Section 2.1, with N =

¢1q2 = QR, and with (Q,R) = 1. A Dirichlet character x; (mod ¢;) factors uniquely as

Xi = XSQ)XE where X(Q (Q) and X( ) has conductor (¢;, R) =: qi(R).

Define x7, x5 by

has conductor (¢;, Q) =

R R
(2) =0 and = 9P

In words, x} and xj result from exchanging the Q)-portions of x; and x,. Here X/ has

conductor ¢}, where ¢} = qé )ql and ¢ = q%Q) q( ),

In simplified cases, our new family of reciprocity formulas takes the following form.

Theorem 1.1 (Simplified Reciprocity Formula). Let q1,qs be such that giqgo > 1. Let N =
¢1G2, suppose v € I'1(N), and define v' € I'1(N) by Woy =~'"Wq. Then

(3) SX1,X2 (’7/) = €SX'17X'2 (7)7

where & has absolute value one and depends on x1, X2, @, and the entries of Wg.

The more general statement of this reciprocity formula, including an explicit value of &, is
presented in Theorem 3.1.

A special case of Theorem 1.1 occurs with Wy = (q10q2 o) chosen to be the Fricke invo-
lution. If v = (%, 5) € Ti(q1g2), then v/ = (_b;lm 5). Moreover, (2) says x; = x2 and
X5 = X1, and (3) becomes

(4) Sxixa (v) = 5% (7,)

where += = +1 if both x; are even, and + = —1 if both y; are odd. This is essentially
Theorem 1.3 in [SVY20].

Note that [SVY20] and [NRY21] considered Dedekind sums with ¢; > 1 and g2 > 1. It
can happen in (3) that ¢; > 1 and ¢ > 1, but that ¢ = 1 or ¢5 = 1. For this reason, we
were naturally led to extend the definition of Dedekind sums to allow at most one ¢; to equal
1, and to develop some of their properties generalizing results from [SVY20] and [NRY21].
The reader should beware that the formula (1) no longer holds when some ¢; = 1, and in
fact S1y,(7) does not depend only on the first column of v (e.g., see (21) below). Some of
the forthcoming results, such as Theorem 1.3 below, have some hypotheses ultimately due
to subtleties arising from ¢; = 1.

Since [SVY20] treated properties of the newform Dedekind sum when ¢; > 1 and ¢ > 1,
and the present work treats ¢; > 1 or ¢ > 1, it is natural to ask about the case ¢ = ¢» = 1.
There are indeed many works that develop properties of the classical Dedekind sum from
the level 1 Eisenstein series; for instance, [Gol73| treats the Eisenstein series attached to
a cusp for a general Fuchsian group of the first kind. One of the pleasant features of the
newform Eisenstein series (see Section 2.2 for the definition) is that it does not have pole
at s = 1, except when ¢; = ¢o = 1. This pole at s = 1 is responsible for a term of the
form logy in the Laurent expansion around s = 1, which in turn has a dramatic effect on
the resulting formulas for the Dedekind sums. Since the classical case with ¢ = g2 = 1 has
a voluminous literature, our assumption that ¢; > 1 or ¢go > 1 is not a significant logical
restriction. Moreover, this assumption allows for some pleasant simplifications due to the
holomorphy of the Eisenstein series at s = 1.
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1.3. The kernel of Dedekind sums.

Definition 1.2 ([NRY21] Defn. 1.4). Let x1 and x2 be primitive Dirichlet characters modulo
q1 and qo, respectively, with ¢ > 1 and g > 1. Then let

K)a,xz = {'Y € FO(N) | SX1,X2(7) = 0}7 Kq1,q2 = mX17X2KX1,X27 K, = qup N F1<N)-

41,92

An investigation of these kernels was undertaken in [NRY21]. The authors used SageMath
[SD21] and (1) to compute Sy, y,(a,c) for all a (mod ¢) and ¢ < 10¢;¢2, and various small
values of ¢, q2. Using this data, they recorded those elements lying in K, ,,, Kg, ¢,, and so
on. In Figure 1, we have reproduced the elements of K35 from [NRY21], where the horizontal
axis corresponds to the a-value, and the vertical axis corresponds to the c-value. In the graph
of K35 in Figure 1, we have highlighted elements in the kernel that were proved to exist in
INRY21] and which crucially used (4). By applying Theorem 3.1, we additionally explain all

but two of the remaining elements in Figure 1 (see Theorem 1.3 and (27)).

0 20 40 60 80 100 120 140

Figure 1. Elements of K35 with 1 < ¢ < 10g1¢2

The following relationship follows from Theorem 1.1:

(5) Sxi (1) =0 <= Sx(¥)=0.
Technically, the simplified version in Theorem 1.1 gives this relation if v,~7" € I'1(V), but

the more general reciprocity formula in Theorem 3.1 implies (5) for v,~" € T'g(NN). Using
(5), we derive the following theorem (see Section 4 for the proof).

Theorem 1.3. Let g1qgo = N = QR with (Q,R) =1, 1 # 1, and q2 # R. Suppose r,u € Z
with (r, R) =1 and (u,Q) = 1. Then for any k € Z, we have

Syi e (£1 4+ Nkur, N Rku*) = 0.

Example 1.4. We illustrate Theorem 1.3’s ability to justify many new elements displayed
in Figure 1. Let N =15, R = 3, k = uw = 1. Taking r = 1,2 reveals that (+1 + 15,45)
and (£1 + 30,45) are in the kernel. Taking &k = 2,3 demonstrates the same for the non-
highlighted points in Figure 1 with ¢ = 90 and ¢ = 135. Now let R = 1. Then, taking r = 1,
u = 2, and k = 1,2 explains that the non-highlighted points with ¢ = 60 and ¢ = 120 are
also in the kernel. The only remaining unexplained points from Figure 1 are those such that
¢ = 105 and a = 29, 76. These points are not obtainable from Theorem 1.3. This can be
seen without computation by noting that the points proved to be in the kernel via Theorem
1.3 come in pairs with the values of a separated by two, yet the points in the row ¢ = 105
do not occur in such pairs.

Also note that since a* = 1 (mod 105) for a = 29,76, then [NRY21, Prop. 2.2] may
be used to explain these remaining points appearing in the figure; we leave the details for
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an interested reader. We caution the reader that there is no reason to expect that all the
elements of K35 should be understood by results of these types.

2. BACKGROUND

2.1. Atkin-Lehner Operators. Let N = QR with (Q,R) = 1. Following [ALT78], we
define an Atkin-Lehner operator Wy on I'g(N) as follows. Let r9,up € Z be such that
(ro, R) = 1 and (ug,Q) = 1. Let r,t,u,v € Z with r = ¢ (mod R), u = up (mod @), and
Qrv — Rut = 1. Then we define

(ro,uo) __ _ Qr t

This definition preserves the essential properties (see Lemma 2.1 below) of the operators as
given in [AL78], which took uy = ro = 1. The added flexibility in uo and ro will be helpful
in Section 4. The relaxed restrictions also mean the Fricke involution is a specialization of
the Atkin-Lehner operators: take Q = N, R=1,u=uy=1,t=—-1,r=v =1ry =0, so
Wo = (5 3'), the Fricke involution.

Suppose that Wq and W, are Atkin-Lehner operators (with possibly different values of
r,t,u,v, but the same Choice of 1o, up). For v € I'o(N), define v’ via

(6) Woy = +'Wp,.

Lemma 2.1. With~' defined as in (6), we have v € I'o(N). Let d, and d, be the lower-right
entries of v and ', respectively. Then

d, (mod R),
(7) dv = {d 1 (mod Q).

Proof. Say v = (%Y%) € To(N). By brute force, we compute 7/ = WQVWCIQ_I as
(8) ;[ Qrv'a+ Ntv'c — Nru'b — Rtu'd —rt'a — Rtt'c + Qrr'b + tr'd
v= N(uv'a+ Quv'c — Ruu'b — vu'd) —Rut'a — Nvt'c + Nur'b + Qur'd
Since det(Wq) = det(Wj,) = @, then det(y') = 1. By inspection, ' has integer entries, and
its lower-left entry is = 0 (mod N). Modulo R, the lower-right entry is
= Qur'd, = (Qur — Rut)d, = d, (mod R),
where we have used r’ = ry =r (mod R). Similarly, using a = d;l (mod N), we have
— — -1 _ -1
d, = —Rut'a = (Qur — Rut)d,’' =d* (mod Q). O

Remark 2.2. By taking v € I'1(/V), Lemma 2.1 gives that +' defined as in (6) satisfies
7" € T1(N). In particular, taking v = () shows Wg = aWy, for some a € I'y(N).

The Atkin-Lehner operators act on modular functions on I';(N) as follows. Suppose g is
on I'g(V) with Dirichlet character 1), meaning g(vz) = ¥(vy)g(z) for all v € FO(N) and z € H;
here 1 () = 9(d,), where d, is the lower-right entry of v as above. Write 1) = (@ ®) where
(@ has modulus Q and 77/1 (®) has modulus R. Let h(z) = g(Wpz) = g(Wqz) (the latter
equality following from Remark 2.2). Then h(yz) = g(Wgyz) = g(vWh2) = ¢(v)h(2). B
Lemma 2.1, ¥(vy') = ¢/(7), where

(9) W =
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2.2. Eisenstein Series. Let x1, x2 be primitive Dirichlet characters modulo ¢, g2, respec-
tively, such that y1x2(—1) = 1. By convention, we allow ¢; = 1, in which case x;(n) =1 for
all n € Z. The newform Eisenstein series attached to x1, x2 is defined as

1 *x1(c)xa(d
EX17X2(Z78> =35 Z (QZy> Xl( )X225( >7 Re<8) > 1.
cqrz + d|
(e,d)=1 ’
The function E,, ,, is automorphic on I'g(¢1q2) with character ¢ = x1Xz2, and we refer the
reader to [Youl9] as a convenient reference for this fact and others to follow.
Define the “completed” Eisenstein series by

* (q2/7)°
(1()) EX17X2 (27 8) = T(XQ) F(S)L(ZS, XlXQ)EXIaXQ <Z7 5)’
where 7(x2) denotes the Gauss sum, and L(s, x1x2) = >, x1x2(n)n~*. The Fourier expan-
n>1
sion takes the form
(11) By, (2,5) = €, 1, (5,5) + 205 Y M e (. s)e(nz) Ky (2mlnly),
n#0

where z = x + 1y, K, is the K-Bessel function,

(12) M (158) = xa(sgn(n) Y~ xa(@)xa(b)(b/a)* 2,

ab=|n|

and the constant term e}, (y, s) is given by

T8 7-‘-—(1_5)
(13) 5q1:1Q§8@F(S)L(23, X2)y® + 5q2:16]§_%ﬁr(1 —s)L(2 - 25, x7)y' ",
where 0,—; is the delta function equalling 1 if ¢ = 1 and 0 otherwise. Throughout the
remainder of the paper, we assume that ¢;go > 1. Combined with (11), this condition
ensures that e}, . (y,s) and E, | (z,s) are analytic for all s € C. With some simplifications

X2 X1,X2
(see [SVY20, (1.5), (1.6)]), (11) specializes as
(14> E;hXQ(Z’ 1) = FXl,Xz (Z) + X2(_1)_ﬁ,72(2)’
where
)\ xa(n, 1)
(15) Paale) = ez co 32 2 et
and where
¢ L(2, x2)

(16) C1 = (Sqlzl = 5(11:171'2'[/(—1,%), and Co — 5q2=1%L(17X1)'

2miT(x2)

Note that the calculation of both constants ¢; and ¢y used the functional equation of the
Dirichlet L-function.

A key feature of the newform Eisenstein series is that they are pseudo-eigenfunctions of
the Atkin-Lehner operators. By [Youl9, (9.3)] (see also [Wei77]),

(17> EXLXQ(WQZ7S) = CEXLX'Q(ZvS)a

where C' = XgQ)(—l)@/)(Q)(q§R)u0)E(R)(q§Q)TO). This evaluation of C' can be found in [Youl9,
Section 9.1] with ro,up = 1, but it is easy to extend the calculation for general o and wuy.
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Note that 9" defined by (9) equals x|X2'. Similarly, for the completed Eisenstein series, we
derive

(18) E:  (Woz,1)=BES ./ (z,1) where = MC
e e B (x2)
2.3. Dedekind Sums. We now turn to the newform Dedekind sums that are constructed
with the newform Eisenstein series. These Dedekind sums were defined in [SVY20], though
with the assumption that ¢; # 1 and ¢ # 1, in which case (1) was derived after some
extensive calculations. We will extend their definition to cover the cases where at most one
of the ¢; is 1. Some of the proofs from [SVY20] carry over nearly verbatim, in which case we
will omit the details here and refer the reader to [SVY20).
For v € I'y(V), define the function

(19) DPxr2 (15 2) = Py o (72) = (V) Fyy 12 (2),

where recall ¢ = x1xz and x1x2(—1) = 1. This definition of ¢,, ,, extends that of [SVY20]
by allowing at most one of ¢; or ¢y to be nonzero. The function ¢,, ,,(7,2) is constant in
terms of z; see [SVY20, Lemma 2.1] for a proof that applies to this extended definition.
Therefore we write ¢,, y,(7,2) more simply as ¢,, ,,(7). As in [SVY20], we define the
newform Dedekind sum by

(20) Sy (7) = 7(37) Dx1xa (V)

The most important property of the newform Dedekind sum is that it is a group homo-
morphism on 'y (V). Precisely, we have

Lemma 2.3 ([SVY20] Lemma 2.2). Let 71,72 € I'o(N). Then

SXLXZ (’7172) = SXI:XQ ('71) + w(fyl)Sthz (72)'

The proof in [SVY20] carries over identically to the case where ¢; =1 or g5 = 1.
Note that Sy, y,(7) = 0 if and only if F), \,(72) = ¥(7)Fy, 1. (%) for all z € H. So, the

elements of K, ,, are those for which F, ,, transforms like an automorphic form. This is

some motivation for studying the kernel of the Dedekind sum.

Proposition 2.4. Suppose 71,72 € ['o(N) have the same left column and suppose q; # 1.
Then SXLXQ (71) = SXLXZ (72)'

Proof. Tt follows from our conditions on 71, 7, that ;3 = Yew with w = (3 %) for some b € Z.

Now, by Lemma 2.3, S)a,xz(%) = SX1,Xz(72W) = Sxmcz(%) + w(”YZ)Sm,xz(W)- By (19) and
(15), if g1 # 1 then S,, y,(w) = 0. O

Proposition 2.4 justifies our earlier notation Sy, ,,(%%) = Sy, x.(a, ), provided ¢ # 1.
On the other hand, we have

(21) S (0 1) = bL(=1,X2),
showing the condition ¢; # 1 is necessary in Proposition 2.4. Now define
(22) Drin2(WQ, 2) = 0y W) = Fyy xo (Wo2) — 5Fxﬁ7x§(z)

for z € H. Note, ¢y, ,(Wg) may depend on the choice of r,¢,u, and v in Wy, but 5 does
not (though S does depend on g, ry, the characters y;, and so on).

Lemma 2.5. The function ¢y, ,,(Wo, 2) is independent of z.
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Proof. From (14) and (18), it immediately follows that

Dyae (W, 2) = =Xa2(—1) i s (Wap, 2).

Since ¢y, y,(Weq, 2) is holomorphic and ¢+ +5(Wq, 2) is anti-holomorphic, ¢y, y,(Wq, ) must
be constant in z. O

Lemma 2.5 justifies writing ¢, v, (Wa, 2) = ¢y, 1. (Wg). Analogously to (20), we define
the Dedekind sum S, ,, associated to Wy as

T(x1)
(23) SX1,X2 (WQ) = 7¢X17X2(WQ)‘
3. PROOF OF THE GENERALIZED RECIPROCITY FORMULA

Theorem 3.1 (Generalized Reciprocity Formula). Let x1, x2 be primitive Dirichlet charac-
ters with moduli q1, qo, respectively, such that q1qs > 1, and x1x2(—1) = 1. Let N = q1q2 and
let Wq and W{, be Atkin-Lehner operators as described in Section 2.1. Then for v, € T'o(N)
related by Wovy = +'W{,, we have the following reciprocity formula:

(24> SXth(WQ) + §SXI17XIQ (7) = ¢/(7)SX1,X2(Wé> + SX1,X2 (f}/)a
where £ = %ﬁ and ' = x| xh. Here |£] = 1.
Proof. Recall (19) and (22). Now we calculate

(25) By . (Wovz) — BW(V)FXLX’Q (2)

in two ways. First, note that it equals

Py (Woyz) — 5Fx’1,x’2 (v2) +8 (Fx’l,x’z (v2) — @D/(V)Fx’l,x’z (Z)Z

- 7 -
g

Px1.x2(WQ) ¢x’1,x’2 ™)

Alternatively, we use Wy = 7'WJ, to see that (25) equals

Fyixe ('YIWciQZ) - ¢/<7)FX17X2<WéZ> + W(’Y) (Fxmcz (Wéz) - BFxﬁ,xg (2)).
Using ¢'(y) = ¥(7’), this becomes

Fyixe ('VIW(.{)Z) - 7vb<'7/)Fx1,><2 (Wéz) +'(7) (FX17X2(WC,QZ) - ﬁFx’l,x’z (Z))/

N J/
-~ -~

bx1.x2 (V) Px1.x2 (Wé)

Since the value of $ depends solely on rg and uy and not r, ¢, u, and v, it remains unchanged
between the formulas involving Wg and W,. Equating the two expressions for (25), we infer

¢X17X2(WQ) + ﬁ¢x’1,x’2 (7) = ¢x1,x2 (7/) + wl(7)¢x1,X2(Wé))~

By (20) and (23), we deduce (24). Note that |3| = (g2/q5)"/?, so |¢| = 1, since q1¢2 = ¢/ db.
Finally, we deduce Theorem 1.1, which is the special case that v € T';(N) and W, = Wj,.

In this case, v € I';(N) as well, and (24) simplifies via ¢'(y) = 1. In addition, the term

Syixe(Wg) appears on both sides of (24) and may be cancelled. O
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4. KERNEL

In this section, we use Theorem 3.1 to further the study initiated in [NRY21] of the kernel
of Dedekind sums.

Proof of Theorem 1.3. Given r,u as stated in the theorem, let Wg = (" Qtv) be an Atkin-
Lehner operator (the conditions (r, R) = 1 and (u,Q) = 1 are sufficient to ensure such a
matrix exists, and then rg, ug are determined).

Let v = (§ 7%). Recall 4/ is defined by Wy = +'Wg and is calculated in (8), giving

, 1+ Nkur =
(26) 7= ( N Rku? *)
The strategy for the proof is now to show that the assumptions in Theorem 1.3 imply that
Syix,(7) = 0, and so the reciprocity formula Theorem 3.1 implies S, ,,(7') = 0. The
condition ¢; # 1 is required for S, ,,(7") to only depend on the left column of +'.

We now show that the condition g2 # R implies that ¢ # 1. Recall that ¢} = (g2, Q)(q1, R),
so that ¢} = 1 implies (¢2,Q) = 1 and (g1, R) = 1. However, these latter two conditions
imply ¢o = R (and also ¢; = @), a contradiction.

Using ¢; # 1, and by (19) and (15), we conclude Sy s (v) = 0. Therefore, Sy, \,(7") =0,
by the reciprocity formula. That is, Sy, ,,(1 + Nkur, NRku?) = 0, where we have used
¢1 # 1 in order to invoke Proposition 2.4.

Finally, by taking v = (' =%), we obtain

(27) Syine (=1 + Nkur, NRku?) = 0. O

In the following example, we elaborate on a special case of Theorem 1.3 to demonstrate
its versatility.

Example 4.1. Consider K7, displayed in Figure 2. It follows from Theorem 1.3 (with
R=170Q =11, w = 1, and (r,7) = 1) that (1 + 77kr,539k) is in the kernel. This
encompasses all elements with ¢ = 539k, which are those circled in Figure 2 (note that due
to the +1 term in Theorem 1.3, each circle contains a pair of kernel elements with close
upper-left entries).

DHDOOOOOOO

Figure 2. Elements of K7;; for 1 < ¢ < 10¢1¢2

Note that in Figures 1 and 2, the only kernel elements present in rows ¢ = Nkgqy are
those equivalent to (+1, Nkgy). We refer the reader to [NRY21] for additional examples
of this phenomenon. The following proposition gives some evidence for this sparseness by
demonstrating that no element of the form (a,c) = (1 + Nkr, Nkqy) with nonzero k is in
the kernel.
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Proposition 4.2. Let ¢1qo = N with (q1,q2) = 1, ¢1 # 1. Suppose r € Z with (r,qz) = 1.
Then for any nonzero k € Z, we have

(28) Syine (£l + Nkr, Nkgs) # 0.

Proof. The proof follows the same framework as Theorem 1.3. Let W be an Atkin-Lehner
operator with Q) = ¢; and R = ¢a, so (¢1, R) = 1 and (g2, Q) = 1. The effect of Wg on g1, ¢
is such that ¢; = 1. Let v = (§ ). By (21), S1,,,(7) = —kL(—1,X2') # 0. Therefore, with
7' as in (26), we have S, y,(7") # 0. This shows the claim (28). O
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